Pan-STARRS and SNe

Paul Price Institute for Astronomy University of Hawaii

Science Applications International Corporation An Employee-Owned Company

Pan-STARRS

- Panoramic Survey Telescope And Rapid Response System
- A fore-runner to the LSST, funded by AFRL
- A dedicated optical survey instrument, 54 m²deg²
- Collaboration between:
 - IfA
 - MHPCC: Data processing
 - SAIC: Databases
 - MITLL: Detectors
- To be operational in Autumn 2006

Optics

- 4 x 1.8m telescopes, f/4, 7 deg² FoV, ADC option
- $A\Omega = 4 \times 13.5 \text{ m}^2\text{deg}^2$
 - MEGACAM, SuPrimeCam ~ 8 m²deg²
- Filters: grizy, SS (V+R)

Detectors

- OT technology (demonstrated with OPTIC)
- 4 x (8x8) x (8x8) x (512x512) ~ 4 Gpix
- 0.3" pixels (12µ pitch)
- COTS approach, 2 sec readout, 3e⁻ RN

Orthogonal Transfer

- Tip/tilt compensation
 - remove image motion
 - high speed (~ 100 Hz)

Normal guiding (0.73")

OT tracking (0.50")

Readout Electronics

- SDSU dual channel video board
 - 2 channels
 - 150 kpixel/sec
 - CDS, 16 bit ADC
 - 15 W power

- Analog Devices 9826
 - 3 channels (RGB)
 - 15 Mpixel/sec
 - CDS, 16 bit ADC
 - 250 mW power

Image Reduction

- 4 Gpix / 32 sec --> 10 TB raw data per night, 3 PB per year
- Process data in near-real time (30-60 sec each):
 - Bias, flat-field, fringe, sky-subtraction
 - Map individual images to static sky representation
 - Combine individual images from each telescope
 - Subtract static sky and identify transients
 - Add to static sky
- Desire is to create a flexible system that can be used to reduce other mosaic data

Data Products

- Subtracted images
- List of transients identified in subtracted images
 - Depending upon cadence, may be uncertainty in proper motion for up to several days
- Static sky images
- Source catalogues
- Client Science Programs will plug in to have access to the streams (e.g. planet occultations)
- Other access via Virtual Observatory

Final Data Products

• Sky, the wallpaper:

- 10 Tpix x 6 colors x N versions

• Sky, the movie:

- 10 Tpix x 6 colors x 50 epochs

- Sky, the database:
 - $-2x10^{10}$ objects (x 6 colors x 20-60 epochs)
 - 10⁹ proper motions (complete over 3π)
 - 10⁸ variable stars and AGN
 - 10⁷ asteroids (10⁴ NEO/PHA)
 - 10⁷ transients (SN, GRB, etc.)
 - $-3x10^{5}$ stars within 100 pc (with good parallax)

Survey Modes

7 deg², 30 sec integrations --> 6000 deg²/night, or visible sky thrice per lunation to R ~ 24 mag

Mode	PSY	Area	Cad.	SS	B/g	r	i	Z	Y
SS NEO	1.1d 0.2b	7000	h/d/m	27.5 300		5-	σ limit (A	<i>B</i>)	
SS kbo	1.0d 0.2b	3π	hdmy	26.5 60		Total int. (min)			
Var.	0.8d 0.8b	133	4 min	29.4 22000	28.8 7400		28.7 4400		25.1 4400
3π	1.3d 2.5b	3π	14d		26.1 30	25.8 30	25.6 60	24.1 20	22.5 30
Med. Deep	0.6d 0.9b	1200	4d		27.3 271	27.2 460	27.5 1200	25.2 1900	24.2 600
Ultra Deep	0.5d 0.7b	28	4d		29.3 10000	29.2 18000	28.2 6300	27.2 6700	26.2 26000

Sweet Spots

Collision risk density on the sky for 1000MT colliders

Science with Pan-STARRS

- Moving Object Science
 - NEO Near Earth Object threat
 - OSS/MBO Main Belt and Other Solar System science
 - KBO Kuiper Belt Objects
 - SOL Solar Neighborhood (parallaxes and proper motions)
- Static and Invariable Object Science
 - WL Weak Lensing
 - LSS Large Scale Structure
 - LSB Low Surface Brightness and dwarf galaxies
 - SPH Spheroid formation
 - EGGS Extragalactic and Galactic Stellar science
- Transient and Variable Object Science
 - AGN Active Galactic Nuclei
 - SNE Supernovae
 - GRB Gamma Ray Bursts and afterglows
 - EXO Exoplanets (occulation)
 - YSO Young Stellar Objects
 - VAR Variability Science (especially stars)
- TGBN (Things that Go Bump in the Night)

SNE Project (Tonry)

- Using Medium-Deep, Ultra-Deep surveys
- Goal is to measure w(z) to 10% over 0 < z < 1
- 5,000 SNe Ia per year, 0 < z < 1
 - Most found on the rise
 - 80 per month @ I < 22 mag
 - 350 per month @ 22 mag < I < 24 mag
- Spectrographic follow-up required
 - 365 nights/year on an 8m-class

Pan-STARRS: In General

- Estimate ~ 10⁴--10⁵ SNe of all types per year discovered by Pan-STARRS
- In general (i.e., apart from Tonry SN program):
 - Limited colour information (e.g. SS program)
 - Limited temporal information (e.g. 3π survey)
- Need follow-up resources to identify interesting variable sources (SN types, GRB, unknowns)
- SN studies limited by spectroscopic resources