
Physics 106a/196a – Problem Set 7 – Due Dec 1, 2006

This problem set focuses on both coupled oscillations and central force motion and scattering,
Sections 3.2 and 4 of the lecture notes. Note that the set is 50% longer than usual because it covers
2 weeks’ worth of material and you have (almost) 2 weeks to do it. Problems 1 and 2 are for 106a
students only, Problems 3 through 6 are for 106a and 196a students, and Problems 7 and 8 for 196a
students only. More hints may be forthcoming next week, keep an eye on the web page.

1. (106a) Hand and Finch 1-22, except this time do it in terms of normal modes – find the normal
mode frequencies and normal mode vectors (appropriately normalized). You don’t need to
rederive the Lagrangian, you may use the Lagrangian provided in the solutions to Problem
Set 3 (#3), but you will have to do the Taylor expansion to find the t and v matrices. Provide
a physical interpretation of the two modes. Why does one mode have zero frequency?

2. (106a) Hand and Finch 9-9. The fact that the spring mass ms is small is only intended to
imply that the spring does not sag under its own weight – you need not make any other
approximations using ms � m.

3. (106a/196a) A satellite is to be launched from the surface of the earth. Assume the earth is
a sphere of radius R and neglect friction with the atmosphere. The satellite is to be launched
at an angle α with the vertical, with a velocity v0, so as to coast without power until its
velocity is horizontal at an altitude h1 above the earth’s surface. A horizontal thrust is then
applied by the last stage rocket so as to add an additional velocity ∆v1 to the velocity of
the satellite. The final orbit is to be an ellipse with perigee h1 (point of closest approach)
and apogee h2 (point farthest away) as measured from the earth’s surface. Find the required
initial velocity v0 and additional velocity ∆v1 in terms of R, α, h1, h2, and g, the acceleration
of gravity at the earth’s surface. (Of course, you must not assume the acceleration of gravity
is independent of distance from the earth’s surface – g is only used to obviate G and Mearth in
the result.) Hint: Use conservation of energy and conservation of angular momentum when
you know they are conserved, and use the fact that you know exactly how they change when
the thrust is applied.

4. (106a/196a) Hand and Finch 9-2, triple pendulum.

5. (106a/196a) It can be shown that the orbit given by the special theory of relativity for a
particle of mass m moving under a potential energy V (r) is the same as the orbit which the
particle would follow according to Newtonian mechanics if the potential energy were

U(r) = V (r)− [E − V (r)]2

2mc2

where E is the total energy (kinetic plus potential) and c is the speed of light. Show by
comparing the orbital angular velocity with the frequency of radial oscillation for nearly
circular motion that the nearly circular orbits, when the relativistic correction is small, are
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precessing ellipses, and calculate the angular velocity of precession. See the attached solution
to Hand and Finch 4-24 for something of a hint (but you can’t just apply it blindly!). You
must be careful to carry your Taylor expansions to the appropriate number of terms to avoid
a trivial result. This is a nontrivial problem.

6. (106a/196a) Show that in a scattering situation between particles of unit charge (in Gaussian
units, V (r) = q/r, q = 1 in this case), if the incident particle is much heavier than the
target particle (m1 � m2), the Rutherford scattering cross section in laboratory coordinates
is approximately

dσ

dΩ
≈

(
1

2m2v2
0

)2 4 γ2[
1−

√
1− γ2θ2

]2 √
1− γ2θ2

if γθ < 1, where γ = m1
m2

. Otherwise, dσ/dΩ = 0.

7. (196a) We saw in the lecture notes (Section 3.2.2, Subsection The Congruence Transfor-
mation...) that the Hamiltonian for a set of coupled simple harmonic oscillators may be
written in the form

H = ~̇ψT ~̇ψ + ~ψTΩ2 ~ψ

Let us rewrite this using standard symplectic notation. Since m = 1 in our usual way of
writing the problem, it holds that pψi

= ψ̇i. Define as usual ~ξ to be the symplectic coordinate,

the 2M -dimensional combination of ~ψ and ~p~ψ = ~̇ψ. Do the following:

(a) Show that the Hamiltonian may be written in the form

H =
1
2
~ξT S ~ξ

where S is a square 2M × 2M matrix.

(b) Assuming all modes are nondegenerate, let M be a square 2M×2M -dimensional matrix
formed by the components of the set of normal mode vectors in the 2M -dimensional ~ξ
space (like Φ is the corresponding matrix in M -dimensional configuration space). Show
that the conventional normalization of the normal mode vectors makes M the Jacobian
matrix of a canonical transformation.

(c) Show that the canonical transformation so found transforms the effective Hamiltonian
to the form

H =
∑
j

i ωjqjpj (1)

What are the equations of motion in this set of canonical coordinates?

(d) Finally, show that

F2 =
∑
j

[
qjPj +

i

2
P 2
j

ωj
− i

4
ωjq

2
j

]
(2)

leads to a canonical transformation that decomposes H into the Hamiltonians for a set
of uncoupled linear harmonic oscillators that oscillate in the normal modes.
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8. (196a) A mass m of gass and debris surrounds a star of mass M . The radius of the star is
negligible in comparison with the distances to the particles of gas and debris. The material
surrounding the star has initally a total angular momentum ~L and a total kinetic and potential
energy E. Assume that m � M , so that the gravitational fields due to the mass m are
negligible in comparison with that of the star. Due to internal friction, the surrounding
material continually loses mechanical energy. Show that there is a maximum energy ∆E
which can be lost in this way, and that when this energy has been lost, the material must
all lie on a circular ring around the star (but not necessarily uniformly distributed). Find
∆E and the radius of the ring. You will need to use Lagrange multipliers. This problem
qualitatively explains why planetary systems and galaxies collapse to a disk of gas and dust
rather than retaining the spherical halo of such material that they likely begin with.

Hand and Finch 4-24 Solution

The force is
F (r) =

dU(r)
dr

= − k

r2
+

2β
r3

(3)

so the equation of orbit is

d2u

dϕ2
+ u = − µ

l2u2
F

(
1
u

)
=⇒ d2u

dϕ2
+

(
1 +

2βµ
l2

)
u =

µk

l2
(4)

We will get a similar solution as in the pure r−2 force case, except that, we have ω2 = 1+
2βµ
l2
≡

α2, instead of unity. The solution is

u = A cosαϕ+
µk

l2 + 2βµ
= A cosαϕ+

Gµ2M

l2 + 2βµ
(5)

and the polar equation of the orbit is now

p

r
= 1 + ε cosαϕ (6)

Thus, we got precession because r repeats with period
2π
α

=
2π√

1 + 2βµ
l2

in ϕ, and α is not unity

here.
rmin occurs at αϕ = 2nπ ⇒ ϕ =

2nπ
α

, so the apsides precess an angle
2π
α
− 2π per period,

and the precession frequency is

Ω̇ =
2π( 1

α − 1)
τ

(7)

When the additional potential (β term) is small, we have

1
α

=
1√

1 + 2βµ
l2

' 1

1 + βµ
l2

= 1− βµ

l2
(8)

so
Ω̇ = −2πβµ

l2τ
(9)
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Since the question asks to calculate only the speed of precession, we will not require that the
sign have been obtained correctly. Regardless, we may discuss its significance.

Notice the minus sign in the expression. When β < 0, i.e. the additional potential gives an
attraction force, the orbit precesses forward, and vice versa. This is a reasonable result, physically.
Compare the two orbits with the same apogee and l without and with the β term. If the force is
attractive, the particle will have a smaller perigee than in the β = 0 case, and in general its orbit
will be “smaller” than the β = 0 orbit. Since angular momentum is conserved, the particle must
have larger φ̇ in the β < 0 orbit. If φ̇ is larger, the β < 0 orbit progresses through 2π more quickly,
so by the time the particle has returned to the apogee radius, it has passed 2π, indicating forward
precession of the orbit. Similarly, if you analyse the case where β > 0, i.e. the additional potential
gives a repelling force, you will ended up with a backward precession conclusion.
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