Pan-STARRS and SNe

Paul Price

Institute for Astronomy
University of Hawaii
University of Hawail

Pan-STARRS

- Panoramic Survey Telescope And Rapid Response System
- A fore-runner to the LSST, funded by AFRL
- A dedicated optical survey instrument, $54 \mathrm{~m}^{2} \mathrm{deg}^{2}$
- Collaboration between:
- IfA
- MHPCC: Data processing
- SAIC: Databases
- MITLL: Detectors
- To be operational in Autumn 2006

Optics

- $4 \times 1.8 \mathrm{~m}$ telescopes, $\mathrm{f} / 4,7 \mathrm{deg}^{2} \mathrm{FoV}$, ADC option
- $\mathrm{A} \Omega=4 \times 13.5 \mathrm{~m}^{2} \mathrm{deg}^{2}$
- MEGACAM, SuPrimeCam $\sim 8 \mathrm{~m}^{2} \mathrm{deg}^{2}$
- Filters: grizy, SS (V+R)

Detectors

- OT technology (demonstrated with OPTIC)
- 4 x (8 x 8) x (8 x 8) x (512x512) ~ 4 Gpix
- 0.3" pixels (12μ pitch)
- COTS approach, 2 sec readout, $3 \mathrm{e}^{-} \mathrm{RN}$

Orthogonal Transfer

- Tip/tilt compensation
- remove image motion
- high speed ($\sim 100 \mathrm{~Hz}$)

Readout Electronics

- SDSU dual channel video board
- 2 channels
- $150 \mathrm{kpixel} / \mathrm{sec}$
- CDS, 16 bit ADC
- 15 W power
- Analog Devices 9826
- 3 channels (RGB)
- $15 \mathrm{Mpixel} / \mathrm{sec}$
- CDS, 16 bit ADC
- 250 mW power

Rev 1.0
8-channel
OTA controller

Image Reduction

- 4 Gpix / 32 sec --> 10 TB raw data per night, 3 PB per year
- Process data in near-real time (30-60 sec each):
- Bias, flat-field, fringe, sky-subtraction
- Map individual images to static sky representation
- Combine individual images from each telescope
- Subtract static sky and identify transients
- Add to static sky
- Desire is to create a flexible system that can be used to reduce

Data Products

- Subtracted images
- List of transients identified in subtracted images
- Depending upon cadence, may be uncertainty in proper motion for up to several days
- Static sky images
- Source catalogues
- Client Science Programs will plug in to have access to the streams (e.g. planet occultations)
- Other access via Virtual Observatory

Final Data Products

- Sky, the wallpaper:
- 10 Tpix x 6 colors x N versions
- Sky, the movie:
- 10 Tpix x 6 colors x 50 epochs
- Sky, the database:
-2×10^{10} objects (x 6 colors x 20-60 epochs)
- 10^{9} proper motions (complete over 3π)
- 10^{8} variable stars and AGN
- 10^{7} asteroids ($10^{4} \mathrm{NEO} / \mathrm{PHA}$)
-10^{7} transients (SN, GRB, etc.)
-3×10^{5} stars within 100 pc (with good parallax)

Survey Modes

- $7 \mathrm{deg}^{2}, 30 \mathrm{sec}$ integrations --> $6000 \mathrm{deg}^{2} /$ night, or visible sky thrice per lunation to $\mathrm{R} \sim 24$ mag

Mode	PSY	Area	Cad.	SS	B/g	r	i	Z	Y
$\begin{aligned} & \mathrm{SS} \\ & \mathrm{NEO} \end{aligned}$	$\begin{aligned} & 1.1 \mathrm{~d} \\ & 0.2 \mathrm{~b} \end{aligned}$	7000	$\mathrm{h} / \mathrm{d} / \mathrm{m}$	$\begin{gathered} 27.5 \\ 300 \end{gathered}$		$\begin{aligned} & \text { 5- } \sigma \text { limit }(A B) \\ & \text { Total int. (min) } \end{aligned}$			
$\begin{aligned} & \mathrm{SS} \\ & \mathrm{KBO} \end{aligned}$	$\begin{aligned} & 1.0 \mathrm{~d} \\ & 0.2 \mathrm{~b} \end{aligned}$	3π	hdmy	$\begin{gathered} 26.5 \\ 60 \end{gathered}$					
Var.	$\begin{aligned} & 0.8 \mathrm{~d} \\ & 0.8 \mathrm{~b} \end{aligned}$	133	4 min	$\begin{aligned} & 29.4 \\ & 22000 \end{aligned}$	$\begin{aligned} & 28.8 \\ & 7400 \end{aligned}$		$\begin{aligned} & 28.7 \\ & 4400 \end{aligned}$		$\begin{aligned} & 25.1 \\ & 4400 \end{aligned}$
3π	$\begin{aligned} & 1.3 \mathrm{~d} \\ & 2.5 \mathrm{~b} \end{aligned}$	3π	14d		$\begin{gathered} 26.1 \\ 30 \end{gathered}$	$\begin{gathered} 25.8 \\ 30 \end{gathered}$	$\begin{gathered} 25.6 \\ 60 \end{gathered}$	$\begin{gathered} 24.1 \\ 20 \end{gathered}$	$\begin{gathered} 22.5 \\ 30 \end{gathered}$
Med. Deep	$\begin{aligned} & 0.6 \mathrm{~d} \\ & 0.9 \mathrm{~b} \end{aligned}$	1200	4d		$\begin{gathered} 27.3 \\ 271 \end{gathered}$	$\begin{aligned} & 27.2 \\ & 460 \end{aligned}$	$\begin{aligned} & 27.5 \\ & 1200 \end{aligned}$	$\begin{aligned} & 25.2 \\ & 1900 \end{aligned}$	$\begin{gathered} 24.2 \\ 600 \end{gathered}$
Ultra Deep	$\begin{aligned} & 0.5 \mathrm{~d} \\ & 0.7 \mathrm{~b} \end{aligned}$	28	4d		$\begin{aligned} & 29.3 \\ & 10000 \end{aligned}$	$\begin{aligned} & 29.2 \\ & 18000 \end{aligned}$	$\begin{aligned} & 28.2 \\ & 6300 \end{aligned}$	$\begin{aligned} & 27.2 \\ & 6700 \end{aligned}$	$\begin{aligned} & 26.2 \\ & 26000 \end{aligned}$

Sweet Spots

Collision risk density on the sky for 1000MT colliders

Science with Pan-STARRS

- Moving Object Science
- NEO - Near Earth Object threat
- OSS/MBO - Main Belt and Other Solar System science
- KBO - Kuiper Belt Objects
- SOL - Solar Neighborhood (parallaxes and proper motions)
- Static and Invariable Object Science
- WL - Weak Lensing
- LSS - Large Scale Structure
- LSB - Low Surface Brightness and dwarf galaxies
- SPH - Spheroid formation
- EGGS - Extragalactic and Galactic Stellar science
- Transient and Variable Object Science
- AGN - Active Galactic Nuclei
- SNE - Supernovae
- GRB - Gamma Ray Bursts and afterglows
- EXO - Exoplanets (occulation)
- YSO - Young Stellar Objects
- VAR - Variability Science (especially stars)
- TGBN (Things that Go Bump in the Night)

SNE Project (Tonry)

- Using Medium-Deep, Ultra-Deep surveys
- Goal is to measure $\mathrm{w}(\mathrm{z})$ to 10% over $0<\mathrm{z}<1$
- 5,000 SNe Ia per year, $0<\mathrm{z}<1$
- Most found on the rise
- 80 per month @ I < 22 mag
- 350 per month @ $22 \mathrm{mag}<\mathrm{I}<24$ mag
- Spectrographic follow-up required
- 365 nights/year on an 8 m -class

Pan-STARRS: In General

- Estimate $\sim 10^{4}--10^{5} \mathrm{SNe}$ of all types per year discovered by Pan-STARRS
- In general (i.e., apart from Tonry SN program):
- Limited colour information (e.g. SS program)
- Limited temporal information (e.g. 3π survey)
- Need follow-up resources to identify interesting variable sources (SN types, GRB, unknowns)
- SN studies limited by spectroscopic resources

