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Section 1.1 Introduction to Course: Course Material

Course Material

Overview

This is a course on electrodynamics. It will review the basic material you learned in
Phlbc but will go beyond in both content as well as in mathematical sophistication.

The intended learning outcome of both Ph106b and Ph106c is for students to acquire
the ability to calculate electric and magnetic potentials, fields, energies, and forces in
a variety of basic physical configurations combined with an understanding of the
underlying physical principles and calculation techniques. This outcome requires both
an understanding of principles as well as the ability to apply them to do calculations!

The course will primarily use and follow Introduction to Electrodynamics by Griffiths
(fourth edition). Supplementary material is drawn from Jackson and from Heald &
Marion, both on electronic and physical reserve from the library. The material
presented here will be self-contained, but past students have found it useful to obtain
a copy of Jackson. It is certainly a book you will want if you continue in physics or a
related field.

Section 1.1.1 QOverview Page 10



Section 1.1 Introduction to Course: Course Material

Prerequisites

Physics:

» Electricity and Magnetism: While Phlbc is a formal prerequisite for the course,
we will develop the material from scratch. However, review material will be
covered quickly and a basic familiarity with the concepts will be assumed.

» Classical mechanics: Generally, mechanics at the level of Phla is sufficient for
this course, though some optional material at the end of Ph106c will make use
of Ph106a material.

Section 1.1.2 Prerequisites Page 11



Section 1.1 Introduction to Course: Course Material
Mathematics:

» Chapter 1 of Griffiths except for Sections 1.1.5 (“How Vectors Transform”) and
1.5 (“The Dirac Delta Function"). We will review some prerequisite material as
needed.

> Solutions to second-order linear ordinary differential equations with constant
coefficients (i.e., simple harmonic oscillator).

» Orthonormal functions/bases.

» Over the course, we will develop the following more sophisticated concepts:

> Dirac Delta function.

> Separation of variables to reduce second-order linear partial differential
equations to ordinary differential equations.

> Various specific types of orthonormal functions, specifically sinusoids,
Legendre polynomials, and spherical harmonics.

> Tensor formalism for relativity.

» Key point: Mathematics is the language of physics. You must be competent in
the above basic mathematics to understand and use the material in this course.
Intuition is crucial, but it must be formalized mathematically.

However, mathematics is not just symbolic manipulation or brute force
calculation. Make sure you understand the meaning of every mathematical
expression — i.e., carry along the intuition with the symbols! Only do algebra
and explicit differentiation and integration as a last resort! We will demonstrate
this approach regularly.

Section 1.1.2 Prerequisites Page 12



Section 1.1 Introduction to Course: Course Material

Topics to be Covered

New topics for Ph106b not covered in Phlbc
New topics for Ph106c not covered in Phlbc

>

>

Section 1.1.3

Review of basic electrostatics — Coulomb’s Law; Gauss's Law; electric field,
potential, and potential energy; conductors, capacitors, and capacitance matrix.

Advanced electrostatics — boundary value problems (BVP) for determining

potentials and fields; Green Functions for BVP; multipole expansion of potential.

Electrostatics in Matter — polarization, susceptibility, permittivity of matter;
BVP with polarizable materials, energy and forces in matter.

Magnetostatics — Lorentz force; Biot-Savart Law; Ampére's Law; vector
potential; boundary conditions; multipole expansion of potential.

Magnetostatics in Matter — magnetization, susceptibility, and permeability of
matter; boundary conditions; ferromagnetism; BVP with magnetizable materials.
Electrodynamics — electromotive force and electromagnetic induction;
inductance and energy in magnetic fields; Maxwell's equations in vacuum and in
matter; boundary conditions for Maxwell's equations.

Conservation Laws — Continuity equation; Poynting's Theorem; electrodynamic
momentum and energy.

Electromagnetic Waves — in vacuum, in polarizable/magnetizable matter, in
conductors, in transmission lines and waveguides.

Topics to be Covered
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Section 1.1 Introduction to Course: Course Material

>

>

Section 1.1.3

Potentials and Radiation — potential formulation; fields and potentials of
moving point charges; radiated electromagnetic waves; antennas.

Relativity and Electrodynamics — review of special relativity including
relativistic kinematics and collisions, relativistic tensor notation, transformation
of fields, transformation of field tensor, relativistic potentials, relativistic
formulation of Maxwell's Equations, relativistic dynamics with EM fields,
relativistic conservation theorems.

Topics to be Covered
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Section 1.2 Introduction to Course: Notation; including Deviations from Griffiths

Notation; including Deviations from Griffiths

>

We will use standard black text for material that is covered in lecture, while
magenta text will be used for material that is skipped during lecture for which
you remain responsible. We will skip material generally when it consists of
computation or calculation that is tedious to do on the chalkboard, summarizing
the results as necessary. You will need to be able to apply the skipped material
as well as the techniques developed in this skipped material.

Green text will be used to indicate supplementary material for which you will
not be responsible.

Griffiths uses boldface notation to indicate vectors and a script 7 to indicate the
difference vector ¥ — 7. In order to better match what can be written by hand,
we use ~ rather than boldface for vectors and we use R for the difference vector.

Griffiths uses F to refer to the position of the test charge Q and 7’ to refer to
the position of the source charge g. This seems unnecessarily confusing. We
instead use q and 7 for the test charge and g’ and 7’ for the source charge.

Griffiths uses §3(F) to refer to the delta function in three spatial dimension. We
use §(F) for this for reasons that are explained after Equation 2.9.
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Section 2
Review of Basics of Electrostatics
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Section 2.1 Review of Basics of Electrostatics: Study Guidelines

Study Guidelines

You have seen all the material in this section before in Phlb. However, the derivations
done there were not as rigorous as they could be because you were simultaneously
learning vector calculus. Our goal in this section is to do more rigorous derivations to
give you some practice in using the mathematical tools. We won’t do any examples in
lecture or the notes because they duplicate Phlb. But you should make sure you are
comfortable with the examples in Griffiths Chapter 2.
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Section 2.2 Review of Basics of Electrostatics: The Assumed Conditions for Electrostatics

The Assumed Conditions for Electrostatics

Electrostatics is the study of electric fields, potentials, and forces under two
assumptions:

> All electric charges sourcing the electric field are stationary and have been so for
a sufficiently long time that all fields are static and thus the electric field can be
written in terms of the source charges’ current positions.

» The source charges are held fixed and cannot react to the fields from any test
charges that may be stationary or moving relative to the source charges.

We will see later that, when charges are moving, it takes time for the information
about the position to propagate and thus the fields at a given point depend on the
configuration of the charges at earlier times.
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Section 2.3 Review of Basics of Electrostatics: Coulomb's Law and the Electric Field

Coulomb’s Law and the Electric Field

Coulomb’s Law, Electrostatic Forces, and Superposition
We begin with two empirical facts:

» Coulomb’s Law: the empirical fact that the force on a test charge g at position

F due to a source charge g’ at 7’ is given by Coulomb’s Law:
- 1 g ~ —
F= 99g with R=7—F (2.1)
4me, R2

where €, = 8.85 x 10712 C2 N~ m—2 is the permittivity of free space. The
force points along the line from q’ to q as indicated by the sign of the definition
of R. The electric charge is in the units of Coulombs (C), which is a
fundamental unit that cannot be written in terms of other fundamental units.

Recall that: we use ~rather than boldface to indicate vectors; R where Griffiths
uses a script r; and a different convention from Griffiths for the symbols for the
two charges and their position vectors.

» Superposition: the empirical fact that Coulomb’s Law obeys the principle of
superposition: the force on a test charge g at 7 due to N charges {ql/} at
positions {7} is obtained by summing the individual vector forces:

N /
- = 1 gaq5 B o =
F:Z ’:.247% ”?,-2 R; with R =rF—F' (2.2)

Section 2.3.1 Coulomb’s Law, Electrostatic Forces, and Superposition Page 19



Section 2.3 Review of Basics of Electrostatics: Coulomb's Law and the Electric Field

The Electric Field

Given that any test charge g placed at the position 7 feels the same force per unit
charge, we are motivated to abstract away the test charge and define what we call the

electric field at that position 7

/o~
E(R) = F_ e R , for a single source charge ¢’ at 7’
q >N, 47360 % R;  for N source charges {q/} at positions {7}
!
(2.3)

The electric field has units of N/C.

Section 2.3.2

The Electric Field
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Section 2.3 Review of Basics of Electrostatics: Coulomb's Law and the Electric Field

Coulomb’s Law for Continuous Charge Distributions

If a charge distribution is continuous, then the natural extension of Coulomb’s Law is
to integrate the electric field or force over the contributions from the infinitesimal
charge elements dq at 7’:

= 1 1 Y =/
EN= [ R e R a6 (24)

)]

where ﬁ(?, F') = F— F’ varies with the location 7’ of dq as the integral is performed.
dq is admittedly undefined here. However, before worrying about that, let us note that
the integrand is a vector and so this integral requires some care: we must break up R
into its components and individually integrate each component. For example, if we use
Cartesian coordinates, then R=%x <I3 . )?) +y (ﬁ . )7) +z (ﬁ . 2), and, since the
Cartesian unit vectors do not depend on the location of the infinitesimal charge
dq(7”"), we may write the integral out as follows (eliding the dependence of R on 7
and 7’ for brevity):

£ = (2.5)
e 7w (R9) da+7 [ 25 (R-5) dar)+2 [ 25 (R-2) o)

which is sum of three integrals with scalar integrands.

Section 2.3.3 Coulomb’s Law for Continuous Charge Distributions Page 21



Section 2.3 Review of Basics of Electrostatics: Coulomb's Law and the Electric Field

Now, consider some specific charge distributions:

» volume charge distribution:

with p(7’) having units of C m~3,
oy . S
. 1 dr' o(F!) ~ r’ running over all points in the
E(F) = 7/ Lgr) R volume distribution V, and d7’ (2.6)
v R being the differential volume

element at 7’ for V

» surface charge distribution:

with o(7") having units of C m—2,

~ . S
N 1 da’'o(F!) ~ r’ running over all points in the
E(F) = / # R surface distribution S, and da’ (2.7)
dmeo Js R being the differential area element
at 7/ for S

Section 2.3.3 Coulomb’s Law for Continuous Charge Distributions Page 22



Section 2.3 Review of Basics of Electrostatics: Coulomb's Law and the Electric Field

» line charge distribution:

with A(F’) having units of C m~1,
1 / dOA(F') ~ P’ running over all points in the
— [ ——R
C

E(A) = > line distribution C, and d¢’ being (2.8)
4meo R the differential length element
at 7/ for C

Using the Dirac delta function we will define below, one can write the first two as
special cases of the latter by using delta functions in the dimensions in which the
charge distribution has no extent.

Section 2.3.3 Coulomb’s Law for Continuous Charge Distributions Page 23



Section 2.3 Review of Basics of Electrostatics: Coulomb's Law and the Electric Field

Aside: The Dirac Delta Function

Relating Equation 2.6 to Equation 2.3 offers us both the opportunity to rigorously

connect them as well as a chance to introduce the Dirac delta function.
(Mathematically, it is a distribution, not a function, but we will use the standard

nomenclature.) The Dirac delta function at 7,, §(F— 7,), is defined by what it does

when it is multiplied against an arbitrary function f(7) and integrated: For any
function f(7) and any volume V containing the point 7, it holds that

[ e - ryar = { f(7)

In particular, if £(7) is unity, then the right side of the above integral is unity for

eV
gV

i v

(2.9)

fo € V: the integral of a delta function over the volume containing its 7, is 1, and,

conversely, the integral of a delta function over any volume not containing its 7,
vanishes.

Section 2.3.4 Aside: The Dirac Delta Function
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Section 2.3 Review of Basics of Electrostatics: Coulomb's Law and the Electric Field

Two notes on dimensions and notation:

» In order for the units in the above equation to work out, the delta function
above must have units of m—3. The general rule is that the delta function’s
units are the inverse of those of the differential that its argument says it should
be integrated with. In this case, the argument is a vector in 3D space and the
differential is the differential volume element d7, and so the delta function has
units of m—3. The units can be subtle, though. If one considers a delta function
that picks out a 2D surface in 3D space (e.g., for collapsing an integral of a
volume charge density to one of a surface charge density), its argument will be a
3D vector, but it should have units of m~1 since it eliminates only one of the
three dimensions. (This would be obvious if the surface were a sphere of radius
a centered at 7, because then one could instead use §(|F — 7| — a), implying
units of m~1. Other surfaces may not be so easily defined.)

> Griffiths refers to the above delta function as §3(7 — 7). He does this because
one can think of this delta function in terms of 1D delta functions

F=xX+yy+zz

322y _ _ —
0 (F— 1) = 8(x — %0)d(y — ¥0)d(z — z0) where P = xRt Yo7 + 205

(2.10)

We drop the 3 because it is unnecessary: the dimension of the delta function is
implied by its argument, the fact that it picks a single point out of 3D space.
Moreover, the 3 notation is misleading and confusing because it suggests that §3
is the cube of something that has ¥ — 7, as its argument. It is not!

Section 2.3.4 Aside: The Dirac Delta Function Page 25



Section 2.3 Review of Basics of Electrostatics: Coulomb's Law and the Electric Field

With the above, if we define the charge distribution for a set of point charges {q/}

positions {F} to be
N
o) =3 (7 7)) (211)
i=1

then, when we do the integral in Equation 2.6 over any volume V containing all N
charges, we recover the discrete version of the expression for the electric field

Equation 2.3:

de’q’é(*’ff;’) F—r'
P12 F_ 7

N - -,

1 r—r'
= dr'ql 6(F — 7)) ~——L
4mes ;/v i 9 ") F—r3

N —7 N oo
z; T 27 R; (2.12)

471'60 .

E@) =

47reo

Section 2.3.4 Aside: The Dirac Delta Function
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Section 2.4 Review of Basics of Electrostatics: Gauss's Law

Gauss's Law

Statement of Gauss's Law

The flux of the electric field through a surface is the integral of the component of the
electric field normal to the surface over the surface:

R:LEﬂn@ (2.13)

where F lies on the surface S and n(F) is the surface normal at that point 7. Note that
the flux has a sign based on the choice of the orientation of 7.

Gauss's Law relates the flux of the electric field through any closed surface to the total
charge enclosed by that surface:

E . _1 T p(F
R:éEmmwf%A@dMﬁ (2.14)

where V(S) is the surface enclosed by S and § indicates the integral over a closed
surface. Our derivation below will take the surface normal direction to be outward
from the closed volume.

Section 2.4.1 Statement of Gauss's Law Page 27



Section 2.4 Review of Basics of Electrostatics: Gauss's Law

Utility of Gauss's Law

Gauss's Law has three uses:

» For charge distributions having some amount of geometrical symmetry, it
provides a way to calculate the electric field that is much easier than brute-force
integration of Coulomb’s Law.

P> We will see that it will enable us to relate the electric field's boundary
conditions at an interface between two volumes (the conditions relating the
electric field components on the two sides of the interface) to the amount of
charge at that interface.

» We can obtain a differential version of it, relating spatial derivatives of the
electric field to the charge density locally. Doing so directly from Coulomb’s
Law is difficult (though not impossible, given what we will prove about the
divergence of Coulomb’s Law!).

Section 2.4.2 Utility of Gauss's Law Page 28



Section 2.4 Review of Basics of Electrostatics: Gauss's Law

Proof of Gauss's Law
The proof offered in Griffiths' is unnecessarily unrigorous; we follow Jackson §1.3.

First, consider a charge distribution
p(F) that lies completely inside an
arbitrarily shaped closed surface S.
What is the infinitesimal flux through
an infinitesimal portion da of S at
a point 7 due to the infinitesimal
amount of charge in the infinitesimal
volume d7’ at the location 7’7 It is

© 1999 Jackson, Classical Electrodynamics

1 dr'p(F")

d>Fs(7,7') = =TE (F—7') - A(F) da (2.15)

dme, |F—

The left side is a double differential because the right side is. If one considers the
geometry (see diagram above), one sees that the quantity (F— 7’) - A(F) da/|F — F'| is
the projected area of the area element da normal to the unit vector (F— r’) /|F — 7’|
from 7’ to 7. Since |F— F’|? is the square of the distance from 7’ to 7, then the
quantity (F— 7’) - A(7) da/|F — 7’| is the solid angle dQ(F, 7") subtended by da at 7'
as viewed from 7’

Section 2.4.3 Proof of Gauss's Law Page 29



Section 2.4 Review of Basics of Electrostatics: Gauss's Law

The corresponding mathematical formula is
2 = =/ 1 ! = =/
d“Fs(F,F') = —— d7'p(F") dQ(F, F") (2.16)
47e,

We know that if we integrate the solid angle over the entire closed surface S
surrounding our source charge point 7/, we recover 4, so:

dFs(F') =

%S dt'p(F')dQ(F, F') = é dr’'p(F") (2.17)

47eo
That is, for any infinitesimal volume element d7’ at 7/, Coulomb’s Law implies that

the flux of the electric field due to that element through any surface S enclosing it is
equal to the charge in that infinitesimal volume divided by ¢,.

Section 2.4.3 Proof of Gauss's Law Page 30



Section 2.4 Review of Basics of Electrostatics: Gauss's Law

We expect that, due to superposition, if the above is true for the flux due to an
infinitesimal volume of charge, then it holds for the whole distribution of charge
enclosed by S. We can prove this by calculating the flux through S due to the entire
charge distribution, using the fact that the distribution is fully contained inside S (one
of our starting assumptions):

Fo=f B anrda= i f [ STEC) (7 ) A 0

dreo y [F— 7|3

1 1
= ?é/ d’r’p(?’)dﬂ(?, ?/): ?{/ d2}—5(7, F/) (2.18)
dmes Js V(S) dmeo Js V(S)

where Es(F) is the electric field at 7 due to all the charge contained by S. Note that

we implicitly used superposition in the above via the formula relating ES(F) to the
charge distribution. Exchanging the order of integration,

! / ?{dZIS(F,r'):i/ de(F’)=i/ dr'p(7') (2.19)
Ameo Jy(s)Js € JV(S) €0 JV(S)

which is Gauss's Law.

Fs =

Note how the proof depended on the 1/r? dependence and superposition property of
Coulomb’s Law. The proof could be done in the opposite direction: Gauss’s Law
implies Coulomb’s Law. In general, for any force, there is a simple Gauss's Law if and
only if the force has a 1/r? dependence. Another example is gravity, as you learned in
Phla and Ph106a.
Section 2.4.3 Proof of Gauss's Law Page 31



Section 2.4 Review of Basics of Electrostatics: Gauss's Law

But we are not quite done yet, as we assumed at the start that the charge distribution
vanishes outside of S. Does the result generalize to the case where there is some
charge outside of S so that Egs receives contributions from that charge? Yes, it does.

Returning to d?Fs(F, F') (Equation 2.16), suppose we consider a source charge at a
point 7/ that lies outside of S. (See diagram below.) Then, for a given point Fon S
and the solid angle it subtends dQ2(F, 7’) as viewed from the source charge point 7/,
there will be second point on S that has the same unit vector to the source charge
point 7/ and subtends the same solid angle. But, because the direction of A(F) enters
the expression for d2Fs(F, 7’), and the two points subtending the same solid angle
will have opposite signs of n, their two contributions cancel. Thus, the integral over S
that yields dFs(F’) vanishes for F’ outside of S, and, therefore, the charge
distribution at points outside of S do not contribute to the flux through S, and so our
derivation remains valid.

q outside S _—
n

qeo—

© 1999 Jackson, Classical Electrodynamics
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Section 2.4 Review of Basics of Electrostatics: Gauss's Law

The Divergence of E and the Differential Version of Gauss's Law

You learned about the divergence theorem (Gauss's theorem) in Malabc. Applied to
E, the divergence theorem says

/ V. E(7) dr = ]{ E(7) - A(F) da (2.20)
V(S) S
Gauss's Law tells us

1 = —~

;/V(S) dr p(F) :725(?).,1(?) da (2.21)

Combining the two, we have

/ ﬁf(r*)dfzi/ d7 p(F) (2.22)
V(S) €0 JV(S)

Since the above holds for any volume V), the integrands must be equal, giving us the
differential version of Gauss's Law:

ER = 2 o() (2.23)

The differential version states that a particular combination of the spatial derivatives
of the electric field at a point is related to the charge density at that point. We will
frequently employ this technique of using an equality between two integrals over an

arbitrary volume or surface to conclude their integrands are equal.

Section 2.4.4 The Divergence of E and the Differential Version of Gauss's Law Page 33



Section 2.4 Review of Basics of Electrostatics: Gauss's Law

Direct Proof of Differential Version of Gauss's Law

We can prove the above differential version by simply calculating the divergence of E
using Coulomb’s Law, also. This is of course not independent of Gauss's Law because
Gauss's Law is proven using Coulomb’s Law, but it provides some exercise in vector
calculus and leads us to the Dirac delta function. We take the divergence of
Coulomb’s Law for E, noting explicitly that the divergence is a set of derivatives in 7

! 44
1 ™) (7 7) (2.24)

Ve B0 =V [

Vv dme, |F—F/3

The integral is over 7/ over the volume V', but the divergence is calculated in the 7
coordinate, so we can bring the divergence inside the integral. Note that it does not
act on p because p is a function of 7/, not 7. Thus, we have

Ve B = o [ o) Ve D (2.25)
dmeo Jyr |F—F'3

One could calculate the above divergence explicitly in any particular coordinate

system. But it is both more rigorous and more instructive to do it using the

divergence theorem, which requires us to apply a nonintuitive technique: we integrate

both sides of the above equation in order to evaluate it.

Section 2.4.5 Direct Proof of Differential Version of Gauss's Law Page 34



Section 2.4 Review of Basics of Electrostatics: Gauss's Law

We can calculate the integral of the above divergence over some arbitrary volume V
(with surface S, with neither V nor S necessarily related to V' and S’), as we need to
do for Gauss's Law, by exchanging the order of integration (no prohibition on doing so
because we don't move ﬁ,« around) and converting the volume integral over 7 to an
easier-to-do surface integral using the divergence theorem:

- 1 PP
drVy-E(F)= [ dr dr'p(F) Ve ——=
v v |F— 73

4dmeo Jyr

1 F—r'
= d drvy. —— 1
47reo/ 7' o(F )/ T |F—rF'3

r
1 r—r'
= / d7'p(F") 7{ dan(r) - j : (2.26)
v/ |F—r;?

471eo

We can apply to the surface integral the same argument about solid angles that we
used in proving Gauss's Law. The integrand above is just the solid angle subtended by
the area element da at 7 as viewed from /. As before, if 7/ is inside V, then the
above integral yields the total solid angle, 4. If 7/ is not inside of V), then, for every
area element da at r, there is an area element with an equal and opposite
contribution, making the integral vanish. That is, as in the proof of Gauss's Law,

N F—r' 47 if 7' is inside V
}‘{S(V) dan(7) - |7— 73 - { 0 if 7' is outside V (2.27)
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Section 2.4 Review of Basics of Electrostatics: Gauss's Law

The above statement says that the integral over V vanishes if 7/ is not inside V and
yields 4 7 if it is inside V. This turns the double integral over V and V' into a single
integral over VY N V':

. — 1 1
/dTV;vE(F’): / dr' 4 p(F) = 7/ dr'p()  (2.28)
v 47eo Jynyr €0 Jynyr

Now, consider points in V but outside V N V’. Because V' is the entire volume
containing charge (by Coulomb’s Law), the charge density vanishes in V — VNV’ We
can thus add the volume V — V NV’ without changing the integral of the charge
density because the contribution from the added volume vanishes. This changes the
volume of integration from V NV’ to V. Therefore,

/VdTﬁ;.Em: é/vdT’p(F’) (2.29)

The volume V is arbitrary, so the integrands must be equal:

Ve E(R) = (D) (230)

€
which is again the differential version of Gauss's Law.

Note the use of two nonintuitive techniques: Using the equality of integrals over an
arbitrary volume to show their integrands are equal, and integrating an expression to
determine what it is equal to.
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Section 2.4 Review of Basics of Electrostatics: Gauss's Law
Aside: Relation of the Dirac Delta Function to a Divergence, Invariance under
Inversion of its Argument

Let’s return to a geometric theorem we proved during the above manipulations to
prove a property of the Dirac delta function. We showed above that:

= =7 ~ r—r 4m if 7 is inside V
/V IV TR T fiw) da (") G = { 0 if 7 is outside V(231

The far right side is proportional to the integral of the Dirac delta function, yielding

= F—r
/ drVy ——— = 47r/ dr§(F—F") (2.32)
v |F— 7|3 v
(Note the ordering of 7 and 7’ in the argument of the delta function! 7’ is the
equivalent of 7, in Equation 2.9.) Since these integrals are equal for an arbitrary
volume V), the integrands are equal:

P

=476(F—7) (2.33)

=
P
NEEEE

The delta function is the divergence of the 1/r? law. We will find this very useful!

Since the delta function picks out the point where its argument vanishes, it doesn't
matter what the sign of the argument is. One can prove this explicitly using change of
variables: when the sign of the argument changes, the sign of the differential and of
the limits of integration change also. Those two sign flips cancel each other. Thus

§(F—F") = o(F" —F) (2.34)
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Section 2.4 Review of Basics of Electrostatics: Gauss's Law

In order to introduce a new technique we will use soon, let's show this more explicitly:

-~ o
—F - F'—F =
\Y% =—Vp-

7 P 2
PR VT T
7= |7 =71 |7 =71

o = 4m(F =) (235)

The last equality is not obviously true because it is not just a symbolic replacement of
Equation 2.33. We can prove it by making a few more steps, though:

B o7 B} N
va-izva_ﬂ,.7:<—va,_~)~ LT V=9 D (236
r e = Ve = () () =Y e @)

We used the following: 1) the divergence with respect to 7 — 7’ is the same as the
divergence with respect to 7 because 7 — r”’ just offsets 7} 2) when we flip the sign on
F— r’, we can get the argument of the divergence to match this sign flip by flipping
the sign on the divergence overall (the 1D analogue would be to flip the sign on d/dx
when mirroring through the origin, x — —x); and, 3) F acts like an offset for 7/, and
so the divergence with respect to 7/ — F is the same as with respect to 7’. Therefore:
= = Pr—F

— -, = r
4ﬂ6(rfr’)=Vr-m REE

=47 §(F —F) (2.37)

Note this technique of applying an offset; we will use it again.
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Section 2.4 Review of Basics of Electrostatics: Gauss's Law

The above derivation is a situation in which it is very important to remember what
coordinate V is acting on/with respect to. If we had not subscripted V in the
manipulation above, we would have written:

oL e > Fr—F N o
4w d(F— r):V.|F7F”|3:V.7\F”*F‘]3:7V 7 7ﬂ3:747r5(r —F  (2.38)

Rather than just yielding a last equality that was not obviously true, we have obtained
an equality that seems to contradict the symmetry property! From the more detailed
derivation on the previous page, we see that the seeming contradiction vanishes when
we take care with the meaning of symbols by explicitly subscripting V. Errors of the
above type are easy to make and not self-evident! Mathematics in physics is not just
symbol manipulation: there is meaning that must be understood in order to be sure
those manipulations are justified.

Section 2.4.6 Aside: Relation of the Dirac Delta Function to a Divergence, Invariance under Inversion of its Argument Page 40



Section 2.5 Review of Basics of Electrostatics: The Electric Field has Vanishing Curl

The Electric Field has Vanishing Curl
Calculating the Curl of the Electric Field

The curl of E can be shown to vanish simply by calculating it for an arbitrary charge

distribution:
. . 1 . 77
VxER =V x [ drp(F) s
47 e v |F—F'3
1 PR F—r
= dr'p(F')V X ——— (2.39)
dmeo Jy |F—rF'|3

We could brute-force calculate the curl in the integrand in Cartesian or spherical
coordinates, but that would be painful because the function on which the curl is
acting has no symmetry in the 7 coordinate system.
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Section 2.5 Review of Basics of Electrostatics: The Electric Field has Vanishing Curl

Let's take a simpler, more geometric, and more intuitive approach. As we saw above,
F’ is just an offset to r, thus

=

r-r (2.40)
|F— 73 '
Note that, in doing this offset, the curl will be expressed in terms of the components
of ¥— 7. This does not change the bounds of integration, but it may make the
expression look complicated because the variable of integration is still 7/. Since we
will show this expression, the integrand, vanishes, this bookkeeping complication is not

important. If we define §= 7 — F’, then we have

Vi x =Vrpr X

F—r
=7

(2.41)

Now, the function on which the curl is acting has symmetry in the coordinate system
in which the curl is acting, and hence the calculation will be simplified. You can
probably see intuitively that the above curl vanishes, but let's prove it. (Note also that
the change of variables would require a change to the limits of integration, but, again,
because we will prove the integrand will vanish, this bookkeeping complication will not
be important.)
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Section 2.5 Review of Basics of Electrostatics: The Electric Field has Vanishing Curl

With the above form, we can trivially apply the formula for the curl in spherical
coordinates, which is listed in Griffiths. For the sake of being explicit, that formula is
(with r replaced by s as the radial coordinate to avoid confusion)

- ., 11 o . ovgl . 1 1 Ovs 0 ~
== — 0) — — - - — 0
VXV ssinf [86 (v¢sm ) [0} } st s Line (o0} Js (s V¢)
1[0 Ovs | ~
-1 = — 2.42
+s [85 (svo) Be}d) ( )

In the case considered here, s is the radial variable and the radial component of §/s3
is 1/52. Thus, V has only a radial component and that radial component depends only
on the radial distance from the origin. All the derivatives involving the 8 and ¢
components of V vanish because the components themselves vanish, and the
derivatives involving the radial component vanish because those derivatives are with
respect to 6 and ¢. (Don't be confused: V itself depends on 6 and ¢ because the
direction of V depends on them; but the curl formula takes care of that dependence.)

Thus, we have Vz x (5/s3) = 0 and the integrand in Equation 2.39 vanishes. So:

vV x E(P)

(2.43)
Note again that we did not brute-force differentiate, but rather we thought about how
to simplify the calculational aspect (via origin offset) and then saw that made the

result both geometrically/intuitively obvious and easier to demonstrate via calculation.

Section 2.5.1 Calculating the Curl of the Electric Field
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Section 2.5 Review of Basics of Electrostatics: The Electric Field has Vanishing Curl

The Line Integral of the Electric Field

Stokes' Theorem (a mathematical theorem we will not prove here but that you saw in
Malabc) then tells us that, for any surface S with boundary C(S),

7%:(5) a7 E(F) = /S dan(7) - [V x E(A)] =0 (2.44)

Section 2.5.2 The Line Integral of the Electric Field Page 44



Section 2.6 Review of Basics of Electrostatics: The Electric Potential

The Electric Potential
Electric Potential Definition using Line Integral

c I We used above the fact that the line integral of the electric field
2 around any closed loop C vanishes. If we consider two points along
the loop 7 and 7, C defines two paths along the loop from A to
7, C1 and Cy. Let's difference the line integrals along these two
o C1 paths, using the vanishing of the line integral around the loop to
n . .
see that the difference vanishes:

B B B AL
/ dZ~E(F)—/ di-E(F) = di- E(7) + di’- E(7)
C C

1,7 2,1 C1,A Ca,1

= ]{ di-E(F)=0 (2.45)
C

(Be careful about the endpoint ordering and signs of the two terms! The differential

dZin a line integral has no intrinsic polarity; the polarity is set by the ordering of the
endpoints. The sign of d¢ and of the endpoint ordering do not multiply; they are
redundant.) Therefore,

/FZ di- E(F) = ? di- E(F) (2.46)
C

1,7 Ca, A
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Section 2.6 Review of Basics of Electrostatics: The Electric Potential

The above relation tells us that the value of the above line integral depends only on
the location of its endpoints, not on the path taken. Thus, we can construct a
function, the electric potential, V/(F), defining it via its differences between points:

wm—wmz_fﬁzaa (2.47)

1

The fundamental theorem of calculus for line integrals in multiple dimensions implies

V(@) - V(i) = [l V() (2.48)

n

where V V/(F) is the gradient of the electric potential. The above two formulae hold
regardless of choice of endpoints and path, so the integrands are equal and we have

E(F)=-VV(P (2.49)

which can be viewed as an alternate definition of the potential. The offset of V(F) is

not defined because it has no influence on l::(F), which is the quantity we began with
from Coulomb's Law.
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Section 2.6 Review of Basics of Electrostatics: The Electric Potential

The electric potential has units of (N m/C) = (J/C), which we call the volt, V. (The
appearance of J will be important when we discuss electric potential energy.) The
electric field is frequently written in units of V/m instead of N/C.

It will be useful in homework to remember the mathematical definition of a gradient
(another case of keeping present in your mind what the mathematical symbols mean):

lim V(F+6F)— V() = lim VV(F) 6F=— lim E(F)-6F 2.50
im (F+or) = V(F) hm (F)-or hm (F)-or (2.50)

The above expression also serves to remind you of how to do a Taylor expansion in
multiple dimensions: the dot product of the gradient and the vector differential
replaces the product of the one-dimensional derivative and the scalar differential.
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Section 2.6 Review of Basics of Electrostatics: The Electric Potential

Relation of the Electric Potential to the Charge Distribution

We know two things now:

E() =

and  V(B)— V(R) = 7/:2 di- E(R)

47reo

We can use these to obtain an explicit expression for the potential in terms of the
charge distribution. In practice, trying to do the line integral explicitly using the
definition of E is tedious and not illuminating.

Instead, let us use our understanding of the meaning of the mathematical expression

E(F) = —VV(F) to make an Ansatz. If we have a point charge at the origin, then the
electric field points radially outward and falls off as 1/r?. What function’s derivative
gives that dependence? V/(F) = 1/r. This suggests to us

4/
= “’I (2.51)

V() =

We may then prove explicitly this form is correct by taking the gradient.
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Section 2.6 Review of Basics of Electrostatics: The Electric Potential

First, pass V inside the integral because it is @p while the variable of integration is 7”:

SV = -t /\jd#,;(?/)ﬁ,»(ﬁ) (2.52)

As we did earlier when calculating vV x E we change variables to §= 7 — 7’ to
evaluate the gradient:

- 1 - 1 -1 s F—r'
Vi— )=V [—— =Wt TT 253
()= () =¥ =5 =—mrp @)

where we used the formula for the gradient in spherical coordinates from Griffiths
(again, with r replaced by s as the radial coordinate to avoid confusion):

. oT . 10T~ 1 1 ~
:T(8) = — - —04+ - 2.54
VsT(s) Js §+ s 00 Jr55|m‘) [0} ¢ (2.54)

We see that our form for V/(F) yields the correct electric field (dropping the F subscript
onV because, on the left-hand side, it is obvious what coordinate V acts on):

—/

V() = /VdT,p(F/)‘:_ﬁ E(7) (2.55)

47eo

Section 2.6.2 Relation of the Electric Potential to the Charge Distribution Page 49



Section 2.6 Review of Basics of Electrostatics: The Electric Potential

Comments on the Electric Potential

» The electric potential obeys superposition

Section 2.6.3

This is trivial consequence of superposition for the electric field: because the
electric potential is a linear function of the electric field, and integration is a
linear operation, superposition for the electric field transfers to superposition for
the electric potential. One can also see it from Equation 2.51, where the
potential is a linear function of the charge density.

Definition of potential offset

There are two typical choices. When the charge distribution is confined to a
finite volume, the electric field vanishes at infinity, which suggests one should
define the electric potential to vanish at infinity too. When the charge
distribution is not confined (e.g., a uniform electric field over all of space), it is
typical to choose the origin to be the point at which the potential vanishes. Any
other point would work, too, but will generally make the explicit functional form
of V/(F) unnecessarily complicated if one is interested in using the above integral
expression. There will be situations, however, where such a choice is the most
convenient.

Utility of the electric potential

The electric potential is scalar, not a vector, function, and thus applying
superposition to calculate the potential due to a charge distribution, followed by
taking the gradient to find the electric field, is usually much simpler than
explicitly calculating the electric field.

Comments on the Electric Potential
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Section 2.7 Review of Basics of Electrostatics: Aside on Techniques
Aside on Techniques

It is important to recognize how we almost uniformly avoided brute-force calculations
of divergences, curls, and gradients so far. The only times we did those calculations
explicitly were when we had rendered the calculations trivial. A key part of doing
E&M successfully and with minimal pain is avoiding algebra and calculus whenever
possible and instead making use of clever arguments of the type we used above. Only
do algebra and calculus as a last resort! There are two reasons for this.

First, the kinds of arguments we used are more physical and help you develop
intuition. For example, in proving the differential version of Gauss's Law, at no point
did we explicitly take derivatives of E1 Incredible, right? Instead, we proved that the
divergence of the 1/r? law is the delta function (again, not explicitly, but by referring
to the geometric proof we made for the integral version of Gauss’s Law) and used that
fact. We could have done the brute-force calculation in Cartesian coordinates, and it
would have given the same result. But you would have derived no intuition from it.

Second, brute-force calculations are prone to oversights — like the one about the sign
flip on V in the delta-function symmetry derivation — as well as bookkeeping
mistakes — algebraic sign flips, misapplications of the product and chain rules, etc.
Doing brute-force calculations does not help you understand physics, or even
mathematics. Of course, sometimes brute-force calculations are needed, but try to
avoid them, and keep your wits and intuition about you as you do them!

It takes time to learn how to work this way, but we do derivations (rather than just
quote results) so you can learn these techniques.
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Section 2.8 Review of Basics of Electrostatics: Boundary Conditions on the Electric Field and Potential

Boundary Conditions on the Electric Field and Potential

While Gauss's Law makes it possible to determine the electric field for charge
distributions with sufficient symmetry, the more important application of Gauss's Law
and the vanishing of V x E is to obtain generic information on the behavior of the
electric field and potential across an interface between two regions.
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Section 2.8 Review of Basics of Electrostatics: Boundary Conditions on the Electric Field and Potential

Boundary Condition on the Normal Component of the Electric Field

. Construct a Gaussian cylinder of infinitesimal height
f\:\\\/ / dz whose axis is normal to the interface under ques-

tion at the point of interest. Let n be the surface
m normal at 7, with orientation from region 1 to region
|

2. Let's calculate the flux through the cylinder's
(non-infinitesimal) faces S; and Sa:

WE

092 | F= [ da(=A(7)-E(P)
@© 1999 Jackson, Classical Elec- S1

trodynamics + / da ;)\(17) . EQ(F) (256)
Sz

where E is evaluated over the two faces. We neglect the flux through the cylindrical
wall because we will let dz vanish in the end and so its area will vanish and it will
contribute no flux. We momentarily make the assumption that there is no charge
density that is singular in the direction parallel to the interface — i.e., point charges or
a line charge density — so that we don’t have to worry about possible singularities in
the electric field that might complicate the flux calculation. We allow only a surface
charge density, which is delta-function singular in the z dimension but not in the
dimensions parallel to the interface.
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Section 2.8 Review of Basics of Electrostatics: Boundary Conditions on the Electric Field and Potential

For Gauss's Law, the volume integral of the charge density enclosed has two
contributions: from the non-delta-function-like volume charge density in the
half-cylinders and from any delta-function-like surface charge density on the surface.
The contribution of the former will vanish as we let dz — 0. The latter converts the
volume integral to a surface integral:

= é/vd'ré(?—S)a(F): é/sdaa(F) (2.57)

where & is the area at the interface intersected by the cylinder. (Note that this is a
case where the delta function’s argument requires some interpretation to understand
the delta function’s units. It is the S in the argument that implies the function has
units of m~1 rather than m=3: it is picking out a surface rather than a point and thus
changing the units by one power of distance, not three.) Equating the two expressions

for F, letting dz — 0, and seeing that S1,S> — S as dz — 0 in the flux integral yields

/dan (7 - Eg(?) El(F) /daa )] (2.58)

This holds for any choice of cylinder and thus any S, so the integrands must be equal:

A7) (B0 - ()] = = o) (2.59)

That is, the change in the normal component of the electric field across the interface
is proportional to the surface charge density at the interface. If there is no surface
charge at the interface, this component of the electric field must be continuous.
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Section 2.8 Review of Basics of Electrostatics: Boundary Conditions on the Electric Field and Potential

Let's now reconsider the condition we placed at the start of the derivation, that there
be no charge density at the intersection of the cylinder and interface that is singular in
the dimension parallel to the interface, which could consist of a set of point charges
and/or a line charge density.

If that charge density is not at the contour C consisting of the intersection of the
cylinder’s wall and the interface, then the flux of its field remains entirely calculable. It
may cause o(F) to have a delta-function singularity in one or two dimensions parallel
to the interface, but no part of the derivation fails. We simply allow that type of o(F)
in Equation 2.59.

If the parallel-dimension-singular charge density is on C, then things are bit more
complicated. If we consider the flux through the cylindrical wall anywhere but on the
charge density, that flux vanishes because the field of the charge density is always
parallel to the cylindrical wall as dz — 0. What about on the charge density?
Answering this question in a mathematically explicit fashion — i.e., by calculation —
is difficult, as the field not only becomes singular at this point but the direction of the
singular field depends on the direction from which one approaches the charge. One
can, however, conclude from this indeterminancy that there cannot be a contribution
to the flux, as it would imply that the field direction is not indeterminate so that n- E
can be nonzero. This is a mathematically valid proof by contradiction. Thus, such
charge distributions do not affect the derivation and Equation 2.59 continues to hold.

We will see the above expectation confirmed in practice when we compare the
potential for the point charge near the grounded sphere derived by method of images
(which does not rely on Equation 2.59 in the case of such a singular charge
distribution) and by separation of variables (which does).
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Boundary Condition on the Tangential Component of the Electric Field

.
A\

Construct a rectangular loop C with two legs normal
to the interface of interest (i.e., along n(F) at posi-
tions 7 and Fp) having infinitesimal length dz and
two (non-infinitesimal) legs parallel to the interface
C1 and Cp. Let (7) denote the normal to the loop
area (so A(F) - t(F) = 0). t will set the orientation
of the line integral we will do around the loop fol-
lowing the right-hand rule. The loop legs C; and
\ C, parallel to the interface are parallel to the vector
// 5(F) = t(F) x A(F). Let’s calculate the line integral

@© 1999 Jackson, Classical Electrody-

D

of E along this loop (referencing the diagram: 7; at

namics the lower right, 7}, at the upper left):
. B-AN% R BHAR % .
fd@- E(F) = Ei(F)-dt+ Ex(F) - de (2.60)
c Cr,7—A(F) % Co Pyt A(F) &

where we neglect the contributions from the infinitesimal legs because they will vanish
as dz — 0. (We may apply arguments similar those just used in the derivation of the
normal field boundary condition to show that these legs contribute nothing even in the
case of a charge density at the interface with a delta-function singularity in the
dimension parallel to the interface.)

Section 2.8.2 Boundary Condition on the Tangential Component of the Electric Field
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Be careful about the signs of the integrals: d? for an open contour acquires its
orientiation from the the ordering of the endpoints; it has no intrinsic orientation until
this ordering is specified. Therefore, the sign of d? and of the endpoint ordering do
not multiply; they are redundant. Specifically, in this case, the endpoints imply that
d? points along +5 for the second term and —5 for the first term and thus that the
integrands have opposite sign. Do not then think that the opposite polarity of the
endpoint ordering of the two terms implies another relative sign between the two
integrals, with the two relative signs canceling!
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Section 2.8 Review of Basics of Electrostatics: Boundary Conditions on the Electric Field and Potential

The vanishing of the curl of the electric field implies the left side of the equation is
zero.

We can combine the two terms on the right side by changing the endpoint ordering on
the first term and recognizing that C; — C> as dz — 0 (remember: C; and C>
themselves have no orientation: the orientation of the line integrals is set by the
ordering of the endpoints). Thus, we have

BeRNgE AL UL > dzm0 [T 7z = 7
0= _/ CGE de+/ CIGREG d:>0/ [ - (7] - o2
c C2,75

1.7H—A" % Co, Tk A(F) &

With this ordering of the endpoints, we may identify df = 5(7) ds. Since the contour
Cy is arbitrary, the integrand must vanish, yielding

57 [E(R) - B((M] =0 (2.61)

This expression holds for any t and thus § parallel to the surface, so it tells us that the
tangential component of the electric field is continuous across any boundary
(regardless of whether there is surface charge present).
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Boundary Conditions on the Electric Potential

From our definition of the electric potential as the line integral of the electric field, and
the corollary E = V'V, we can derive boundary conditions on the electric potential:

» Continuity of the electric potential
The electric potential is the line integral of the electric field. If we think about
calculating the discontinuity in V' by integrating E -7 d¢ across the boundary, we
recognize that, as the length of the path goes to zero, the only way to prevent
the integral from vanishing is if E-7Ais not only nonzero but delta-function
singular. The only place that can conceivably happen is at a point where a
charge density becomes singular in at least one dimension (point charge or linear
or surface charge density). In the same way as we argued in the derivation of
the normal field boundary condition, Equation 2.59, we may also argue here that

—

this quantity E - 7 still vanishes and thus V is always continuous.

We do note that, while V' could become infinite near these charge densities, it
must approach infinity from both sides of the boundary in the same way, and
thus it remains continuous. We will see this in the example of the point charge
near the grounded sphere when we do separation of variables in spherical
coordinates.
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» Change in the normal gradient
This is just a direct rewriting of the boundary condition on the normal
component of the field, Equation 2.59:

2 o) = (0 [£7) ~ E:(7)] = A7)+ [~ V() + TV ()

— | () [$Va(A) - FW(A)] =~ (7 (2.62)

€o

Note the sign!

» Continuity of the tangential gradient
Again, this follows directly from the continuity of the tangential component of
the electric field, Equation 2.61:

0=3(7) - [B(7) — Eu(R)] =5(7- [~V va(A) + V(7]

— |5 [va() - Ywa(A)] = 0 (2.63)

Section 2.8.3 Boundary Conditions on the Electric Potential

Page 60



Section 2.9 Review of Basics of Electrostatics: Poisson's and Laplace’s Equations

Poisson’s and Laplace’s Equations
It is natural to rewrite Gauss's Law in terms of the electric potential:

LA = ¥ -E(7) = -v2v(P) (2.64)

€o

Rewritten more cleanly:

V2V(7) = —é o(7) (2.65)

This is known as Poisson’s Equation.

Poisson’s Equation is a partial differential equation. You know from basic calculus that
a differential equation alone is not sufficient to obtain a full solution V/(F): constants
of integration are required. For partial differential equations in multiple dimensions,
the constants of integration are given by specifying boundary conditions, conditions for
how the solution or its derivatives must behave on the boundary of the volume in
which we are specifying p(7) and would like to determine V(7).
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Our expression for the potential in terms of the charge distribution, Equation 2.51, is
the explicit solution to this equation for a particular boundary condition, V(F) — 0 as
r — oo. Section 3.11 will develop the concept of a Green Function, which is the
generic tool for solving Poisson’s Equation for arbitrary boundary conditions.

When there is no charge and the right side vanishes, Equation 2.65 is known as
Laplace’s Equation. The importance of this equation is that it implies that, in a region
where there is no charge, the second derivative vanishes everywhere, which implies
there can be no local maxima or minima (they would require a positive or negative
second derivative). We will prove this explicitly in Section 3.1.

For completeness, let's also rewrite the curl-freeness of the electric field in terms of
the electric potential. There is a mathematical theorem that the curl of a gradient
always vanishes:

Vx(-VV)=0 (2.66)

This is not surprising, as the vanishing of the curl of E is the mathematical property of
E thatﬂallowed us to define the potential as a line integral, which then allowed us to
write E as the gradient of the potential. The above must be true for self-consistency.
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Electrostatic Energy
Electric Potential Energy of a Point Charge in an Electric Field

Consider moving a point charge from 7/ to 7 along a contour C. The work done on
the charge by the mechanical force pushing it in this direction is given by doing the
line integral of the negative of the electric force along the path because that is the
mechanical force that has to be exerted to move the charge against the electric force
Fe:

R L (2:67)

c.A
The force is related to the electric field, and so we have

Wi = —q [* dl £ = q [V(5) - V(R) (2:68)

C,i

That is, the work done on the charge by the mechanical force in going from 7 to 7 is
given by the charge times the change in electric potential between the two positions.
Note the sign: if the potential is higher at the end point, then the mechanical work
done was positive.
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Of course, this lets us to define the electric potential energy by

[U(R) - U(R) = a [V(5) - V()] (2.69)

That is, the electric potential energy of the charge and the electric potential of the
field are simply related. Since it was defined in terms of work done against a force,
electric potential energy obviously has units of Joules (J). That is explicit in the above
form, which is C (N m/C) = (N m) = J.

Note that the electric field can also do work on the charge. In this case, the sign in
the above line integral for the work is flipped and work is done as the charge loses
potential energy. In this case, the work done by the electric field on a charge is what
gives it the kinetic energy it has at the end: the electric potential energy is converted
to mechanical kinetic energy.

We are not going to write an expression for the potential energy of a continuous
distribution of charge quite yet because it is difficult to distinguish two pieces: the
change in potential energy that arises from moving the charge distribution in an
external potential, and the change in potential energy due simply to a reconfiguration
of the charge distribution in its own potential, and we will discuss the latter next.
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Electric Potential Energy of a Charge Distribution

How much work must be done to assemble a distribution of charge? This energy is
most easily understood by first considering the assembly of a set of point charges
one-by-one by bringing them in from infinity. When the ith charge is brought in, work
must be done against the electric field of the first i — 1 charges. Put another way, the
ith charge starts with zero potential energy and ends with potential energy

i—1

1 .
U= Z qi ——— % (2.70)

st 4eo |17 — Tjl

Thus, the total potential energy is

N i—1 N
Yy Loy I (271)
47T€0 i=1 j=1 |’7_’7‘ 87r60 ,-’jzly,-#jm_m

where the factor of 1/2 was introduced to allow i and j to both run from 1 to N.
Generalizing this to a continuous charge distribution, we have

smo/ / dr ’plrf)_p;ll) (2.72)

Section 2.10.2 Electric Potential Energy of a Charge Distribution Page 66

Uf




Section 2.10 Review of Basics of Electrostatics: Electrostatic Energy

In principle, the above expression is valid for any configuration of charge and potential.
But sometimes we do not specify the charge distribution sourcing part of the potential
— e.g., a uniform electric field over all of space — and, instead, we just state what
the potential is. We can then generalize the above expression to:

87r€o

/dT/ dr BT F)pq,‘ +/ d7 p(F) Vexe (7) (2.73)

IF—

where Ve (F) is the potential sourced by charges not explicitly indicated.

One has to be a bit careful with such situations, though, for two reasons. First, the
potential energy provided is not the total electric potential energy of the system
because it does not include the energy needed to put Vex:(F) in place, only the energy
needed to put p(F) together and to put it in Ve (F). More importantly, because the
charges sourcing Vext(F) are at infinity, it is not possible to start p(F) out at infinity
with zero potential energy there and then bring it into the charge configuration. We
define the zero point for Vex:(F) for convenience, e.g., at the origin, but only changes
in the second term above are meaningful; the actual value of the second term is not.

Section 2.10.2 Electric Potential Energy of a Charge Distribution Page 67



Section 2.10 Review of Basics of Electrostatics: Electrostatic Energy

Electric Potential Energy in Terms of the Electric Field

We can use the relations between potential, field, and charge density (Equations 2.6,
2.51, and 2.65) and the divergence theorem (Equation 2.20) to obtain an alternate
expression for the electric potential energy in terms of the electric field as follows (now
disallowing any “external potentials” Vex(F) of the type mentioned above, requiring
us to have knowledge of all charge distributions sourcing potentials):

/dr/d 20 p(7) E/VdTp(F)V(F):f%O/VdT[V2V(F)] V()

87‘(‘60 [F— 7| 2
ibp 620 dr . [ G VV(F)] / [VV(A)|? with - integration by parts
divergence
" . -
theorem €0 dafi- [V(F) E(f)] + %’/ |VV(F)|2 (2.74)
v

s(V)

In the last line, the first term is an integral of the product of the potential and the field
at the surface of the volume. In order to get the full energy of the charge distribution,
VY must include all the charge. If we assume the charge distribution is restricted to
some finite volume, then V is naturally the volume containing the charge distribution.
But we can add volume that does not contain charge because it contributes nothing to
the initial expression for the electric potential energy. (This requirement of restriction
of p(F) to finite volume is exactly the requirement of no external potentials.)
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Therefore, we replace V with all of space and let S go to infinity:

U= i"/ dair- V(7 E()] + %"/ [V V(7)2 (2.75)

2 all space

Because the charge distribution is restricted to the finite volume V and thus looks like
a point charge as r — oo, the field and potential fall off like 1/r? and 1/r. The surface
area of S only grows as r?, so the integral goes like 1/r and thus vanishes as r — oco.
(If the charge distribution is not restricted to a finite volume, the surface term may

not vanish, requiring one to either keep the surface term or use the initial expression.)

It may seem strange that we can make this choice of S, as changing V and S affects
both integrals in the last expression. The explanation is that the choice of S changes
the two integrals but leaves their sum constant, and taking S to infinity simply zeros
out the first integral, leaving only the contribution of the second integral.

We thus find

u="% [IEDP (276)

where the integral is over all of space. Correspondingly, the quantity u = %" \EF is an
energy density. We interpret this form as indicating that the potential energy created
by assembling the charge distribution is stored in the field: less charge implies a
smaller field and therefore less potential energy.
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Superposition and Electric Potential Energy

Because the electric potential energy is a quadratic function of the charge distribution
or the electric field,

electric potential energy does not obey superposition

The energy of a sum of fields is more than just the sum of the energies of the
individual fields because there are cross terms due to the potential energy of the
charges in one another’s fields.
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Self-energy and Point Charges vs. Continuous Charge Distributions

We were slightly cavalier in going from Equation 2.71 to Equation 2.72 in that the
“self-energy” term i = j that was not included in the former did get included in the
latter. In the point-charge version, this term is infinite because the denominator
vanishes. In the continuous distribution version, p(7) p(¥’) dT — 0 as |F— 7’| = 0 as
long as p remains finite over all space, and thus there is no infinite contribution. (If p
included a delta function, as would be necessary to represent a point charge, then it
would produce an infinite contribution because the integral would yield §(0)/0.) Thus,
we must be careful and choose the appropriate formula depending on the situation.

The infinite self-energy of a point charge reflects the fact that we do not know how to
assemble a point charge. In fundamental particle physics, the existence of point
charges such as the electron is an assumption, not a consequence, of the theory. In
fact, there is scheme, called “renormalization,” by which the infinite self-energy one
calculates for such a charge from Equation 2.76 is “subtracted off” in a self-consistent
fashion across all situations. While this practice is accepted and applied carefully, it is
not understood. String theory, which postulates that all particles are actually vibrating
string-like objects with finite extent, may offer a solution, but string theory currently is
not complete — it does not offer a way to calculate the Standard Model — and there
is no explicit proof it is correct.
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Electric Conductors
Definition and Behavior of a Conductor

We now talk about electric conductors, both because they are interesting and because
they provide a first opportunity to use boundary conditions to determine properties of
the charge distribution, field, and potential. Notice that we derive these properties
without explicit calculations!

An electric conductor is defined to be a material in which charge is able to flow
completely freely in response to an external electric field. It is assumed, a priori, to
contain equal and opposite amounts of positive and negative electric charge that
perfectly cancel everywhere in the absence of an electric field (p = 0) but that can
separate in response to an electric field. One can add charge to a conductor explicitly.

Without any calculation, we know what the response of the conductor will be to an
externally applied electric field: If there is any field present in the conductor, positive
and negative charge densities will separate in response to the field. That separation
results in an additional field whose direction is opposite the applied field because of
the directions the two polarities of charge move in response to the applied field. This
movement occurs until the sum field vanishes, at which poigt there is no further force
on the charges and the system becomes static. Therefore, E = 0 inside any conductor.
Note the lack of distinction between the applied field and the field created by the
charges: each charge is only sensitive to the total field, so it is the total field that
must vanish inside the conductor. The charges arrange themselves so their
contribution to the total field cancels that of the applied field.
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Derived Properties of a Conductor

We may derive the following conductor properties from the fact that E =0 inside a
conductor everywhere:

> p also vanishes inside a conductor

Section 2.11.2

This follows directly from Gauss's Law: because E=0 everywhere in the
interior, then V - E = p/e, also vanishes.

Another way of seeing this, at least for a conductor with no net charge, is that,
if there were a nonzero p, then there must be an equal and opposite amount of
charge elsewhere in the conductor because the conductor is neutral overall. An
electric field would_appear between the oppositely signed charge distributions,
contradicting the E = 0 condition. Alternatively, the opposite charge will be
attracted to the nonzero p by the field and move to cancel it until the field
vanishes.

Derived Properties of a Conductor
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» Any net charge or induced charge resides on the surface

Section 2.11.2

The picture we described before, of charge separation being induced by the
external field, does imply that there may be such induced charge on the surface.
This does not violate Gauss's Law because E may be nonzero outside the
conductor and thus one has to be careful in calculating V - E at the conductor
boundary (we must resort to the boundary conditions we derived,

Equations 2.59 and 2.61).

Also, if we intentionally add charge to a conductor, it must also move to the
surface by the same Gauss's Law argument. An alternative, microscopic way of
seeing this is that, if we add charge to a neutral conductor, which has no
electric field or charge density in its interior, the added charge repels itself,
pushing itself to the exterior (as far as it can go without leaving the conductor).
Or, equivalently, the added charge attracts charge from the surface to cancel it,
leaving net charge on the surface. Regardless, the added charge that now
appears on the surface arranges itself so there is no net field in the interior.

Aside: As Griffiths notes in a footnote, this property can be interpreted to be a
consequence of the fact that the electric field obeys the Coulomb’s Law 1/r?
dependence in three dimensions (from which we derived Gauss’s Law, which we
used above in the proof). In a different number of dimensions, or with a
different dependence on r, we would not have been able to derive Gauss's Law!
There will be a homework problem considering conductors when Coulomb’s Law
is modified.
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» A conductor has the same electric potential everywhere

Section 2.11.2

That is, a conductor is an equipotential. This occurs because E vanishes
everywhere in the conductor: any line integral of E between two points must
therefore also vanish. The conductor may have a nonzero electric potential, but
the value is the same everywhere.

One can see this using the gradient, too. If V were not constant in the
conductor, there would be a nonzero E= —VV which we said above is not
allowed.

The electric field just outside a conductor is always normal to its surface
This arises from the boundary conditions we derived, Equations 2.59 and 2.61.
Since E vanishes inside the conductor, and the tangential component of E'is
continuous across any interface, the tangential component must vanish just
outside the conductor, too. There is no such condition on the normal component
because there may be an induced or net surface charge density o on the surface.

Another way of looking at this is is that an electric field tangential to the
surface would cause charge to move along the surface until that tangential
component vanished. No such argument applies to the normal component
because the charge is no longer free to move normal to the surface when it sits
at the surface — it cannot leave the conductor.

Derived Properties of a Conductor
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Conductors with Cavities

The mental image we have so far is of a conductor that has no cavities inside of it.
What additional properties can we derive for a conductor with cavities?

» A charge q inside a cavity in a conductor results in an equal induced charge g
on the surface of the conductor

Goussian To see this, construct a SL_jrface S th:?lt lies inside th_e
surface F conductor but also contains the cavity. The electric
field vanishes on S because it is in the conductor,
so the net charge enclosed must vanish. Since a
charge q is inside the cavity, there must be a cancel-
ing charge —q inside S. Since S can be shrunk to be
arbitrarily close to the inner surface without chang-
Conductor ing this statement, the induced charge must lie on
the inner surface of the cavity.

(@© 2013 Griffiths, Introduction

to Electrodynamics

Since —q has appeared on the inner surface, we know, by neutrality of the
conductor, there must be a charge +q elsewhere on the conductor. If we now
expand S to approach the outer surface, the above statement about —q inside
S continues to hold, so the only place +q can be is on the outer surface.
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Section 2.11.3

The exact distribution of g on the surface depends on the geometry. For cases
with some symmetry, we may be able to guess the solution easily.

Consider a conductor with a spherical outer surface. Since there are no field
lines inside the conductor, there is no way the charge in the cavity or on the
inner surface of the conductor can influence the distribution of charge on the
outer surface, even if the inner cavity is non-spherical and/or the charge is not
placed at the center of the cavity. Thus, the charge must distribute itself on the
outer surface of the conductor in the same way as it would if charge 4+q were
added to a spherical conductor with no cavity. By symmetry, that distribution is
uniform with surface charge density o = q/4 7 r.

Note, however, that, in general, the charge on the inner surface of the conductor
will not be distributed uniformly. It will only be uniform if the inner surface is
spherical and the charge in the cavity is at the center of the cavity, as this
situation has symmetry. (Note that the shape of the outer surface and the inner
cavity's location with respect to the outer surface have no impact, for the same
reasons as the inner cavity does not affect the distribution of charge on the
outer surface.) In any other case, the field lines from the charge in the cavity
will exhibit no symmetry as they terminate on the cavity wall and therefore the
surface charge required to cancel those field lines in the conductor will have no
symmetry.

Conductors with Cavities
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> If there is no net charge inside a cavity in a conductor, the electric field inside
the cavity vanishes, independent of the external field applied to or net charge

Section 2.11.3

added to the conductor

(© 2013 Griffiths, Introduc-

tion to Electrodynamics

We use proof by contradiction. Assume there is a
nonzero electric field in the cavity. Since there is no
charge in the cavity, the field lines must start and end
on charges on the surface of the cavity. Therefore,
there is a path through the cavity with [d¢- E #
0. Now close the path with a segment inside the
conductor. This portion of the now-closed loop C
contributes nothing to the line integral fc d{- E over

the entire loop _because E = 0 inside the conductor.
Since fc dl¢ - E = 0, the contribution from inside
the cavity must vanish also. Contradiction. So the
assumption E # 0 in the cavity must be false.

Aside 1: Note the technique of proof by contradiction, which we will use again

in E&M.

Aside 2: This fact is used for shielding of experiments from external electric
fields (and also electromagnetic waves) and is called a Faraday cage. Note that
the conductor can have some net charge on it (and correspondingly sit at some
nonzero electric potential with respect to infinity) and this property still holds.
As we will see later, it also holds in the presence of external electromagnetic
waves, which is the more typical and important application.

Conductors with Cavities
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Surface Charge and the Force on the Surface of a Conductor

Our boundary condition for the normal component of the electric field combined with
the fact that the electric field vanishes inside a conductor tells us that the electric field
infinitesimally above the surface of the conductor is

E=Z% (2.77)

€o
where 0 points from the inside to the outside of the conductor.

There is a charge density o at this point, and an electric field above it, so is there a
force on the charge? Yes, but the calculation is subtle. The thing to recognize is that
the small element of charge o da in an infinitesimal area da cannot exert a force on
itself. The field to which this element of charge is subject is the field of the charge
distribution excluding it. We find this field by finding the field of this charge element
and subtracting it from the total field. This is an example of one of the indirect
approaches we must apply in E&M: a brute-force approach will not be successful or
generic.
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We know (Griffiths Example 2.5) that the electric field of a charge sheet in the xy
plane is E = +(0/2€0) Z where the sign applies depending on whether z > 0 or z < 0.
While the small patch we are considering is not an infinite sheet, it looks like one if we
are infinitesimally close to it. We also know E,per must be continuous at the charge
element because, in the absence of that charge element, there is no charge at the
boundary and thus no surface charge density to cause a discontinuity in the normal
component. (Note that we do not claim we know Egpe,, only that we know that it
has this continuity property!) Thus, we may write the equations

- _ o — -

g .
Eoutside = Eother + —— 1 Einside = Eother — —— 1 (2-78)
2¢o 2¢o

where l::othe, is the field due to the rest of the charge distribution excepting da and,
because of its continuity, the same expression for E,pe, appears in both equations.
(Note this technique, which you learned doing story problems in middle-school
pre-algebra, of writing down an equation in which the knowns are not segregated on
one side yet.) Using Eoptside = (o/€o0) M and/or Enside = 0, we find Epghey = (0/2€0) .
This is the field that acts on the charge o da in da. Therefore, the force per unit area
is

Q

(2.79)

3)

1?: = =0 n=

F oda Eothe, o
d. da 2¢o

N
™
o
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Writing the force per unit area in terms of the field at the surface E = (o/e,) 7

A= > E%2R (2.80)

That is, the surface of a conductor always feels an outward force. Consider what
would happen if you put charge on a balloon with a metallized surface.

Note the force per unit area, which has units of energy density, is actually equal to the
energy density just above the conductor. We could have in fact used the energy
density to derive the force: the force per unit area is the gradient of the energy per
unit area, and moving the conductor surface in or out by an infinitesimal distance dz
would have changed the total energy per unit area by udz.

Note the indirect technique of proof. Again, we did no integral and we did not use
Coulomb’s Law explicitly.
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Capacitance

Consider two conductors (of arbitrary shapes) and suppose we put equal and opposite
charges Q and —Q on them. The potential difference AV between the two is of
course given by the line integral of the electric field from any point on the surface of
one to any point on the surface of the other. How does AV scale with the charges?

The linear dependence of E on the charge density p ensures that AV is linear in Q.
Therefore, we may define the capacitance

(2.81)

Capacitance is a purely geometric quantity: it does not depend on the amount of
charge on the two conductors (as long as equal and opposite charges are given to
each, a caveat we will remove soon). It does depend on the shapes of the conductors
and their relative position and orientation because those determine the shape of the
electric field (while Q varies its normalization). The unit of capacitance is
Coulombs/volt, which we define to be the Farad, F.

One can talk about the capacitance of a single conductor with charge Q by implicitly

assuming there is another conductor at infinity that has charge —Q and is defined to
be at V = 0.
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Now departing from Griffiths and instead following Jackson §1.11, we can generalize
capacitance to include multiple conductors by simply assuming a generalized linear
relationship between potentials, which we also call voltages, and charges as we argued
above must be true:

N
Vi=) DjQ o V=DQ (2.82)
j=1

where V and Q are N-element column matrices for the voltages and charges on the N
conductors and D is a N x N matrix that connects the two. It is explicit that any
voltage depends linearly on all the charges. The capacitance matrix is then C = DT,
with -

N
Q=> GV, o Q=CV (2.83)
j=1

This form serves to make it clear that the capacitance is not just a single quantity
between two conductors, but is more general. According to Jackson, the diagonal
element Cj; is the “capacitance” of electrode /, and the Cj; are termed the “coefficients
of induction” to convey that they indicate the charge induced on electrode i when a
voltage is placed on electrode j. We will show below that neither of these is what one
would consider the capacitance of a pair of conductors as we discussed initially.
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In all of this, there is an implicit assumption that V(r — oo) = 0. Without this
assumption, we would always need to explicitly include the electrode at co (with an
additional index in C and 2) in order to get the right offset for V.

To calculate the capacitance or the capacitance matrix, one clearly needs to determine,
given a set of charges {Q;}, what the voltages {V;} are. To do this trivially, there
typically must be a symmetry or approximation that allows one to guess the charge
distributions on the conductors (e.g., uniform as for an infinite parallel plate capacitor)
and to calculate the field using Gauss's Law and from the field the potential. For more
complex geometries, the boundary-value problem techniques we will develop may be
sufficient. The total charge on each electrode normalizes the voltage.
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For the simple case of two mirror-symmetric electrodes with equal and opposite
charges +Q and voltages +V/, we can relate the elements of the capacitance matrix to
the pair capacitance, which is what we usually call the capacitance (e.g., in Phlb).
We can assume the following form for the capacitance matrix:

. C —Cn
c= [ & ] (2.84)
Why could we assume the above form? The symmetry of the system implies

C11 = Cy2. We shall see below that all capacitance matrices are symmetric matrices,
so Cip = (1. We chose the negative sign on Cio = —Cp, with some foreknowledge of
the result, but that's a choice and doesn’t affect the value of Ci».
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The defining condition of the pair capacitance is that equal and opposite charges are
placed on the two conductors. By symmetry, we can conclude that the conductors
carry equal and opposite voltages (not true for a non-mirror-symmetric configuration).

Thus
Q=GCVi—CnhVo=GCV —Cn(—V)=(C+ Cn) V (2.85)
Q=-CaVi+CGVo=—-ChV+GC(-V)=—(C+ Cpn)V (2.86)
which yields @ = —Q; = —Q as assumed. Thus, the capacitance of the pair is

_ Q@ _(GHCmV _ CG+Ca
T AV 2V - 2

(2.87)

After we have discussed energy, we will return to this system for a more detailed
analysis of what one can say about Cs and Cp,.
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Capacitance and Field Lines

Let's also think about capacitance in terms of field lines. The diagonal element Dj;
tells us the potential of electrode i if we put charge on it and no other electrodes. That
potential is the line integral of the field from infinity to the electrode, so it is telling us
about the field lines going from the charge on that electrode to infinity (or to/from if
the charge is negative). The off-diagonal elements Dj; tell us how the potential of
electrode j changes when charge is put on electrode i. This makes sense, as that
charge on i will change the overall field configuration, also due to the addition of the
field lines that must start from or end on its charge, and that change will affect Vj.

The elements of C are interpreted differently. When we put one electrode i at a
voltage while holding the others fixed (possibly at zero), charge must be added to that
electrode. The diagonal element Cj; tells us how much charge must go onto the
electrode, and that charge sources field lines. The off-diagonal elements Cj; then tell
us how much charge must appear on the other electrodes so their voltages V; remain
fixed. This reflects the fact that some of the new field lines starting (or ending) on
electrode i due to the new charge on it must end (start) on some of the other
electrodes j, and in fact tells us how much charge must be added to those other
electrodes to terminate those new field lines.

As a corollary, an off-diagonal element of D or C can only vanish if there is no mutual
influence of the two electrodes. For simply connected electrodes (i.e., none of the
electrodes have cavities inside them), it is hard to see how this could happen unless
they are infinitely far apart!
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Electric Potential Energy of a Capacitor

In a simple two-electrode, mirror-symmetric capacitor with charges +-q on the
electrodes and a voltage difference AV = q/C between the two electrodes, the
amount of work required to change the charge from g to g + dgq is given by the
amount of work required to move a charge dq from the negative electrode (which has
charge —q and voltage —AV/(q)/2) to the positive electrode (which has charge +q
and voltage +AV/(q)/2):

dU = dq {%(C’) - (—%(q))] = AV(q)dq = % dq (2.88)

Note that AV is a function of g here: the voltage is not held fixed while the charge is
moved; rather, the voltage and charge increase together (linearly).
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We integrate this expression from 0 to the final charge Q to find

1 /9 1 Q2
U= = dg == 2.89
C/qu 5 C (2.89)

Alternatively, using Q = CAV,

_1@ 1 2
U=3 - =5C@v) (2.90)

N | =

We could have modeled the above process differently. Our transferral of dg from one
electrode to the other is the equivalent of taking charge dg from the negative voltage
electrode, carrying it out to infinity (where we set V = 0), and bringing it back and
putting it on the positive voltage electrode. The equivalence is because the voltage
difference between two points is path-independent. This process is, then, equivalent to
bringing charges dg and —dgq in from infinity and putting them on the positive and
negative voltage electrodes, respectively. And the last process is equivalent to bringing
the charges in consecutively rather than simultaneously because we proved earlier the
potential energy does not depend on the order of assembly of the charge distribution.
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The above picture is what we need for considering a multi-electrode system: we build
up the charge on each conductor by bringing in charge from infinity and calculating the
work done. Consider bringing charge dg; in from infinity and adding it to electrode i.
The change in the electric potential energy of the system due to adding this charge is

N
dU; = V; dg; = > _ Dj q; dg; (2.91)
j=1

There are two possible double-countings we must avoid: 1) This infinitesimal element
of charge dg; is moved from V = 0 at infinity to V = V; on the ith electrode, so the
voltages of the other electrodes are irrelevant during this infinitesimal charge transfer
and we should not bring them into the equation; 2) Because the charges on all the
other electrodes j # i are physically immobile as dg; is brought in, no work is done on
them, and so there are no other contributions to include (as strange as it may seem
given that their voltages change by dV; = Dj;dg;; remember, a force must be exerted
over a distance for it to do work).
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Now, let's integrate over dg;. We will later do a sum over i. The ordering of the two
steps does not matter because we proved earlier that the electric potential energy does
not depend on the order of assembly. But we do need to worry about the order of how
we have brought in the charges because we should not calculate cross-terms for
charges that do not yet exist. Let's assume that, if we are integrating the ith charge,
then the first i — 1 charges have already been integrated to their full values {Q;},
j=A{1,...,i—1}, and the remaining N — i electrodes j = {i +1,..., N} have no
charge on them yet. Thus, the voltage V;(gi; {Q;};<i) is given by

i—1

Vi(aii {Q}<i) Z Djj g; = Di; q; + Z Dy Q (2.92)

Jj=1

because q; = Q; has already been achieved for j = {1,...,i — 1}, gj = 0 for
Jj={i+1,...,N}, and q; # Q; is still being changed. Therefore,

i—1

Qi Qi
:/O Vi(qi?{Qj}j<i)dqi:/0 Dy g da + ZDu Q; daj

AN

i—1

1
=5 DiQ +3_D;iQQ; (2.93)
j=1
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Next, we need to sum over / to account for the charging up of all the electrodes:
ZQ,QQ +ZZDUQ,QJ (2.94)
i=1 j=1

Modifying the second sum to be symmetric (assuming D is symmetric, which we will
prove below) and including a factor of 1/2 to correct for double-counting, we have

N N
1 1
=32 D@5 Y Dy = §jDUQ,oJ
i=1 i,j=1,i#j ij=1
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We can write this more succinctly as

U= Q'c'Q (2.95)

N =

Q'DQ=

N~

Using Q = C V, we can rewrite as

vicv (2.96)

Let’'s check that this gives the correct result for an elementary capacitor with two
mirror-symmetric electrodes having equal and opposite charges +@Q and voltages +V.
Using the capacitance matrix we derived earlier (recall, Ci11 = Cop = G,

Cip = CG1=—Cp,and C = (Cs + Cm)/2),

U= = [Cu(+V)* + Ca(—=V)* + Ca(+V)(=V) + Ca (- V)(+V)]

== V2[C4+C+Cn+Cn]l=2CV2= % Cc(AV)? (2.97)

NI= N =

as expected.
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Properties of the Capacitance Matrix and Its Inverse

We can derive a number of useful properties:

> Both C and D are symmetric.
Let's consider two electrodes, i and j with i # j. From Equation 2.93, their
contribution to the potential energy, assuming j has been charged up before i, is

1
Uy = 5 (DiQ? + D;QF) + D;Q; @ (2.98)
What happens if we reverse the charging order? Then we get
U: = 1 (D'-Q2 + D~Q2) + D; Q; Q; (2.99)
ji = 5 \FiiKi i Y ji i N :

In our initial discussion of the electric potential energy, we argued that the
charging order does not matter. So we may equate the two, U; = Uj;.
Recognizing that Q; and Q; are arbitrary then implies

T

Dj=D; <= D'=D <+ (2.100)
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» The self-capacitances C;; are positive.

Section 2.12.4

We need only consider the energy in the case that all other electrodes are held
at zero potential. Then the energy is

1
U;(all others grounded) = 5 Ci V? (2.101)

Since the energy should be positive (it takes work to add charge dg; in the
presence of the same-sign charge g;, as is done when charging up the electrode),
C;; must be positive.

The diagonal elements of the inverse capacitance matrix, Cii_l = Dj; are
positive.

Now, we consider the energy in the case that all other electrodes are kept
neutral. Then the energy is

1
Ui(all others neutral) = 5 D Q? (2.102)

Again, since the energy should be positive, D;; must be positive.

Properties of the Capacitance Matrix and lts Inverse
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» The off-diagonal elements of the inverse capacitance matrix Cijl = Dj; are

Section 2.12.4

positive.

Now, let's consider two electrodes i, j in a multi-electrode configuration, with all
the other electrodes uncharged. Let's suppose electrode i is already raised to its
final charge, and now we want to consider the work needed to increment
electrode j's charge:

dU; = Dj; q; dq; + Dj; Qi dq; (2.103)

(The self-terms and cross-terms vanish for all the electrodes k # i, j because
they have Q, = 0.) If we consider the case of Q;, g; positive, and if we bring in
more positive charge dg;j, it is obvious that both the change in the jth
self-energy and the energy cross-term should be positive: we are bringing
positive charges in proximity to existing positive charges. (While the existing
charge might move around on the electrodes, those electrodes are conductive
and so are equipotentials: no work is done.) We already know the self-energy
terms are positive. In order for the energy cross-term to be positive, D;; must be
positive. In the mirror-symmetric electrode case, we would see via explicit
inversion of C that D’s off-diagonal elements are positive.

Another way to see that the cross-terms must be positive is to recall that the
entire expression must be consistent with our original expression for the electric
potential energy, Equation 2.72. That expression could be broken down into
three integrals, one for each self-energy term and one for the cross-term. When
the charge density is positive, all contributions to that expression are manifestly
positive.

Properties of the Capacitance Matrix and lts Inverse
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> The off-diagonal elements of the capacitance matrix C;; are negative.

Section 2.12.4

Let's consider the same multi-electrode system with electrodes k # i, j grounded
(i.e., Vk = 0), electrode i at its final positive voltage V;, and electrode j's
voltage being incremented from v; to v; 4 dv;, both positive. The change in
energy is

dUj = Cjj vj dvj + Cj; Vi dy; (2.104)

We already know the first term is positive. The second term is more
challenging. If we want to increment a positive voltage v; by a positive amount
dv;, we need to put positive charge on it. This positive charge will draw
negative charge out of the battery holding V; constant: some of the field lines
of that new charge on electrode j have to terminate on electrode i if Cj; is
non-zero. Again, from Equation 2.72, we know that contribution to the electric
potential energy must be negative even if V; is positive. Thus, the energy
cross-term must be negative, which requires Cj; to be negative. (If V; is
negative, that implies Q; is negative. It takes positive work to add negative
charge to an electrode that already has negative charge on it, so Cj; < 0 ensures
the cross-term becomes positive, as it should.)

Properties of the Capacitance Matrix and lts Inverse

Page 98



Section 2.12 Review of Basics of Electrostatics: Capacitors and Capacitance

>

Section 2.12.4

|22, Cijl < 1Gj|: for a given electrode, the sum of the off-diagonal elements
of the capacitance matrix is no larger in magnitude than the corresponding
diagonal element.

Just consider the same situation as just considered. The change in the charge
on the jth electrode is dg; = Cj; dv;. The field lines from those added charges
will terminate either on other electrodes or infinity, so the total negative charge
added to all the other electrodes can be no larger in magnitude than |dg;|.
Therefore,

Sda= Y G| <= Gyl = |G| < |G| @1os)
i#] i#j i)

Properties of the Capacitance Matrix and lts Inverse
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Capacitance Matrix of a Mirror-Symmetric Configuration Revisited

Considering again a mirror-symmetric two-electrode configuration, we now know
Cs > Cp > 0, and we know the pair capacitance we are familiar with is related to
them by C = (Cs + Cp) /2, but can we determine Cs and Cp, explicitly?

If we consider the case Vi = V and Vo, =0, we find Q1 = GV and @ = —C, V, so
we can determine Cs and Cp, if we know the full field configuration, with the boundary
condition V = 0 at infinity: we obtain the surface charge density from the normal
component of the field at the electrode surfaces and integrate it to get Q; and Q2 and
thus Cs and Cp,. (Remember, if V # 0 at infinity, we need to include infinity explicitly
as an electrode of the system.)

Maybe we can then do this for the one mirror-symmetric case whose full electric field
configuration we can calculate trivially, the infinite parallel-plate capacitor? No! The
infinite parallel-plate capacitor violates the condition V = 0 at infinity because, if
either plate has non-zero potential, that plate’s non-zero equipotential surface extends
off to infinity in the transverse direction. We violate the assumption that allowed us to
ignore the electrode at infinity. Moreover, infinity is no longer even an equipotential
surface in this configuration! On the equipotentials defined by the two electrodes (at,
e.g., z = £d/2), the potential at infinity is the potential of the corresponding
electrode. If the two plates have equal and opposite potentials, then the field outside
the plates vanishes and the potential on the surface of that volume at infinity is zero.
The potential on the line z = 0 is also zero. And then, for 0 < |z| < d/2 and

X,y — oo, the potential is the same linear function of z that it would be at x,y = 0.
Clearly, our assumptions are violated!
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We note that, formally, C is infinite for this mirror-symmetric configuration, anyways:
the mirror-symmetric potential configuration requires infinite charge on each electrode!
The pair capacitance per unit area, however, is finite and trivially calculated.

So, we are stymied. In order for the V = 0 at infinity condition to be satisfied, our
electrodes must be finite in extent. But, for electrodes finite in extent, we cannot
calculate the potential in a trivial fashion, so we cannot determine Cs and Cp,, or even
C, trivially. We need to develop the full machininery for solving Poisson’s and
Laplace'’s Equations, which we will begin to do soon.
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Intuitive Approach to Laplace’s Equation

As we mentioned earlier, the integral forms for the electric field or the potential

=/

ER =t /VdT/p(F/)hf__i;,'?) and V(A= /vdT' o) (31)

4meo 47eo |F—F|

are always correct but can be difficult to deal with in practice. Most systems will not
have symmetries that make the integrals easily doable (or avoidable via Gauss's Law).
Moreover, and this is the greater problem, it is rare that one completely specifies p(F)
in setting up a problem. Experimentally, what we can easily control are the shapes,

positions, and potentials (voltages) of conductors. We do not control how the charge
arranges itself on the conductors. Thus, we need to seek alternate ways to solve for

the potential and field over all of space. Laplace's and Poisson’s Equations are the key.
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Laplace's Equation in One Dimension

In one dimension, Laplace’'s Equation takes the simple form

d*v

We can solve this by direct integration to obtain
V(x)=mx+b (3.3)
where m and b are two constants of integration. We determine m and b by boundary

conditions: specification of V or dV//dx at specific point(s). In the one dimensional
case, there are two options for how to specify the boundary conditions:

» Specify V at two points.
> Specify V at one point and dV//dx at one point (possibly the same point).

Note that these are the only choices in one dimension. Specifying dV//dx at two
points either yields a contradiction (if two different values of dV//dx are given) or
insufficient information (if the same value is given). There are no other quantities to
specify: all higher derivatives vanish thanks to Laplace’s Equation.
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Let us note two important characteristics of the solutions of Laplace’'s Equation:

> Averaging Property: V(x) is equal to the average of any pair of points V(x + a)

Section 3.1.1

and V/(x — a) for any a such that x & a belong to the region being considered:

SVl +a)+ Vix = a)] = 5 [(m(x-+2) + ) + (m (x = 2) + )

mx+ b= V(x) (3.4)

V(x) has no nontrivial local maxima or minima

We already mentioned this property for the three-dimensional Laplace's
Equation. The proof is straightforward in one dimension. Suppose xg is a local
maximum or minimum. Then we have dV/ /dx = 0 at this point xg. Then, for
any other point xp:

dv

dav| _ dv
dx o

X1 2V
LA +/ 9V e —0+0=0 (3.5)
dx x

2
o dx

X1 X0
Therefore, if dV /dx vanishes anywhere, then dV//dx vanishes everywhere and
thus V/(x) is a constant. This is a trivial local maximum/minimum. If dV//dx
vanishes nowhere, then the endpoints of the region give the maximum and
minimum of V/(x) or, if there are no endpoints, there are no maxima or minima
at all. Consider, for example, a uniform electric field an over all of space.

Laplace's Equation in One Dimension
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Laplace's Equation in Multiple Dimensions

We quote the analogues of the above two properties for arbitrary numbers of
dimensions and prove them for three dimensions:

> Averaging Property: The value V/(7) of a solution to Laplace’s Equation at any
point is equal to the average of its value on any sphere centered on that point in
the region of interest:

fsa da’ V()

v = v, = =0
Sa(7F

(3.6)

where S,(7) is the sphere of radius a centered on 7. This is straightforward to
show (Griffiths Problem 3.37). Let's integrate Laplace’s Equation over the
volume enclosed by S;(F), Va(F), and use the divergence theorem:

Laplace’ s
Equation /2 _
= / dr’ V2, V(F') (3.7)
Va(F)
divergence

T ) ) = [ ) G V()
Sa(P) a(F)

In the last step, we have used the fact that V does not care about the location
of the origin (since it is just an offset).
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Section 3.1.2

Now, we can define §= F/ — F. In this coordinate system, where 7 is at the

origin, A(F’ € S,(F)) =5, the radial unit vector in the § coordinate system. So,
we have (inserting a factor 1/4m a?):

! / $2dQs ov (3.8)
Saf

4 a Js,(5=0) 0s |4,

where S,(5 = 5) is the sphere of radius a centered on the origin of the § system
(i.e., the same as S,(F), the sphere of radius a centered on 7 in the 7’ coordinate
system). Because the integration is over a sphere of radius a, s = a is fixed in
the integrand. This permits us to both pull a factor s?2 = a2 outside the integral,
canceling the factor of a2 in the prefactor, and to pull the radial derivative
outside the integral and turn it into a derivative with respect to a. Thus:

0 = 1 > 52/ dQs 87\/
4ma S,(5=0) Js

Note that 9/8s becomes §/0a when we move it outside the integral because
the limits of integration, S,(F), imply s should be evaluated at a when the
integral is done: s no longer exists once the integral is done.

1 0
= —— dQsV .
_ 471'83/3( ) ) (3.9)

s=a 2(5=0)
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Thus, the integral must be a constant

czi/ AL V(E) = / da' V(7' (3.10)
5 54

47 5=0) T 4ra?

where we switched the variable of integration back to 7/ and we reinserted aZ.
The right side is just the average of V over the sphere of radius a centered at 7.
Since this holds for any a, it must hold as a — 0, which tells us C = V(7). So,
we have

V(R = — / da' V(7') (3.11)
ama Js.n

» V can have no local maxima or minima in the region of interest
The averaging property makes the proof of this property trivial: if there were
such a candidate maximum (minimum), simply draw a sphere around it.
Because the point is a maximum (minimum) there must be some radius of the
sphere for which the values of all the points on the sphere are less than (greater
than) the value at the candidate maximum (minimum). The average over this
sphere is therefore less than (greater than) the value at the candidate maximum
(minimum). This contradicts the above averaging property.

One could also prove this by a technique similar to the 1D case, calculating vV
at any point 7’ in the region by doing a line integral of Laplace's Equation from
the candidate extremum F to that point. Since V'V vanishes at the candidate
extremum (because it is an extremum of V), and the integrand (V2V) of the
line integral vanishes by Laplace’s Equation, VV vanishes at 7.
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Uniqueness Theorem

Before obtaining a solution of Laplace’s and Poisson’s Equations, we prove some
uniqueness theorems we will need. This section draws from Jackson §1.8 and §1.9.

Green's ldentities and Theorem

First, some mathematical preliminaries. Let us apply the divergence theorem to the
function ¢V where ¢(7) and (F) are arbitrary functions:

%Sdaﬁ- (Nw) - /v(s) drv - (Ww)

This yields Green'’s First Identity:

f{sdaqﬁﬁ- = /V(S) dr [¢V21/1 + %.m,] (3.12)

The function 7 - 61/) is the normal gradient of v because it is the projection of the
gradient of ¢ along the direction normal to the surface. If we exchange ¢ and ¢ and
then difference the two versions, we have Green’s Second Identity or Green's Theorem:

fs da [¢ﬁ. Vi —yh- %} - / dr [$V2 — V6] (3.13)

V(S)
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Types of Boundary Conditions

We shall see in the proof of the Uniqueness Theorem that three types of boundary
conditions are permitted:

» Dirichlet boundary condition

In this case, the value of the potential V/(F) is specified on all bounding
surfaces. This is the most typical experimentally realized situation, where we
attach a number of conductors to voltage sources to set their voltages.

Neumann boundary condition

In this case, the value of the normal derivative of the potential, 7~ VV/(F), is
specified on the boundary. An example of such a condition is specification of the
electric field (or, equivalently, the surface charge density) at the surfaces of a set
of conductors; since the tangential electric field vanishes at these surfaces, the
normal electric field fully defines the electric field at the conductors.

Mixed boundary conditions
Dirichlet in some places, Neumann in others, is allowed as long as both are not
specified at the same place.

If the volume under consideration is not bounded by a surface on which we specify the
boundary conditions, then we must also specify a boundary condition at infinity.

The proof of the Uniqueness Theorem will not show why only one of these types of
boundary conditions may be specified. That proof will be provided soon, in §3.4.1.

Section 3.2.2

Types of Boundary Conditions
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Generic Uniqueness Proof for Poisson's Equation

We will use proof by contradiction.

Suppose we have specified one of the above three types of boundary conditions.
Assume that, for a particular given charge distribution p(7), there are two independent
solutions Vi(F) and V(F) of Poisson’s Equation that both satisfy the boundary
condition. Let V3 = V; — V,. Since the charge distribution is the same,

V2Vj = —p/eo = V2V, and thus V2V3 = 0: V; satisfies Laplace’s Equation. By a
similar differencing argument, V3 either satisfies the Dirichlet boundary condition
V3(F € 8) = 0, the Neumann boundary condition 7- VV3(F € S) = 0, or a mixed
boundary condition of these types. If we apply Green’s first identity with ¢ = ¢ = V3,
we have

?{da v3ﬁ-6v3:/ dr <v3v2v3+€v3-6v3> (3.14)
s V(S)

The left side vanishes because of the boundary condition (any type). The first term on
the right side vanishes by Laplace’s Equation. Thus, we have

/ dr|[VW3>=0 = VW(/)=0 =—> V3= constant (3.15)
V(s)

where we take the second step because the integrand is nonnegative. This result
implies that our two candidate solutions V;(7) and V5(F) differ by at most a constant.
Hence, uniqueness is proven.
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Special Cases of Uniqueness Theorem

Given the above, we may state/prove three special cases of the uniqueness theorem,
the ones given in Griffiths:

» The solution to Laplace's Equation in some volume V is uniquely specified if V

Section 3.2.4

is specified on the boundary surface S(V).
This is the above uniqueness theorem with p = 0 in V and a Dirichlet boundary
condition on S(V).

The solution to Poisson’s Equation in some volume V is uniquely specified if
p(F) is specified throughout the region and V is specified on the boundary
surface S(V).

This is the above uniqueness theorem with arbitrary p(7) in V and a Dirichlet
boundary condition on S(V).

In a volume V surrounded by conductors at the surface(s) S(V) and containing
a specified charge density p(F), the electric field is uniquely determined if the
total charge on each conductor is specified.

This one is not as obvious, but we can show that this BC yields the same input
to the Uniqueness Theorem derivation as the other BCs we have specified.
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Let each conductor i have surface S; and charge Q;. Since we know the surface
charge density on each conductor is related to the normal component of the
electric field at that conductor, we may see

?f dafi(F) - E(F ?{ dao(F) fioo,- (3.16)

Now, as before, let’s assume that there are two different solutions V4 (F) and
V5 (F) and their difference is V3 = Vo — V. Let’s evaluate the left-hand side of
Equation 3.14 for the BC we are specifying here:

fdav3ﬁﬁv3:—2f dav3ﬁ-E3:—Zv3,,-f daf-E5  (3.17)
S i Si i S;

where we were able to pull V3 out of the integrals because V4 and V, have
equipotentials on each surface and so therefore does V3 (with values V3 j, which
we do not need to know). The surface integral of the normal component of l::3
over each S; vanishes because, as we indicated above, specifying Q; specifies
this surface integral to be the same for Ei and E2, so the surface integral
vanishes for E3 = E, — E1. Thus, the LHS of Equation 3.14 also vanishes for
this BC, and so the remainder of the proof of uniqueness carries through.

Note how this proof relied on the boundary surfaces being conductors! Knowing
the total charges on nonconducting boundary surfaces would not be sufficient.
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Method of Images
Overview: The Basic Idea of Method of Images

The method of images uses the concept of uniqueness of solutions to Poisson’s
Equation. Basically, given a physical setup involving a true charge distribution p(7)
and Dirichlet boundary conditions for some volume V), one tries to replace the region
outside of V with an image charge distribution pjmage(F) such that, when the image
charge’s potential is summed with that of p(7), the potential on the boundary is the
same as that specified by the Dirichlet BC.

The technique works because of the uniqueness theorem: since the potential due to
the image and original charges matches the boundary conditions and satisfies
Poisson’s Equation with the same source term inside V, it is the solution to Poisson’s
Equation for that source term, that volume V), and that choice of boundary conditions.

The imagined charge distribution is called “image charge” because, at least in the
example of the boundary condition being imposed by the presence of a conductor, the
image charge is a (possibly distorted) mirror image, through the boundary, of the
original charge distribution p(F). “Image charge” is also used (somewhat erroneously)
to refer to the surface charge induced on a conducting boundary that sources the
potential that one models as due to the image charge.

Note that the image charge must be placed outside the volume V because we may not
change p(F) inside V; that would change the problem we are trying to solve.

We will see later how the potential due to the image charge distribution (the induced
surface charge) is a component of the particular problem’s Green Function.
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A Point Charge near a Grounded Infinite Conducting Plane

For a system with the point charge g at d Z above a conducting plane at z = 0 with
V' =0, and considering the volume V consisting of the z > 0 half-space, the
appropriate image charge is —q at —d Z. By symmetry, the (Dirichlet) boundary
condition V =0 at z =0 is met. Thus, the solution for V/(7) for ¥ € V (the z > 0
half-space) is

V() = 1 { q q

- 3.18
Ameo | X2+ y2+(z—d)? /X2 +y2+(z+d)? B1e

The potential clearly satisfies V(z =0) =0 (and V(r — oo) — 0). Let’s use this
solution to do some other calculations:

» Induced surface charge
This we can calculate by recognizing that it is given by the change in the normal
component of the electric field at the conducting boundary. Since E = -V V,

z—d B z+d
(2 4y 4 (2= )2 (2 4y + (2 +d))?

q

2—0 47

__a__ 4 (3.19)

27 (x2 4 y2 4+ d2)32

Q
Il

— €0 —

0z

z=

We will treat the surface charge density and the normal component of the
electric field (the normal gradient of the potential) as almost equivalent going

forward.
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Section 3.3.2

We can calculate the total induced surface charge:

oo 27 [eS)
—qd 1 1
Qin :/ rdr/ d =qd =—q (3.20
? 0 0 ¢ 27 (r2+d2)3/2 q V2 £ d?|, q ( )

This is an example of an important general theorem: The total induced surface
charge is equal to the image charge, or to the negative of the real charge, or to
some combination of the two, depending on the geometry, by Gauss's Law.
Because of the mirror symmetry of this problem, the two cases are degenerate,
so this is not a particularly illustrative example of the theorem. Furthermore,
because the volumes and surfaces one must integrate over are infinite, Gauss's
Law cannot be applied to such a geometry. We'll return to this theorem in our
next example where there is no such issue.

Force on the point charge

The induced charge is opposite in sign to the real charge, so the two are
attracted to each other. We can calculate the force by taking the gradient of
the potential due to the image charge only (because the real charge does not
feel a force due to its own potential). Since the image charge’s potential is just
that of a point charge, calculating the force is straightforward:

1 ¢

47eo (2d)2 ‘ (3.21)

F=gq Eimage charge(d2) ==

This is equivalent to just calculating the force on the real charge exerted by the
image charge, which is in general a valid approach. Whether to calculate the
image charge potential and take the gradient or calculate the image charge force
is a matter of choice and convenience.

A Point Charge near a Grounded Infinite Conducting Plane
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» Electric potential energy

Section 3.3.2

Here we have to be more careful because potential energy is not linear in charge,
and, moreover, because the induced charge depends on the original point charge.
Let's figure this out by calculating the work one would have to do against the
electric force (i.e., the mechanical force Fp, doing the work is opposite in sign to
the attractive electric force Fe) to bring g from z = d to z = co

oo 1 2 oo 4. 1 2
U= [T CR@ =t [T )
d 4reo 4 Jg 22 dre, bd

Note that this result is half what one would get for the potential energy of two
equal and opposite point charges separated by a distance 2d:

1 2

Uy = ———
alt 4meo 2d

(3.23)

There are two ways to understand this. The first is to recognize that, unlike in
the case of two point charges, no energy is gained or lost in moving the negative
charge because it is in the conductor, where V = 0 and thus gV =0
everywhere. The second is to recognize that the above expression is the energy
stored in all of space in the field of two point charges, but, in this case, the field
is only real in the z > 0 half-space and so the integrated energy is reduced by a
factor of 2.
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A Point Charge near a Grounded, Conducting Sphere

Consider a conducting sphere of radius R centered on the origin and held at V = 0.
Place a point charge at aZ with a > R so the point charge is outside the sphere. We
would like to know the potential in the volume V outside the conducting sphere,
which is the volume in which the point charge sits.

By symmetry, the appropriate image charge must be on the z axis. Let its value be g’
and its position be bZ, where b may be positive or negative. We can find ¢’ and b by
requiring that V =0 at 7= £RZ:

0= V(+R3) = [ i, d }
d7eo la—R R—b
1 /
0=V(-R2) = d ul
47eo |a+ R R+ b
R R2
= {d=-q9-#-q b= — (3.24)
a a

(This is an example of how one does not always need to consider the generic case;
these special cases at the two poles give us the information we need.) We see that
both values are always physically reasonable because R < a. In particular, b < R so
the image charge remains outside V (i.e., inside the sphere), as we expect. Note that

q #—q
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The potential at a point (r > R, 0, ¢) is found by summing the potentials of the real
charge and the image charge:

1 R
Virz R0 = | L R (3.25)
dmeo | |F—aZ| |;‘,RT’Z\
__q 1 . R/a
4meo \/r25in29+(afrc059)2 \/r2sin20+(%2—rc059)2

(3.26)

We can use the above expression to see that the boundary condition V(r = R) =0 is
satisfied in full generality:

q 1 R/a
4meo | \/R?sin2 + (a — R cosf)? \/R25in29 + (R?2 — R cos0)?

V(r=R,0,6) =

q 1 1
4meo \/R2sin29+(a—Rc056’)2 \/azsin29+(R—acosﬁ)2

=0 (3.27)
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Let's calculate the induced surface charge from - vV = oV /or:

o =

One can show by integration that the total induced charge is q’.

ov
A (3.28)

or |,—r

2
q | Rsin20 — (a— Rcosf) cosd R Rsin?0 — (5~ — R cos) cos
4m | (R?sin0 + (a — R cos0)2)*/? (R2sm29 + (* — R cos )2 )3/2
2
q R — acosf a2 R*chose
47 |(R24+22—2aR cos0)*? R?(a24+ R2—2aR cos0)*/?
2 2

q R(1- %) 4 R 1- &
47 (R? 4 2% —2aR cos0)®/?  47R% a (1+8 Bcosg)3/2

In this geometry, this

makes sense because the volume enclosed by a surface integral of electric field flux at
the boundary encloses the volume containing the image charge. This example
illustrates one case of the theorem stated earlier; in this case, the total induced surface
charge is equal to the image charge. We will see other cases illustrated in the next

example.

The force on the point charge and the electric potential energy can be calculated in a
manner similar to that used for the conducting plane.

Section 3.3.3
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Calculate the force by taking gradient of electric field:

. - q —R/a
=qgE; z=a)=—qV —————
4q Eimage charge( ) q dreo |7 R2 /Z\)

all

Again, this is the same we would have obtained by directly calculating the force on the
real charge from the image charge:

R

_oa(-ef) 1 ¢ R 1

F= s Z= z
47eo [37&2]

a

Both of these match Jackson Equation 2.6.
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We calculate the potential energy by line integral of the force:

Uf/adZFF) /(dz) R__1

o bre, 23 [1 Rz]2
-z
zZ
- q? R/ba zdz _ q? R
T 4rme, [227R2]2 T 8meo a2 — R2

Note that, if we calculate the potential energy from the image charge and real charge,
we get the same factor of two error we saw above for the point charge and the plane:

R
q(—q*> 1 2 R
Uy = 2 =+ T —»2u (3.29)
47e ‘a’z\,&z’z\’ 4mme, @2 — R

which is incorrect for the same reasons as given before.
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Some Related Examples

These are drawn from Jackson Chapter 2.

Example 3.1: Point charge inside a spherical volume with a conducting
boundary

The geometry of this problem is like the last one, except the point charge is inside the
spherical boundary, a < R, and everything outside the boundary is conductor. One can
show that the solution is identical: same formula for image charge value and position,
same induced surface charge density. However, strangely enough, the total surface
charge is now just —q!

Mathematically, this is because the evaluation of the integral depends on whether
R < aor R > a. (There is a power series expansion involved, which must be done
differently in the two cases.)

Physically, this is because the calculation of the total induced surface charge via
Gauss's Law must be done differently. One method is to use a spherical surface just
outside the boundary, so it is in the conducting volume where the field vanishes. This
implies that the sum of the real and induced charge vanishes, so the induced charge is
the negative of the real charge.
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The other method is to put the surface just inside the boundary. Now, the charge
enclosed is only the real charge. As the surface approaches the boundary, though, the
flux integral is equal to the negative of the integral of the surface charge density (up
to €o) because the electric field near a conductor is o /€, (with the negative because
the field is pointed inward). So this tells us the total induced surface charge is the
negative of the real charge too.

Thus, we see illustrated another case of the theorem we stated earlier, that the total
induced surface charge is the image charge, the negative of the real charge, or some
combination of the two. Which one depends on the geometry: is the boundary outside
the volume of interest, inside, or some combination of the two?

In the case of the point charge outside the conducting sphere, we noted that the
Gauss’s Law calculation, with the Gaussian sphere just inside the volume V (i.e.,
having radius infinitesimally larger than a), yields ¢’ # —q. The distinction is whether
the volume V of interest is “outside” the boundary (neglecting the boundary at
infinity) as in the previous case or “inside” the boundary as in this case.

(In the previous case, the Gauss's Law calculation outside V (i.e., using a Gaussian
sphere of radius less than a) yields no useful information because the sphere doesn’t
contain the induced surface charge. The flux through such a sphere vanishes because
the field is zero inside the conductor, which just tells us that all the induced surface
charge resides, well, on the surface.)
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Example 3.2: Point charge in the presence of a conducting sphere at fixed
potential Vg

We can treat this by superposition. Consider first bringing the sphere up to the
desired potential in the absence of the point charge, then bringing the point charge in
from infinity to its final position aZ. We can use the grounded-case solution for the
latter part because it has V = 0 on the sphere and V — 0 at infinity, so the sum of it
and the solution for the V' # 0 sphere alone satisfies the boundary condition of the
problem of the point charge near the V # 0 sphere, and thus it must be the correct
solution. (Note the use of the principle of superposition for the potential.)

What is the solution for the V' # 0 sphere on its own? Certainly, the sphere is an
equipotential with the desired value V4. By symmetry (remember, the point charge is
not present for this problem), the charge is uniformly distributed on the surface. Thus,
we can apply Gauss's Law to the problem, which tells us that the potential of the
sphere, for r > R, is identical to that of a point charge at the origin. To figure out the
value of the point charge, we require that the point charge's potential match the
boundary condition:

90

R
— =W — qgo=4mec VWR — V(r): Vo — (3.30)
dmeo R 71
Finally, we add the two solutions together:
V(r>R,0,¢) = —2 ! Rla_|, (3.31)
r = — — .
= dmeo ||F—azl |p— B3 0|ﬂ

a
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Example 3.3: Point charge in the presence of a charged, insulated, conducting
sphere

We can solve this using the solution we just calculated along with the principle of
superposition (again!). Suppose we want to have a charge Q on the sphere. This is
the same as first bringing the point charge g in while the sphere is grounded,
disconnecting the grounding wire, adding Q — g’ (> Q for g > 0), which causes the
sphere to float to some nonzero voltage, and then connecting to a voltage source with
that voltage. This situation is identical to the situation we just studied if we require

R
%=Q-d = Vo= 47rqeoa R - 4Q7r;,qll? - f:ejlg (3:32)
Plugging this into solution for the sphere held at V; gives
V(r>R,0,¢) = — 1L ___Rpa Q+ay (3.33)
- dmeo |[F—az] |- Rz | 4meln

Notice that this reduces to our original point charge near a sphere solution not when
Q@ = 0 but rather when Q = g’ = —q R/a, which is the charge that must flow onto
the sphere for it to stay at V = 0 (i.e., grounded).
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Formal Solution to Poisson's Equation: Green Functions

The remaining material in this section of the notes is based on Jackson §1.10.

Integral Equation for the Electric Potential

Can we solve Poisson’s Equation? Sort of. We can convert it from a differential
equation for V in terms of p (with boundary conditions separately specified) to an
integral equation for V in terms of p with the need for the boundary conditions quite
explicit. It is still not a closed-form solution for V in terms of p and the boundary
conditions, but it helps us to frame the problem of finding solutions for V in a
different manner that is helpful.

We obtain this equation by applying Green’s Theorem (Equation 3.13) with
d(F") = V(7') and ¢(F') = |F— 7|71 Note that 7’ is the variable we integrate over;
F'is considered a constant for the purposes of the Green's Theorem integrals.

V()

1 1
|F— 7]

/ dr’ {V(F')Vg,ﬁ -
V(s) |F— 7]
1 1 N

:j'{ da [V(F/)H(F’)-ﬁ;/ﬁ — AP Ve V(F)| (3.38)
s |F—r|  |F— 7]
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We reduce this by making use of the very important relation

1
77

vZ, = —4n§(F—F) (3.35)

which is seen by combining Equations 2.53 and 2.33 with P« 7”:

L1 P 7
VA T T

- Fl—r = L
and V,«wm =4rné(F =) =4né(F-7")

Using the above expression for the Laplacian of |F— F’/|71, doing the integral over the
delta function, applying Poisson’s Equation, moving the second term on the right side
to the left side, and multiplying everything by fﬁ yields, now only for ¥ € V(S):

1 7!
V(FeV(S)) = / G (3.36)
Ameo Jy(s) |F—F|
1 / 1 o~ =/ = -/ PAY~ = = 1
4+ — ¢ da' | ———n(F") - V= V(F') - VF)A(F) Vi ————
47 Js |F—F| |F— 7|

(The left side vanishes for 7 ¢ V(S) because the integral was over 7 € V(S)).
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This is a formal equation for the electric potential. The boundary conditions are
present on the right side: in the case of Dirichlet, we specify V(F’) for 7’ € S, while
in the case of Neumann, we specify A(7’) - V7 V(7') for 7/ € S. Our Uniqueness
Theorem says we should only need to specify one or the other at any given point on
the boundary. In fact, since the Uniqueness Theorem says that knowing one specifies
the other (knowing one gives the full solution, which determines the other), we don’t
have the freedom to specify both independently! Knowing both essentially requires
knowing the solution to the problem. For example, if we consider the simplest possible
case of specifying an equipotential on the boundary, then knowing the other boundary
term requires knowing the normal gradient of the potential at the boundary, which is
equivalent to knowing the surface charge density on the boundary. We would not be
able to guess this except in cases with sufficient symmetry.

Therefore, this is not a closed-form solution but rather an integral equation for V/(7’)
for F/ € V(8) US: the boundary condition does not provide everything on the right
side, but, if we know the solution, it will satisfy the equation.

Note that, in the limit of S — oo and V(r — 00)  1/r — 0, the integrand of the
surface integral falls off as r—3 and so the surface term vanishes and we recover the
usual Coulomb’s Law expression for V/(7), Equation 2.51. That is, in a situation where
we know the behavior of both surface terms is trivial, the equation does provide a
closed-form expression for V/(7) in terms of p(7).

So far, however, this integral equation is not very useful. Once we have introduced the
concept of Green Functions, we will see its utility.
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The Concept of Green Functions

Suppose we have the generalization of Poisson's Equation, the linear partial
differential equation

O-F(7) = g(7) (3.37)

where O is a linear partial differential operator taking derivatives with respect to the
coordinate 7, f is a generalized potential, and g is a generalized source function.
Poisson’s Equation is an example, with Or = —e,V?, f(F) = V/(F), and g(7) = p(7).
Is there a general approach for finding f given g7

Yes, there is, it is called the Green Function approach. The basic idea is to find the
“impulse” response function for the differential equation: the generalized potential one
gets if one has a point-like source. Given the impulse response function, and the
linearity of O, one can obtain the generalized potential for an arbitrary source
function by convolving the impulse response function with that source function.

Section 3.4.2 The Concept of Green Functions Page 132



Section 3.4 Advanced Electrostatics: Formal Solution to Poisson’s Equation: Green Functions

Mathematically, the impulse response function, or Green Function, is the function
G(F,F") that solves the equation

0-G(F,7') = 8(F— 7) (3.38)

meaning that G(F, F’) calculates the generalized potential at the point 7 for a point
source of size ¢ = 1 at the position 7/ (i.e., the total source charge recovered by
integrating over the source function is 1). If such a G exists, then, for an arbitrary
source function g(F), G gives us the following solution f(7) to the generalized linear
partial differential equation, Equation 3.37:

(7 = [ a6 e() (3:39)

We can check that Equation 3.37 is satisfied by this solution by applying the operator:
0:(1) = 07 [ dr'G(R. ) g(7") = [ dr' [0-G(7.7)] (') (3.40)
= [ ar's- e = e (3.41)

Note how this check relied on the linearity of O, which allowed us to bring it inside
the integral. Assuming solutions to the generalized linear partial differential equation
are unique (true for Poisson’s Equation), the Green Function is the only solution we
need to find.
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General Discussion of Green Functions for Poisson’s Equation

Let's consider the simplest possible case, that in which there is no bounding surface
and the potential vanishes at infinity. We can read the Green Function off by rewriting
our usual expression for the potential for this boundary condition, Equation 2.51, in
the same form as Equation 3.39:

V(F):47:60/vd7’ o) —/Vdf’ G(F,7') (") (3.42)

P
Therefore, the Green Function for Poisson’s Equation is

1 1
G(rr)= —— — if V = all space, V(r — c0) — 0 (3.43)

 47e |F— 7|
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More generally — i.e., for a more complex boundary condition — Poisson’s Equation
implies that its Green Function must decompose into the form

1

- dmeo |[F— 17|

G(7, 7 + F(7 7))  with  V2F(FF)=0 (3.44)

where the first term provides the right side of Poisson’s Equation but the second term
is not only allowed by Poisson’s Equation but, we will see, is crucial for satisfying the
boundary conditions for any situation except the trivial one noted above, that of the
potential vanishing at infinity. The F term plays multiple roles, depending on the type
of boundary condition, and we will explain those roles later. Finding G thus consists of
finding F.

We note that both G and F are symmetric in their arguments, G(F',r) = G(r,r")
and F(F',F) = F(F,F"), for reasons we will explain later.
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Green Functions for Poisson’s Equation with Dirichlet or Neumann Boundary
Conditions

To apply the concept of Green Functions to Poisson’s Equation, we start by taking
o(F') = V(F') and ¢(F') = —eo G(F, F') in Green's Theorem (Equation 3.13) and
assuming

—eoV2,G(F, 7)) = 8(F—F') (3.45)

Note that this equation does not match Equation 3.38, which had the Laplacian
acting on 7, not 7/. We will recover Equation 3.38 later. We then apply the same
kinds of manipulations we did to obtain the integral equation for the potential,
Equation 3.36 (these manipulations rely on Equation 3.45), giving

V() = [ 4 o) G(7.) (3.46)

+ €0 fis(v) da’ |:G(F: F’) ﬁ(?’) . ﬁp/ V(F’) _ V(F’)ﬁ(?’) ) 67/ G(f‘, 7 )}

As noted earlier, a differential equation is not alone sufficient; we need boundary
conditions to make G unique. For a particular type of boundary condition on V/, we
can make the choice to impose a condition on G such that the integrand involving the
other type of boundary condition on V vanishes. If we do so, then our integral
equation for V reduces to an integration over the source distribution with the Green
Function and over the boundary condition with the Green Function (Neumann) or its
normal gradient (Dirichlet).
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We also see that, even though we assumed Equation 3.45 instead of Equation 3.38 for
the equation defining the Green Function, the result we obtain above is consistent
with Equation 3.39, which states that the source function p(F’) should be convolved
with the Green Function, integrating over its second argument, to obtain the potential
function in its first argument. We will resolve this apparent inconsistency shortly.

Note that the equation we obtain for V/(7) is different from the integral equation for
V(7), Equation 3.36, because there we could not impose such a condition on V/(F),
since it is set by the situation under consideration, or on |F — 7’|~ (obviously).

G(F, ") is, on the other hand, our tool for solving that integral equation, so we may
design the tool — by choosing boundary conditions for it — to do its job as long as it
respects its defining equation. (Again, the differential equation is insufficient — we
need to impose a boundary condition on G in order to make G's defining equation
solvable.)

We can be more specific about what we mean by “forcing the other BC term to
vanish” by picking a type of boundary condition:

» Dirichlet boundary condition

In this case, V/(F) is specified for 7€ S. Therefore, A(7) - V7V(F) should be left
unspecified — it should be determined by the solution itself — so we need for it
to not appear in the integral equation. We can eliminate the term containing
this normal derivative if we require the Dirichlet Green Function, Gp(F, F"), to
satisfy the boundary condition (in 7/, the variable for the defining PDE)

Gp(F,F')=0 for 7 €S,FeV,S (3.47)
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The boundary condition must be defined for all valid 7, which consists of ¥ € S
and F € V. This has the benefit of making Equation 3.46 usable for calculating
V(7 € S) to check the solution is consistent with the boundary condition.

Using the interpretation implied by the convolution of the charge density with
the Green Function in Equation 3.46 (admittedly, an interpretation not
obviously consistent with the defining equation, Equation 3.45), the above
condition is equivalent to requiring that charge on the boundary (F/ € S), given
by the normal gradient of V on the boundary, yield no contribution to the
potential elsewhere on the boundary (¥ € S) or in the volume (F & V). In one
sense, this is what we expect, as the Dirichlet boundary condition specifies V/(7)
on the boundary, so any charge that appears on the boundary to enforce that
boundary condition had better do so in a way that does not modify the
boundary condition.

However, in another sense, it is the opposite of what we expect: how can the
induced surface charge on the boundary not affect the potential on the surface
or in the volume? Wasn't that the whole idea behind the method of images,
that one calculates the additional potential of the induced surface charge on the
boundary by replacing it with an image charge? We resolve this confusion below.

With the above condition, the solution for V(F) reduces to

V() = [ 47 o) Go(7) — <o oy BVENRE) T GolE )| (348)
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Section 3.4.4

This form allows us to resolve our confusion above:

> The first term calculates the potential due to the real charge, including
the potential due to the “image” charge induced by it on the boundary.
(We'll start being sloppy about the use of the word “image” and drop the
quotes.) The latter contribution must come from this term (and not the
surface term) because the image charge and its potential ought to be
linear in the real charge density: there is no image charge without real
charge. The defining condition does not contradict this: Gp(F,F’) # 0 is
allowed for 7,7’ € V, Gp(F,r’) =0 is only required for 7’ € S (and
Fev,Ss).

> The second term adds a contribution to the potential for surface charge
that appears on the boundary in order for the boundary to sit at the
nonzero potential given by the boundary condition. This is not image
charge because it is not induced by real charge and it appears even if there
is no real charge in V (this term’s presence does not depend on whether p
is present or not). In the case of the point charge near the sphere, this is
the charge go = 4 €, Vo R that appears so the sphere sits at V = V. It
has nothing to do with the point charge q. The condition Gp(F,7’) =0
for 7/ € S is the sensible condition that this additional surface charge does
not induce its own image charge. It is sort of amazing that this simple
term does all that work — figures out the surface charge required to
realize the Dirichlet boundary condition and calculates its potential in V.
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Section 3.4.4

For a Dirichlet boundary condition, the symmetry of Gp in its arguments can be
proven by applying Green's Theorem with ¢ = Gp(F, X) and ¢ = Gp(F’, X),
where X is the variable that is integrated over, and using the defining equation,
Equation 3.45, and the defining boundary condition Gp(7,X) = 0 for X on the
boundary and 7 in the volume and on the boundary (which also implies the
same for Gp(F’,X)). Symmetry of Gp implies symmetry of Fp given that their
difference is symmetric in 7 and 7’.

When this symmetry property is applied to Equation 3.45, and we also use the
symmetry of the delta function, Equation 3.38 is recovered (after relabeling

F <> F'). This resolves the apparent inconsistency between wanting the Green
Function to satisfy Equation 3.38 but having to assume Equation 3.45 at the

start to get Equation 3.46.

We can use the symmetry requirement to reinterpret the condition

Gp(F,F') =0 for 7 € S. We can now think of the unit charge as being at

F€ V,S and the potential as being calculated at 7/ € S. This condition
requires that Gp yields zero contribution to the potential on the boundary from
charges in the volume. The first half of this statement is the requirement that
image charge appear such that the sum of the potentials of the real charge in
the volume and its image charge do not modify the boundary condition. (We do
not talk about real charge on the boundary because we are considering only the
Dirichlet problem right now.)
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Section 3.4.4

We can also now provide an interpretation of Fp(F, 7’) in the Dirichlet case.
Because 1) Fp(F, F’) satisfies Laplace’s Equation in the volume V, and 2) when
added to the potential of a unit point charge at 7/ (the first term in our
expression relating Gp and Fp, Equation 3.44), the sum satisifies the specified
boundary condition on S, Fp(F, F’) can be interpreted as the potential function
in the volume due to the image charge induced on the boundary by the real
charges in the volume with the boundary grounded. This image charge depends
on where the charges in the volume are, hence the integration over 7/ € V to
calculate this effect of this term.

What remains a bit mysterious or magical is how the second term in

Equation 3.48 works. Clearly, that term calculates the surface charge density on
the boundary needed for the Dirichlet boundary condition to be satisfied and
then calculates the potential in the volume due to that surface charge density. It
requires both terms in Gp (i.e., |F— 7’|~ and Fp) to do that. It seems this
part just falls out of the mathematics.
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» Neumann boundary condition

In this case, - V V/(F) is specified for 7 € S, so we need to render irrelevant the
term containing V/(7) because we should not have to simultaneously specify it.
While we might be inclined to require A(7’) - V7 Gy(F, 7’) = 0 for 7/ € S to
make this happen, this requirement is not consistent with Equation 3.45 defining
G: if one integrates this equation for Gy over 7/ € V(S), and turns it into a
surface integral using the divergence theorem, one obtains the requirement

760?{ da A(F') -V Gu(FF) =1  for FEV,S
S(V)

Thus, the simplest condition we can impose on Gy is

—1
A7)V Gu(FF') = — eof da’ for FEV,S,F €S (3.49)
S(V)
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Applying this condition, the solution for V(F) reduces to

V= [ oI GER) o f Gl PR T V) £ (VD)

Section 3.4.4

fs(v) da’ V(7")
fs(v) da’

with <V(F)>S(V) (3.50)

While V/(F) on the boundary has not been completely eliminated, its only
appearance is via its average value on the boundary. This makes sense, as the
Neumann boundary condition does not specify the potential offset since it only
specifies derivatives of the potential. The appearance of this term reflects the
freedom we have to set the potential offset for problems with Neumann
boundary conditions. Recall that the Uniqueness Theorem only showed
uniqueness up to an overall offset.

What is the interpretation of a Neumann Green Function? Since
A(7') - V7 V(F') specifies the surface charge density on the boundary, Gy (7, 7’)
simply calculates the potential at a point 7 in the volume due to this boundary
surface charge density at 7/. Note that Gy is convolved with the volume charge
density and the surface charge density in the same way, reinforcing this
interpretation. A Neumann Green Function thus has a simpler interpretation
than a Dirichlet Green Function. There is no interpretation of Gy or Fy as

calculating contributions from image charge.

Green Functions for Poisson’s Equation with Dirichlet or Neumann Boundary Conditions
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What is the interpretation of Fy/(F, F’) for the Neumann case? One can show
that it has no effect (one needs to make use of symmetry of Fy in its
arguments, see below). Not that it is identically zero, but that all terms
involving it vanish. This makes sense: if we specify the surface charge density
everywhere in the volume and on the surface, we should be able to just use
Coulomb’s Law to calculate the potential everywhere, which just requires the
Coulumb’s Law part of Gy.

The triviality of the Neumann Green Function may seem to render pointless the
extended discussion leading to this point. Recall, however, that Dirichlet
boundary conditions are far more common: we tend to specify potentials on the
boundary in real situations, not the charge density. We derived the Neumann
Green Function for completeness, not because it is really needed.

For a Neumann boundary condition, the symmetry of Gy and Fp is not a result
of the boundary condition, but it may be assumed without loss of generality; see
K.-J. Kim and J. D. Jackson, Am. J. Phys. 61:1144 (1993). As with the
Dirichlet Green Function, this symmetry property allows Equation 3.38 to be
obtained from the assumed defining equation, Equation 3.45, closing the loop
on that apparent inconsistency.

To make further progress in obtaining a functional form for the Green Function, we
must specify the boundary conditions in more detail. We will consider examples of this

next.

Section 3.4.4
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Obtaining Green Functions from the Method of Images

We mentioned earlier that the component Fp(7, ) of the full Dirichlet Green
Function Gp(F,F’) can be determined by the method of images in some cases. Let's
see how this works for the two cases we have considered:

» Point charge near grounded conducting plane

Section 3.4.5

The full potential at a point 7 for the point charge at dZ is

V(R = — [ 9 q } (3.51)

dre, [|[F—dz| |F+d3|

We can see by inspection that the Dirichlet Green Function is given by taking
g = 1 and by replacing d Z in the first term with 7/ and —d Z in the second
term with 7/ mirrored through the x’y’ plane:

Go(F, ') = [ ! ! ] (3.52)

Tane, [|[F-F|  |[F—(XX+y'y—2'2)|

One can test this by plugging into Equation 3.47 with p(F’') = q (7' — d 2).

The second term accounts for the fact that induced charge appears on the
grounded conducting plane and calculates the contribution to the potential due
to it; it is the F(7, F’) term while the first term is the usual Coulomb’s Law term.
The first term solves Poisson’'s Equation while the second term solves Laplace’s
Equation. Both terms depend on the position of the point charge at r’.

Obtaining Green Functions from the Method of Images
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This Gp is not manifestly symmetric under exchange of 7 and F’, but one can
rewrite it so it is:

1 1
Gp(F,F') = 7
Ameo L[(x =X + (v =y + (2 = 2
1
[(x=x)24(y—y)2+(z+ Z/)2]1/2
One can now also see how G(z =0, 7’) = 0 always: the two terms become

identical in this case.

It is also important to notice that, for our boundary condition V(z =0) =0,
there is no term in V/(F) for the surface term because it vanishes in this case.
That is, in the Dirichlet case, we expect a surface term from Equation 3.48

—eojf da V(7Y A(F') - ¥ 71 Go (7, ') (3.53)
sW)

Since the Dirichlet boundary condition is V(z = 0) = 0, this integral vanishes
and we indeed only have the volume integral term from Equation 3.48
convolving the original charge distribution with Gp.
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» Point charge near conducting plane held at Vj

Section 3.4.5

Suppose our boundary condition had instead been V(z = 0) = V, a constant
(and also V(r — oo) = Vg for consistency; we will elaborate on this later). Is
the above Green Function still valid? Yes! We have not changed the charge
distribution in V or the type of boundary condition; all we have done is change
the value of the boundary condition. We can check that the new value of the
Dirichlet boundary condition is respected when we apply Gp derived on the
basis of the Vy = 0 case.

This is an important point about the Dirichlet Green Function: while one may
find it using a special case, it is, by construction, valid for any Dirichlet
boundary condition for the same geometry. It does not care about the details of
either the charge distribution or the boundary condition. Of course, the special
case used must be general enough that one can find the entire Green Function.
When we later do an example using Separation of Variables in Cartesian
coordinates to solve Laplace's Equation, we will see how that example
determines a portion of the Dirichlet Green Function but not all of it.

Returning to the matter at hand: because V(7)) = V; for 7/ € S(V), we can
pull it outside the integral, so we just have the surface integral of the normal
gradient of Gp over the surface:

—6074 da V(F'YA(F') - Vs Go(F, F) = _eovojf da A7) - 5 G (7, ')
S(V) S(V)
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Section 3.4.5

i

We recall that, by definition, Gp (7, 7”) is the potential at the point 7 due to a
point charge of unit magnitude (g = 1) at /. By the symmetry of its
arguments, it is also the potential at the point 7/ due to a unit point charge at
7. Earlier, when we did the method of images solution for the grounded
conducting plane, we calculated the surface charge density at 7 due to the point
charge at d 7 from —e, V#V/(F,d 2). In this case, —e, V7 Gp(F, ') is the
surface charge density at 7/ due to a unit charge at 7. Since V{ has come
outside the integral, our surface integral is now just the integral of this surface
charge density over the boundary, or the total induced charge on the boundary.
We calculated this when we did the method of images and found it was

Qind = —q, so, in this case, it will be —1. That is:

760}( da V(') A(F") - ¥ Gp (F, ) fvof da oing (7', q = 1)
s0) s0)

~VoQind(qg=1)=Vo  (3.54)

So, we see that the surface term serves to add the potential offset that the
boundary condition V(z = 0) = V; requires. Therefore, the solution is now

1 9  q
dmeo ||[F—dZ] |F+dZ|

V(F) = + Vo (3.55)

This solution has V(z =0) = Vg and V(r — c0) = V.

Obtaining Green Functions from the Method of Images
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Section 3.4.5

This example serves to highlight the fact that one has to be careful about the
self-consistency of boundary conditions, especially when they involve a condition
at infinity. Consider two alternative, invalid BCs:

» One cannot set V(z =0) = Vy and V(r — co) = 0 because that is not

self-consistent for z = 0, (x,y) — oo: should the BC be V; or 0 for this
part of the boundary?

One cannot even require V(z =0) = Vg and V(z — oo0) = 0 because it
leaves unspecified the boundary condition for V(z,y/x2 + y2 — c0). If
one then thinks about what type of BC to specify there, one finds that it
should be impossible to specify something that is consistent with

V(z — oc0) = 0. Think about the case of the conductor held at V4 and
no point charge. We know the solution is a uniform sheet of surface
cbarge on the conductor, and we know that the field is then a constant
E(F) = (0/€0) Z and the potential is V() = —(0/€o) z. This potential
does not vanish as z — oo. If one knows that a set of boundary
conditions is not self-consistent for the case of no point charge, then
linearity /superposition tells us there is no way to fix the inconsistency by
adding charges to V: one would have to add a potential that is also not
self-consistent to cancel out the self-inconsistency of the g = 0 potential!

Obtaining Green Functions from the Method of Images
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» Point charge near grounded conducting sphere

The full potential at a point 7 for the point charge at aZz was (Equation 3.25):

1 q g%
V(r) = - 2 3.56
" 47 e, {|Fa?| |f_f§2§|] (3.56)

Thus, the Dirichlet Green Function is given by letting 7/ = aZ and taking ¢ = 1:

1 1 R/r!

- dmeo | |F—F| B ‘7_ 71 _R?

(3.57)

(,/)2

Again, the second term accounts for the potential due to the charge induced on
the surface of the sphere and is the term that solves Laplace's Equation in this

situation (the Fp(F, F’) term). And again, one can this test form for Gp by

plugging into Equation 3.47 with p(F') = q§(F' — a2)
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It is perhaps not so obvious that the second term in this Green Function is
symmetric in its arguments. Let's rewrite it:

R/r’ _ R _ R 358
> = R2 | |Frr! — R27/ - 72 4 _ TR27. 7/ (3.58)
|7 r(r,)2| | | Vrr 2+ RY—2rr'R27- 7

Now the symmetry is manifest.

The same point about the surface integral term as for the conducting plane
holds here: that term vanishes because V(7’) =0 for 7’ € S.
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» Point charge near conducting sphere held at fixed potential

Section 3.4.5

In this case, we can see the effect of the surface integral term in Equation 3.48
because V() on the boundary does not vanish. The integral term is, from
Equation 3.48:

760?{ da V(F')A(7") - ¥ Go (F, ') (3.59)
s)

When we encountered this nonvanishing surface term for the prior case of a
point charge near a conducting plane, we recognized that V/(F’) = V4 could be
pulled outside the integral and that the integral of the normal gradient of the
Green Function gives the total charge induced on the boundary for a unit charge
at 7. To calculate that total induced charge, we invoke the theorem (based on
Gauss'’s Law) we discussed earlier. In this case, the surface encloses the image
charge, so the total induced charge is equal to the image charge. That is:

= R
—60?{ da' V(F')A(F') - Vi Gp(F, F') = =VoQind = —VoGimage = Vo —
S(v) r

(3.60)

This is again just the potential due to a point charge at the origin whose
magnitude is such that the potential at radius R is V.

Obtaining Green Functions from the Method of Images
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Section 3.4.5

With this integral evaluated, the full solution for V/(7) is given by summing the
term that involves the integral with p, which we calculated already for the
grounded sphere case, with the boundary term:

V(7 = q 1 R/a

dre, | |F—az| |7F— B3
a

R
+ Vo
p

This is what we found earlier when we discussed the same problem using the
method of images.

Point charge in the presence of a charged, insulated, conducting sphere

The prior situation is identical to this one: specifying the charge on a conductor
is the same as specifying its potential. So the result for V/(F) is the same, where
we must take Vo = (Q + (R/a)q)/(4meo R). Note that, even though we are
talking about a boundary condition in which charge is specified, it is not a
Neumann boundary condition because we do not specify o(F’ € S), we are still
effectively specifying V(F’ € S). This case is like the third special case of the
Uniqueness Theorem we discussed earlier.
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Introduction to Separation of Variables
General Points on Separation of Variables

Griffiths makes this seem harder than it is. In separation of variables, we assume that
the solution of Laplace's Equation factors into functions of single coordinates. This
allows us to reduce the partial differential equation to a set of ordinary differential
equations, which can be solved by standard techniques. Constants of integration
appear that help to define the solutions. We apply the boundary conditions as defined
by the voltages and/or the charge densities (normal derivative of voltage) at the
boundaries. Once we find a set of solutions, we know from Sturm-Liouville theory that
they form a complete set, so we are assured that we can write any solution to
Laplace’s Equation for the given boundary conditions in terms of these solutions.

We will only develop separation of variables for Laplace’s Equation and, in the near
term, we will only apply it to solving problems with specific types of boundary
conditions rather than trying to use it to find the F piece of the Green Function.
(Recall, F satisfies Laplace’s Equation while G satisfies Poisson’s Equation.) We will
see later, at the tail end of our discussion of separation of variables in spherical
coordinates, that this technique will actually be sufficient to obtain the Green
Function for an arbitrary geometry, which then provides us the solution to Poisson’s
Equation. (One will be able to see that it is not feasible to do separation of variables
for Poisson's Equation in the same way we do it for Laplace's Equation: the process
very much relies on the vanishing of one side of the equation!)
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Digression on Orthonormal Functions

The general topic of the properties of solutions to second-order linear differential
equations is beyond the scope of this course; it falls under the name Sturm-Liouville
theory, and it is covered in ACM95/100. We will simply quote some results that are
important for this course.

Sturm-Liouville theory consists of recognizing that the second-order linear ordinary
differential equations we encounter in many places in this course are self-adjoint
(Hermitian) operators on the Hilbert space of functions that satisfy the differential
equation. You know from linear algebra that Hermitian operators are guaranteed to
have a set of eigenvalues and eigenvectors (in this case, eigenfunctions), and that the
eigenvectors form an orthonormal basis for the space under consideration (here, again,
the space of functions that satisfy the differential equation). The same results apply
here. What this means is that, for such equations, there are a set of solution functions
{fp(w)} that are the eigenfunctions of the operator, and there are corresponding
eigenvalues {\p}. These eigenfunctions form a complete, orthonormal set. (Note: w
is intended to represent any coordinate, one- or multi-dimensional.) The original
differential equation (with differential operator O, and the eigenvalue-eigenvector
equation are:

Ow f(w) = kf(w) Oy fp(w) = Ap(w) (3.61)

where k is initially an undetermined constant; solving the the differential equation
determines the allowed values of k, the {Ap}, and the corresponding solutions {f,(w)}.
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Orthonormality is written mathematically as

t
/ dw £ (w) fo(W) = Spg (3.62)
S
where integration over the interval of interest [s, t] is the Hilbert space inner product.

Completeness is defined to be

> W) fo(w) = 5(w — w) (3.63)

p

where the sum is over all eigenfunctions of the differential equation.
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Completeness, as its name indicates, enables us to show that any function g(w) on
[s, t] can be expanded in terms of the eigenfunctions {f,}:

g) = [ dw' gl 5w~ w) = [ o’ g(w') 3 15 W) 6o(w)
s s P
= fo(w) tdw' fx(w)g(w)
36 et

That is, we have the expansion:

g(w) = Apfo(w) (3.64)
P

with coefficients given by

Ap :/ dw’ £ (w') g(w') (3.65)

We could have derived Equation 3.65 also by applying orthornomality to the expansion
Equation 3.64; this is the usual way we think of finding the {A,} as we will see below.
They are of course equivalent derivations.
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Separation of Variables in Cartesian Coordinates

We assume that the function V/(F) can be factorized as

V(R) = X(x) Y(v) 2(2) (3.66)
Plugging this into Laplace's Equation, we obtain
d’X 2Y d’z
Y(1) 2(2) 5 + X0 2(2) S5 + X0 V() S5 =0
2 2 2
1 d°X 1 d?y 1 dZ:O (3.67)

X)) 2 TY) a2 T Z(z) 42

We have three terms, the first a function of x, the second of y, and the third of z
Given these mismatched dependences, the only way the equation can hold is if each
term is a constant. That is, it must hold that
d’y 1 d*’z
— =K3 (3.68)

1 d°X 1
— =K o N Jus = K
X(x) dx2 Y(y) dY2 Z(z) dz?

with K1 + Ko + K3 = 0.
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We know that the solution to these ordinary differential equations are exponentials,

X(x) = A exp(x/K1) + B exp(—x\/K1) (3.69)
Y(v) = C exp(yv/Ka) + C exp(—yv/Kz) (3.70)

Z(z) = E exp(zy/— (K1 + K2)) + F exp(—zv/— (K1 + K2)) (3.71)

We have not specified which of Ki, K3, and K3 are positive and which are negative
(clearly, they cannot all be the same sign). That will be determined by the boundary
conditions. Note that we are also neglecting linear solutions that also satisfy the
individual ordinary differential equations; we will see they are not necessary in the
examples we consider here (though they may be needed more generally).

At this point, we cannot make further generic progress; we need to apply a set of
boundary conditions. These will place constraints on the allowed values of the
exponents and coefficients and restrict the family of solutions. There are a number of
examples in Griffiths. To avoid duplication, we use a different one here from Jackson
§2.9.
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Example 3.4: Empty box with five walls grounded and one held at a potential

Consider a box with side lengths a, b, and c in the x, y, and z dimensions and with
one corner at the origin. The boundary conditions are

V(x =0)=0 V(y=0)=0 V(z=0)=0 (3.72)
V(x=a)=0 V(y=b)=0 V(z=c)=¢(x,y) (3.73)

where ¢(x,y) is a function that is given. In SoV, we always apply the homogeneous
(vanishing RHS) BCs first because, we will see, they restrict the functional form of the
solutions. The homogeneous BC in the ith dimension (e.g., y) can only be satisfied if
the ith function (e.g., Y(y)) satisfies it alone because it must be satisfied for all
values of the other coordinates. Let's do x, y first for convenience (with
foreknowledge of solution):

X(0)=A+B=0 X(a) = A exp(av/Ki) + B exp(—a/K1) =0 (3.74)
Y(0)=C+D=0 Y(b) = C exp(b\/Kz) + D exp(—b\/K2) =0 (3.75)
Reducing,

A [exp(a\/?l) — exp(—am)] =0 (3.76)
c [exp(b\/@ - exp(—b\/@] =0 (3.77)
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There is no solution to these equations for K1 > 0 and K, > 0: the unit-normalized
decaying and rising exponentials are only equal when their arguments both vanish, and
they do not. Therefore, let's take K; = —a? and K = —f32 so these become
oscillating exponentials. We thus obtain the conditions

sin(aa) =0 sin(8b) =0 (3.78)

This places conditions on the allowed values of « and §3:

nm m o
ap = — Bm = - n, m positive integers (3.79)
a

where n and m may only be positive integers because negative values are redundant
with the positive ones and n = 0 and m = 0 yield vanishing functions. Thus, we have

X(x) = ZA,, sin apx Y(y) = Z Cmsin Bmy (3.80)
n=1 =

m=1

where the {A,} and {Cn} are constants to be determined. These solutions clearly
respect the V = 0 boundary conditions at x = 0,a and y = 0, b because they vanish
at those points. There is no relationship between n and m or between «, and 3, at
this point.
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Now, let’s apply the remaining homogeneous BC to Z(z). At z =0, we have

ZO)=E+F=0 —  F=-E (3.81)

Therefore, Z(z) is of the form
Z(z) = Enm [exp(za fa? + B2) —exp(—zy/a2 + 6,2,,)] (3.82)

= E,.sinh(ypmz) with Ynm = /a2 + B2, (3.83)

(sinh not sin because we know o2 + 32, > 0.) Note how the last BC only determined
the form of Z(z) while its eigenvalues were determined by the prior two BC.

Our full solution thus has the form

oo
V(ix,y,2) = Y Vam(x,y,2) (3.84)
n,m=1
oo
= Z Anm sin(anx) sin(Bmy) sinh(yamz)  with  vpm = 1/a2 + 2
n,m=1

where we have combined all the arbitrary coefficients Ap,, Cs, and E},, into a single
coefficient Apm. Each Vo, (F) satisfies all five homogeneous BCs, thus the solution so
far (without the last BC applied) is the arbitrary sum over all such V(7).
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Section 3.6.0

Now, we want to apply the last boundary condition, V(x,y,z = ¢) = ¢(x, y). How?
Not the same way as we applied the previous ones. The prior boundary conditions
were homogeneous, meaning that they forced the solution to vanish on some boundary
(not all boundaries, otherwise the solution would vanish by the “no extrema”
property). The remaining one is inhomogeneous because it requires the solution to
take on a particular functional form on a boundary. It must be treated differently, for
two reasons.

» The first involves linearity and uniqueness. Because the right-hand side of a
homogeneous BC is zero, the BC is satisfied by any linear combination of
functions that satisfy the BC. The same is not true of inhomogeneous BC. If it
were possible for two different functions to satisfy the inhomogeneous BC, then
only a subset of linear combinations of them would satisfy the same BC: the
linear combinations in which the coefficients sum to unity. This condition
violates linearity. The only resolution is for there to be precisely one solution to
the inhomogeneous BC. This requirement is consistent with uniqueness: the
inhomogeneous BC is applied last, and it completes the application of the BC,
so the solution should be unique once it is applied.

» From the purely calculational point of view, requiring the solution for a given n,
m to satisfy the inhomogeneous boundary condition would imply

Vnm(xry’ z= C) = d)(X,y) (3-85)
Anm sin(anx) sin(Bmy) sinh(vamc) = ¢(x,y) (3.86)

There simply is not enough freedom in the functional form on the left to satisfy
the boundary condition for arbitrary ¢(x,y).
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The only way to have enough freedom to satisfy the inhomogeneous boundary
condition is to consider a linear combination of the individual n, m:

V(F) = Z Anm sin(anx) sin(Bmy) sinh(vnmz) (3.87)
n,m=1

where Apm, are now constants to find based on requiring the above linear combination
solution satisfies the inhomogeneous boundary condition at z = ¢, which now becomes

o(x,y) = V(x,y,z=c) = Z Anm sin(anx) sin(Bmy) sinh(vYamc) (3.88)

n,m=1

This condition will let us determine the A,m,, but how, and why are we certain they
exist? We make use of the theory of orthonormal functions we cited earlier.
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We will use the fact (not proven here) that the functions {\/2/asin(anx)} for n >1
form a complete, orthonormal set on the x € [0, a] interval (with the given boundary

conditions at x = 0, a), as do {+/2/bsin(Bny)} for m > 1 on y € [0, b] (again, with
BC). Therefore, we may recover the A,, by multiplying by them and integrating:

[o [ avovny] 2 in(ap) 2 sin(6e)
:/ dx/ dy Z Anm sinh(ynmc) Sm(apx)\/gs'“(o‘"x)5'“(5my)\/%sin(ﬁqy)

n,m=1
. Va
Z Anm sinh(yamc) f{)pn —0gm = 2 ) (3.89)

n,m=1

Now, be aware that we did more work than necessary above. Once we are told that

the {y/2/a sin(anx) \/2/b sin(Bmy)} form an orthonormal set, we do not need to do
the integrals on the right-hand side! We only need write the right-hand side of the

original equation in terms of the orthonormal functions, then use orthonormality
(Equation 3.65) to obtain the equations for the individual coefficients; i.e.:

o(x,y) \/7 Z A,,m\/>sm(a,,x)\/>sm (Bmy) sinh(yamc) (3.90)
— / dx / dy\f sin(apx) \Esin(ﬁqymx,y):\/a;”qusinh(quc) (3.91)

Section 3.6.0 Page 167



Section 3.6 Advanced Electrostatics: Separation of Variables in Cartesian Coordinates

Next, we move the coefficients to one side to obtain (replacing pg with mn):

. 1
- sinh(Ynm¢)

a b 2 2
/ dx/ dy — sin(anx) — sin(Bmy) ¢(x, y) (3.92)
0 0 a b
Our full solution for the applied set of boundary conditions is

sinh(vnmz)

4 &
V(A = —
(7 35 n%; sin(anx) sin(Bmy) Snh(rmc)

/dx/ dy’¢(x",y") sin(anx”) sin(Bmy’)

(3.93)

Summary: The homogeneous boundary conditions restricted the solutions to a specific
orthonormal set, and the single inhomogeneous boundary condition sets the
coefficients of the appropriate linear combination of that orthonormal set.

A good exercise is to write down the solutions for the five other inhomogeneous
boundary condition cases (especially the ones with the inhomogeneous condition on
the x, y, or z =0 planes) “by inspection” — i.e., by simply changing the solution we
already have by replacing z with x, y, or a— x, b — y, or ¢ — z — rather than by
rederiving. Clearly, these other problems are not different in any conceptual way, they
are only different calculationally, and only barely. There is no reason to redo all that
calculation from scratch!
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If we had used a more general boundary condition, specifying V' to be nonzero on all
six sides of the box, then we could solve the similar problem for each of the six faces
independently (i.e., let V be nonzero and arbitrary on that face and zero on all the
other faces) and then sum the solutions since each individual solution does not affect
the capability of the other solutions to satisfy their boundary conditions. (Of course,
the boundary conditions themselves must be consistent with each other at the edges
and corners where they meet.) In fact, we would have to do this; the separation of
variables technique provides no way to satisfy two generic, independent
inhomogeneous boundary conditions simultaneously. Rather, to solve problems
involving multiple inhomogeneous boundary conditions, one must use the property
that an inhomogeneous boundary condition solution can always be summed with an
arbitrary number of homogeneous boundary condition solutions and still satisfy the
inhomogeneous boundary condition.

It is interesting to consider the intermediate case, consisting of the same geometry
with constant potentials ¢ at the z = ¢ face and —¢g at the z = 0 face. As stated
above, one can solve the two cases of ¢9 and —¢g separately and add them. One can
also solve the problem directly by simultaneously applying the two boundary
conditions, and one can show that the two solutions are the same (using some
hyperbolic trigonometry identities). This is possible because the
double-inhomogeneous boundary condition in this case is very simple, having only one
free parameter, ¢9. A generic double-inhomogeneous boundary condition problem
cannot be solved in this way.
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Referring back to our discussion of Green Functions, the above solution is the surface
term in Equation 3.48 for the particular boundary condition we have applied. By
comparison of the two expressions, we infer (not derive!)

—en(F') Vi Gp(F P = X%+ y'y + c2) (3.94)
oo .
-4 Z sin(apx) sin(Bmy) M sin(anx’) sin(Bmy’)
ab = sinh(vnmc)

Note that this expression does not fully specify Gp (or Fp)! The above information is
sufficient for the particular physical situation we have set up, which consists of no
physical charge in the volume and the above boundary condition, because:

» The term consisting of the integral of the charge density in the volume
convolved with Gp is zero in this case because the charge density vanishes in
the volume. Therefore, we do not need to know Gp (or Fp) completely.

» The above surface term is the only one needed because V = 0 on the other
boundaries.
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For the more general problem of an arbitrary charge distribution in the volume and
arbitrary Dirichlet boundary conditions on the surfaces, we would need to find the full
Gp. It may seem like one could do as suggested earlier, finding the solution for each
option for which face is held at nonzero potential, then using the results analogous to
the above as six Neumann boundary conditions on Gp, and applying separation of
variables to find Gp. But one would have to require that Gp solve Poisson’s Equation
for a unit point charge, not Laplace's Equation. This, as we noted earlier, is not
feasible with separation of variables because of the nonzero right side of the equation.
There is a way to deal with this, which we will show a bit later when we develop the
spherical harmonic expansion for the Green Function in spherical coordinates.

Another approach that does work would be the method of images with the condition
V = 0 on all the surfaces. It is left as an exercise for the reader to think about what
set of image charges is appropriate; the situation gets complicated for a charge at an
arbitrary position in the box, but it is solvable. Certainly, from the resulting Gp, we
could compute the normal gradient of Gp on any surface and thus obtain the general
solution for V in the volume for any Dirichlet boundary condition. We should find that
the normal gradient of Gp on the z = c¢ surface is what is given above.

It may seem like separation of variables is unsatisfactory for this reason — the
procedure does not give you the full Green Function, while the method of images
does. But, as we have seen, the method of images is not a systematic procedure —
one has to guess the correct image charge distribution. By contrast, separation of
variables is an entirely algorithmic procedure to give you a solution if a separable one
exists for the particular boundary condition you are applying. It is less general but
more reliable. More importantly, we will show later how, by applying separation of

variables in a more sophisticated way, we can in fact find the full Green Function.
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There is, nevertheless, no guarantee that there will be a separable solution; this
depends on the geometry of the boundary conditions. The boundary conditions need
to respect the separability assumed. For example, a boundary condition on a spherical
boundary would not likely yield a solution via separation of variables in Cartesian
coordinates!

Note also that the method of images technique is not appropriate for a Neumann
boundary condition because the method of images solution generally solves the V =0
Dirichlet BC problem. One needs a technique like separation of variables for such
cases.
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Separation of Variables in Spherical Coordinates: General Theory
Doing the Separation in Spherical Coordinates

We do this in a slightly more general manner than Griffiths, dropping the assumption
of azimuthal symmetry until it is time to solve the separated differential equations.

Laplace’'s Equation in spherical coordinates is:

1.0 (,0V 1 9 (. oV 1 9%V
=2 (2L Csino L)+ ——- ST =0 3.95
r2 or (r or > N r2sinf 00 (sm o0 ) N r2sin? 0 0¢2? ( )

If we assume a separable form

V(r,0,¢) = R(r)©(0) ®(¢) (3.96)

then, after dividing through by V/(r, 0, ¢) and multiplying by r2sin? 0, we have

o[ L d(pdRY 1 1 d /. dO 1 d?
s G[R(r) dr (r dr)+@(9) sin0 do (S'"e d9>}+¢(¢) agz — 0 (39D
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We see that the first term depends only on r and 6 while the second term depends
only on ¢, so we can immediately assume they are each equal to a constant:

1 d’¢ 5
—_—— == (3.98)
®(¢) dg¢?

The choice of the form of the constant is motivated by what will come next, but we
can see why it needs to be of this form. As we saw in Cartesian coordinates, the above
differential equation is solved either by growing/decaying exponentials (right side
positive) or oscillating exponentials (right side negative). Since ¢ is a coordinate that
repeats on itself (¢ = 2 nm are the same physical coordinate) the solutions ®(¢) must
also be periodic, forcing the choice of the oscillating exponential. (For the same
reason, the linear solutions we ignored in the Cartesian case are disallowed here.) We
saw before that it is convenient to define the constant to incorporate a squaring.

The solutions of this equation are straightforward:

®(¢p) = Aexp(ime) + B exp(—imo) (3.99)
Periodicity in ¢ with period 27 requires m be an integer. One can either require
m > 0 and keep the {An,} and {Bm} or allow m to be any integer and drop the {Bpn,}

(which would be redundant with the {A;} for m < 0). In either case, only one of Ag
or By is required.
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Returning to the other term, we now have

sin20 { L4 <r2 ﬁ) ot d (sineﬁ)} = m? (3.100)
R(r) dr dr O(0) sin6 do do
1 d<2dR> {1 1 d(. d@) m2}
—(r— )+ | == — —(sinfd— ) — =
R(r) dr dr 9(0) sind do do sin? 0

Now, we see that the first term depends only on r and the second only on 6, so we can
separate again by setting the two terms equal to constants that sum to zero. Here, we
rely on prior knowledge of the result to choose the constant to be 4(¢ + 1) so that

I
o

(3.101)

1 d/,dR
(P ) =ee+1 3.102
R(r) dr (r dr) (€+1) ( )

1 1 d de m?
—— = (sing == ) — =—t+1 3.103
0(0) sinf do (s'” d0) gnzg ~ D (3.103)

Note that the radial equation does not depend on m. This implies that the R(r)
functions will not depend on the azimuthal properties of the problem, in particular
whether it has azimuthal symmetry. But R(r) depends on 4, so it will depend on the
polar properties of the problem. ©(6) depends on ¢ and m, so its behavior depends on
both the polar and azimuthal properties of the problem. ®(¢) looks like it may only
depend on the azimuthal properties because it depends only on m, but m is tied to ¢
through the polar equation, so there will be some relationship.
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Solving the Radial Equation

Here, we add another item to our “bag of tricks” and define U(r) by R(r) = U(r)/r
and plug in. (This is motivated by the r? that the second d/dr must act on: assuming
this dependence gets rid of the extra terms arising because of that factor.) We find

d’U  £(e+1)
. U(r)y=0 (3.104)

Since the two derivatives would reduce the exponent of a power-law solution by 2, and
the second term does the same by dividing by r?, the above equation suggests U(r) is
a power law in r. (Or, try making it work with a transcendental function: you can't.)

If we plug in such a form U(r) = r?, we find

ala—1)r" 2 4+ 1)r""2=0 = ai=4+1 or a=-—¢ (3.105)

U B
= R(r) = # =Arat g2l :ArurZT (3.106)

There is no constraint on ¢ yet.
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The Polar Equation and the Generalized Legendre Equation

We may rewrite the polar angle equation as

1 d de m?
2 (sin0 2 4 e +1)— 0(0) =0 3.107
sin0 do (s'“ d6>+{( =520/ ©O) (3.107)

Motivated by the fact that sin 6 d6 = —d(cos @), we add another trick to our bag of
tricks by writing

X = cos 0 O(0) = P(cos0) = P(x) 1—x%=sin%0 (3.108)

Then we may rewrite the polar differential equation as

o S| P