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Introduction to Course

1.1 Course Material
1.2 Notation; including Deviations from Griffiths
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Section 1.1 Introduction to Course: Course Material

Course Material

Overview

This is a course on electrodynamics. It will review the basic material you learned in
Ph1bc but will go beyond in both content as well as in mathematical sophistication.

The intended learning outcome of both Ph106b and Ph106c is for students to acquire
the ability to calculate electric and magnetic potentials, fields, energies, and forces in
a variety of basic physical configurations combined with an understanding of the
underlying physical principles and calculation techniques. This outcome requires both
an understanding of principles as well as the ability to apply them to do calculations!

The course will primarily use and follow Introduction to Electrodynamics by Griffiths
(fourth edition). Supplementary material is drawn from Jackson and from Heald &
Marion, both on electronic and physical reserve from the library. The material
presented here will be self-contained, but past students have found it useful to obtain
a copy of Jackson. It is certainly a book you will want if you continue in physics or a
related field.
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Section 1.1 Introduction to Course: Course Material

Prerequisites

Physics:

I Electricity and Magnetism: While Ph1bc is a formal prerequisite for the course,
we will develop the material from scratch. However, review material will be
covered quickly and a basic familiarity with the concepts will be assumed.

I Classical mechanics: Generally, mechanics at the level of Ph1a is sufficient for
this course, though some optional material at the end of Ph106c will make use
of Ph106a material.
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Section 1.1 Introduction to Course: Course Material

Mathematics:

I Chapter 1 of Griffiths except for Sections 1.1.5 (“How Vectors Transform”) and
1.5 (“The Dirac Delta Function”). We will review some prerequisite material as
needed.

I Solutions to second-order linear ordinary differential equations with constant
coefficients (i.e., simple harmonic oscillator).

I Orthonormal functions/bases.

I Over the course, we will develop the following more sophisticated concepts:

I Dirac Delta function.
I Separation of variables to reduce second-order linear partial differential

equations to ordinary differential equations.
I Various specific types of orthonormal functions, specifically sinusoids,

Legendre polynomials, and spherical harmonics.
I Tensor formalism for relativity.

I Key point: Mathematics is the language of physics. You must be competent in
the above basic mathematics to understand and use the material in this course.
Intuition is crucial, but it must be formalized mathematically.

However, mathematics is not just symbolic manipulation or brute force
calculation. Make sure you understand the meaning of every mathematical
expression — i.e., carry along the intuition with the symbols! Only do algebra
and explicit differentiation and integration as a last resort! We will demonstrate
this approach regularly.
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Section 1.1 Introduction to Course: Course Material

Topics to be Covered

New topics for Ph106b not covered in Ph1bc

New topics for Ph106c not covered in Ph1bc

I Review of basic electrostatics — Coulomb’s Law; Gauss’s Law; electric field,
potential, and potential energy; conductors, capacitors, and capacitance matrix.

I Advanced electrostatics — boundary value problems (BVP) for determining
potentials and fields; Green Functions for BVP; multipole expansion of potential.

I Electrostatics in Matter — polarization, susceptibility, permittivity of matter;
BVP with polarizable materials, energy and forces in matter.

I Magnetostatics — Lorentz force; Biot-Savart Law; Ampère’s Law; vector
potential; boundary conditions; multipole expansion of potential.

I Magnetostatics in Matter — magnetization, susceptibility, and permeability of
matter; boundary conditions; ferromagnetism; BVP with magnetizable materials.

I Electrodynamics — electromotive force and electromagnetic induction;
inductance and energy in magnetic fields; Maxwell’s equations in vacuum and in
matter; boundary conditions for Maxwell’s equations.

I Conservation Laws — Continuity equation; Poynting’s Theorem; electrodynamic
momentum and energy.

I Electromagnetic Waves — in vacuum, in polarizable/magnetizable matter, in
conductors, in transmission lines and waveguides.
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Section 1.1 Introduction to Course: Course Material

I Potentials and Radiation — potential formulation; fields and potentials of
moving point charges; radiated electromagnetic waves; antennas.

I Relativity and Electrodynamics — review of special relativity including
relativistic kinematics and collisions, relativistic tensor notation, transformation
of fields, transformation of field tensor, relativistic potentials, relativistic
formulation of Maxwell’s Equations, relativistic dynamics with EM fields,
relativistic conservation theorems.
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Section 1.2 Introduction to Course: Notation; including Deviations from Griffiths

Notation; including Deviations from Griffiths

I We will use standard black text for material that is covered in lecture, while
magenta text will be used for material that is skipped during lecture for which
you remain responsible. We will skip material generally when it consists of
computation or calculation that is tedious to do on the chalkboard, summarizing
the results as necessary. You will need to be able to apply the skipped material
as well as the techniques developed in this skipped material.

I Green text will be used to indicate supplementary material for which you will
not be responsible.

I Griffiths uses boldface notation to indicate vectors and a script ~r to indicate the
difference vector ~r − ~r ′. In order to better match what can be written by hand,
we use ~ rather than boldface for vectors and we use ~R for the difference vector.

I Griffiths uses ~r to refer to the position of the test charge Q and ~r ′ to refer to
the position of the source charge q. This seems unnecessarily confusing. We
instead use q and ~r for the test charge and q′ and ~r ′ for the source charge.

I Griffiths uses δ3(~r) to refer to the delta function in three spatial dimension. We
use δ(~r) for this for reasons that are explained after Equation 2.9.
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Section 2
Review of Basics of Electrostatics

2.1 Study Guidelines
2.2 The Assumed Conditions for Electrostatics
2.3 Coulomb’s Law and the Electric Field
2.4 Gauss’s Law
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2.7 Aside on Techniques
2.8 Boundary Conditions on the Electric Field and Potential
2.9 Poisson’s and Laplace’s Equations
2.10 Electrostatic Energy
2.11 Electric Conductors
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Section 2.1 Review of Basics of Electrostatics: Study Guidelines

Study Guidelines

You have seen all the material in this section before in Ph1b. However, the derivations
done there were not as rigorous as they could be because you were simultaneously
learning vector calculus. Our goal in this section is to do more rigorous derivations to
give you some practice in using the mathematical tools. We won’t do any examples in
lecture or the notes because they duplicate Ph1b. But you should make sure you are
comfortable with the examples in Griffiths Chapter 2.
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Section 2.2 Review of Basics of Electrostatics: The Assumed Conditions for Electrostatics

The Assumed Conditions for Electrostatics

Electrostatics is the study of electric fields, potentials, and forces under two
assumptions:

I All electric charges sourcing the electric field are stationary and have been so for
a sufficiently long time that all fields are static and thus the electric field can be
written in terms of the source charges’ current positions.

I The source charges are held fixed and cannot react to the fields from any test
charges that may be stationary or moving relative to the source charges.

We will see later that, when charges are moving, it takes time for the information
about the position to propagate and thus the fields at a given point depend on the
configuration of the charges at earlier times.
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Section 2.3 Review of Basics of Electrostatics: Coulomb’s Law and the Electric Field

Coulomb’s Law and the Electric Field

Coulomb’s Law, Electrostatic Forces, and Superposition

We begin with two empirical facts:

I Coulomb’s Law: the empirical fact that the force on a test charge q at position
~r due to a source charge q′ at ~r ′ is given by Coulomb’s Law:

~F =
1

4π εo

q′ q

R2
R̂ with ~R ≡ ~r − ~r ′ (2.1)

where εo = 8.85 × 10−12 C2 N−1 m−2 is the permittivity of free space. The
force points along the line from q′ to q as indicated by the sign of the definition
of ~R. The electric charge is in the units of Coulombs (C), which is a
fundamental unit that cannot be written in terms of other fundamental units.

Recall that: we use ~ rather than boldface to indicate vectors; R where Griffiths
uses a script r ; and a different convention from Griffiths for the symbols for the
two charges and their position vectors.

I Superposition: the empirical fact that Coulomb’s Law obeys the principle of
superposition: the force on a test charge q at ~r due to N charges {q′i } at
positions {~r ′i } is obtained by summing the individual vector forces:

~F =
N∑

i=1

~Fi =
N∑

i=1

1

4π εo

q′i q

R2
i

R̂i with ~Ri ≡ ~r − ~r ′i (2.2)
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Section 2.3 Review of Basics of Electrostatics: Coulomb’s Law and the Electric Field

The Electric Field

Given that any test charge q placed at the position ~r feels the same force per unit
charge, we are motivated to abstract away the test charge and define what we call the
electric field at that position ~r :

~E(~r) =
~F

q
=


1

4π εo

q′

R2 R̂ for a single source charge q′ at ~r ′∑N
i=1

1
4π εo

q′i
R2

i

R̂i for N source charges {q′i } at positions {~r ′i }

(2.3)

The electric field has units of N/C.
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Section 2.3 Review of Basics of Electrostatics: Coulomb’s Law and the Electric Field

Coulomb’s Law for Continuous Charge Distributions

If a charge distribution is continuous, then the natural extension of Coulomb’s Law is
to integrate the electric field or force over the contributions from the infinitesimal
charge elements dq at ~r ′:

~E(~r) =
1

4π εo

∫
1

[R(~r , ~r ′)]2
R̂(~r , ~r ′) dq(~r ′) (2.4)

where ~R(~r , ~r ′) = ~r − ~r ′ varies with the location ~r ′ of dq as the integral is performed.
dq is admittedly undefined here. However, before worrying about that, let us note that
the integrand is a vector and so this integral requires some care: we must break up R̂
into its components and individually integrate each component. For example, if we use

Cartesian coordinates, then R̂ = x̂
(

R̂ · x̂
)

+ ŷ
(

R̂ · ŷ
)

+ ẑ
(

R̂ · ẑ
)

, and, since the

Cartesian unit vectors do not depend on the location of the infinitesimal charge
dq(~r ′), we may write the integral out as follows (eliding the dependence of ~R on ~r
and ~r ′ for brevity):

~E(~r) = (2.5)

1

4π εo

[
x̂

∫
1

R2

(
R̂ · x̂

)
dq(~r ′) + ŷ

∫
1

R2

(
R̂ · ŷ

)
dq(~r ′) + ẑ

∫
1

R2

(
R̂ · ẑ

)
dq(~r ′)

]
which is sum of three integrals with scalar integrands.
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Section 2.3 Review of Basics of Electrostatics: Coulomb’s Law and the Electric Field

Now, consider some specific charge distributions:

I volume charge distribution:

~E(~r) =
1

4π εo

∫
V

dτ ′ρ(~r ′)

R2
R̂

with ρ(~r ′) having units of C m−3,
~r ′ running over all points in the
volume distribution V, and dτ ′

being the differential volume
element at ~r ′ for V

(2.6)

I surface charge distribution:

~E(~r) =
1

4π εo

∫
S

da′σ(~r ′)

R2
R̂

with σ(~r ′) having units of C m−2,
~r ′ running over all points in the
surface distribution S, and da′

being the differential area element
at ~r ′ for S

(2.7)
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Section 2.3 Review of Basics of Electrostatics: Coulomb’s Law and the Electric Field

I line charge distribution:

~E(~r) =
1

4π εo

∫
C

d`′λ(~r ′)

R2
R̂

with λ(~r ′) having units of C m−1,
~r ′ running over all points in the
line distribution C, and d`′ being
the differential length element
at ~r ′ for C

(2.8)

Using the Dirac delta function we will define below, one can write the first two as
special cases of the latter by using delta functions in the dimensions in which the
charge distribution has no extent.
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Section 2.3 Review of Basics of Electrostatics: Coulomb’s Law and the Electric Field

Aside: The Dirac Delta Function

Relating Equation 2.6 to Equation 2.3 offers us both the opportunity to rigorously
connect them as well as a chance to introduce the Dirac delta function.
(Mathematically, it is a distribution, not a function, but we will use the standard
nomenclature.) The Dirac delta function at ~ro , δ(~r − ~ro ), is defined by what it does
when it is multiplied against an arbitrary function f (~r) and integrated: For any
function f (~r) and any volume V containing the point ~ro , it holds that

∫
f (~r ′) δ(~r ′ − ~ro ) dτ ′ =

{
f (~ro ) ~ro ∈ V
0 ~ro 6∈ V (2.9)

In particular, if f (~r) is unity, then the right side of the above integral is unity for
~ro ∈ V: the integral of a delta function over the volume containing its ~ro is 1, and,
conversely, the integral of a delta function over any volume not containing its ~ro

vanishes.

Section 2.3.4 Aside: The Dirac Delta Function Page 24



Section 2.3 Review of Basics of Electrostatics: Coulomb’s Law and the Electric Field

Two notes on dimensions and notation:

I In order for the units in the above equation to work out, the delta function
above must have units of m−3. The general rule is that the delta function’s
units are the inverse of those of the differential that its argument says it should
be integrated with. In this case, the argument is a vector in 3D space and the
differential is the differential volume element dτ , and so the delta function has
units of m−3. The units can be subtle, though. If one considers a delta function
that picks out a 2D surface in 3D space (e.g., for collapsing an integral of a
volume charge density to one of a surface charge density), its argument will be a
3D vector, but it should have units of m−1 since it eliminates only one of the
three dimensions. (This would be obvious if the surface were a sphere of radius
a centered at ~ro because then one could instead use δ(|~r − ~ro | − a), implying
units of m−1. Other surfaces may not be so easily defined.)

I Griffiths refers to the above delta function as δ3(~r − ~ro ). He does this because
one can think of this delta function in terms of 1D delta functions

δ3(~r − ~ro ) = δ(x − xo )δ(y − yo )δ(z − zo ) where
~r = x x̂ + y ŷ + z ẑ
~ro = xo x̂ + yo ŷ + zo ẑ

(2.10)

We drop the 3 because it is unnecessary: the dimension of the delta function is
implied by its argument, the fact that it picks a single point out of 3D space.
Moreover, the 3 notation is misleading and confusing because it suggests that δ3

is the cube of something that has ~r − ~ro as its argument. It is not!

Section 2.3.4 Aside: The Dirac Delta Function Page 25



Section 2.3 Review of Basics of Electrostatics: Coulomb’s Law and the Electric Field

With the above, if we define the charge distribution for a set of point charges {q′i } at
positions {~r ′i } to be

ρ(~r) =
N∑

i=1

q′i δ(~r − ~r ′i ) (2.11)

then, when we do the integral in Equation 2.6 over any volume V containing all N
charges, we recover the discrete version of the expression for the electric field,
Equation 2.3:

~E(~r) =
1

4π εo

∫
V

N∑
i=1

dτ ′q′i δ(~r ′ − ~r ′i )

|~r − ~r ′|2
~r − ~r ′
|~r − ~r ′|

=
1

4π εo

N∑
i=1

∫
V

dτ ′q′i δ(~r ′ − ~r ′i )
~r − ~r ′
|~r − ~r ′|3

=
1

4π εo

N∑
i=1

q′i
~r − ~r ′i
|~r − ~r ′i |3

=
1

4π εo

N∑
i=1

q′i
R2

i

R̂i (2.12)
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Section 2.4 Review of Basics of Electrostatics: Gauss’s Law

Gauss’s Law

Statement of Gauss’s Law

The flux of the electric field through a surface is the integral of the component of the
electric field normal to the surface over the surface:

FS =

∫
S
~E · n̂(~r) da (2.13)

where ~r lies on the surface S and n̂(~r) is the surface normal at that point ~r . Note that
the flux has a sign based on the choice of the orientation of n̂.

Gauss’s Law relates the flux of the electric field through any closed surface to the total
charge enclosed by that surface:

FS =

∮
S
~E · n̂(~r) da =

1

εo

∫
V(S)

dτ ρ(~r) (2.14)

where V(S) is the surface enclosed by S and
∮

indicates the integral over a closed
surface. Our derivation below will take the surface normal direction to be outward
from the closed volume.
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Section 2.4 Review of Basics of Electrostatics: Gauss’s Law

Utility of Gauss’s Law

Gauss’s Law has three uses:

I For charge distributions having some amount of geometrical symmetry, it
provides a way to calculate the electric field that is much easier than brute-force
integration of Coulomb’s Law.

I We will see that it will enable us to relate the electric field’s boundary
conditions at an interface between two volumes (the conditions relating the
electric field components on the two sides of the interface) to the amount of
charge at that interface.

I We can obtain a differential version of it, relating spatial derivatives of the
electric field to the charge density locally. Doing so directly from Coulomb’s
Law is difficult (though not impossible, given what we will prove about the
divergence of Coulomb’s Law!).
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Section 2.4 Review of Basics of Electrostatics: Gauss’s Law

Proof of Gauss’s Law

The proof offered in Griffiths’ is unnecessarily unrigorous; we follow Jackson §1.3.

c© 1999 Jackson, Classical Electrodynamics

First, consider a charge distribution
ρ(~r) that lies completely inside an
arbitrarily shaped closed surface S.
What is the infinitesimal flux through
an infinitesimal portion da of S at
a point ~r due to the infinitesimal
amount of charge in the infinitesimal
volume dτ ′ at the location ~r ′? It is

d2FS(~r , ~r ′) =
1

4π εo

dτ ′ρ(~r ′)

|~r − ~r ′|3
(
~r − ~r ′

)
· n̂(~r) da (2.15)

The left side is a double differential because the right side is. If one considers the
geometry (see diagram above), one sees that the quantity (~r − ~r ′) · n̂(~r) da/|~r − ~r ′| is
the projected area of the area element da normal to the unit vector (~r − ~r ′) /|~r − ~r ′|
from ~r ′ to ~r . Since |~r − ~r ′|2 is the square of the distance from ~r ′ to ~r , then the
quantity (~r − ~r ′) · n̂(~r) da/|~r − ~r ′|3 is the solid angle dΩ(~r , ~r ′) subtended by da at ~r
as viewed from ~r ′.
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Section 2.4 Review of Basics of Electrostatics: Gauss’s Law

The corresponding mathematical formula is

d2FS(~r , ~r ′) =
1

4π εo
dτ ′ρ(~r ′) dΩ(~r , ~r ′) (2.16)

We know that if we integrate the solid angle over the entire closed surface S
surrounding our source charge point ~r ′, we recover 4π, so:

dFS(~r ′) =
1

4π εo

∮
S

dτ ′ρ(~r ′) dΩ(~r , ~r ′) =
1

εo
dτ ′ρ(~r ′) (2.17)

That is, for any infinitesimal volume element dτ ′ at ~r ′, Coulomb’s Law implies that
the flux of the electric field due to that element through any surface S enclosing it is
equal to the charge in that infinitesimal volume divided by εo .
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Section 2.4 Review of Basics of Electrostatics: Gauss’s Law

We expect that, due to superposition, if the above is true for the flux due to an
infinitesimal volume of charge, then it holds for the whole distribution of charge
enclosed by S. We can prove this by calculating the flux through S due to the entire
charge distribution, using the fact that the distribution is fully contained inside S (one
of our starting assumptions):

FS =

∮
S
~ES(~r) · n̂(~r) da =

1

4π εo

∮
S

∫
V(S)

dτ ′ρ(~r ′)

|~r − ~r ′|3
(
~r − ~r ′

)
· n̂(~r) da

=
1

4π εo

∮
S

∫
V(S)

dτ ′ρ(~r ′) dΩ(~r , ~r ′) =
1

4π εo

∮
S

∫
V(S)

d2FS(~r , ~r ′) (2.18)

where ~ES(~r) is the electric field at ~r due to all the charge contained by S. Note that

we implicitly used superposition in the above via the formula relating ~ES(~r) to the
charge distribution. Exchanging the order of integration,

FS =
1

4π εo

∫
V(S)

∮
S

d2FS(~r , ~r ′) =
1

εo

∫
V(S)

dFS(~r ′) =
1

εo

∫
V(S)

dτ ′ρ(~r ′) (2.19)

which is Gauss’s Law.

Note how the proof depended on the 1/r2 dependence and superposition property of
Coulomb’s Law. The proof could be done in the opposite direction: Gauss’s Law
implies Coulomb’s Law. In general, for any force, there is a simple Gauss’s Law if and
only if the force has a 1/r2 dependence. Another example is gravity, as you learned in
Ph1a and Ph106a.
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Section 2.4 Review of Basics of Electrostatics: Gauss’s Law

But we are not quite done yet, as we assumed at the start that the charge distribution
vanishes outside of S. Does the result generalize to the case where there is some
charge outside of S so that ~ES receives contributions from that charge? Yes, it does.

Returning to d2FS(~r , ~r ′) (Equation 2.16), suppose we consider a source charge at a
point ~r ′ that lies outside of S. (See diagram below.) Then, for a given point ~r on S
and the solid angle it subtends dΩ(~r , ~r ′) as viewed from the source charge point ~r ′,
there will be second point on S that has the same unit vector to the source charge
point ~r ′ and subtends the same solid angle. But, because the direction of n̂(~r) enters
the expression for d2FS(~r , ~r ′), and the two points subtending the same solid angle
will have opposite signs of n̂, their two contributions cancel. Thus, the integral over S
that yields dFS(~r ′) vanishes for ~r ′ outside of S, and, therefore, the charge
distribution at points outside of S do not contribute to the flux through S, and so our
derivation remains valid.

c© 1999 Jackson, Classical Electrodynamics
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The Divergence of ~E and the Differential Version of Gauss’s Law

You learned about the divergence theorem (Gauss’s theorem) in Ma1abc. Applied to
~E , the divergence theorem says∫

V(S)

~∇ · ~E(~r) dτ =

∮
S
~E(~r) · n̂(~r) da (2.20)

Gauss’s Law tells us
1

εo

∫
V(S)

dτ ρ(~r) =

∮
S
~E(~r) · n̂(~r) da (2.21)

Combining the two, we have∫
V(S)

~∇ · ~E(~r) dτ =
1

εo

∫
V(S)

dτ ρ(~r) (2.22)

Since the above holds for any volume V, the integrands must be equal, giving us the
differential version of Gauss’s Law:

~∇ · ~E(~r) =
1

εo
ρ(~r) (2.23)

The differential version states that a particular combination of the spatial derivatives
of the electric field at a point is related to the charge density at that point. We will
frequently employ this technique of using an equality between two integrals over an
arbitrary volume or surface to conclude their integrands are equal.
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Direct Proof of Differential Version of Gauss’s Law

We can prove the above differential version by simply calculating the divergence of ~E
using Coulomb’s Law, also. This is of course not independent of Gauss’s Law because
Gauss’s Law is proven using Coulomb’s Law, but it provides some exercise in vector
calculus and leads us to the Dirac delta function. We take the divergence of
Coulomb’s Law for ~E , noting explicitly that the divergence is a set of derivatives in ~r :

~∇~r · ~E(~r) = ~∇~r ·
∫
V′

1

4π εo

dτ ′ρ(~r ′)

|~r − ~r ′|3
(
~r − ~r ′

)
(2.24)

The integral is over ~r ′ over the volume V ′, but the divergence is calculated in the ~r
coordinate, so we can bring the divergence inside the integral. Note that it does not
act on ρ because ρ is a function of ~r ′, not ~r . Thus, we have

~∇~r · ~E(~r) =
1

4π εo

∫
V′

dτ ′ρ(~r ′) ~∇~r ·
~r − ~r ′
|~r − ~r ′|3 (2.25)

One could calculate the above divergence explicitly in any particular coordinate
system. But it is both more rigorous and more instructive to do it using the
divergence theorem, which requires us to apply a nonintuitive technique: we integrate
both sides of the above equation in order to evaluate it.
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We can calculate the integral of the above divergence over some arbitrary volume V
(with surface S, with neither V nor S necessarily related to V ′ and S′), as we need to
do for Gauss’s Law, by exchanging the order of integration (no prohibition on doing so

because we don’t move ~∇~r around) and converting the volume integral over ~r to an
easier-to-do surface integral using the divergence theorem:∫

V
dτ ~∇~r · ~E(~r) =

∫
V

dτ
1

4π εo

∫
V′

dτ ′ρ(~r ′) ~∇~r ·
~r − ~r ′
|~r − ~r ′|3

=
1

4π εo

∫
V′

dτ ′ρ(~r ′)

∫
V

dτ ~∇~r ·
~r − ~r ′
|~r − ~r ′|3

=
1

4π εo

∫
V′

dτ ′ρ(~r ′)

∮
S(V)

da n̂(~r) · ~r − ~r ′
|~r − ~r ′|3 (2.26)

We can apply to the surface integral the same argument about solid angles that we
used in proving Gauss’s Law. The integrand above is just the solid angle subtended by
the area element da at ~r as viewed from ~r ′. As before, if ~r ′ is inside V, then the
above integral yields the total solid angle, 4π. If ~r ′ is not inside of V, then, for every
area element da at ~r , there is an area element with an equal and opposite
contribution, making the integral vanish. That is, as in the proof of Gauss’s Law,∮

S(V)
da n̂(~r) · ~r − ~r ′

|~r − ~r ′|3 =

{
4π if ~r ′ is inside V
0 if ~r ′ is outside V (2.27)
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The above statement says that the integral over V vanishes if ~r ′ is not inside V and
yields 4π if it is inside V. This turns the double integral over V and V ′ into a single
integral over V ∩ V ′:∫

V
dτ ~∇~r · ~E(~r) =

1

4π εo

∫
V∩V′

dτ ′ 4π ρ(~r ′) =
1

εo

∫
V∩V′

dτ ′ρ(~r ′) (2.28)

Now, consider points in V but outside V ∩ V ′. Because V ′ is the entire volume
containing charge (by Coulomb’s Law), the charge density vanishes in V − V ∩ V ′. We
can thus add the volume V − V ∩ V ′ without changing the integral of the charge
density because the contribution from the added volume vanishes. This changes the
volume of integration from V ∩ V ′ to V. Therefore,∫

V
dτ ~∇~r · ~E(~r) =

1

εo

∫
V

dτ ′ρ(~r ′) (2.29)

The volume V is arbitrary, so the integrands must be equal:

~∇~r · ~E(~r) =
1

εo
ρ(~r) (2.30)

which is again the differential version of Gauss’s Law.

Note the use of two nonintuitive techniques: Using the equality of integrals over an
arbitrary volume to show their integrands are equal, and integrating an expression to
determine what it is equal to.
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Aside: Relation of the Dirac Delta Function to a Divergence, Invariance under
Inversion of its Argument

Let’s return to a geometric theorem we proved during the above manipulations to
prove a property of the Dirac delta function. We showed above that:∫
V

dτ ~∇~r ·
~r − ~r ′
|~r − ~r ′|3 =

∮
S(V)

da n̂(~r) · ~r − ~r ′
|~r − ~r ′|3 =

{
4π if ~r ′ is inside V
0 if ~r ′ is outside V (2.31)

The far right side is proportional to the integral of the Dirac delta function, yielding∫
V

dτ ~∇~r ·
~r − ~r ′
|~r − ~r ′|3 = 4π

∫
V

dτ δ(~r − ~r ′) (2.32)

(Note the ordering of ~r and ~r ′ in the argument of the delta function! ~r ′ is the
equivalent of ~ro in Equation 2.9.) Since these integrals are equal for an arbitrary
volume V, the integrands are equal:

~∇~r ·
~r − ~r ′
|~r − ~r ′|3 = 4π δ(~r − ~r ′) (2.33)

The delta function is the divergence of the 1/r2 law. We will find this very useful!

Since the delta function picks out the point where its argument vanishes, it doesn’t
matter what the sign of the argument is. One can prove this explicitly using change of
variables: when the sign of the argument changes, the sign of the differential and of
the limits of integration change also. Those two sign flips cancel each other. Thus

δ(~r − ~r ′) = δ(~r ′ − ~r) (2.34)
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In order to introduce a new technique we will use soon, let’s show this more explicitly:

4π δ(~r − ~r ′) = ~∇~r ·
~r − ~r ′
|~r − ~r ′|3 = ~∇~r · −

~r ′ − ~r
|~r ′ − ~r |3 = −~∇~r ·

~r ′ − ~r
|~r ′ − ~r |3

?
= 4π δ(~r ′ − ~r) (2.35)

The last equality is not obviously true because it is not just a symbolic replacement of
Equation 2.33. We can prove it by making a few more steps, though:

~∇~r ·
~r − ~r ′
|~r − ~r ′|3 = ~∇~r−~r ′ ·

~r − ~r ′
|~r − ~r ′|3 =

(
−~∇~r ′−~r

)
·
(
− ~r ′ − ~r
|~r ′ − ~r |3

)
= ~∇~r ′ ·

~r ′ − ~r
|~r ′ − ~r |3 (2.36)

We used the following: 1) the divergence with respect to ~r − ~r ′ is the same as the
divergence with respect to ~r because ~r − ~r ′ just offsets ~r ; 2) when we flip the sign on
~r − ~r ′, we can get the argument of the divergence to match this sign flip by flipping
the sign on the divergence overall (the 1D analogue would be to flip the sign on d/dx
when mirroring through the origin, x → −x); and, 3) ~r acts like an offset for ~r ′, and
so the divergence with respect to ~r ′ − ~r is the same as with respect to ~r ′. Therefore:

4π δ(~r − ~r ′) = ~∇~r ·
~r − ~r ′
|~r − ~r ′|3 = ~∇~r ′ ·

~r ′ − ~r
|~r ′ − ~r |3 = 4π δ(~r ′ − ~r) (2.37)

Note this technique of applying an offset; we will use it again.
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The above derivation is a situation in which it is very important to remember what
coordinate ~∇ is acting on/with respect to. If we had not subscripted ~∇ in the
manipulation above, we would have written:

4π δ(~r − ~r ′) = ~∇ · ~r − ~r ′
|~r − ~r ′|3 = ~∇ · − ~r ′ − ~r

|~r ′ − ~r |3 = −~∇ · ~r ′ − ~r
|~r ′ − ~r |3

?
= −4π δ(~r ′ − ~r) (2.38)

Rather than just yielding a last equality that was not obviously true, we have obtained
an equality that seems to contradict the symmetry property! From the more detailed
derivation on the previous page, we see that the seeming contradiction vanishes when
we take care with the meaning of symbols by explicitly subscripting ~∇. Errors of the
above type are easy to make and not self-evident! Mathematics in physics is not just
symbol manipulation: there is meaning that must be understood in order to be sure
those manipulations are justified.
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The Electric Field has Vanishing Curl

Calculating the Curl of the Electric Field

The curl of ~E can be shown to vanish simply by calculating it for an arbitrary charge
distribution:

~∇× ~E(~r) =
1

4π εo

~∇×
∫
V

dτ ′ρ(~r ′)
~r − ~r ′
|~r − ~r ′|3

=
1

4π εo

∫
V

dτ ′ρ(~r ′) ~∇× ~r − ~r ′
|~r − ~r ′|3 (2.39)

We could brute-force calculate the curl in the integrand in Cartesian or spherical
coordinates, but that would be painful because the function on which the curl is
acting has no symmetry in the ~r coordinate system.
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Let’s take a simpler, more geometric, and more intuitive approach. As we saw above,
~r ′ is just an offset to ~r , thus

~∇~r ×
~r − ~r ′
|~r − ~r ′|3 = ~∇~r−~r ′ ×

~r − ~r ′
|~r − ~r ′|3 (2.40)

Note that, in doing this offset, the curl will be expressed in terms of the components
of ~r − ~r ′. This does not change the bounds of integration, but it may make the
expression look complicated because the variable of integration is still ~r ′. Since we
will show this expression, the integrand, vanishes, this bookkeeping complication is not
important. If we define ~s = ~r − ~r ′, then we have

~∇~r ×
~r − ~r ′
|~r − ~r ′|3 = ~∇~s ×

~s

s3
(2.41)

Now, the function on which the curl is acting has symmetry in the coordinate system
in which the curl is acting, and hence the calculation will be simplified. You can
probably see intuitively that the above curl vanishes, but let’s prove it. (Note also that
the change of variables would require a change to the limits of integration, but, again,
because we will prove the integrand will vanish, this bookkeeping complication will not
be important.)
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With the above form, we can trivially apply the formula for the curl in spherical
coordinates, which is listed in Griffiths. For the sake of being explicit, that formula is
(with r replaced by s as the radial coordinate to avoid confusion)

~∇× ~v =
1

s

1

sin θ

[
∂

∂θ

(
vφ sin θ

)
− ∂vθ

∂φ

]
ŝ +

1

s

[
1

sin θ

∂vs

∂φ
− ∂

∂s

(
s vφ

)]
θ̂

+
1

s

[
∂

∂s
(s vθ)− ∂vs

∂θ

]
φ̂ (2.42)

In the case considered here, s is the radial variable and the radial component of ~s/s3

is 1/s2. Thus, ~v has only a radial component and that radial component depends only
on the radial distance from the origin. All the derivatives involving the θ and φ
components of ~v vanish because the components themselves vanish, and the
derivatives involving the radial component vanish because those derivatives are with
respect to θ and φ. (Don’t be confused: ~v itself depends on θ and φ because the
direction of ~v depends on them; but the curl formula takes care of that dependence.)

Thus, we have ~∇~s × (~s/s3) = 0 and the integrand in Equation 2.39 vanishes. So:

~∇× ~E(~r) = 0 (2.43)

Note again that we did not brute-force differentiate, but rather we thought about how
to simplify the calculational aspect (via origin offset) and then saw that made the
result both geometrically/intuitively obvious and easier to demonstrate via calculation.
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The Line Integral of the Electric Field

Stokes’ Theorem (a mathematical theorem we will not prove here but that you saw in
Ma1abc) then tells us that, for any surface S with boundary C(S),∮

C(S)
d ~̀ · ~E(~r) =

∫
S

da n̂(~r) ·
[
~∇× ~E(~r)

]
= 0 (2.44)
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The Electric Potential

Electric Potential Definition using Line Integral

We used above the fact that the line integral of the electric field
around any closed loop C vanishes. If we consider two points along
the loop ~r1 and ~r2, C defines two paths along the loop from ~r1 to
~r2, C1 and C2. Let’s difference the line integrals along these two
paths, using the vanishing of the line integral around the loop to
see that the difference vanishes:∫ ~r2

C1,~r1

d ~̀ · ~E(~r)−
∫ ~r2

C2,~r1

d ~̀ · ~E(~r) =

∫ ~r2

C1,~r1

d ~̀ · ~E(~r) +

∫ ~r1

C2,~r2

d ~̀ · ~E(~r)

=

∮
C

d ~̀ · ~E(~r) = 0 (2.45)

(Be careful about the endpoint ordering and signs of the two terms! The differential

d ~̀ in a line integral has no intrinsic polarity; the polarity is set by the ordering of the
endpoints. The sign of d ~̀ and of the endpoint ordering do not multiply; they are
redundant.) Therefore,

∫ ~r2

C1,~r1

d ~̀ · ~E(~r) =

∫ ~r2

C2,~r1

d ~̀ · ~E(~r) (2.46)
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The above relation tells us that the value of the above line integral depends only on
the location of its endpoints, not on the path taken. Thus, we can construct a
function, the electric potential, V (~r), defining it via its differences between points:

V (~r2)− V (~r1) ≡ −
∫ ~r2

~r1

d ~̀ · ~E(~r) (2.47)

The fundamental theorem of calculus for line integrals in multiple dimensions implies

V (~r2)− V (~r1) =

∫ ~r2

~r1

d ~̀ · ~∇V (~r) (2.48)

where ~∇V (~r) is the gradient of the electric potential. The above two formulae hold
regardless of choice of endpoints and path, so the integrands are equal and we have

~E(~r) = −~∇V (~r) (2.49)

which can be viewed as an alternate definition of the potential. The offset of V (~r) is

not defined because it has no influence on ~E(~r), which is the quantity we began with
from Coulomb’s Law.
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The electric potential has units of (N m/C) = (J/C), which we call the volt, V. (The
appearance of J will be important when we discuss electric potential energy.) The
electric field is frequently written in units of V/m instead of N/C.

It will be useful in homework to remember the mathematical definition of a gradient
(another case of keeping present in your mind what the mathematical symbols mean):

lim
|δ~r|→0

V (~r + δ~r)− V (~r) = lim
|δ~r|→0

~∇V (~r) · δ~r = − lim
|δ~r|→0

~E(~r) · δ~r (2.50)

The above expression also serves to remind you of how to do a Taylor expansion in
multiple dimensions: the dot product of the gradient and the vector differential
replaces the product of the one-dimensional derivative and the scalar differential.
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Relation of the Electric Potential to the Charge Distribution

We know two things now:

~E(~r) =
1

4π εo

∫
V

dτ ′ρ(~r ′)
~r − ~r ′
|~r − ~r ′|3 and V (~r2)− V (~r1) ≡ −

∫ ~r2

~r1

d ~̀ · ~E(~r)

We can use these to obtain an explicit expression for the potential in terms of the
charge distribution. In practice, trying to do the line integral explicitly using the
definition of ~E is tedious and not illuminating.

Instead, let us use our understanding of the meaning of the mathematical expression
~E(~r) = −~∇V (~r) to make an Ansatz. If we have a point charge at the origin, then the
electric field points radially outward and falls off as 1/r2. What function’s derivative
gives that dependence? V (~r) = 1/r . This suggests to us

V (~r) =
1

4π εo

∫
V

dτ ′ρ(~r ′)
1

|~r − ~r ′| (2.51)

We may then prove explicitly this form is correct by taking the gradient.
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First, pass ~∇ inside the integral because it is ~∇~r while the variable of integration is ~r ′:

−~∇~r V (~r) = − 1

4π εo

∫
V

dτ ′ρ(~r ′) ~∇~r
(

1

|~r − ~r ′|

)
(2.52)

As we did earlier when calculating ~∇× ~E , we change variables to ~s = ~r − ~r ′ to
evaluate the gradient:

~∇~r
(

1

|~r − ~r ′|

)
= ~∇~r−~r ′

(
1

|~r − ~r ′|

)
= ~∇~s

1

s
= − ŝ

s2
= − ~r − ~r ′
|~r − ~r ′|3 (2.53)

where we used the formula for the gradient in spherical coordinates from Griffiths
(again, with r replaced by s as the radial coordinate to avoid confusion):

~∇~s T (~s) =
∂T

∂s
ŝ +

1

s

∂T

∂θ
θ̂ +

1

s

1

sin θ

∂T

∂φ
φ̂ (2.54)

We see that our form for V (~r) yields the correct electric field (dropping the ~r subscript

on ~∇ because, on the left-hand side, it is obvious what coordinate ~∇ acts on):

−~∇V (~r) =
1

4π εo

∫
V

dτ ′ρ(~r ′)
~r − ~r ′
|~r − ~r ′|3 = ~E(~r) (2.55)
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Comments on the Electric Potential

I The electric potential obeys superposition
This is trivial consequence of superposition for the electric field: because the
electric potential is a linear function of the electric field, and integration is a
linear operation, superposition for the electric field transfers to superposition for
the electric potential. One can also see it from Equation 2.51, where the
potential is a linear function of the charge density.

I Definition of potential offset
There are two typical choices. When the charge distribution is confined to a
finite volume, the electric field vanishes at infinity, which suggests one should
define the electric potential to vanish at infinity too. When the charge
distribution is not confined (e.g., a uniform electric field over all of space), it is
typical to choose the origin to be the point at which the potential vanishes. Any
other point would work, too, but will generally make the explicit functional form
of V (~r) unnecessarily complicated if one is interested in using the above integral
expression. There will be situations, however, where such a choice is the most
convenient.

I Utility of the electric potential
The electric potential is scalar, not a vector, function, and thus applying
superposition to calculate the potential due to a charge distribution, followed by
taking the gradient to find the electric field, is usually much simpler than
explicitly calculating the electric field.
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Aside on Techniques

It is important to recognize how we almost uniformly avoided brute-force calculations
of divergences, curls, and gradients so far. The only times we did those calculations
explicitly were when we had rendered the calculations trivial. A key part of doing
E&M successfully and with minimal pain is avoiding algebra and calculus whenever
possible and instead making use of clever arguments of the type we used above. Only
do algebra and calculus as a last resort! There are two reasons for this.

First, the kinds of arguments we used are more physical and help you develop
intuition. For example, in proving the differential version of Gauss’s Law, at no point
did we explicitly take derivatives of ~E ! Incredible, right? Instead, we proved that the
divergence of the 1/r2 law is the delta function (again, not explicitly, but by referring
to the geometric proof we made for the integral version of Gauss’s Law) and used that
fact. We could have done the brute-force calculation in Cartesian coordinates, and it
would have given the same result. But you would have derived no intuition from it.

Second, brute-force calculations are prone to oversights — like the one about the sign
flip on ~∇ in the delta-function symmetry derivation — as well as bookkeeping
mistakes — algebraic sign flips, misapplications of the product and chain rules, etc.
Doing brute-force calculations does not help you understand physics, or even
mathematics. Of course, sometimes brute-force calculations are needed, but try to
avoid them, and keep your wits and intuition about you as you do them!

It takes time to learn how to work this way, but we do derivations (rather than just
quote results) so you can learn these techniques.
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Boundary Conditions on the Electric Field and Potential

While Gauss’s Law makes it possible to determine the electric field for charge
distributions with sufficient symmetry, the more important application of Gauss’s Law
and the vanishing of ~∇× ~E is to obtain generic information on the behavior of the
electric field and potential across an interface between two regions.
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Boundary Condition on the Normal Component of the Electric Field

c© 1999 Jackson, Classical Elec-

trodynamics

Construct a Gaussian cylinder of infinitesimal height
dz whose axis is normal to the interface under ques-
tion at the point of interest. Let n̂ be the surface
normal at ~r , with orientation from region 1 to region
2. Let’s calculate the flux through the cylinder’s
(non-infinitesimal) faces S1 and S2:

F =

∫
S1

da (−n̂(~r)) · ~E1(~r)

+

∫
S2

da n̂(~r) · ~E2(~r) (2.56)

where ~E is evaluated over the two faces. We neglect the flux through the cylindrical
wall because we will let dz vanish in the end and so its area will vanish and it will
contribute no flux. We momentarily make the assumption that there is no charge
density that is singular in the direction parallel to the interface — i.e., point charges or
a line charge density — so that we don’t have to worry about possible singularities in
the electric field that might complicate the flux calculation. We allow only a surface
charge density, which is delta-function singular in the z dimension but not in the
dimensions parallel to the interface.
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For Gauss’s Law, the volume integral of the charge density enclosed has two
contributions: from the non-delta-function-like volume charge density in the
half-cylinders and from any delta-function-like surface charge density on the surface.
The contribution of the former will vanish as we let dz → 0. The latter converts the
volume integral to a surface integral:

F =
1

εo

∫
V

dτ δ(~r − S)σ(~r) =
1

εo

∫
S

da σ(~r) (2.57)

where S is the area at the interface intersected by the cylinder. (Note that this is a
case where the delta function’s argument requires some interpretation to understand
the delta function’s units. It is the S in the argument that implies the function has
units of m−1 rather than m−3: it is picking out a surface rather than a point and thus
changing the units by one power of distance, not three.) Equating the two expressions
for F , letting dz → 0, and seeing that S1,S2 → S as dz → 0 in the flux integral yields∫

S
da n̂(~r) ·

[
~E2(~r)− ~E1(~r)

]
=

1

εo

∫
S

da σ(~r) (2.58)

This holds for any choice of cylinder and thus any S, so the integrands must be equal:

n̂(~r) ·
[
~E2(~r)− ~E1(~r)

]
=

1

εo
σ(~r) (2.59)

That is, the change in the normal component of the electric field across the interface
is proportional to the surface charge density at the interface. If there is no surface
charge at the interface, this component of the electric field must be continuous.
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Let’s now reconsider the condition we placed at the start of the derivation, that there
be no charge density at the intersection of the cylinder and interface that is singular in
the dimension parallel to the interface, which could consist of a set of point charges
and/or a line charge density.

If that charge density is not at the contour C consisting of the intersection of the
cylinder’s wall and the interface, then the flux of its field remains entirely calculable. It
may cause σ(~r) to have a delta-function singularity in one or two dimensions parallel
to the interface, but no part of the derivation fails. We simply allow that type of σ(~r)
in Equation 2.59.

If the parallel-dimension-singular charge density is on C, then things are bit more
complicated. If we consider the flux through the cylindrical wall anywhere but on the
charge density, that flux vanishes because the field of the charge density is always
parallel to the cylindrical wall as dz → 0. What about on the charge density?
Answering this question in a mathematically explicit fashion — i.e., by calculation —
is difficult, as the field not only becomes singular at this point but the direction of the
singular field depends on the direction from which one approaches the charge. One
can, however, conclude from this indeterminancy that there cannot be a contribution
to the flux, as it would imply that the field direction is not indeterminate so that n̂ · ~E
can be nonzero. This is a mathematically valid proof by contradiction. Thus, such
charge distributions do not affect the derivation and Equation 2.59 continues to hold.

We will see the above expectation confirmed in practice when we compare the
potential for the point charge near the grounded sphere derived by method of images
(which does not rely on Equation 2.59 in the case of such a singular charge
distribution) and by separation of variables (which does).
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Boundary Condition on the Tangential Component of the Electric Field

c© 1999 Jackson, Classical Electrody-

namics

Construct a rectangular loop C with two legs normal
to the interface of interest (i.e., along n̂(~r) at posi-
tions ~ra and ~rb) having infinitesimal length dz and
two (non-infinitesimal) legs parallel to the interface
C1 and C2. Let t̂(~r) denote the normal to the loop
area (so n̂(~r) · t̂(~r) = 0). t̂ will set the orientation
of the line integral we will do around the loop fol-
lowing the right-hand rule. The loop legs C1 and
C2 parallel to the interface are parallel to the vector
ŝ(~r) = t̂(~r)× n̂(~r). Let’s calculate the line integral

of ~E along this loop (referencing the diagram: ~ra at
the lower right, ~rb at the upper left):

∮
C

d ~̀ · ~E(~r) =

∫ ~ra−n̂(~r) dz
2

C1,~rb−n̂(~r) dz
2

~E1(~r) · d ~̀+

∫ ~rb+n̂(~r) dz
2

C2,~ra+n̂(~r) dz
2

~E2(~r) · d ~̀ (2.60)

where we neglect the contributions from the infinitesimal legs because they will vanish
as dz → 0. (We may apply arguments similar those just used in the derivation of the
normal field boundary condition to show that these legs contribute nothing even in the
case of a charge density at the interface with a delta-function singularity in the
dimension parallel to the interface.)
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Be careful about the signs of the integrals: d ~̀ for an open contour acquires its
orientiation from the the ordering of the endpoints; it has no intrinsic orientation until
this ordering is specified. Therefore, the sign of d ~̀ and of the endpoint ordering do
not multiply; they are redundant. Specifically, in this case, the endpoints imply that
d ~̀ points along +ŝ for the second term and −ŝ for the first term and thus that the
integrands have opposite sign. Do not then think that the opposite polarity of the
endpoint ordering of the two terms implies another relative sign between the two
integrals, with the two relative signs canceling!

Section 2.8.2 Boundary Condition on the Tangential Component of the Electric Field Page 57



Section 2.8 Review of Basics of Electrostatics: Boundary Conditions on the Electric Field and Potential

The vanishing of the curl of the electric field implies the left side of the equation is
zero.

We can combine the two terms on the right side by changing the endpoint ordering on
the first term and recognizing that C1 → C2 as dz → 0 (remember: C1 and C2

themselves have no orientation: the orientation of the line integrals is set by the
ordering of the endpoints). Thus, we have

0 = −
∫ ~rb−n̂(~r) dz

2

C1,~ra−n̂(~r) dz
2

~E1(~r) · d ~̀+

∫ ~rb+n̂(~r) dz
2

C2,~ra+n̂(~r) dz
2

~E2(~r) · d ~̀ dz→0−→
∫ ~rb

C2,~ra

[
~E2(~r)− ~E1(~r)

]
· d ~̀

With this ordering of the endpoints, we may identify d ~̀= ŝ(~r) ds. Since the contour
C2 is arbitrary, the integrand must vanish, yielding

ŝ(~r) ·
[
~E2(~r)− ~E1(~r)

]
= 0 (2.61)

This expression holds for any t̂ and thus ŝ parallel to the surface, so it tells us that the
tangential component of the electric field is continuous across any boundary
(regardless of whether there is surface charge present).
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Boundary Conditions on the Electric Potential

From our definition of the electric potential as the line integral of the electric field, and
the corollary ~E = ~∇V , we can derive boundary conditions on the electric potential:

I Continuity of the electric potential
The electric potential is the line integral of the electric field. If we think about
calculating the discontinuity in V by integrating ~E · n̂ d` across the boundary, we
recognize that, as the length of the path goes to zero, the only way to prevent
the integral from vanishing is if ~E · n̂ is not only nonzero but delta-function
singular. The only place that can conceivably happen is at a point where a
charge density becomes singular in at least one dimension (point charge or linear
or surface charge density). In the same way as we argued in the derivation of
the normal field boundary condition, Equation 2.59, we may also argue here that
this quantity ~E · n̂ still vanishes and thus V is always continuous.

We do note that, while V could become infinite near these charge densities, it
must approach infinity from both sides of the boundary in the same way, and
thus it remains continuous. We will see this in the example of the point charge
near the grounded sphere when we do separation of variables in spherical
coordinates.
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I Change in the normal gradient
This is just a direct rewriting of the boundary condition on the normal
component of the field, Equation 2.59:

1

εo
σ(~r) = n̂(~r) ·

[
~E2(~r)− ~E1(~r)

]
= n̂(~r) ·

[
−~∇V2(~r) + ~∇V1(~r)

]

=⇒ n̂(~r) ·
[
~∇V2(~r)− ~∇V1(~r)

]
= − 1

εo
σ(~r) (2.62)

Note the sign!

I Continuity of the tangential gradient
Again, this follows directly from the continuity of the tangential component of
the electric field, Equation 2.61:

0 = ŝ(~r) ·
[
~E2(~r)− ~E1(~r)

]
= ŝ(~r ·

[
−~∇V2(~r) + ~∇V1(~r)

]

=⇒ ŝ(~r) ·
[
~∇V2(~r)− ~∇V1(~r)

]
= 0 (2.63)
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Poisson’s and Laplace’s Equations

It is natural to rewrite Gauss’s Law in terms of the electric potential:

1

εo
ρ(~r) = ~∇ · ~E(~r) = −∇2V (~r) (2.64)

Rewritten more cleanly:

∇2V (~r) = − 1

εo
ρ(~r) (2.65)

This is known as Poisson’s Equation.

Poisson’s Equation is a partial differential equation. You know from basic calculus that
a differential equation alone is not sufficient to obtain a full solution V (~r): constants
of integration are required. For partial differential equations in multiple dimensions,
the constants of integration are given by specifying boundary conditions, conditions for
how the solution or its derivatives must behave on the boundary of the volume in
which we are specifying ρ(~r) and would like to determine V (~r).
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Our expression for the potential in terms of the charge distribution, Equation 2.51, is
the explicit solution to this equation for a particular boundary condition, V (~r)→ 0 as
r →∞. Section 3.11 will develop the concept of a Green Function, which is the
generic tool for solving Poisson’s Equation for arbitrary boundary conditions.

When there is no charge and the right side vanishes, Equation 2.65 is known as
Laplace’s Equation. The importance of this equation is that it implies that, in a region
where there is no charge, the second derivative vanishes everywhere, which implies
there can be no local maxima or minima (they would require a positive or negative
second derivative). We will prove this explicitly in Section 3.1.

For completeness, let’s also rewrite the curl-freeness of the electric field in terms of
the electric potential. There is a mathematical theorem that the curl of a gradient
always vanishes:

~∇× (−~∇V ) = 0 (2.66)

This is not surprising, as the vanishing of the curl of ~E is the mathematical property of
~E that allowed us to define the potential as a line integral, which then allowed us to
write ~E as the gradient of the potential. The above must be true for self-consistency.
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Electrostatic Energy

Electric Potential Energy of a Point Charge in an Electric Field

Consider moving a point charge from ~r1 to ~r2 along a contour C. The work done on
the charge by the mechanical force pushing it in this direction is given by doing the
line integral of the negative of the electric force along the path because that is the
mechanical force that has to be exerted to move the charge against the electric force
~Fe :

W12 = −
∫ ~r2

C,~r1

d ~̀ · ~Fe (~r) (2.67)

The force is related to the electric field, and so we have

W12 = −q

∫ ~r2

C,~r1

d ~̀ · ~E(~r) = q [V (~r2)− V (~r1)] (2.68)

That is, the work done on the charge by the mechanical force in going from ~r1 to ~r2 is
given by the charge times the change in electric potential between the two positions.
Note the sign: if the potential is higher at the end point, then the mechanical work
done was positive.
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Of course, this lets us to define the electric potential energy by

U(~r2)− U(~r1) = q [V (~r2)− V (~r1)] (2.69)

That is, the electric potential energy of the charge and the electric potential of the
field are simply related. Since it was defined in terms of work done against a force,
electric potential energy obviously has units of Joules (J). That is explicit in the above
form, which is C (N m/C) = (N m) = J.

Note that the electric field can also do work on the charge. In this case, the sign in
the above line integral for the work is flipped and work is done as the charge loses
potential energy. In this case, the work done by the electric field on a charge is what
gives it the kinetic energy it has at the end: the electric potential energy is converted
to mechanical kinetic energy.

We are not going to write an expression for the potential energy of a continuous
distribution of charge quite yet because it is difficult to distinguish two pieces: the
change in potential energy that arises from moving the charge distribution in an
external potential, and the change in potential energy due simply to a reconfiguration
of the charge distribution in its own potential, and we will discuss the latter next.
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Electric Potential Energy of a Charge Distribution

How much work must be done to assemble a distribution of charge? This energy is
most easily understood by first considering the assembly of a set of point charges
one-by-one by bringing them in from infinity. When the ith charge is brought in, work
must be done against the electric field of the first i − 1 charges. Put another way, the
ith charge starts with zero potential energy and ends with potential energy

Ui =

i−1∑
j=1

qi
1

4π εo

qj

|~ri − ~rj |
(2.70)

Thus, the total potential energy is

U =
1

4π εo

N∑
i=1

i−1∑
j=1

qi qj

|~ri − ~rj |
=

1

8π εo

N∑
i,j=1,i 6=j

qi qj

|~ri − ~rj |
(2.71)

where the factor of 1/2 was introduced to allow i and j to both run from 1 to N.
Generalizing this to a continuous charge distribution, we have

U =
1

8π εo

∫
V

dτ

∫
V

dτ ′
ρ(~r) ρ(~r ′)

|~r − ~r ′| (2.72)
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In principle, the above expression is valid for any configuration of charge and potential.
But sometimes we do not specify the charge distribution sourcing part of the potential
— e.g., a uniform electric field over all of space — and, instead, we just state what
the potential is. We can then generalize the above expression to:

U =
1

8π εo

∫
V

dτ

∫
V

dτ ′
ρ(~r) ρ(~r ′)

|~r − ~r ′| +

∫
V

dτ ρ(~r) Vext (~r) (2.73)

where Vext (~r) is the potential sourced by charges not explicitly indicated.

One has to be a bit careful with such situations, though, for two reasons. First, the
potential energy provided is not the total electric potential energy of the system
because it does not include the energy needed to put Vext (~r) in place, only the energy
needed to put ρ(~r) together and to put it in Vext (~r). More importantly, because the
charges sourcing Vext (~r) are at infinity, it is not possible to start ρ(~r) out at infinity
with zero potential energy there and then bring it into the charge configuration. We
define the zero point for Vext (~r) for convenience, e.g., at the origin, but only changes
in the second term above are meaningful; the actual value of the second term is not.
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Electric Potential Energy in Terms of the Electric Field

We can use the relations between potential, field, and charge density (Equations 2.6,
2.51, and 2.65) and the divergence theorem (Equation 2.20) to obtain an alternate
expression for the electric potential energy in terms of the electric field as follows (now
disallowing any “external potentials” Vext (~r) of the type mentioned above, requiring
us to have knowledge of all charge distributions sourcing potentials):

U =
1

8π εo

∫
V

dτ

∫
V

dτ ′
ρ(~r) ρ(~r ′)

|~r − ~r ′| =
1

2

∫
V

dτρ(~r) V (~r) = − εo

2

∫
V

dτ
[
∇2V (~r)

]
V (~r)

ibp
= − εo

2

∫
V

dτ ~∇ ·
[
V (~r) ~∇V (~r)

]
+
εo

2

∫
V
|~∇V (~r)|2 with

ibp
= ≡ integration by parts

divergence
theorem

=
εo

2

∫
S(V)

da n̂ ·
[
V (~r) ~E(~r)

]
+
εo

2

∫
V
|~∇V (~r)|2 (2.74)

In the last line, the first term is an integral of the product of the potential and the field
at the surface of the volume. In order to get the full energy of the charge distribution,
V must include all the charge. If we assume the charge distribution is restricted to
some finite volume, then V is naturally the volume containing the charge distribution.
But we can add volume that does not contain charge because it contributes nothing to
the initial expression for the electric potential energy. (This requirement of restriction
of ρ(~r) to finite volume is exactly the requirement of no external potentials.)
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Therefore, we replace V with all of space and let S go to infinity:

U =
εo

2

∫
r→∞

da n̂ ·
[
V (~r) ~E(~r)

]
+
εo

2

∫
all space

|~∇V (~r)|2 (2.75)

Because the charge distribution is restricted to the finite volume V and thus looks like
a point charge as r →∞, the field and potential fall off like 1/r2 and 1/r . The surface
area of S only grows as r2, so the integral goes like 1/r and thus vanishes as r →∞.
(If the charge distribution is not restricted to a finite volume, the surface term may
not vanish, requiring one to either keep the surface term or use the initial expression.)

It may seem strange that we can make this choice of S, as changing V and S affects
both integrals in the last expression. The explanation is that the choice of S changes
the two integrals but leaves their sum constant, and taking S to infinity simply zeros
out the first integral, leaving only the contribution of the second integral.

We thus find

U =
εo

2

∫
|~E(~r)|2 (2.76)

where the integral is over all of space. Correspondingly, the quantity u = εo
2
|~E |2 is an

energy density. We interpret this form as indicating that the potential energy created
by assembling the charge distribution is stored in the field: less charge implies a
smaller field and therefore less potential energy.
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Superposition and Electric Potential Energy

Because the electric potential energy is a quadratic function of the charge distribution
or the electric field,

electric potential energy does not obey superposition

The energy of a sum of fields is more than just the sum of the energies of the
individual fields because there are cross terms due to the potential energy of the
charges in one another’s fields.
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Self-energy and Point Charges vs. Continuous Charge Distributions

We were slightly cavalier in going from Equation 2.71 to Equation 2.72 in that the
“self-energy” term i = j that was not included in the former did get included in the
latter. In the point-charge version, this term is infinite because the denominator
vanishes. In the continuous distribution version, ρ(~r) ρ(~r ′) dτ → 0 as |~r − ~r ′| → 0 as
long as ρ remains finite over all space, and thus there is no infinite contribution. (If ρ
included a delta function, as would be necessary to represent a point charge, then it
would produce an infinite contribution because the integral would yield δ(~0)/0.) Thus,
we must be careful and choose the appropriate formula depending on the situation.

The infinite self-energy of a point charge reflects the fact that we do not know how to
assemble a point charge. In fundamental particle physics, the existence of point
charges such as the electron is an assumption, not a consequence, of the theory. In
fact, there is scheme, called “renormalization,” by which the infinite self-energy one
calculates for such a charge from Equation 2.76 is “subtracted off” in a self-consistent
fashion across all situations. While this practice is accepted and applied carefully, it is
not understood. String theory, which postulates that all particles are actually vibrating
string-like objects with finite extent, may offer a solution, but string theory currently is
not complete — it does not offer a way to calculate the Standard Model — and there
is no explicit proof it is correct.
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Electric Conductors

Definition and Behavior of a Conductor

We now talk about electric conductors, both because they are interesting and because
they provide a first opportunity to use boundary conditions to determine properties of
the charge distribution, field, and potential. Notice that we derive these properties
without explicit calculations!

An electric conductor is defined to be a material in which charge is able to flow
completely freely in response to an external electric field. It is assumed, a priori, to
contain equal and opposite amounts of positive and negative electric charge that
perfectly cancel everywhere in the absence of an electric field (ρ = 0) but that can
separate in response to an electric field. One can add charge to a conductor explicitly.

Without any calculation, we know what the response of the conductor will be to an
externally applied electric field: If there is any field present in the conductor, positive
and negative charge densities will separate in response to the field. That separation
results in an additional field whose direction is opposite the applied field because of
the directions the two polarities of charge move in response to the applied field. This
movement occurs until the sum field vanishes, at which point there is no further force
on the charges and the system becomes static. Therefore, ~E = 0 inside any conductor.
Note the lack of distinction between the applied field and the field created by the
charges: each charge is only sensitive to the total field, so it is the total field that
must vanish inside the conductor. The charges arrange themselves so their
contribution to the total field cancels that of the applied field.
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Derived Properties of a Conductor

We may derive the following conductor properties from the fact that ~E = 0 inside a
conductor everywhere:

I ρ also vanishes inside a conductor
This follows directly from Gauss’s Law: because ~E = 0 everywhere in the
interior, then ~∇ · ~E = ρ/εo also vanishes.

Another way of seeing this, at least for a conductor with no net charge, is that,
if there were a nonzero ρ, then there must be an equal and opposite amount of
charge elsewhere in the conductor because the conductor is neutral overall. An
electric field would appear between the oppositely signed charge distributions,
contradicting the ~E = 0 condition. Alternatively, the opposite charge will be
attracted to the nonzero ρ by the field and move to cancel it until the field
vanishes.
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I Any net charge or induced charge resides on the surface
The picture we described before, of charge separation being induced by the
external field, does imply that there may be such induced charge on the surface.
This does not violate Gauss’s Law because ~E may be nonzero outside the
conductor and thus one has to be careful in calculating ~∇ · ~E at the conductor
boundary (we must resort to the boundary conditions we derived,
Equations 2.59 and 2.61).

Also, if we intentionally add charge to a conductor, it must also move to the
surface by the same Gauss’s Law argument. An alternative, microscopic way of
seeing this is that, if we add charge to a neutral conductor, which has no
electric field or charge density in its interior, the added charge repels itself,
pushing itself to the exterior (as far as it can go without leaving the conductor).
Or, equivalently, the added charge attracts charge from the surface to cancel it,
leaving net charge on the surface. Regardless, the added charge that now
appears on the surface arranges itself so there is no net field in the interior.

Aside: As Griffiths notes in a footnote, this property can be interpreted to be a
consequence of the fact that the electric field obeys the Coulomb’s Law 1/r2

dependence in three dimensions (from which we derived Gauss’s Law, which we
used above in the proof). In a different number of dimensions, or with a
different dependence on r , we would not have been able to derive Gauss’s Law!
There will be a homework problem considering conductors when Coulomb’s Law
is modified.
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I A conductor has the same electric potential everywhere
That is, a conductor is an equipotential. This occurs because ~E vanishes
everywhere in the conductor: any line integral of ~E between two points must
therefore also vanish. The conductor may have a nonzero electric potential, but
the value is the same everywhere.

One can see this using the gradient, too. If V were not constant in the
conductor, there would be a nonzero ~E = −~∇V , which we said above is not
allowed.

I The electric field just outside a conductor is always normal to its surface
This arises from the boundary conditions we derived, Equations 2.59 and 2.61.
Since ~E vanishes inside the conductor, and the tangential component of ~E is
continuous across any interface, the tangential component must vanish just
outside the conductor, too. There is no such condition on the normal component
because there may be an induced or net surface charge density σ on the surface.

Another way of looking at this is is that an electric field tangential to the
surface would cause charge to move along the surface until that tangential
component vanished. No such argument applies to the normal component
because the charge is no longer free to move normal to the surface when it sits
at the surface — it cannot leave the conductor.
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Conductors with Cavities

The mental image we have so far is of a conductor that has no cavities inside of it.
What additional properties can we derive for a conductor with cavities?

I A charge q inside a cavity in a conductor results in an equal induced charge q
on the surface of the conductor

c© 2013 Griffiths, Introduction

to Electrodynamics

To see this, construct a surface S that lies inside the
conductor but also contains the cavity. The electric
field vanishes on S because it is in the conductor,
so the net charge enclosed must vanish. Since a
charge q is inside the cavity, there must be a cancel-
ing charge −q inside S. Since S can be shrunk to be
arbitrarily close to the inner surface without chang-
ing this statement, the induced charge must lie on
the inner surface of the cavity.

Since −q has appeared on the inner surface, we know, by neutrality of the
conductor, there must be a charge +q elsewhere on the conductor. If we now
expand S to approach the outer surface, the above statement about −q inside
S continues to hold, so the only place +q can be is on the outer surface.
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The exact distribution of q on the surface depends on the geometry. For cases
with some symmetry, we may be able to guess the solution easily.

Consider a conductor with a spherical outer surface. Since there are no field
lines inside the conductor, there is no way the charge in the cavity or on the
inner surface of the conductor can influence the distribution of charge on the
outer surface, even if the inner cavity is non-spherical and/or the charge is not
placed at the center of the cavity. Thus, the charge must distribute itself on the
outer surface of the conductor in the same way as it would if charge +q were
added to a spherical conductor with no cavity. By symmetry, that distribution is
uniform with surface charge density σ = q/4π r2.

Note, however, that, in general, the charge on the inner surface of the conductor
will not be distributed uniformly. It will only be uniform if the inner surface is
spherical and the charge in the cavity is at the center of the cavity, as this
situation has symmetry. (Note that the shape of the outer surface and the inner
cavity’s location with respect to the outer surface have no impact, for the same
reasons as the inner cavity does not affect the distribution of charge on the
outer surface.) In any other case, the field lines from the charge in the cavity
will exhibit no symmetry as they terminate on the cavity wall and therefore the
surface charge required to cancel those field lines in the conductor will have no
symmetry.
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I If there is no net charge inside a cavity in a conductor, the electric field inside
the cavity vanishes, independent of the external field applied to or net charge
added to the conductor

c© 2013 Griffiths, Introduc-

tion to Electrodynamics

We use proof by contradiction. Assume there is a
nonzero electric field in the cavity. Since there is no
charge in the cavity, the field lines must start and end
on charges on the surface of the cavity. Therefore,
there is a path through the cavity with

∫
d ~̀ · ~E 6=

0. Now close the path with a segment inside the
conductor. This portion of the now-closed loop C
contributes nothing to the line integral

∮
C d ~̀· ~E over

the entire loop because ~E = 0 inside the conductor.
Since

∮
C d ~̀ · ~E = 0, the contribution from inside

the cavity must vanish also. Contradiction. So the
assumption ~E 6= 0 in the cavity must be false.

Aside 1: Note the technique of proof by contradiction, which we will use again
in E&M.

Aside 2: This fact is used for shielding of experiments from external electric
fields (and also electromagnetic waves) and is called a Faraday cage. Note that
the conductor can have some net charge on it (and correspondingly sit at some
nonzero electric potential with respect to infinity) and this property still holds.
As we will see later, it also holds in the presence of external electromagnetic
waves, which is the more typical and important application.
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Surface Charge and the Force on the Surface of a Conductor

Our boundary condition for the normal component of the electric field combined with
the fact that the electric field vanishes inside a conductor tells us that the electric field
infinitesimally above the surface of the conductor is

~E =
σ

εo
n̂ (2.77)

where n̂ points from the inside to the outside of the conductor.

There is a charge density σ at this point, and an electric field above it, so is there a
force on the charge? Yes, but the calculation is subtle. The thing to recognize is that
the small element of charge σ da in an infinitesimal area da cannot exert a force on
itself. The field to which this element of charge is subject is the field of the charge
distribution excluding it. We find this field by finding the field of this charge element
and subtracting it from the total field. This is an example of one of the indirect
approaches we must apply in E&M: a brute-force approach will not be successful or
generic.
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We know (Griffiths Example 2.5) that the electric field of a charge sheet in the xy

plane is ~E = ±(σ/2 εo ) ẑ where the sign applies depending on whether z > 0 or z < 0.
While the small patch we are considering is not an infinite sheet, it looks like one if we
are infinitesimally close to it. We also know ~Eother must be continuous at the charge
element because, in the absence of that charge element, there is no charge at the
boundary and thus no surface charge density to cause a discontinuity in the normal
component. (Note that we do not claim we know ~Eother , only that we know that it
has this continuity property!) Thus, we may write the equations

~Eoutside = ~Eother +
σ

2 εo
n̂ ~Einside = ~Eother −

σ

2 εo
n̂ (2.78)

where ~Eother is the field due to the rest of the charge distribution excepting da and,
because of its continuity, the same expression for ~Eother appears in both equations.
(Note this technique, which you learned doing story problems in middle-school
pre-algebra, of writing down an equation in which the knowns are not segregated on
one side yet.) Using ~Eoutside = (σ/εo ) n̂ and/or ~Einside = 0, we find ~Eother = (σ/2 εo ) n̂.
This is the field that acts on the charge σ da in da. Therefore, the force per unit area
is

~f =
~F

da
=
σ da ~Eother

da
= σ

σ

2 εo
n̂ =

σ2

2 εo
n̂ (2.79)
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Writing the force per unit area in terms of the field at the surface ~E = (σ/εo ) n̂:

~f =
σ2

2 εo
n̂ =

εo

2
E 2 n̂ (2.80)

That is, the surface of a conductor always feels an outward force. Consider what
would happen if you put charge on a balloon with a metallized surface.

Note the force per unit area, which has units of energy density, is actually equal to the
energy density just above the conductor. We could have in fact used the energy
density to derive the force: the force per unit area is the gradient of the energy per
unit area, and moving the conductor surface in or out by an infinitesimal distance dz
would have changed the total energy per unit area by u dz.

Note the indirect technique of proof. Again, we did no integral and we did not use
Coulomb’s Law explicitly.
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Section 2.12 Review of Basics of Electrostatics: Capacitors and Capacitance

Capacitance

Consider two conductors (of arbitrary shapes) and suppose we put equal and opposite
charges Q and −Q on them. The potential difference ∆V between the two is of
course given by the line integral of the electric field from any point on the surface of
one to any point on the surface of the other. How does ∆V scale with the charges?

The linear dependence of ~E on the charge density ρ ensures that ∆V is linear in Q.
Therefore, we may define the capacitance

C =
Q

∆V
(2.81)

Capacitance is a purely geometric quantity: it does not depend on the amount of
charge on the two conductors (as long as equal and opposite charges are given to
each, a caveat we will remove soon). It does depend on the shapes of the conductors
and their relative position and orientation because those determine the shape of the
electric field (while Q varies its normalization). The unit of capacitance is
Coulombs/volt, which we define to be the Farad, F.

One can talk about the capacitance of a single conductor with charge Q by implicitly
assuming there is another conductor at infinity that has charge −Q and is defined to
be at V = 0.
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Now departing from Griffiths and instead following Jackson §1.11, we can generalize
capacitance to include multiple conductors by simply assuming a generalized linear
relationship between potentials, which we also call voltages, and charges as we argued
above must be true:

Vi =
N∑

j=1

Dij Qj or V = D Q (2.82)

where V and Q are N-element column matrices for the voltages and charges on the N
conductors and D is a N × N matrix that connects the two. It is explicit that any

voltage depends linearly on all the charges. The capacitance matrix is then C = D−1,
with

Qi =
N∑

j=1

Cij Vj or Q = C V (2.83)

This form serves to make it clear that the capacitance is not just a single quantity
between two conductors, but is more general. According to Jackson, the diagonal
element Cii is the “capacitance” of electrode i , and the Cij are termed the “coefficients
of induction” to convey that they indicate the charge induced on electrode i when a
voltage is placed on electrode j . We will show below that neither of these is what one
would consider the capacitance of a pair of conductors as we discussed initially.
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In all of this, there is an implicit assumption that V (r →∞) = 0. Without this
assumption, we would always need to explicitly include the electrode at ∞ (with an
additional index in C and D) in order to get the right offset for V .

To calculate the capacitance or the capacitance matrix, one clearly needs to determine,
given a set of charges {Qi}, what the voltages {Vi} are. To do this trivially, there
typically must be a symmetry or approximation that allows one to guess the charge
distributions on the conductors (e.g., uniform as for an infinite parallel plate capacitor)
and to calculate the field using Gauss’s Law and from the field the potential. For more
complex geometries, the boundary-value problem techniques we will develop may be
sufficient. The total charge on each electrode normalizes the voltage.
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For the simple case of two mirror-symmetric electrodes with equal and opposite
charges ±Q and voltages ±V , we can relate the elements of the capacitance matrix to
the pair capacitance, which is what we usually call the capacitance (e.g., in Ph1b).
We can assume the following form for the capacitance matrix:

C =

[
Cs −Cm

−Cm Cs

]
(2.84)

Why could we assume the above form? The symmetry of the system implies
C11 = C22. We shall see below that all capacitance matrices are symmetric matrices,
so C12 = C21. We chose the negative sign on C12 = −Cm with some foreknowledge of
the result, but that’s a choice and doesn’t affect the value of C12.
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The defining condition of the pair capacitance is that equal and opposite charges are
placed on the two conductors. By symmetry, we can conclude that the conductors
carry equal and opposite voltages (not true for a non-mirror-symmetric configuration).
Thus

Q1 = Cs V1 − CmV2 = Cs V − Cm(−V ) = (Cs + Cm) V (2.85)

Q2 = −CmV1 + Cs V2 = −CmV + Cs (−V ) = −(Cs + Cm) V (2.86)

which yields Q2 = −Q1 = −Q as assumed. Thus, the capacitance of the pair is

C =
Q

∆V
=

(Cs + Cm) V

2 V
=

Cs + Cm

2
(2.87)

After we have discussed energy, we will return to this system for a more detailed
analysis of what one can say about Cs and Cm.
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Capacitance and Field Lines

Let’s also think about capacitance in terms of field lines. The diagonal element Dii

tells us the potential of electrode i if we put charge on it and no other electrodes. That
potential is the line integral of the field from infinity to the electrode, so it is telling us
about the field lines going from the charge on that electrode to infinity (or to/from if
the charge is negative). The off-diagonal elements Dji tell us how the potential of
electrode j changes when charge is put on electrode i . This makes sense, as that
charge on i will change the overall field configuration, also due to the addition of the
field lines that must start from or end on its charge, and that change will affect Vj .

The elements of C are interpreted differently. When we put one electrode i at a

voltage while holding the others fixed (possibly at zero), charge must be added to that
electrode. The diagonal element Cii tells us how much charge must go onto the
electrode, and that charge sources field lines. The off-diagonal elements Cji then tell
us how much charge must appear on the other electrodes so their voltages Vj remain
fixed. This reflects the fact that some of the new field lines starting (or ending) on
electrode i due to the new charge on it must end (start) on some of the other
electrodes j , and in fact tells us how much charge must be added to those other
electrodes to terminate those new field lines.

As a corollary, an off-diagonal element of D or C can only vanish if there is no mutual

influence of the two electrodes. For simply connected electrodes (i.e., none of the
electrodes have cavities inside them), it is hard to see how this could happen unless
they are infinitely far apart!
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Electric Potential Energy of a Capacitor

In a simple two-electrode, mirror-symmetric capacitor with charges ±q on the
electrodes and a voltage difference ∆V = q/C between the two electrodes, the
amount of work required to change the charge from q to q + dq is given by the
amount of work required to move a charge dq from the negative electrode (which has
charge −q and voltage −∆V (q)/2) to the positive electrode (which has charge +q
and voltage +∆V (q)/2):

dU = dq

[
∆V (q)

2
−
(
−∆V (q)

2

)]
= ∆V (q) dq =

q

C
dq (2.88)

Note that ∆V is a function of q here: the voltage is not held fixed while the charge is
moved; rather, the voltage and charge increase together (linearly).
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We integrate this expression from 0 to the final charge Q to find

U =
1

C

∫ Q

0
q dq =

1

2

Q2

C
(2.89)

Alternatively, using Q = C ∆V ,

U =
1

2

Q2

C
=

1

2
C (∆V )2 (2.90)

We could have modeled the above process differently. Our transferral of dq from one
electrode to the other is the equivalent of taking charge dq from the negative voltage
electrode, carrying it out to infinity (where we set V = 0), and bringing it back and
putting it on the positive voltage electrode. The equivalence is because the voltage
difference between two points is path-independent. This process is, then, equivalent to
bringing charges dq and −dq in from infinity and putting them on the positive and
negative voltage electrodes, respectively. And the last process is equivalent to bringing
the charges in consecutively rather than simultaneously because we proved earlier the
potential energy does not depend on the order of assembly of the charge distribution.
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The above picture is what we need for considering a multi-electrode system: we build
up the charge on each conductor by bringing in charge from infinity and calculating the
work done. Consider bringing charge dqi in from infinity and adding it to electrode i .
The change in the electric potential energy of the system due to adding this charge is

dUi = Vi dqi =
N∑

j=1

Dij qj dqi (2.91)

There are two possible double-countings we must avoid: 1) This infinitesimal element
of charge dqi is moved from V = 0 at infinity to V = Vi on the ith electrode, so the
voltages of the other electrodes are irrelevant during this infinitesimal charge transfer
and we should not bring them into the equation; 2) Because the charges on all the
other electrodes j 6= i are physically immobile as dqi is brought in, no work is done on
them, and so there are no other contributions to include (as strange as it may seem
given that their voltages change by dVj = Dji dqi ; remember, a force must be exerted
over a distance for it to do work).
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Now, let’s integrate over dqi . We will later do a sum over i . The ordering of the two
steps does not matter because we proved earlier that the electric potential energy does
not depend on the order of assembly. But we do need to worry about the order of how
we have brought in the charges because we should not calculate cross-terms for
charges that do not yet exist. Let’s assume that, if we are integrating the ith charge,
then the first i − 1 charges have already been integrated to their full values {Qj},
j = {1, . . . , i − 1}, and the remaining N − i electrodes j = {i + 1, . . . ,N} have no
charge on them yet. Thus, the voltage Vi (qi ; {Qj}j<i ) is given by

Vi (qi ; {Qj}j<i ) =
N∑

j=1

Dij qj = Dii qi +

i−1∑
j=1

Dij Qj (2.92)

because qj = Qj has already been achieved for j = {1, . . . , i − 1}, qj = 0 for
j = {i + 1, . . . ,N}, and qi 6= Qi is still being changed. Therefore,

Ui =

∫ Qi

0
Vi (qi ; {Qj}j<i ) dqi =

∫ Qi

0

Dii qi dqi +

i−1∑
j=1

Dij Qj dqi


=

1

2
Dii Q

2
i +

i−1∑
j=1

Dij Qj Qi (2.93)
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Next, we need to sum over i to account for the charging up of all the electrodes:

U =
1

2

N∑
i=1

Dii Q
2
i +

N∑
i=1

i−1∑
j=1

Dij Qi Qj (2.94)

Modifying the second sum to be symmetric (assuming D is symmetric, which we will

prove below) and including a factor of 1/2 to correct for double-counting, we have

U =
1

2

N∑
i=1

Dii Q
2
i +

1

2

N∑
i,j=1,i 6=j

Dij Qi Qj =
1

2

N∑
i,j=1

Dij Qi Qj
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We can write this more succinctly as

U =
1

2
QT D Q =

1

2
QT C−1Q (2.95)

Using Q = C V , we can rewrite as

U =
1

2
V T C V (2.96)

Let’s check that this gives the correct result for an elementary capacitor with two
mirror-symmetric electrodes having equal and opposite charges ±Q and voltages ±V .
Using the capacitance matrix we derived earlier (recall, C11 = C22 = Cs ,
C12 = C21 = −Cm, and C = (Cs + Cm)/2),

U =
1

2

[
C11(+V )2 + C22(−V )2 + C12(+V )(−V ) + C21(−V )(+V )

]
=

1

2
V 2 [Cs + Cs + Cm + Cm] = 2 C V 2 =

1

2
C(∆V )2 (2.97)

as expected.
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Properties of the Capacitance Matrix and Its Inverse

We can derive a number of useful properties:

I Both C and D are symmetric.
Let’s consider two electrodes, i and j with i 6= j . From Equation 2.93, their
contribution to the potential energy, assuming j has been charged up before i , is

Uij =
1

2

(
Dii Q

2
i + Djj Q

2
j

)
+ Dij Qi Qj (2.98)

What happens if we reverse the charging order? Then we get

Uji =
1

2

(
Dii Q

2
i + Djj Q

2
j

)
+ Dji Qi Qj (2.99)

In our initial discussion of the electric potential energy, we argued that the
charging order does not matter. So we may equate the two, Uij = Uji .
Recognizing that Qi and Qj are arbitrary then implies

Dij = Dji ⇐⇒ DT = D ⇐⇒ C T = C (2.100)
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I The self-capacitances Cii are positive.
We need only consider the energy in the case that all other electrodes are held
at zero potential. Then the energy is

Ui (all others grounded) =
1

2
Cii V 2

i (2.101)

Since the energy should be positive (it takes work to add charge dqi in the
presence of the same-sign charge qi , as is done when charging up the electrode),
Cii must be positive.

I The diagonal elements of the inverse capacitance matrix, C−1
ii = Dii are

positive.
Now, we consider the energy in the case that all other electrodes are kept
neutral. Then the energy is

Ui (all others neutral) =
1

2
Dii Q2

i (2.102)

Again, since the energy should be positive, Dii must be positive.
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I The off-diagonal elements of the inverse capacitance matrix C−1
ij = Dij are

positive.
Now, let’s consider two electrodes i , j in a multi-electrode configuration, with all
the other electrodes uncharged. Let’s suppose electrode i is already raised to its
final charge, and now we want to consider the work needed to increment
electrode j ’s charge:

dUij = Djj qj dqj + Dij Qi dqj (2.103)

(The self-terms and cross-terms vanish for all the electrodes k 6= i , j because
they have Qk = 0.) If we consider the case of Qi , qj positive, and if we bring in
more positive charge dqj , it is obvious that both the change in the jth
self-energy and the energy cross-term should be positive: we are bringing
positive charges in proximity to existing positive charges. (While the existing
charge might move around on the electrodes, those electrodes are conductive
and so are equipotentials: no work is done.) We already know the self-energy
terms are positive. In order for the energy cross-term to be positive, Dij must be
positive. In the mirror-symmetric electrode case, we would see via explicit
inversion of C that D’s off-diagonal elements are positive.

Another way to see that the cross-terms must be positive is to recall that the
entire expression must be consistent with our original expression for the electric
potential energy, Equation 2.72. That expression could be broken down into
three integrals, one for each self-energy term and one for the cross-term. When
the charge density is positive, all contributions to that expression are manifestly
positive.
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I The off-diagonal elements of the capacitance matrix Cij are negative.
Let’s consider the same multi-electrode system with electrodes k 6= i , j grounded
(i.e., Vk = 0), electrode i at its final positive voltage Vi , and electrode j ’s
voltage being incremented from vj to vj + dvj , both positive. The change in
energy is

dUij = Cjj vj dvj + Cij Vi dvj (2.104)

We already know the first term is positive. The second term is more
challenging. If we want to increment a positive voltage vj by a positive amount
dvj , we need to put positive charge on it. This positive charge will draw
negative charge out of the battery holding Vi constant: some of the field lines
of that new charge on electrode j have to terminate on electrode i if Cij is
non-zero. Again, from Equation 2.72, we know that contribution to the electric
potential energy must be negative even if Vi is positive. Thus, the energy
cross-term must be negative, which requires Cij to be negative. (If Vi is
negative, that implies Qi is negative. It takes positive work to add negative
charge to an electrode that already has negative charge on it, so Cij < 0 ensures
the cross-term becomes positive, as it should.)
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I |∑i 6=j Cij | ≤ |Cjj |: for a given electrode, the sum of the off-diagonal elements
of the capacitance matrix is no larger in magnitude than the corresponding
diagonal element.
Just consider the same situation as just considered. The change in the charge
on the jth electrode is dqj = Cjj dvj . The field lines from those added charges
will terminate either on other electrodes or infinity, so the total negative charge
added to all the other electrodes can be no larger in magnitude than |dqj |.
Therefore,

∣∣∣∣∣∣
∑
i 6=j

dqi =
∑
i 6=j

Cij dvj

∣∣∣∣∣∣ ≤ ∣∣dqj = Cjj dvj

∣∣ =⇒

∣∣∣∣∣∣
∑
i 6=j

Cij

∣∣∣∣∣∣ ≤ ∣∣Cjj

∣∣ (2.105)
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Capacitance Matrix of a Mirror-Symmetric Configuration Revisited

Considering again a mirror-symmetric two-electrode configuration, we now know
Cs > Cm > 0, and we know the pair capacitance we are familiar with is related to
them by C = (Cs + Cm) /2, but can we determine Cs and Cm explicitly?

If we consider the case V1 = V and V2 = 0, we find Q1 = Cs V and Q2 = −Cm V , so
we can determine Cs and Cm if we know the full field configuration, with the boundary
condition V = 0 at infinity: we obtain the surface charge density from the normal
component of the field at the electrode surfaces and integrate it to get Q1 and Q2 and
thus Cs and Cm. (Remember, if V 6= 0 at infinity, we need to include infinity explicitly
as an electrode of the system.)

Maybe we can then do this for the one mirror-symmetric case whose full electric field
configuration we can calculate trivially, the infinite parallel-plate capacitor? No! The
infinite parallel-plate capacitor violates the condition V = 0 at infinity because, if
either plate has non-zero potential, that plate’s non-zero equipotential surface extends
off to infinity in the transverse direction. We violate the assumption that allowed us to
ignore the electrode at infinity. Moreover, infinity is no longer even an equipotential
surface in this configuration! On the equipotentials defined by the two electrodes (at,
e.g., z = ±d/2), the potential at infinity is the potential of the corresponding
electrode. If the two plates have equal and opposite potentials, then the field outside
the plates vanishes and the potential on the surface of that volume at infinity is zero.
The potential on the line z = 0 is also zero. And then, for 0 < |z| < d/2 and
x , y →∞, the potential is the same linear function of z that it would be at x , y = 0.
Clearly, our assumptions are violated!
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We note that, formally, C is infinite for this mirror-symmetric configuration, anyways:
the mirror-symmetric potential configuration requires infinite charge on each electrode!
The pair capacitance per unit area, however, is finite and trivially calculated.

So, we are stymied. In order for the V = 0 at infinity condition to be satisfied, our
electrodes must be finite in extent. But, for electrodes finite in extent, we cannot
calculate the potential in a trivial fashion, so we cannot determine Cs and Cm, or even
C , trivially. We need to develop the full machininery for solving Poisson’s and
Laplace‘’s Equations, which we will begin to do soon.
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Section 3.1 Advanced Electrostatics: Intuitive Approach to Laplace’s Equation

Intuitive Approach to Laplace’s Equation

As we mentioned earlier, the integral forms for the electric field or the potential

~E(~r) =
1

4π εo

∫
V

dτ ′ρ(~r ′)
~r − ~r ′
|~r − ~r ′|3 and V (~r) =

1

4π εo

∫
V

dτ ′
ρ(~r ′)

|~r − ~r ′| (3.1)

are always correct but can be difficult to deal with in practice. Most systems will not
have symmetries that make the integrals easily doable (or avoidable via Gauss’s Law).
Moreover, and this is the greater problem, it is rare that one completely specifies ρ(~r)
in setting up a problem. Experimentally, what we can easily control are the shapes,
positions, and potentials (voltages) of conductors. We do not control how the charge
arranges itself on the conductors. Thus, we need to seek alternate ways to solve for
the potential and field over all of space. Laplace’s and Poisson’s Equations are the key.
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Laplace’s Equation in One Dimension

In one dimension, Laplace’s Equation takes the simple form

d2V

dx2
= 0 (3.2)

We can solve this by direct integration to obtain

V (x) = m x + b (3.3)

where m and b are two constants of integration. We determine m and b by boundary
conditions: specification of V or dV /dx at specific point(s). In the one dimensional
case, there are two options for how to specify the boundary conditions:

I Specify V at two points.

I Specify V at one point and dV /dx at one point (possibly the same point).

Note that these are the only choices in one dimension. Specifying dV /dx at two
points either yields a contradiction (if two different values of dV /dx are given) or
insufficient information (if the same value is given). There are no other quantities to
specify: all higher derivatives vanish thanks to Laplace’s Equation.
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Let us note two important characteristics of the solutions of Laplace’s Equation:

I Averaging Property: V (x) is equal to the average of any pair of points V (x + a)
and V (x − a) for any a such that x ± a belong to the region being considered:

1

2
[V (x + a) + V (x − a)] =

1

2
[(m (x + a) + b) + (m (x − a) + b)]

= m x + b = V (x) (3.4)

I V (x) has no nontrivial local maxima or minima
We already mentioned this property for the three-dimensional Laplace’s
Equation. The proof is straightforward in one dimension. Suppose x0 is a local
maximum or minimum. Then we have dV /dx = 0 at this point x0. Then, for
any other point x1:

dV

dx

∣∣∣∣
x1

=
dV

dx

∣∣∣∣
x0

+

∫ x1

x0

d2V

dx2
dx = 0 + 0 = 0 (3.5)

Therefore, if dV /dx vanishes anywhere, then dV /dx vanishes everywhere and
thus V (x) is a constant. This is a trivial local maximum/minimum. If dV /dx
vanishes nowhere, then the endpoints of the region give the maximum and
minimum of V (x) or, if there are no endpoints, there are no maxima or minima

at all. Consider, for example, a uniform electric field ~E0 over all of space.

Section 3.1.1 Laplace’s Equation in One Dimension Page 106



Section 3.1 Advanced Electrostatics: Intuitive Approach to Laplace’s Equation

Laplace’s Equation in Multiple Dimensions

We quote the analogues of the above two properties for arbitrary numbers of
dimensions and prove them for three dimensions:

I Averaging Property: The value V (~r) of a solution to Laplace’s Equation at any
point is equal to the average of its value on any sphere centered on that point in
the region of interest:

V (~r) = 〈V (~r)〉a ≡
∫
Sa(~r) da′ V (~r ′)∫
Sa(~r) da′

(3.6)

where Sa(~r) is the sphere of radius a centered on ~r . This is straightforward to
show (Griffiths Problem 3.37). Let’s integrate Laplace’s Equation over the
volume enclosed by Sa(~r), Va(~r), and use the divergence theorem:

0

Laplace′s
Equation

=

∫
Va(~r)

dτ ′∇2
~r ′V (~r ′) (3.7)

divergence
theorem

=

∫
Sa(~r)

da′ n̂(~r ′) · ~∇~r ′V (~r ′) =

∫
Sa(~r)

da′ n̂(~r ′) · ~∇~r ′−~r V (~r ′)

In the last step, we have used the fact that ~∇ does not care about the location
of the origin (since it is just an offset).
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Now, we can define ~s = ~r ′ − ~r . In this coordinate system, where ~r is at the
origin, n̂(~r ′ ∈ Sa(~r)) = ŝ, the radial unit vector in the ~s coordinate system. So,
we have (inserting a factor 1/4π a2):

0 =
1

4π a2

∫
Sa(~s=~0)

s2dΩs
∂V

∂s

∣∣∣∣
s=a

(3.8)

where Sa(~s = ~0) is the sphere of radius a centered on the origin of the ~s system
(i.e., the same as Sa(~r), the sphere of radius a centered on ~r in the ~r ′ coordinate
system). Because the integration is over a sphere of radius a, s = a is fixed in
the integrand. This permits us to both pull a factor s2 = a2 outside the integral,
canceling the factor of a2 in the prefactor, and to pull the radial derivative
outside the integral and turn it into a derivative with respect to a. Thus:

0 =
1

4π a2
a2
∫
Sa(~s=~0)

dΩs
∂V

∂s

∣∣∣∣
s=a

=
1

4π

∂

∂a

∫
Sa(~s=~0)

dΩs V (~s) (3.9)

Note that ∂/∂s becomes ∂/∂a when we move it outside the integral because
the limits of integration, Sa(~r), imply s should be evaluated at a when the
integral is done: s no longer exists once the integral is done.
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Thus, the integral must be a constant

C =
1

4π

∫
Sa(~s=~0)

dΩs V (~s) =
1

4π a2

∫
Sa(~r)

da′V (~r ′) (3.10)

where we switched the variable of integration back to ~r ′ and we reinserted a2.
The right side is just the average of V over the sphere of radius a centered at ~r .
Since this holds for any a, it must hold as a→ 0, which tells us C = V (~r). So,
we have

V (~r) =
1

4π a2

∫
Sa(~r)

da′V (~r ′) (3.11)

I V can have no local maxima or minima in the region of interest
The averaging property makes the proof of this property trivial: if there were
such a candidate maximum (minimum), simply draw a sphere around it.
Because the point is a maximum (minimum) there must be some radius of the
sphere for which the values of all the points on the sphere are less than (greater
than) the value at the candidate maximum (minimum). The average over this
sphere is therefore less than (greater than) the value at the candidate maximum
(minimum). This contradicts the above averaging property.

One could also prove this by a technique similar to the 1D case, calculating ~∇V
at any point ~r ′ in the region by doing a line integral of Laplace’s Equation from
the candidate extremum ~r to that point. Since ~∇V vanishes at the candidate
extremum (because it is an extremum of V ), and the integrand (∇2V ) of the

line integral vanishes by Laplace’s Equation, ~∇V vanishes at ~r ′.
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Uniqueness Theorem

Before obtaining a solution of Laplace’s and Poisson’s Equations, we prove some
uniqueness theorems we will need. This section draws from Jackson §1.8 and §1.9.

Green’s Identities and Theorem

First, some mathematical preliminaries. Let us apply the divergence theorem to the
function φ~∇ψ where φ(~r) and ψ(~r) are arbitrary functions:∮

S
da n̂ ·

(
φ~∇ψ

)
=

∫
V(S)

dτ ~∇ ·
(
φ~∇ψ

)
This yields Green’s First Identity:∮

S
daφ n̂ · ~∇ψ =

∫
V(S)

dτ
[
φ∇2ψ + ~∇φ · ~∇ψ

]
(3.12)

The function n̂ · ~∇ψ is the normal gradient of ψ because it is the projection of the
gradient of ψ along the direction normal to the surface. If we exchange φ and ψ and
then difference the two versions, we have Green’s Second Identity or Green’s Theorem:∮

S
da
[
φ n̂ · ~∇ψ − ψ n̂ · ~∇φ

]
=

∫
V(S)

dτ
[
φ∇2ψ − ψ∇2φ

]
(3.13)
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Types of Boundary Conditions

We shall see in the proof of the Uniqueness Theorem that three types of boundary
conditions are permitted:

I Dirichlet boundary condition
In this case, the value of the potential V (~r) is specified on all bounding
surfaces. This is the most typical experimentally realized situation, where we
attach a number of conductors to voltage sources to set their voltages.

I Neumann boundary condition
In this case, the value of the normal derivative of the potential, n̂ · ~∇V (~r), is
specified on the boundary. An example of such a condition is specification of the
electric field (or, equivalently, the surface charge density) at the surfaces of a set
of conductors; since the tangential electric field vanishes at these surfaces, the
normal electric field fully defines the electric field at the conductors.

I Mixed boundary conditions
Dirichlet in some places, Neumann in others, is allowed as long as both are not
specified at the same place.

If the volume under consideration is not bounded by a surface on which we specify the
boundary conditions, then we must also specify a boundary condition at infinity.

The proof of the Uniqueness Theorem will not show why only one of these types of
boundary conditions may be specified. That proof will be provided soon, in §3.4.1.
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Generic Uniqueness Proof for Poisson’s Equation

We will use proof by contradiction.

Suppose we have specified one of the above three types of boundary conditions.
Assume that, for a particular given charge distribution ρ(~r), there are two independent
solutions V1(~r) and V2(~r) of Poisson’s Equation that both satisfy the boundary
condition. Let V3 = V1 − V2. Since the charge distribution is the same,
∇2V1 = −ρ/εo = ∇2V2 and thus ∇2V3 = 0: V3 satisfies Laplace’s Equation. By a
similar differencing argument, V3 either satisfies the Dirichlet boundary condition
V3(~r ∈ S) = 0, the Neumann boundary condition n̂ · ~∇V3(~r ∈ S) = 0, or a mixed
boundary condition of these types. If we apply Green’s first identity with φ = ψ = V3,
we have ∮

S
da V3 n̂ · ~∇V3 =

∫
V(S)

dτ
(

V3∇2V3 + ~∇V3 · ~∇V3

)
(3.14)

The left side vanishes because of the boundary condition (any type). The first term on
the right side vanishes by Laplace’s Equation. Thus, we have∫

V(S)
dτ |~∇V3|2 = 0 =⇒ ~∇V3(~r) = 0 =⇒ V3 = constant (3.15)

where we take the second step because the integrand is nonnegative. This result
implies that our two candidate solutions V1(~r) and V2(~r) differ by at most a constant.
Hence, uniqueness is proven.
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Special Cases of Uniqueness Theorem

Given the above, we may state/prove three special cases of the uniqueness theorem,
the ones given in Griffiths:

I The solution to Laplace’s Equation in some volume V is uniquely specified if V
is specified on the boundary surface S(V).
This is the above uniqueness theorem with ρ = 0 in V and a Dirichlet boundary
condition on S(V).

I The solution to Poisson’s Equation in some volume V is uniquely specified if
ρ(~r) is specified throughout the region and V is specified on the boundary
surface S(V).
This is the above uniqueness theorem with arbitrary ρ(~r) in V and a Dirichlet
boundary condition on S(V).

I In a volume V surrounded by conductors at the surface(s) S(V) and containing
a specified charge density ρ(~r), the electric field is uniquely determined if the
total charge on each conductor is specified.
This one is not as obvious, but we can show that this BC yields the same input
to the Uniqueness Theorem derivation as the other BCs we have specified.
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Let each conductor i have surface Si and charge Qi . Since we know the surface
charge density on each conductor is related to the normal component of the
electric field at that conductor, we may see∮

Si

da n̂(~r) · ~E(r̂) =
1

εo

∮
Si

da σ(~r) =
1

εo
Qi (3.16)

Now, as before, let’s assume that there are two different solutions V1(~r) and
V2(~r) and their difference is V3 = V2 − V1. Let’s evaluate the left-hand side of
Equation 3.14 for the BC we are specifying here:∮

S
da V3 n̂ · ~∇V3 = −

∑
i

∮
Si

da V3 n̂ · ~E3 = −
∑

i

V3,i

∮
Si

da n̂ · ~E3 (3.17)

where we were able to pull V3 out of the integrals because V1 and V2 have
equipotentials on each surface and so therefore does V3 (with values V3,i , which

we do not need to know). The surface integral of the normal component of ~E3

over each Si vanishes because, as we indicated above, specifying Qi specifies
this surface integral to be the same for ~E1 and ~E2, so the surface integral
vanishes for ~E3 = ~E2 − ~E1. Thus, the LHS of Equation 3.14 also vanishes for
this BC, and so the remainder of the proof of uniqueness carries through.

Note how this proof relied on the boundary surfaces being conductors! Knowing
the total charges on nonconducting boundary surfaces would not be sufficient.
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Method of Images

Overview: The Basic Idea of Method of Images

The method of images uses the concept of uniqueness of solutions to Poisson’s
Equation. Basically, given a physical setup involving a true charge distribution ρ(~r)
and Dirichlet boundary conditions for some volume V, one tries to replace the region
outside of V with an image charge distribution ρimage (~r) such that, when the image
charge’s potential is summed with that of ρ(~r), the potential on the boundary is the
same as that specified by the Dirichlet BC.

The technique works because of the uniqueness theorem: since the potential due to
the image and original charges matches the boundary conditions and satisfies
Poisson’s Equation with the same source term inside V, it is the solution to Poisson’s
Equation for that source term, that volume V, and that choice of boundary conditions.

The imagined charge distribution is called “image charge” because, at least in the
example of the boundary condition being imposed by the presence of a conductor, the
image charge is a (possibly distorted) mirror image, through the boundary, of the
original charge distribution ρ(~r). “Image charge” is also used (somewhat erroneously)
to refer to the surface charge induced on a conducting boundary that sources the
potential that one models as due to the image charge.

Note that the image charge must be placed outside the volume V because we may not
change ρ(~r) inside V; that would change the problem we are trying to solve.

We will see later how the potential due to the image charge distribution (the induced
surface charge) is a component of the particular problem’s Green Function.
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A Point Charge near a Grounded Infinite Conducting Plane

For a system with the point charge q at d ẑ above a conducting plane at z = 0 with
V = 0, and considering the volume V consisting of the z > 0 half-space, the
appropriate image charge is −q at −d ẑ. By symmetry, the (Dirichlet) boundary
condition V = 0 at z = 0 is met. Thus, the solution for V (~r) for ~r ∈ V (the z > 0
half-space) is

V (~r) =
1

4π εo

[
q√

x2 + y2 + (z − d)2
− q√

x2 + y2 + (z + d)2

]
(3.18)

The potential clearly satisfies V (z = 0) = 0 (and V (r →∞)→ 0). Let’s use this
solution to do some other calculations:

I Induced surface charge
This we can calculate by recognizing that it is given by the change in the normal
component of the electric field at the conducting boundary. Since ~E = −~∇V ,

σ = − εo
∂V

∂z

∣∣∣∣
z=0

=
q

4π

[
z − d

(x2 + y2 + (z − d)2)3/2
− z + d

(x2 + y2 + (z + d)2)3/2

]∣∣∣∣∣
z=0

= − q

2π

d

(x2 + y2 + d2)3/2
(3.19)

We will treat the surface charge density and the normal component of the
electric field (the normal gradient of the potential) as almost equivalent going
forward.
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We can calculate the total induced surface charge:

Qind =

∫ ∞
0

r dr

∫ 2π

0
dφ
−q d

2π

1

(r2 + d2)3/2
= q d

1√
r2 + d2

∣∣∣∣∞
0

= −q (3.20)

This is an example of an important general theorem: The total induced surface
charge is equal to the image charge, or to the negative of the real charge, or to
some combination of the two, depending on the geometry, by Gauss’s Law.
Because of the mirror symmetry of this problem, the two cases are degenerate,
so this is not a particularly illustrative example of the theorem. Furthermore,
because the volumes and surfaces one must integrate over are infinite, Gauss’s
Law cannot be applied to such a geometry. We’ll return to this theorem in our
next example where there is no such issue.

I Force on the point charge
The induced charge is opposite in sign to the real charge, so the two are
attracted to each other. We can calculate the force by taking the gradient of
the potential due to the image charge only (because the real charge does not
feel a force due to its own potential). Since the image charge’s potential is just
that of a point charge, calculating the force is straightforward:

~F = q ~Eimage charge (d ẑ) = − 1

4π εo

q2

(2d)2
ẑ (3.21)

This is equivalent to just calculating the force on the real charge exerted by the
image charge, which is in general a valid approach. Whether to calculate the
image charge potential and take the gradient or calculate the image charge force
is a matter of choice and convenience.
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I Electric potential energy
Here we have to be more careful because potential energy is not linear in charge,
and, moreover, because the induced charge depends on the original point charge.
Let’s figure this out by calculating the work one would have to do against the
electric force (i.e., the mechanical force Fm doing the work is opposite in sign to
the attractive electric force Fe ) to bring q from z = d to z =∞.

U = −
∫ ∞

d
(−Fe (z)) dz = − 1

4π εo

q2

4

∫ ∞
d

dz

z2
= − 1

4π εo

q2

4 d
(3.22)

Note that this result is half what one would get for the potential energy of two
equal and opposite point charges separated by a distance 2d :

Ualt = − 1

4π εo

q2

2d
(3.23)

There are two ways to understand this. The first is to recognize that, unlike in
the case of two point charges, no energy is gained or lost in moving the negative
charge because it is in the conductor, where V = 0 and thus q V = 0
everywhere. The second is to recognize that the above expression is the energy
stored in all of space in the field of two point charges, but, in this case, the field
is only real in the z > 0 half-space and so the integrated energy is reduced by a
factor of 2.
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A Point Charge near a Grounded, Conducting Sphere

Consider a conducting sphere of radius R centered on the origin and held at V = 0.
Place a point charge at a ẑ with a > R so the point charge is outside the sphere. We
would like to know the potential in the volume V outside the conducting sphere,
which is the volume in which the point charge sits.

By symmetry, the appropriate image charge must be on the z axis. Let its value be q′

and its position be b ẑ, where b may be positive or negative. We can find q′ and b by
requiring that V = 0 at ~r = ±R ẑ:

0 = V (+R ẑ) =
1

4π εo

[
q

a− R
+

q′

R − b

]
0 = V (−R ẑ) =

1

4π εo

[
q

a + R
+

q′

R + b

]
=⇒ q′ = −q

R

a
6= −q b =

R2

a
(3.24)

(This is an example of how one does not always need to consider the generic case;
these special cases at the two poles give us the information we need.) We see that
both values are always physically reasonable because R < a. In particular, b < R so
the image charge remains outside V (i.e., inside the sphere), as we expect. Note that
q′ 6= −q!
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The potential at a point (r ≥ R, θ, φ) is found by summing the potentials of the real
charge and the image charge:

V (r ≥ R, θ, φ) =
q

4π εo

[
1

|~r − a ẑ| −
R/a

|~r − R2

a
ẑ|

]
(3.25)

=
q

4π εo

 1√
r2 sin2 θ + (a− r cos θ)2

− R/a√
r2 sin2 θ + ( R2

a
− r cos θ)2


(3.26)

We can use the above expression to see that the boundary condition V (r = R) = 0 is
satisfied in full generality:

V (r = R, θ, φ) =
q

4π εo

 1√
R2sin2θ + (a− R cos θ)2

− R/a√
R2sin2θ + ( R2

a
− R cos θ)2


=

q

4π εo

 1√
R2 sin2 θ + (a− R cos θ)2

− 1√
a2 sin2 θ + (R − a cos θ)2


= 0 (3.27)
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Let’s calculate the induced surface charge from n̂ · ~∇V = ∂V /∂r :

σ = − εo
∂V

∂r

∣∣∣∣
r=R

(3.28)

=
q

4π

 R sin2 θ − (a− R cos θ) cos θ

(R2sin2θ + (a− R cos θ)2)3/2
− R

a

R sin2 θ − ( R2

a
− R cos θ) cos θ(

R2sin2θ + ( R2

a
− R cos θ)2

)3/2


=

q

4π

 R − a cos θ

(R2 + a2 − 2 a R cos θ)3/2
− a2

R2

R − R2

a
cos θ

(a2 + R2 − 2 a R cos θ)3/2


=

q

4π

R(1− a2

R2 )

(R2 + a2 − 2 a R cos θ)3/2
=− q

4πR2

R

a

1− R2

a2(
1 + R2

a2 − 2 R
a

cos θ
)3/2

One can show by integration that the total induced charge is q′. In this geometry, this
makes sense because the volume enclosed by a surface integral of electric field flux at
the boundary encloses the volume containing the image charge. This example
illustrates one case of the theorem stated earlier; in this case, the total induced surface
charge is equal to the image charge. We will see other cases illustrated in the next
example.

The force on the point charge and the electric potential energy can be calculated in a
manner similar to that used for the conducting plane.
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Calculate the force by taking gradient of electric field:

~F = q ~Eimage charge (z = a) = −q ~∇ q

4π εo

−R/a∣∣∣~r − R2

a
ẑ
∣∣∣
∣∣∣∣∣∣
~r=a ẑ

=
q2

4π εo
ẑ
∂

∂z

R/a[
x2 + y2 +

(
z − R2

a

)2
]1/2

∣∣∣∣∣∣∣∣∣
z=a

= − q2

4π εo

R

a3

1[
1− R2

a2

]2
ẑ

Again, this is the same we would have obtained by directly calculating the force on the
real charge from the image charge:

~F =
q
(
−q R

a

)
4π εo

1[
a− R2

a

]2
ẑ = − q2

4π εo

R

a3

1[
1− R2

a2

]2
ẑ

Both of these match Jackson Equation 2.6.
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We calculate the potential energy by line integral of the force:

U =

∫ a ẑ

∞
d ~̀ · ~F (~r) =

∫ a

∞
(−dz)

−q2

4π εo

R

z3

1[
1− R2

z2

]2

=
q2

4π εo
R

∫ a

∞

z dz

[z2 − R2]2
= − q2

8π εo

R

a2 − R2

Note that, if we calculate the potential energy from the image charge and real charge,
we get the same factor of two error we saw above for the point charge and the plane:

Ualt =
q
(
−q R

a

)
4π εo

1∣∣∣a ẑ − R2

a
ẑ
∣∣∣ = − q2

4π εo

R

a2 − R2
= 2 U (3.29)

which is incorrect for the same reasons as given before.
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Some Related Examples

These are drawn from Jackson Chapter 2.

Example 3.1: Point charge inside a spherical volume with a conducting
boundary

The geometry of this problem is like the last one, except the point charge is inside the
spherical boundary, a < R, and everything outside the boundary is conductor. One can
show that the solution is identical: same formula for image charge value and position,
same induced surface charge density. However, strangely enough, the total surface
charge is now just −q!

Mathematically, this is because the evaluation of the integral depends on whether
R < a or R > a. (There is a power series expansion involved, which must be done
differently in the two cases.)

Physically, this is because the calculation of the total induced surface charge via
Gauss’s Law must be done differently. One method is to use a spherical surface just
outside the boundary, so it is in the conducting volume where the field vanishes. This
implies that the sum of the real and induced charge vanishes, so the induced charge is
the negative of the real charge.
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The other method is to put the surface just inside the boundary. Now, the charge
enclosed is only the real charge. As the surface approaches the boundary, though, the
flux integral is equal to the negative of the integral of the surface charge density (up
to εo ) because the electric field near a conductor is σ/εo (with the negative because
the field is pointed inward). So this tells us the total induced surface charge is the
negative of the real charge too.

Thus, we see illustrated another case of the theorem we stated earlier, that the total
induced surface charge is the image charge, the negative of the real charge, or some
combination of the two. Which one depends on the geometry: is the boundary outside
the volume of interest, inside, or some combination of the two?

In the case of the point charge outside the conducting sphere, we noted that the
Gauss’s Law calculation, with the Gaussian sphere just inside the volume V (i.e.,
having radius infinitesimally larger than a), yields q′ 6= −q. The distinction is whether
the volume V of interest is “outside” the boundary (neglecting the boundary at
infinity) as in the previous case or “inside” the boundary as in this case.

(In the previous case, the Gauss’s Law calculation outside V (i.e., using a Gaussian
sphere of radius less than a) yields no useful information because the sphere doesn’t
contain the induced surface charge. The flux through such a sphere vanishes because
the field is zero inside the conductor, which just tells us that all the induced surface
charge resides, well, on the surface.)
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Example 3.2: Point charge in the presence of a conducting sphere at fixed
potential V0

We can treat this by superposition. Consider first bringing the sphere up to the
desired potential in the absence of the point charge, then bringing the point charge in
from infinity to its final position a ẑ. We can use the grounded-case solution for the
latter part because it has V = 0 on the sphere and V → 0 at infinity, so the sum of it
and the solution for the V 6= 0 sphere alone satisfies the boundary condition of the
problem of the point charge near the V 6= 0 sphere, and thus it must be the correct
solution. (Note the use of the principle of superposition for the potential.)

What is the solution for the V 6= 0 sphere on its own? Certainly, the sphere is an
equipotential with the desired value V0. By symmetry (remember, the point charge is
not present for this problem), the charge is uniformly distributed on the surface. Thus,
we can apply Gauss’s Law to the problem, which tells us that the potential of the
sphere, for r > R, is identical to that of a point charge at the origin. To figure out the
value of the point charge, we require that the point charge’s potential match the
boundary condition:

q0

4π εo R
= V0 =⇒ q0 = 4π εo V0 R =⇒ V (r) = V0

R

|~r | (3.30)

Finally, we add the two solutions together:

V (r ≥ R, θ, φ) =
q

4π εo

[
1

|~r − a ẑ| −
R/a

|~r − R2

a
ẑ|

]
+ V0

R

|~r | (3.31)
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Example 3.3: Point charge in the presence of a charged, insulated, conducting
sphere

We can solve this using the solution we just calculated along with the principle of
superposition (again!). Suppose we want to have a charge Q on the sphere. This is
the same as first bringing the point charge q in while the sphere is grounded,
disconnecting the grounding wire, adding Q − q′ (> Q for q > 0), which causes the
sphere to float to some nonzero voltage, and then connecting to a voltage source with
that voltage. This situation is identical to the situation we just studied if we require

q0 = Q − q′ =⇒ V0 =
q0

4π εo R
=

Q − q′

4π εo R
=

Q + q R
a

4π εo R
(3.32)

Plugging this into solution for the sphere held at V0 gives

V (r ≥ R, θ, φ) =
q

4π εo

[
1

|~r − a ẑ| −
R/a

|~r − R2

a
ẑ|

]
+

Q + q R
a

4π εo |~r |
(3.33)

Notice that this reduces to our original point charge near a sphere solution not when
Q = 0 but rather when Q = q′ = −q R/a, which is the charge that must flow onto
the sphere for it to stay at V = 0 (i.e., grounded).
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Formal Solution to Poisson’s Equation: Green Functions

The remaining material in this section of the notes is based on Jackson §1.10.

Integral Equation for the Electric Potential

Can we solve Poisson’s Equation? Sort of. We can convert it from a differential
equation for V in terms of ρ (with boundary conditions separately specified) to an
integral equation for V in terms of ρ with the need for the boundary conditions quite
explicit. It is still not a closed-form solution for V in terms of ρ and the boundary
conditions, but it helps us to frame the problem of finding solutions for V in a
different manner that is helpful.

We obtain this equation by applying Green’s Theorem (Equation 3.13) with
φ(~r ′) = V (~r ′) and ψ(~r ′) = |~r − ~r ′|−1. Note that ~r ′ is the variable we integrate over;
~r is considered a constant for the purposes of the Green’s Theorem integrals.∫
V(S)

dτ ′
[

V (~r ′)∇2
~r ′

1

|~r − ~r ′| −
1

|~r − ~r ′| ∇
2
~r ′V (~r ′)

]
=

∮
S

da

[
V (~r ′) n̂(~r ′) · ~∇~r ′

1

|~r − ~r ′| −
1

|~r − ~r ′| n̂(~r ′) · ~∇~r ′V (~r ′)

]
(3.34)
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We reduce this by making use of the very important relation

∇2
~r ′

1

|~r ′ − ~r | = −4π δ(~r − ~r ′) (3.35)

which is seen by combining Equations 2.53 and 2.33 with ~r ↔ ~r ′:

~∇~r ′
1

|~r ′ − ~r | = − ~r ′ − ~r
|~r ′ − ~r |3 and ~∇~r ′ ·

~r ′ − ~r
|~r ′ − ~r |3 = 4π δ(~r ′ − ~r) = 4π δ(~r − ~r ′)

Using the above expression for the Laplacian of |~r − ~r ′|−1, doing the integral over the
delta function, applying Poisson’s Equation, moving the second term on the right side
to the left side, and multiplying everything by − 1

4π
yields, now only for ~r ∈ V(S):

V (~r ∈ V(S)) =
1

4π εo

∫
V(S)

dτ ′
ρ(~r ′)

|~r − ~r ′| (3.36)

+
1

4π

∮
S

da′
[

1

|~r − ~r ′| n̂(~r ′) · ~∇~r ′V (~r ′)− V (~r ′) n̂(~r ′) · ~∇~r ′
1

|~r − ~r ′|

]

(The left side vanishes for ~r 6∈ V(S) because the integral was over ~r ′ ∈ V(S)).
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This is a formal equation for the electric potential. The boundary conditions are
present on the right side: in the case of Dirichlet, we specify V (~r ′) for ~r ′ ∈ S, while

in the case of Neumann, we specify n̂(~r ′) · ~∇~r ′V (~r ′) for ~r ′ ∈ S. Our Uniqueness
Theorem says we should only need to specify one or the other at any given point on
the boundary. In fact, since the Uniqueness Theorem says that knowing one specifies
the other (knowing one gives the full solution, which determines the other), we don’t
have the freedom to specify both independently! Knowing both essentially requires
knowing the solution to the problem. For example, if we consider the simplest possible
case of specifying an equipotential on the boundary, then knowing the other boundary
term requires knowing the normal gradient of the potential at the boundary, which is
equivalent to knowing the surface charge density on the boundary. We would not be
able to guess this except in cases with sufficient symmetry.

Therefore, this is not a closed-form solution but rather an integral equation for V (~r ′)
for ~r ′ ∈ V(S) ∪ S: the boundary condition does not provide everything on the right
side, but, if we know the solution, it will satisfy the equation.

Note that, in the limit of S → ∞ and V (r →∞) ∝ 1/r → 0, the integrand of the
surface integral falls off as r−3 and so the surface term vanishes and we recover the
usual Coulomb’s Law expression for V (~r), Equation 2.51. That is, in a situation where
we know the behavior of both surface terms is trivial, the equation does provide a
closed-form expression for V (~r) in terms of ρ(~r).

So far, however, this integral equation is not very useful. Once we have introduced the
concept of Green Functions, we will see its utility.
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The Concept of Green Functions

Suppose we have the generalization of Poisson’s Equation, the linear partial
differential equation

O~r f (~r) = g(~r) (3.37)

where O~r is a linear partial differential operator taking derivatives with respect to the
coordinate ~r , f is a generalized potential, and g is a generalized source function.
Poisson’s Equation is an example, with O~r = −εo∇2, f (~r) = V (~r), and g(~r) = ρ(~r).
Is there a general approach for finding f given g?

Yes, there is, it is called the Green Function approach. The basic idea is to find the
“impulse” response function for the differential equation: the generalized potential one
gets if one has a point-like source. Given the impulse response function, and the
linearity of O~r , one can obtain the generalized potential for an arbitrary source
function by convolving the impulse response function with that source function.
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Mathematically, the impulse response function, or Green Function, is the function
G(~r , ~r ′) that solves the equation

O~r G(~r , ~r ′) = δ(~r − ~r ′) (3.38)

meaning that G(~r , ~r ′) calculates the generalized potential at the point ~r for a point
source of size q = 1 at the position ~r ′ (i.e., the total source charge recovered by
integrating over the source function is 1). If such a G exists, then, for an arbitrary
source function g(~r), G gives us the following solution f (~r) to the generalized linear
partial differential equation, Equation 3.37:

f (~r) =

∫
dτ ′G(~r , ~r ′) g(~r ′) (3.39)

We can check that Equation 3.37 is satisfied by this solution by applying the operator:

O~r f (~r) = O~r

∫
dτ ′G(~r , ~r ′) g(~r ′) =

∫
dτ ′

[
O~r G(~r , ~r ′)

]
g(~r ′) (3.40)

=

∫
dτ ′δ(~r − ~r ′) g(~r ′) = g(~r) (3.41)

Note how this check relied on the linearity of O~r , which allowed us to bring it inside
the integral. Assuming solutions to the generalized linear partial differential equation
are unique (true for Poisson’s Equation), the Green Function is the only solution we
need to find.
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General Discussion of Green Functions for Poisson’s Equation

Let’s consider the simplest possible case, that in which there is no bounding surface
and the potential vanishes at infinity. We can read the Green Function off by rewriting
our usual expression for the potential for this boundary condition, Equation 2.51, in
the same form as Equation 3.39:

V (~r) =
1

4π εo

∫
V

dτ ′
ρ(~r ′)

|~r − ~r ′| =

∫
V

dτ ′ G(~r , ~r ′) ρ(~r ′) (3.42)

Therefore, the Green Function for Poisson’s Equation is

G(~r , ~r ′) =
1

4π εo

1

|~r − ~r ′| if V = all space,V (r →∞)→ 0 (3.43)
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More generally — i.e., for a more complex boundary condition — Poisson’s Equation
implies that its Green Function must decompose into the form

G(~r , ~r ′) =
1

4π εo

1

|~r − ~r ′| + F (~r , ~r ′) with ∇2
~r F (~r , ~r ′) = 0 (3.44)

where the first term provides the right side of Poisson’s Equation but the second term
is not only allowed by Poisson’s Equation but, we will see, is crucial for satisfying the
boundary conditions for any situation except the trivial one noted above, that of the
potential vanishing at infinity. The F term plays multiple roles, depending on the type
of boundary condition, and we will explain those roles later. Finding G thus consists of
finding F .

We note that both G and F are symmetric in their arguments, G(~r ′, ~r) = G(~r , ~r ′)
and F (~r ′, ~r) = F (~r , ~r ′), for reasons we will explain later.
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Green Functions for Poisson’s Equation with Dirichlet or Neumann Boundary
Conditions

To apply the concept of Green Functions to Poisson’s Equation, we start by taking
φ(~r ′) = V (~r ′) and ψ(~r ′) = −εo G(~r , ~r ′) in Green’s Theorem (Equation 3.13) and
assuming

−εo∇2
~r ′G(~r , ~r ′) = δ(~r − ~r ′) (3.45)

Note that this equation does not match Equation 3.38, which had the Laplacian
acting on ~r , not ~r ′. We will recover Equation 3.38 later. We then apply the same
kinds of manipulations we did to obtain the integral equation for the potential,
Equation 3.36 (these manipulations rely on Equation 3.45), giving

V (~r) =

∫
V

dτ ′ ρ(~r ′) G(~r , ~r ′) (3.46)

+ εo

∮
S(V)

da′
[
G(~r , ~r ′) n̂(~r ′) · ~∇~r ′V (~r ′)− V (~r ′) n̂(~r ′) · ~∇~r ′G(~r , ~r ′)

]
As noted earlier, a differential equation is not alone sufficient; we need boundary
conditions to make G unique. For a particular type of boundary condition on V , we
can make the choice to impose a condition on G such that the integrand involving the
other type of boundary condition on V vanishes. If we do so, then our integral
equation for V reduces to an integration over the source distribution with the Green
Function and over the boundary condition with the Green Function (Neumann) or its
normal gradient (Dirichlet).
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We also see that, even though we assumed Equation 3.45 instead of Equation 3.38 for
the equation defining the Green Function, the result we obtain above is consistent
with Equation 3.39, which states that the source function ρ(~r ′) should be convolved
with the Green Function, integrating over its second argument, to obtain the potential
function in its first argument. We will resolve this apparent inconsistency shortly.

Note that the equation we obtain for V (~r) is different from the integral equation for
V (~r), Equation 3.36, because there we could not impose such a condition on V (~r),

since it is set by the situation under consideration, or on |~r − ~r ′|−1 (obviously).
G(~r , ~r ′) is, on the other hand, our tool for solving that integral equation, so we may
design the tool — by choosing boundary conditions for it — to do its job as long as it
respects its defining equation. (Again, the differential equation is insufficient — we
need to impose a boundary condition on G in order to make G ’s defining equation
solvable.)

We can be more specific about what we mean by “forcing the other BC term to
vanish” by picking a type of boundary condition:

I Dirichlet boundary condition

In this case, V (~r) is specified for ~r ∈ S. Therefore, n̂(~r) · ~∇~r V (~r) should be left
unspecified — it should be determined by the solution itself — so we need for it
to not appear in the integral equation. We can eliminate the term containing
this normal derivative if we require the Dirichlet Green Function, GD (~r , ~r ′), to
satisfy the boundary condition (in ~r ′, the variable for the defining PDE)

GD (~r , ~r ′) = 0 for ~r ′ ∈ S, ~r ∈ V,S (3.47)
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The boundary condition must be defined for all valid ~r , which consists of ~r ∈ S
and ~r ∈ V. This has the benefit of making Equation 3.46 usable for calculating
V (~r ∈ S) to check the solution is consistent with the boundary condition.

Using the interpretation implied by the convolution of the charge density with
the Green Function in Equation 3.46 (admittedly, an interpretation not
obviously consistent with the defining equation, Equation 3.45), the above
condition is equivalent to requiring that charge on the boundary (~r ′ ∈ S), given
by the normal gradient of V on the boundary, yield no contribution to the
potential elsewhere on the boundary (~r ∈ S) or in the volume (~r ∈ V). In one
sense, this is what we expect, as the Dirichlet boundary condition specifies V (~r)
on the boundary, so any charge that appears on the boundary to enforce that
boundary condition had better do so in a way that does not modify the
boundary condition.

However, in another sense, it is the opposite of what we expect: how can the
induced surface charge on the boundary not affect the potential on the surface
or in the volume? Wasn’t that the whole idea behind the method of images,
that one calculates the additional potential of the induced surface charge on the
boundary by replacing it with an image charge? We resolve this confusion below.

With the above condition, the solution for V (~r) reduces to

V (~r) =

∫
V

dτ ′ ρ(~r ′) GD (~r , ~r ′)− εo

∮
S(V)

da′V (~r ′) n̂(~r ′) · ~∇~r ′GD (~r , ~r ′) (3.48)
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This form allows us to resolve our confusion above:

I The first term calculates the potential due to the real charge, including
the potential due to the “image” charge induced by it on the boundary.
(We’ll start being sloppy about the use of the word “image” and drop the
quotes.) The latter contribution must come from this term (and not the
surface term) because the image charge and its potential ought to be
linear in the real charge density: there is no image charge without real
charge. The defining condition does not contradict this: GD (~r , ~r ′) 6= 0 is
allowed for ~r , ~r ′ ∈ V, GD (~r , ~r ′) = 0 is only required for ~r ′ ∈ S (and
~r ∈ V,S).

I The second term adds a contribution to the potential for surface charge
that appears on the boundary in order for the boundary to sit at the
nonzero potential given by the boundary condition. This is not image
charge because it is not induced by real charge and it appears even if there
is no real charge in V (this term’s presence does not depend on whether ρ
is present or not). In the case of the point charge near the sphere, this is
the charge q0 = 4π εo V0 R that appears so the sphere sits at V = V0. It
has nothing to do with the point charge q. The condition GD (~r , ~r ′) = 0
for ~r ′ ∈ S is the sensible condition that this additional surface charge does
not induce its own image charge. It is sort of amazing that this simple
term does all that work — figures out the surface charge required to
realize the Dirichlet boundary condition and calculates its potential in V.
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For a Dirichlet boundary condition, the symmetry of GD in its arguments can be
proven by applying Green’s Theorem with φ = GD (~r , ~x) and ψ = GD (~r ′, ~x),
where ~x is the variable that is integrated over, and using the defining equation,
Equation 3.45, and the defining boundary condition GD (~r , ~x) = 0 for ~x on the
boundary and ~r in the volume and on the boundary (which also implies the
same for GD (~r ′, ~x)). Symmetry of GD implies symmetry of FD given that their
difference is symmetric in ~r and ~r ′.

When this symmetry property is applied to Equation 3.45, and we also use the
symmetry of the delta function, Equation 3.38 is recovered (after relabeling
~r ↔ ~r ′). This resolves the apparent inconsistency between wanting the Green
Function to satisfy Equation 3.38 but having to assume Equation 3.45 at the
start to get Equation 3.46.

We can use the symmetry requirement to reinterpret the condition
GD (~r , ~r ′) = 0 for ~r ′ ∈ S. We can now think of the unit charge as being at
~r ∈ V,S and the potential as being calculated at ~r ′ ∈ S. This condition
requires that GD yields zero contribution to the potential on the boundary from
charges in the volume. The first half of this statement is the requirement that
image charge appear such that the sum of the potentials of the real charge in
the volume and its image charge do not modify the boundary condition. (We do
not talk about real charge on the boundary because we are considering only the
Dirichlet problem right now.)
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We can also now provide an interpretation of FD (~r , ~r ′) in the Dirichlet case.
Because 1) FD (~r , ~r ′) satisfies Laplace’s Equation in the volume V, and 2) when
added to the potential of a unit point charge at ~r ′ (the first term in our
expression relating GD and FD , Equation 3.44), the sum satisifies the specified
boundary condition on S, FD (~r , ~r ′) can be interpreted as the potential function
in the volume due to the image charge induced on the boundary by the real
charges in the volume with the boundary grounded. This image charge depends
on where the charges in the volume are, hence the integration over ~r ′ ∈ V to
calculate this effect of this term.

What remains a bit mysterious or magical is how the second term in
Equation 3.48 works. Clearly, that term calculates the surface charge density on
the boundary needed for the Dirichlet boundary condition to be satisfied and
then calculates the potential in the volume due to that surface charge density. It
requires both terms in GD (i.e., |~r − ~r ′|−1 and FD ) to do that. It seems this
part just falls out of the mathematics.
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I Neumann boundary condition

In this case, n̂ · ~∇V (~r) is specified for ~r ∈ S, so we need to render irrelevant the
term containing V (~r) because we should not have to simultaneously specify it.

While we might be inclined to require n̂(~r ′) · ~∇~r ′GN (~r , ~r ′) = 0 for ~r ′ ∈ S to
make this happen, this requirement is not consistent with Equation 3.45 defining
G : if one integrates this equation for GN over ~r ′ ∈ V(S), and turns it into a
surface integral using the divergence theorem, one obtains the requirement

−εo

∮
S(V)

da′ n̂(~r ′) · ~∇~r ′GN (~r , ~r ′) = 1 for ~r ∈ V,S

Thus, the simplest condition we can impose on GN is

n̂(~r ′) · ~∇~r ′GN (~r , ~r ′) = −
[
εo

∮
S(V)

da′

]−1

for ~r ∈ V,S, ~r ′ ∈ S (3.49)
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Applying this condition, the solution for V (~r) reduces to

V (~r) =

∫
V

dτ ′ ρ(~r ′) GN (~r , ~r ′) + εo

∮
S(V)

da′GN (~r , ~r ′) n̂(~r ′) · ~∇~r ′V (~r ′) + 〈V (~r)〉S(V)

with 〈V (~r)〉S(V) ≡
∮
S(V) da′ V (~r ′)∮
S(V) da′

(3.50)

While V (~r) on the boundary has not been completely eliminated, its only
appearance is via its average value on the boundary. This makes sense, as the
Neumann boundary condition does not specify the potential offset since it only
specifies derivatives of the potential. The appearance of this term reflects the
freedom we have to set the potential offset for problems with Neumann
boundary conditions. Recall that the Uniqueness Theorem only showed
uniqueness up to an overall offset.

What is the interpretation of a Neumann Green Function? Since
n̂(~r ′) · ~∇~r ′V (~r ′) specifies the surface charge density on the boundary, GN (~r , ~r ′)
simply calculates the potential at a point ~r in the volume due to this boundary
surface charge density at ~r ′. Note that GN is convolved with the volume charge
density and the surface charge density in the same way, reinforcing this
interpretation. A Neumann Green Function thus has a simpler interpretation
than a Dirichlet Green Function. There is no interpretation of GN or FN as
calculating contributions from image charge.
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What is the interpretation of FN (~r , ~r ′) for the Neumann case? One can show
that it has no effect (one needs to make use of symmetry of FN in its
arguments, see below). Not that it is identically zero, but that all terms
involving it vanish. This makes sense: if we specify the surface charge density
everywhere in the volume and on the surface, we should be able to just use
Coulomb’s Law to calculate the potential everywhere, which just requires the
Coulumb’s Law part of GN .

The triviality of the Neumann Green Function may seem to render pointless the
extended discussion leading to this point. Recall, however, that Dirichlet
boundary conditions are far more common: we tend to specify potentials on the
boundary in real situations, not the charge density. We derived the Neumann
Green Function for completeness, not because it is really needed.

For a Neumann boundary condition, the symmetry of GN and FN is not a result
of the boundary condition, but it may be assumed without loss of generality; see
K.-J. Kim and J. D. Jackson, Am. J. Phys. 61:1144 (1993). As with the
Dirichlet Green Function, this symmetry property allows Equation 3.38 to be
obtained from the assumed defining equation, Equation 3.45, closing the loop
on that apparent inconsistency.

To make further progress in obtaining a functional form for the Green Function, we
must specify the boundary conditions in more detail. We will consider examples of this
next.
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Obtaining Green Functions from the Method of Images

We mentioned earlier that the component FD (~r , ~r ′) of the full Dirichlet Green
Function GD (~r , ~r ′) can be determined by the method of images in some cases. Let’s
see how this works for the two cases we have considered:

I Point charge near grounded conducting plane

The full potential at a point ~r for the point charge at d ẑ is

V (~r) =
1

4π εo

[
q

|~r − d ẑ| −
q

|~r + d ẑ|

]
(3.51)

We can see by inspection that the Dirichlet Green Function is given by taking
q = 1 and by replacing d ẑ in the first term with ~r ′ and −d ẑ in the second
term with ~r ′ mirrored through the x ′y ′ plane:

GD (~r , ~r ′) =
1

4π εo

[
1

|~r − ~r ′| −
1

|~r − (x ′x̂ + y ′ŷ − z ′ẑ)|

]
(3.52)

One can test this by plugging into Equation 3.47 with ρ(~r ′) = q δ(~r ′ − d ẑ).

The second term accounts for the fact that induced charge appears on the
grounded conducting plane and calculates the contribution to the potential due
to it; it is the F (~r , ~r ′) term while the first term is the usual Coulomb’s Law term.
The first term solves Poisson’s Equation while the second term solves Laplace’s
Equation. Both terms depend on the position of the point charge at ~r ′.
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This GD is not manifestly symmetric under exchange of ~r and ~r ′, but one can
rewrite it so it is:

GD (~r , ~r ′) =
1

4π εo

[
1

[(x − x ′)2 + (y − y ′)2 + (z − z ′)2]1/2

− 1

[(x − x ′)2 + (y − y ′)2 + (z + z ′)2]1/2

]

One can now also see how G(z = 0, ~r ′) = 0 always: the two terms become
identical in this case.

It is also important to notice that, for our boundary condition V (z = 0) = 0,
there is no term in V (~r) for the surface term because it vanishes in this case.
That is, in the Dirichlet case, we expect a surface term from Equation 3.48

−εo

∮
S(V)

da′V (~r ′) n̂(~r ′) · ~∇~r ′GD (~r , ~r ′) (3.53)

Since the Dirichlet boundary condition is V (z = 0) = 0, this integral vanishes
and we indeed only have the volume integral term from Equation 3.48
convolving the original charge distribution with GD .
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I Point charge near conducting plane held at V0

Suppose our boundary condition had instead been V (z = 0) = V0, a constant
(and also V (r →∞) = V0 for consistency; we will elaborate on this later). Is
the above Green Function still valid? Yes! We have not changed the charge
distribution in V or the type of boundary condition; all we have done is change
the value of the boundary condition. We can check that the new value of the
Dirichlet boundary condition is respected when we apply GD derived on the
basis of the V0 = 0 case.

This is an important point about the Dirichlet Green Function: while one may
find it using a special case, it is, by construction, valid for any Dirichlet
boundary condition for the same geometry. It does not care about the details of
either the charge distribution or the boundary condition. Of course, the special
case used must be general enough that one can find the entire Green Function.
When we later do an example using Separation of Variables in Cartesian
coordinates to solve Laplace’s Equation, we will see how that example
determines a portion of the Dirichlet Green Function but not all of it.

Returning to the matter at hand: because V (~r ′) = V0 for ~r ′ ∈ S(V), we can
pull it outside the integral, so we just have the surface integral of the normal
gradient of GD over the surface:

−εo

∮
S(V)

da′V (~r ′) n̂(~r ′) · ~∇~r ′GD (~r , ~r ′) = −εo V0

∮
S(V)

da′n̂(~r ′) · ~∇~r ′GD (~r , ~r ′)
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We recall that, by definition, GD (~r , ~r ′) is the potential at the point ~r due to a
point charge of unit magnitude (q = 1) at ~r ′. By the symmetry of its
arguments, it is also the potential at the point ~r ′ due to a unit point charge at
~r . Earlier, when we did the method of images solution for the grounded
conducting plane, we calculated the surface charge density at ~r due to the point
charge at d ẑ from −εo ~∇~r V (~r , d ẑ). In this case, −εo ~∇~r ′GD (~r , ~r ′) is the
surface charge density at ~r ′ due to a unit charge at ~r . Since V0 has come
outside the integral, our surface integral is now just the integral of this surface
charge density over the boundary, or the total induced charge on the boundary.
We calculated this when we did the method of images and found it was
Qind = −q, so, in this case, it will be −1. That is:

−εo

∮
S(V)

da′V (~r ′) n̂(~r ′) · ~∇~r ′GD (~r , ~r ′) = −V0

∮
S(V)

da′σind (~r ′, q = 1)

= −V0Qind (q = 1) = V0 (3.54)

So, we see that the surface term serves to add the potential offset that the
boundary condition V (z = 0) = V0 requires. Therefore, the solution is now

V (~r) =
1

4π εo

[
q

|~r − d ẑ| −
q

|~r + d ẑ|

]
+ V0 (3.55)

This solution has V (z = 0) = V0 and V (r →∞) = V0.
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This example serves to highlight the fact that one has to be careful about the
self-consistency of boundary conditions, especially when they involve a condition
at infinity. Consider two alternative, invalid BCs:

I One cannot set V (z = 0) = V0 and V (r →∞) = 0 because that is not
self-consistent for z = 0, (x , y)→∞: should the BC be V0 or 0 for this
part of the boundary?

I One cannot even require V (z = 0) = V0 and V (z →∞) = 0 because it

leaves unspecified the boundary condition for V (z,
√

x2 + y2 →∞). If
one then thinks about what type of BC to specify there, one finds that it
should be impossible to specify something that is consistent with
V (z →∞) = 0. Think about the case of the conductor held at V0 and
no point charge. We know the solution is a uniform sheet of surface
charge on the conductor, and we know that the field is then a constant
~E(~r) = (σ/εo ) ẑ and the potential is V (~r) = −(σ/εo ) z. This potential
does not vanish as z →∞. If one knows that a set of boundary
conditions is not self-consistent for the case of no point charge, then
linearity/superposition tells us there is no way to fix the inconsistency by
adding charges to V: one would have to add a potential that is also not
self-consistent to cancel out the self-inconsistency of the q = 0 potential!
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I Point charge near grounded conducting sphere

The full potential at a point ~r for the point charge at a ẑ was (Equation 3.25):

V (~r) =
1

4π εo

[
q

|~r − a ẑ| −
q R

a

|~r − R2

a
ẑ|

]
(3.56)

Thus, the Dirichlet Green Function is given by letting ~r ′ = a ẑ and taking q = 1:

GD (~r , ~r ′) =
1

4π εo

 1

|~r − ~r ′| −
R/r ′∣∣∣~r − ~r ′ R2

(r ′)2

∣∣∣
 (3.57)

Again, the second term accounts for the potential due to the charge induced on
the surface of the sphere and is the term that solves Laplace’s Equation in this
situation (the FD (~r , ~r ′) term). And again, one can this test form for GD by
plugging into Equation 3.47 with ρ(~r ′) = q δ(~r ′ − a ẑ).

Section 3.4.5 Obtaining Green Functions from the Method of Images Page 151



Section 3.4 Advanced Electrostatics: Formal Solution to Poisson’s Equation: Green Functions

It is perhaps not so obvious that the second term in this Green Function is
symmetric in its arguments. Let’s rewrite it:

R/r ′

|~r − ~r ′ R2

(r ′)2 |
=

R

|r̂ r r ′ − R2 r̂ ′| =
R√

(r r ′)2 + R4 − 2 r r ′R2 r̂ · r̂ ′
(3.58)

Now the symmetry is manifest.

The same point about the surface integral term as for the conducting plane
holds here: that term vanishes because V (~r ′) = 0 for ~r ′ ∈ S.
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I Point charge near conducting sphere held at fixed potential

In this case, we can see the effect of the surface integral term in Equation 3.48
because V (~r) on the boundary does not vanish. The integral term is, from
Equation 3.48:

−εo

∮
S(V)

da′ V (~r ′) n̂(~r ′) · ~∇~r ′GD (~r , ~r ′) (3.59)

When we encountered this nonvanishing surface term for the prior case of a
point charge near a conducting plane, we recognized that V (~r ′) = V0 could be
pulled outside the integral and that the integral of the normal gradient of the
Green Function gives the total charge induced on the boundary for a unit charge
at ~r . To calculate that total induced charge, we invoke the theorem (based on
Gauss’s Law) we discussed earlier. In this case, the surface encloses the image
charge, so the total induced charge is equal to the image charge. That is:

−εo

∮
S(V)

da′V (~r ′) n̂(~r ′) · ~∇~r ′GD (~r , ~r ′) = −V0Qind = −V0qimage = V0
R

r

(3.60)

This is again just the potential due to a point charge at the origin whose
magnitude is such that the potential at radius R is V0.
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With this integral evaluated, the full solution for V (~r) is given by summing the
term that involves the integral with ρ, which we calculated already for the
grounded sphere case, with the boundary term:

V (~r) =
q

4π εo

[
1

|~r − aẑ| −
R/a

|~r − R2

a
ẑ|

]
+ V0

R

r

This is what we found earlier when we discussed the same problem using the
method of images.

I Point charge in the presence of a charged, insulated, conducting sphere

The prior situation is identical to this one: specifying the charge on a conductor
is the same as specifying its potential. So the result for V (~r) is the same, where
we must take V0 = (Q + (R/a)q)/(4π εo R). Note that, even though we are
talking about a boundary condition in which charge is specified, it is not a
Neumann boundary condition because we do not specify σ(~r ′ ∈ S), we are still
effectively specifying V (~r ′ ∈ S). This case is like the third special case of the
Uniqueness Theorem we discussed earlier.
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Introduction to Separation of Variables

General Points on Separation of Variables

Griffiths makes this seem harder than it is. In separation of variables, we assume that
the solution of Laplace’s Equation factors into functions of single coordinates. This
allows us to reduce the partial differential equation to a set of ordinary differential
equations, which can be solved by standard techniques. Constants of integration
appear that help to define the solutions. We apply the boundary conditions as defined
by the voltages and/or the charge densities (normal derivative of voltage) at the
boundaries. Once we find a set of solutions, we know from Sturm-Liouville theory that
they form a complete set, so we are assured that we can write any solution to
Laplace’s Equation for the given boundary conditions in terms of these solutions.

We will only develop separation of variables for Laplace’s Equation and, in the near
term, we will only apply it to solving problems with specific types of boundary
conditions rather than trying to use it to find the F piece of the Green Function.
(Recall, F satisfies Laplace’s Equation while G satisfies Poisson’s Equation.) We will
see later, at the tail end of our discussion of separation of variables in spherical
coordinates, that this technique will actually be sufficient to obtain the Green
Function for an arbitrary geometry, which then provides us the solution to Poisson’s
Equation. (One will be able to see that it is not feasible to do separation of variables
for Poisson’s Equation in the same way we do it for Laplace’s Equation: the process
very much relies on the vanishing of one side of the equation!)
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Digression on Orthonormal Functions

The general topic of the properties of solutions to second-order linear differential
equations is beyond the scope of this course; it falls under the name Sturm-Liouville
theory, and it is covered in ACM95/100. We will simply quote some results that are
important for this course.

Sturm-Liouville theory consists of recognizing that the second-order linear ordinary
differential equations we encounter in many places in this course are self-adjoint
(Hermitian) operators on the Hilbert space of functions that satisfy the differential
equation. You know from linear algebra that Hermitian operators are guaranteed to
have a set of eigenvalues and eigenvectors (in this case, eigenfunctions), and that the
eigenvectors form an orthonormal basis for the space under consideration (here, again,
the space of functions that satisfy the differential equation). The same results apply
here. What this means is that, for such equations, there are a set of solution functions
{fp(w)} that are the eigenfunctions of the operator, and there are corresponding
eigenvalues {λp}. These eigenfunctions form a complete, orthonormal set. (Note: w
is intended to represent any coordinate, one- or multi-dimensional.) The original
differential equation (with differential operator Ow and the eigenvalue-eigenvector
equation are:

Ow f (w) = k f (w) Ow fp(w) = λp(w) (3.61)

where k is initially an undetermined constant; solving the the differential equation
determines the allowed values of k, the {λp}, and the corresponding solutions {fp(w)}.
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Orthonormality is written mathematically as∫ t

s
dw f ∗p (w) fq(w) = δpq (3.62)

where integration over the interval of interest [s, t] is the Hilbert space inner product.

Completeness is defined to be∑
p

f ∗p (w ′) fp(w) = δ(w ′ − w) (3.63)

where the sum is over all eigenfunctions of the differential equation.
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Completeness, as its name indicates, enables us to show that any function g(w) on
[s, t] can be expanded in terms of the eigenfunctions {fp}:

g(w) =

∫ t

s
dw ′ g(w ′) δ(w ′ − w) =

∫ t

s
dw ′ g(w ′)

∑
p

f ∗p (w ′)fp(w)

=
∑

p

fp(w)

∫ t

s
dw ′ f ∗p (w ′)g(w ′)

That is, we have the expansion:

g(w) =
∑

p

Apfp(w) (3.64)

with coefficients given by

Ap =

∫ t

s
dw ′ f ∗p (w ′) g(w ′) (3.65)

We could have derived Equation 3.65 also by applying orthornomality to the expansion
Equation 3.64; this is the usual way we think of finding the {Ap} as we will see below.
They are of course equivalent derivations.
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Separation of Variables in Cartesian Coordinates

We assume that the function V (~r) can be factorized as

V (~r) = X (x) Y (y) Z(z) (3.66)

Plugging this into Laplace’s Equation, we obtain

Y (y) Z(z)
d2X

dx2
+ X (x) Z(z)

d2Y

dY 2
+ X (x) Y (y)

d2Z

dz2
= 0

1

X (x)

d2X

dx2
+

1

Y (y)

d2Y

dY 2
+

1

Z(z)

d2Z

dz2
= 0 (3.67)

We have three terms, the first a function of x , the second of y , and the third of z.
Given these mismatched dependences, the only way the equation can hold is if each
term is a constant. That is, it must hold that

1

X (x)

d2X

dx2
= K1

1

Y (y)

d2Y

dY 2
= K2

1

Z(z)

d2Z

dz2
= K3 (3.68)

with K1 + K2 + K3 = 0.
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We know that the solution to these ordinary differential equations are exponentials,

X (x) = A exp(x
√

K1) + B exp(−x
√

K1) (3.69)

Y (y) = C exp(y
√

K2) + C exp(−y
√

K2) (3.70)

Z(z) = E exp(z
√
−(K1 + K2)) + F exp(−z

√
−(K1 + K2)) (3.71)

We have not specified which of K1, K2, and K3 are positive and which are negative
(clearly, they cannot all be the same sign). That will be determined by the boundary
conditions. Note that we are also neglecting linear solutions that also satisfy the
individual ordinary differential equations; we will see they are not necessary in the
examples we consider here (though they may be needed more generally).

At this point, we cannot make further generic progress; we need to apply a set of
boundary conditions. These will place constraints on the allowed values of the
exponents and coefficients and restrict the family of solutions. There are a number of
examples in Griffiths. To avoid duplication, we use a different one here from Jackson
§2.9.
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Example 3.4: Empty box with five walls grounded and one held at a potential

Consider a box with side lengths a, b, and c in the x , y , and z dimensions and with
one corner at the origin. The boundary conditions are

V (x = 0) = 0 V (y = 0) = 0 V (z = 0) = 0 (3.72)

V (x = a) = 0 V (y = b) = 0 V (z = c) = φ(x , y) (3.73)

where φ(x , y) is a function that is given. In SoV, we always apply the homogeneous
(vanishing RHS) BCs first because, we will see, they restrict the functional form of the
solutions. The homogeneous BC in the ith dimension (e.g., y) can only be satisfied if
the ith function (e.g., Y (y)) satisfies it alone because it must be satisfied for all
values of the other coordinates. Let’s do x , y first for convenience (with
foreknowledge of solution):

X (0) = A + B = 0 X (a) = A exp(a
√

K1) + B exp(−a
√

K1) = 0 (3.74)

Y (0) = C + D = 0 Y (b) = C exp(b
√

K2) + D exp(−b
√

K2) = 0 (3.75)

Reducing,

A
[
exp(a

√
K1)− exp(−a

√
K1)
]

= 0 (3.76)

C
[
exp(b

√
K2)− exp(−b

√
K2)
]

= 0 (3.77)
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There is no solution to these equations for K1 > 0 and K2 > 0: the unit-normalized
decaying and rising exponentials are only equal when their arguments both vanish, and
they do not. Therefore, let’s take K1 = −α2 and K2 = −β2 so these become
oscillating exponentials. We thus obtain the conditions

sin(α a) = 0 sin(β b) = 0 (3.78)

This places conditions on the allowed values of α and β:

αn =
n π

a
βm =

m π

b
n, m positive integers (3.79)

where n and m may only be positive integers because negative values are redundant
with the positive ones and n = 0 and m = 0 yield vanishing functions. Thus, we have

X (x) =
∞∑

n=1

An sinαnx Y (y) =
∞∑

m=1

Cm sinβmy (3.80)

where the {An} and {Cm} are constants to be determined. These solutions clearly
respect the V = 0 boundary conditions at x = 0, a and y = 0, b because they vanish
at those points. There is no relationship between n and m or between αn and βm at
this point.
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Now, let’s apply the remaining homogeneous BC to Z(z). At z = 0, we have

Z(0) = E + F = 0 =⇒ F = −E (3.81)

Therefore, Z(z) is of the form

Z(z) = Enm

[
exp(z

√
α2

n + β2
m)− exp(−z

√
α2

n + β2
m)

]
(3.82)

= E ′nm sinh(γnmz) with γnm =
√
α2

n + β2
m (3.83)

(sinh not sin because we know α2
n + β2

m > 0.) Note how the last BC only determined
the form of Z(z) while its eigenvalues were determined by the prior two BC.

Our full solution thus has the form

V (x , y , z) =
∞∑

n,m=1

Vnm(x , y , z) (3.84)

=
∞∑

n,m=1

Anm sin(αnx) sin(βmy) sinh(γnmz) with γnm =
√
α2

n + β2
m

where we have combined all the arbitrary coefficients Am, Cn, and E ′nm into a single
coefficient Anm. Each Vnm(~r) satisfies all five homogeneous BCs, thus the solution so
far (without the last BC applied) is the arbitrary sum over all such Vnm(~r).
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Now, we want to apply the last boundary condition, V (x , y , z = c) = φ(x , y). How?
Not the same way as we applied the previous ones. The prior boundary conditions
were homogeneous, meaning that they forced the solution to vanish on some boundary
(not all boundaries, otherwise the solution would vanish by the “no extrema”
property). The remaining one is inhomogeneous because it requires the solution to
take on a particular functional form on a boundary. It must be treated differently, for
two reasons.

I The first involves linearity and uniqueness. Because the right-hand side of a
homogeneous BC is zero, the BC is satisfied by any linear combination of
functions that satisfy the BC. The same is not true of inhomogeneous BC. If it
were possible for two different functions to satisfy the inhomogeneous BC, then
only a subset of linear combinations of them would satisfy the same BC: the
linear combinations in which the coefficients sum to unity. This condition
violates linearity. The only resolution is for there to be precisely one solution to
the inhomogeneous BC. This requirement is consistent with uniqueness: the
inhomogeneous BC is applied last, and it completes the application of the BC,
so the solution should be unique once it is applied.

I From the purely calculational point of view, requiring the solution for a given n,
m to satisfy the inhomogeneous boundary condition would imply

Vnm(x , y , z = c) = φ(x , y) (3.85)

Anm sin(αnx) sin(βmy) sinh(γnmc) = φ(x , y) (3.86)

There simply is not enough freedom in the functional form on the left to satisfy
the boundary condition for arbitrary φ(x , y).
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The only way to have enough freedom to satisfy the inhomogeneous boundary
condition is to consider a linear combination of the individual n, m:

V (~r) =
∞∑

n,m=1

Anm sin(αnx) sin(βmy) sinh(γnmz) (3.87)

where Anm are now constants to find based on requiring the above linear combination
solution satisfies the inhomogeneous boundary condition at z = c, which now becomes

φ(x , y) = V (x , y , z = c) =
∞∑

n,m=1

Anm sin(αnx) sin(βmy) sinh(γnmc) (3.88)

This condition will let us determine the Anm, but how, and why are we certain they
exist? We make use of the theory of orthonormal functions we cited earlier.
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We will use the fact (not proven here) that the functions {
√

2/a sin(αnx)} for n ≥ 1
form a complete, orthonormal set on the x ∈ [0, a] interval (with the given boundary

conditions at x = 0, a), as do {
√

2/b sin(βny)} for m ≥ 1 on y ∈ [0, b] (again, with
BC). Therefore, we may recover the Anm by multiplying by them and integrating:∫ a

0
dx

∫ b

0
dy φ(x , y)

√
2

a
sin(αpx)

√
2

b
sin(βqy)

=

∫ a

0
dx

∫ b

0
dy

∞∑
n,m=1

Anm sinh(γnmc) sin(αpx)

√
2

a
sin(αnx) sin(βmy)

√
2

b
sin(βqy)

=
∞∑

n,m=1

Anm sinh(γnmc)

√
a

2
δpn

√
b

2
δqm =

√
a b

2
Apq sinh(γpqc) (3.89)

Now, be aware that we did more work than necessary above. Once we are told that
the {

√
2/a sin(αnx)

√
2/b sin(βmy)} form an orthonormal set, we do not need to do

the integrals on the right-hand side! We only need write the right-hand side of the
original equation in terms of the orthonormal functions, then use orthonormality
(Equation 3.65) to obtain the equations for the individual coefficients; i.e.:

φ(x , y) =

√
a b

4

∞∑
n,m=1

Anm

√
2

a
sin(αnx)

√
2

b
sin(βmy) sinh(γnmc) (3.90)

=⇒
∫ a

0
dx

∫ b

0
dy

√
2

a
sin(αpx)

√
2

b
sin(βqy)φ(x , y) =

√
a b

4
Apq sinh(γpqc) (3.91)
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Next, we move the coefficients to one side to obtain (replacing pq with mn):

Anm =
1

sinh(γnmc)

∫ a

0
dx

∫ b

0
dy

2

a
sin(αnx)

2

b
sin(βmy)φ(x , y) (3.92)

Our full solution for the applied set of boundary conditions is

V (~r) =
4

a b

∞∑
n,m=1

sin(αnx) sin(βmy)
sinh(γnmz)

sinh(γnmc)

∫ a

0
dx ′
∫ b

0
dy ′φ(x ′, y ′) sin(αnx ′) sin(βmy ′)

(3.93)

Summary: The homogeneous boundary conditions restricted the solutions to a specific
orthonormal set, and the single inhomogeneous boundary condition sets the
coefficients of the appropriate linear combination of that orthonormal set.

A good exercise is to write down the solutions for the five other inhomogeneous
boundary condition cases (especially the ones with the inhomogeneous condition on
the x , y , or z = 0 planes) “by inspection” — i.e., by simply changing the solution we
already have by replacing z with x , y , or a− x , b − y , or c − z — rather than by
rederiving. Clearly, these other problems are not different in any conceptual way, they
are only different calculationally, and only barely. There is no reason to redo all that
calculation from scratch!
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If we had used a more general boundary condition, specifying V to be nonzero on all
six sides of the box, then we could solve the similar problem for each of the six faces
independently (i.e., let V be nonzero and arbitrary on that face and zero on all the
other faces) and then sum the solutions since each individual solution does not affect
the capability of the other solutions to satisfy their boundary conditions. (Of course,
the boundary conditions themselves must be consistent with each other at the edges
and corners where they meet.) In fact, we would have to do this; the separation of
variables technique provides no way to satisfy two generic, independent
inhomogeneous boundary conditions simultaneously. Rather, to solve problems
involving multiple inhomogeneous boundary conditions, one must use the property
that an inhomogeneous boundary condition solution can always be summed with an
arbitrary number of homogeneous boundary condition solutions and still satisfy the
inhomogeneous boundary condition.

It is interesting to consider the intermediate case, consisting of the same geometry
with constant potentials φ0 at the z = c face and −φ0 at the z = 0 face. As stated
above, one can solve the two cases of φ0 and −φ0 separately and add them. One can
also solve the problem directly by simultaneously applying the two boundary
conditions, and one can show that the two solutions are the same (using some
hyperbolic trigonometry identities). This is possible because the
double-inhomogeneous boundary condition in this case is very simple, having only one
free parameter, φ0. A generic double-inhomogeneous boundary condition problem
cannot be solved in this way.
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Referring back to our discussion of Green Functions, the above solution is the surface
term in Equation 3.48 for the particular boundary condition we have applied. By
comparison of the two expressions, we infer (not derive!)

− εo n̂(~r ′) · ~∇~r ′GD (~r , ~r ′ = x ′x̂ + y ′ŷ + cẑ) (3.94)

=
4

a b

∞∑
n,m=1

sin(αnx) sin(βmy)
sinh(γnmz)

sinh(γnmc)
sin(αnx ′) sin(βmy ′)

Note that this expression does not fully specify GD (or FD )! The above information is
sufficient for the particular physical situation we have set up, which consists of no
physical charge in the volume and the above boundary condition, because:

I The term consisting of the integral of the charge density in the volume
convolved with GD is zero in this case because the charge density vanishes in
the volume. Therefore, we do not need to know GD (or FD ) completely.

I The above surface term is the only one needed because V = 0 on the other
boundaries.
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For the more general problem of an arbitrary charge distribution in the volume and
arbitrary Dirichlet boundary conditions on the surfaces, we would need to find the full
GD . It may seem like one could do as suggested earlier, finding the solution for each
option for which face is held at nonzero potential, then using the results analogous to
the above as six Neumann boundary conditions on GD , and applying separation of
variables to find GD . But one would have to require that GD solve Poisson’s Equation
for a unit point charge, not Laplace’s Equation. This, as we noted earlier, is not
feasible with separation of variables because of the nonzero right side of the equation.
There is a way to deal with this, which we will show a bit later when we develop the
spherical harmonic expansion for the Green Function in spherical coordinates.

Another approach that does work would be the method of images with the condition
V = 0 on all the surfaces. It is left as an exercise for the reader to think about what
set of image charges is appropriate; the situation gets complicated for a charge at an
arbitrary position in the box, but it is solvable. Certainly, from the resulting GD , we
could compute the normal gradient of GD on any surface and thus obtain the general
solution for V in the volume for any Dirichlet boundary condition. We should find that
the normal gradient of GD on the z = c surface is what is given above.

It may seem like separation of variables is unsatisfactory for this reason — the
procedure does not give you the full Green Function, while the method of images
does. But, as we have seen, the method of images is not a systematic procedure —
one has to guess the correct image charge distribution. By contrast, separation of
variables is an entirely algorithmic procedure to give you a solution if a separable one
exists for the particular boundary condition you are applying. It is less general but
more reliable. More importantly, we will show later how, by applying separation of
variables in a more sophisticated way, we can in fact find the full Green Function.
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There is, nevertheless, no guarantee that there will be a separable solution; this
depends on the geometry of the boundary conditions. The boundary conditions need
to respect the separability assumed. For example, a boundary condition on a spherical
boundary would not likely yield a solution via separation of variables in Cartesian
coordinates!

Note also that the method of images technique is not appropriate for a Neumann
boundary condition because the method of images solution generally solves the V = 0
Dirichlet BC problem. One needs a technique like separation of variables for such
cases.
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Separation of Variables in Spherical Coordinates: General Theory

Doing the Separation in Spherical Coordinates

We do this in a slightly more general manner than Griffiths, dropping the assumption
of azimuthal symmetry until it is time to solve the separated differential equations.

Laplace’s Equation in spherical coordinates is:

1

r2

∂

∂r

(
r2 ∂V

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂V

∂θ

)
+

1

r2 sin2 θ

∂2V

∂φ2
= 0 (3.95)

If we assume a separable form

V (r , θ, φ) = R(r) Θ(θ) Φ(φ) (3.96)

then, after dividing through by V (r , θ, φ) and multiplying by r2 sin2 θ, we have

sin2 θ

[
1

R(r)

d

dr

(
r2 dR

dr

)
+

1

Θ(θ)

1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)]
+

1

Φ(φ)

d2Φ

dφ2
= 0 (3.97)
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We see that the first term depends only on r and θ while the second term depends
only on φ, so we can immediately assume they are each equal to a constant:

1

Φ(φ)

d2Φ

dφ2
= −m2 (3.98)

The choice of the form of the constant is motivated by what will come next, but we
can see why it needs to be of this form. As we saw in Cartesian coordinates, the above
differential equation is solved either by growing/decaying exponentials (right side
positive) or oscillating exponentials (right side negative). Since φ is a coordinate that
repeats on itself (φ = 2 n π are the same physical coordinate) the solutions Φ(φ) must
also be periodic, forcing the choice of the oscillating exponential. (For the same
reason, the linear solutions we ignored in the Cartesian case are disallowed here.) We
saw before that it is convenient to define the constant to incorporate a squaring.

The solutions of this equation are straightforward:

Φ(φ) = A exp(i m φ) + B exp(−i m φ) (3.99)

Periodicity in φ with period 2π requires m be an integer. One can either require
m ≥ 0 and keep the {Am} and {Bm} or allow m to be any integer and drop the {Bm}
(which would be redundant with the {Am} for m < 0). In either case, only one of A0

or B0 is required.
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Returning to the other term, we now have

sin2 θ

[
1

R(r)

d

dr

(
r2 dR

dr

)
+

1

Θ(θ)

1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)]
= m2 (3.100)

1

R(r)

d

dr

(
r2 dR

dr

)
+

[
1

Θ(θ)

1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
− m2

sin2 θ

]
= 0 (3.101)

Now, we see that the first term depends only on r and the second only on θ, so we can
separate again by setting the two terms equal to constants that sum to zero. Here, we
rely on prior knowledge of the result to choose the constant to be `(`+ 1) so that

1

R(r)

d

dr

(
r2 dR

dr

)
= `(`+ 1) (3.102)

1

Θ(θ)

1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
− m2

sin2 θ
= −`(`+ 1) (3.103)

Note that the radial equation does not depend on m. This implies that the R(r)
functions will not depend on the azimuthal properties of the problem, in particular
whether it has azimuthal symmetry. But R(r) depends on `, so it will depend on the
polar properties of the problem. Θ(θ) depends on ` and m, so its behavior depends on
both the polar and azimuthal properties of the problem. Φ(φ) looks like it may only
depend on the azimuthal properties because it depends only on m, but m is tied to `
through the polar equation, so there will be some relationship.
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Solving the Radial Equation

Here, we add another item to our “bag of tricks” and define U(r) by R(r) = U(r)/r
and plug in. (This is motivated by the r2 that the second d/dr must act on: assuming
this dependence gets rid of the extra terms arising because of that factor.) We find

d2U

dr2
− `(`+ 1)

r2
U(r) = 0 (3.104)

Since the two derivatives would reduce the exponent of a power-law solution by 2, and
the second term does the same by dividing by r2, the above equation suggests U(r) is
a power law in r . (Or, try making it work with a transcendental function: you can’t.)
If we plug in such a form U(r) = ra, we find

a(a− 1)ra−2 − `(`+ 1)ra−2 = 0 =⇒ a1 = `+ 1 or a2 = −` (3.105)

=⇒ R(r) =
U(r)

r
= A ra1−1 + B ra2−1 = A r` +

B

r`+1
(3.106)

There is no constraint on ` yet.
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The Polar Equation and the Generalized Legendre Equation

We may rewrite the polar angle equation as

1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
+

[
`(`+ 1)− m2

sin2 θ

]
Θ(θ) = 0 (3.107)

Motivated by the fact that sin θ dθ = −d(cos θ), we add another trick to our bag of
tricks by writing

x = cos θ Θ(θ) = P(cos θ) = P(x) 1− x2 = sin2 θ (3.108)

Then we may rewrite the polar differential equation as

d

dx

[
(1− x2)

dP

dx

]
+

[
`(`+ 1)− m2

1− x2

]
P(x) = 0 (3.109)

This is called the generalized Legendre equation.
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As you have seen in ACM95/100, differential equations of this type can be solved by
assuming the solution is a polynomial in x and requiring termination after a finite
number of terms. That is, one assumes

Pm
` (x) =

∞∑
k=1

ak xk (3.110)

and then, plugging the above form into the differential equation, one requires the
series to terminate (ak = 0 for some k). This condition forces ` to be a nonnegative
integer and −` ≤ m ≤ `. (We already know m is an integer to ensure Φ(φ) is
single-valued.) These polynomials are the associated Legendre polynomials.

Mathematically, there should be a second solution for each `,m because the equation
is second order. These are the solutions one finds by not requiring termination but
simply convergence for −1 < x < 1 (corresponding to 0 < θ < π). If one has a
geometry that excludes the z-axis (where these solutions diverge), these solutions
must be considered. If the z-axis is in the space, then these solutions are unphysical
and can be discarded.
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Separation of Variables in Spherical Coordinates with Azimuthal
Symmetry

The Polar Equation Solution with Azimuthal Symmetry: the Legendre
Equation and Legendre Polynomials

Consider the special case of azimuthal symmetry, for which m = 0 and Φ(φ) =
constant. The generalized Legendre Equation reduces to the Legendre Equation:

d

dx

[
(1− x2)

dP

dx

]
+ `(`+ 1) P(x) = 0 (3.111)

The same series solution applies here with m = 0, so ` must still be a nonnegative
integer. These solutions are the Legendre Polynomials. One can show they obey
Rodrigues’ Formula:

P`(x) =
1

2``!

(
d

dx

)` (
x2 − 1

)`
(3.112)
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Properties of the Legendre Polynomials

One can see by inspection or prove the following properties:

I P`(x) is a ` th-order polynomial in x .

I P`(x) has only even powers of x if ` is even and only odd powers if ` is odd.
=⇒ P`(x) is an even function of x for ` even and an odd function for ` odd.

I The Legendre polynomials are a complete, orthonormal set: any function that
remains finite on the interval [−1, 1] can be written in terms of them. Their
orthonormality relation is

∫ 1

−1
dx

√
2`+ 1

2
P`(x)

√
2`′ + 1

2
P`′ (x) = δ` `′ (3.113)

and their completeness relation is

∞∑
`=0

2`+ 1

2
P`(x)P`(x ′) = δ(x − x ′) (3.114)

I P`(1) = 1 and P`(−1) = (−1)`.

I P`(0) = [(−1)n (2n − 1)!!]/2n n! for even ` = 2 n. P`(0) = 0 for odd `.
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Full Solution to Laplace’s Equation with Azimuthal Symmetry

Combining our radial and polar equation solutions, we have that, for any problem with
azimuthal symmetry and in which the z-axis is included, the potential must have the
form

V (r , θ) =
∞∑
`=0

(
A` r` +

B`

r`+1

)
P`(cos θ) (3.115)

The coefficients {A`} and {B`} are set by the boundary conditions. If the volume
includes the origin and the boundary conditions imply the potential must be finite
there, the {B`} may be eliminated, and, if the volume includes infinity and the
boundary conditions require the potential be finite (usually zero) there, the {A`} may
be eliminated. In other cases, some or all of the {A`} and {B` } can be nonzero.
Usually, application of the boundary conditions on V will require use of the
orthonormality relations for the Legendre polynomials.

We note that, in the process of doing separation of variables, we have proven that the
angular solution satisfies the eigenvalue-eigenfunction equation

∇2P`(cos θ) = − `(`+ 1)

r2
P`(cos θ) (3.116)

For the angular equation, r acts as a constant and so appears in the eigenvalue.
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Examples of Separation of Variables with Azimuthal Symmetry

We will start first with a case in which the boundary condition is quite obviously
Dirichlet and the application is very much like what we did in Cartesian coordinates.
Generally speaking, however, boundary conditions are not always so obvious. One has
to use whatever information one is given and turn it into boundary conditions of the
type that we know provides uniqueness.
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Example 3.5: Dirichlet Boundary Condition on a Spherical Boundary with
Azimuthal Symmetry

Suppose V (R, θ), the potential as a function of θ on a sphere of radius R, is specified,
where the sphere is either the outer boundary or the inner boundary of the space.
What is the explicit form for the resulting potential?

Let’s consider the two cases together. If the space is r < R, then we require the {B`}
to vanish to ensure a finite potential at the origin. (There is no charge in the volume,
so we are assured that the potential cannot be infinite there.) If the space is r > R,
then we require the {A`} to vanish so the potential goes to zero at infinity. That is:

V (r , θ) =
∞∑
`=0

A` r` P`(cos θ) or V (r , θ) =
∞∑
`=0

B`

r`+1
P`(cos θ) (3.117)

To apply the boundary condition at R, we evaluate the above equations at that value:

V (R, θ) =
∞∑
`=0

A` R` P`(cos θ) or V (R, θ) =
∞∑
`=0

B`

R`+1
P`(cos θ) (3.118)
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Then, to find the coefficients, we apply orthonomality to both sides, as we did for
separation of variables in Cartesian coordinates. For the case of r < R, we have:

2 `+ 1

2

∫ π

0
sin θ dθV (R, θ) P`(cos θ) (3.119)

=
∞∑
`′=0

A`′ R`
′
∫ π

0
sin θ dθ

2 `+ 1

2
P`(cos θ) P`′ (cos θ) (3.120)

=
∞∑
`′=0

A`′ R`
′
δ``′ = A` R` (3.121)

which we can solve for A`. Or, based on the orthonormality relation Equation 3.113,
we can just state by inspection (yielding the same result as the above calculation):

A` =
2 `+ 1

2

1

R`

∫ π

0
sin θ dθV (R, θ) P`(cos θ) (3.122)

Notice how R` appears in the formula for A`. This is analogous to the same way that
sinh(γnm c) appeared in the solution for the coefficients Anm in the Cartesian case
(Equation 3.92).
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Similarly, for the case r > R,

B` =
2 `+ 1

2
R`+1

∫ π

0
sin θ dθV (R, θ) P`(cos θ) (3.123)

Therefore, the solutions are

V (r < R, θ) =
∞∑
`=0

2 `+ 1

2

r`

R`
P`(cos θ)

∫ π

0
sin θ ′ dθ ′ V (R, θ ′) P`(cos θ ′) (3.124)

V (r > R, θ) =
∞∑
`=0

2 `+ 1

2

R`+1

r`+1
P`(cos θ)

∫ π

0
sin θ ′ dθ ′ V (R, θ ′) P`(cos θ ′) (3.125)

Notice how the units of the coefficients cancel the powers of r in the solution so our
result has the same units of electrostatic potential as the boundary condition.
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Let’s make some other observations, connecting to separation of variables in Cartesian
coordinates.

I In our Cartesian example, we had five homogeneous boundary conditions and
one inhomogeneous one. The five homogeneous ones determined the form of
the individual terms in the solution: they created relationships between the
coefficients, and also imposed quantization requirements, that reduced the form
from being a product of three sums of two exponentials with six arbitrary
argument coefficients and four arbitrary normalization coefficients to being a
product of two sines and a hyperbolic sine with quantized argument coefficients
with one overall arbitrary normalization coefficient. The same happened here:
the homogeneous boundary condition at r = 0 or r →∞ eliminated one of the
two coefficients in each term. (Why five homogeneous boundary conditions in
the Cartesian case and only one here? Requiring single-valued behavior in φ and
at the poles imposes another three boundary conditions, and azimuthal
symmetry is a fourth. So we effectively already applied four in the form for the
solution we assumed.) In the Cartesian case, those conditions had the effect of
both “quantizing” the argument coefficients (restricting the freedom in the
arguments of the exponentials) and restricting the normalization coefficients
(showing we had only sines and hyperbolic sines, eliminating cosines and
hyperbolic cosines). In this case, the “quantization” is imposed by the geometry
and azimuthal symmetry from the start, yielding the “already-quantized” form
we started with.
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I In our Cartesian example, we applied the homogeneous boundary conditions
term-by-term and then finally we were forced to consider a sum of them to
match the inhomogeneous boundary condition. In this case, we started off with
the sum and applied the homogeneous boundary conditions to the sum. But one
can see that, by use of orthonormality, this process really was applied
term-by-term. In the Cartesian case, we could not write down such a sum so
early because we had not yet obtained the quantization conditions on the
argument coefficients: in Cartesian coordinates, those conditions come from the
specific geometry of the problem and its homogeneous boundary conditions
rather than from the coordinate system. At the end of the general derivation,
we did not even know whether the argument coefficients were purely real or
purely imaginary numbers! Any sum would have had to be written down as an
integral over an unspecified domain. So, we had to apply the homogeneous
boundary conditions first to even be able to write down a sum.

I In both cases, the application of the inhomogeneous boundary condition is done
to the entire sum, and the result even looks quite similar, involving an
integration of the inhomogeneous boundary condition over the surface with the
orthonormal functions of which the solution is composed.
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Example 3.6: Dirichlet Boundary Conditions at r = 0 and ∞, Neumann
Boundary Condition at r = R

Griffiths does an example in which a surface charge density is specified at r = R and
the potential has to be found over all of space. This is almost a Neumann boundary
condition, but not quite, since the surface charge density specifies the change in the
normal derivative of V at r , not the normal derivative of V itself. By solving for V
over all of space, one effectively turns it into a Neumann boundary condition by using
the solution in one region to specify the condition on the normal derivative as one
approaches the surface from the other side. One writes down different solutions for
the two regions: the {B`} vanish for the r < R solution to avoid a divergence at the
origin, and the {A`} vanish for the r > R solution to ensure the potential vanishes at
infinity (as we saw above). Then, one applies the conditions that the potential must
be continuous at R (which is a homogeneous boundary condition — the difference of
the potentials on the two sides of the boundary equals zero) and that the normal
derivative must change by the surface charge density (divided by −εo ; this is the
inhomogeneous boundary condition because the charge density appears on one side of
the equation). The first condition is effectively the specification of 〈V 〉R , which we
recall from our generic discussion of Green Functions for Neumann boundary
conditions. The second condition is the actual Neumann boundary condition. The first
condition relates the {A`} and {B`} at each `. With now just a single set of
coefficients to determine, the Neumann boundary condition can be used with the
orthonormality relation to find a formula for the coefficient for each `.

Note the use of two different solutions in the two regions: this is a generally useful
technique.
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Example 3.7: Uncharged Metal Sphere in a Uniform Field: Unusual Dirichlet
Boundary Conditions

Griffiths does the example of an uncharged metal sphere in a uniform electric field in
the z direction, ~E = E0ẑ. The boundary condition is a bit mixed again. Because the
sphere is metal, it is an equipotential. But that doesn’t specify the value of V on the
sphere. Since the field is uniform, we cannot set V to vanish at infinity. Instead,
V (z = 0) = 0 is chosen. From that choice and the fact that the equipotential sphere
is in contact with z = 0, we can conclude that the sphere satisfies V = 0. But now V
at infinity is not specified, so we don’t yet have a Dirichlet boundary condition. The
sensible thing to do is to require the potential approach V (~r) = −E0z at infinity:
whatever induced charge the sphere picks up, its contribution to the potential and
field must fall off at infinity, leaving only the uniform field. Now we have a Dirichlet
boundary condition. Because the potential is allowed to diverge at infinity, we cannot
eliminate the {A`} in this case. But it is easy to see that only A1 is nonzero: for
` > 0, the behavior goes like r`, and since the potential must go like z = r cos θ at
large r , all the ` > 1 terms must vanish. This large r behavior sets A1 = −E0. A0 = 0
because the potential has no offset. That leaves the {B`} to be determined.
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Applying the boundary condition V = 0 at r = R gives:

0 = A1R cos θ +
∞∑
`=0

B`

R`+1
P`(cos θ) (3.126)

−A1R cos θ =
∞∑
`=0

B`

R`+1
P`(cos θ) (3.127)

Since the left side has a ` = 1 term, and the Legendre polynomials are orthonormal,
there can also be only a ` = 1 term on the right side, implying B` = 0 for ` 6= 1 and
B1/R2 = −A1R or B1 = E0R3. Thus, the solution is

V (~r) = −E0

(
r − R3

r2

)
cos θ (3.128)

Note the use of a nontrivial boundary condition at infinity and the need to realize that
the sphere has the same potential as the z = 0 plane; without these boundary
conditions, it would have been impossible to start the problem.
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Example 3.8: Separation of Variables for a Point Charge near a Grounded
Conducting Sphere

Let’s reconsider the situation we looked at before via method of images, the point
charge near the conducting sphere. The setup is as before, with the point charge at
a ẑ and the sphere centered on the origin with radius R and V = 0 on its surface. One
difficulty is that the presence of the point charge implies Laplace’s equation is not
satisfied in the full volume! It is, however, satisfied separately in the regions R < r < a
and a < r <∞, and we have the charge density at r = a, so we should somehow solve
separately in the two regions and then join the solutions together (as we did before for
the spherical shell of charge, which we recognized was a Neumann boundary condition
(Example 3.6)).

Since we have seen how the method of images can provide the Green Function for a
system, the aforementioned equivalence suggests that we may be able to use
separation of variables to find the full Green Function for a system in the “sum over
orthonormal functions” form rather than in the “system of point charges form.” This
is indeed true and we will do this in general fashion for spherical coordinates later in
§3.9.4 using a technique similar to the one we use for this example.
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We may guess that the appropriate way to write the charge density at r = a is

σ(θ, φ) =
q

2π a2 sin θ
δ(θ) (3.129)

The rationale for this guess is that a2 sin θ cancels the r2 sin θ portion of the volume
element and 2π cancels the φ integral. It has the right units, too, surface charge
density, charge/length2; remember, δ(θ)/ sin θ is unitless because θ is unitless. One
can see the form is correct because integration returns q:

∫ π

0

∫ 2π

0
da σ(θ, φ) =

∫ π

0
sin θ dθ

∫ 2π

0
dφ a2 q

2π a2 sin θ
δ(θ) (3.130)

=
1

2π

∫ π

0
dθ

∫ 2π

0
dφ q δ(θ) = q (3.131)

Notice that no δ(φ) is required.
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We can largely apply what we did in the case of the Example 3.6 except that we
cannot eliminate the {B`} for r < a because the inner boundary is at r = R, not
r = 0. Let’s apply the homogeneous boundary condition V (r = R) = 0 first:

0 =
∞∑
`=0

(
Ain
` R` +

B in
`

R`+1

)
P`(cos θ) (3.132)

where we use the in superscript to indicate these are the coefficients for the solution in
the region inside of the charge at r = a; i.e., the R < r < a region. Since this a
homogeneous boundary condition, we know from prior discussion we can apply it
term-by-term. Perhaps easier to remember/justify is to apply orthonormality to the
sum, which forces the coefficent of P` at each ` to vanish independently:

Ain
` R` = − B in

`

R`+1
=⇒ V (r < a, θ) =

∞∑
`=0

Ain
`

(
r` − R2`+1

r`+1

)
P`(cos θ) (3.133)

For r > a, we start with the same form for the solution, but of course now with
different coefficients {Aout

` } and {Bout
` }. Do not confuse these coefficients with the

{Ain
` } and {B in

` } determined above: these are solutions in different regions, so they are
different functions and there is no reason to expect the coefficients are the same! The
{Aout

` } must all vanish so the potential vanishes at infinity (homogeneous boundary
condition). So we have

V (r > a, θ) =
∞∑
`=0

Bout
`

r`+1
P`(cos θ) (3.134)
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Next, we join the solutions at the boundary between them by applying the Neumann
boundary condition there, which requires that V be continuous at r = a and that
∂V /∂r be continuous there except at θ = 0, where it has a discontinuity specified by
σ(0). We apply the first (homogeneous) condition, term-by-term like any
homogeneous boundary condition or via the orthonormality of the P`:

Ain
`

(
a` − R2`+1

a`+1

)
=

Bout
`

a`+1
=⇒ Bout

` = Ain
`

(
a2`+1 − R2`+1

)
(3.135)

Let’s put everything we have so far together in a suggestive form:

V in(r , θ) ≡ V (r < a, θ) =
∞∑
`=0

Ain
` a`+1

 r`

a`+1
−

R
a

(
R2

a

)`
r`+1

P`(cos θ) (3.136)

V out (r , θ) ≡ V (r > a, θ) =
∞∑
`=0

Ain
` a`+1

 a`

r`+1
−

R
a

(
R2

a

)`
r`+1

P`(cos θ) (3.137)

Notice the length−1 units of the portion in parentheses, implying that Ain
` will have

units of ε−1
o (length)−(`+1). Next, we apply the derivative matching (Neumann)

condition: (
∂V out

∂r
− ∂V in

∂r

)∣∣∣∣
r=a

= −σ(θ)

εo
(3.138)
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The derivatives are

∂V in

∂r
=
∞∑
`=0

Ain
` a`+1

 ` r`−1

a`+1
+ (`+ 1)

R
a

(
R2

a

)`
r`+2

P`(cos θ) (3.139)

∂V out

∂r
=
∞∑
`=0

Ain
` a`+1 (`+ 1)

− a`

r`+2
+

R
a

(
R2

a

)`
r`+2

P`(cos θ) (3.140)

Evaluating at r = a gives

∂V in

∂r

∣∣∣∣
r=a

=
∞∑
`=0

Ain
` a`+1

 `

a2
+ (`+ 1)

R
a

(
R2

a

)`
a`+2

P`(cos θ) (3.141)

∂V out

∂r

∣∣∣∣
r=a

=
∞∑
`=0

Ain
` a`+1 (`+ 1)

− 1

a2
+

R
a

(
R2

a

)`
a`+2

P`(cos θ) (3.142)
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When we difference the two, the second terms in the expressions cancel, leaving

−
∞∑
`=0

(2 `+ 1)Ain
` a`−1P`(cos θ) = − q δ(θ)

2π a2εo sin θ
(3.143)

This is our inhomogeneous boundary condition so, as usual, we must use
orthonormality to obtain a formula for the coefficients in terms of an integral of the
boundary condition with the orthonormal functions. We can multiply by
P`′ (cos θ) sin θ and integrate over θ, or we can just apply orthonormality. (Recall the
orthonormality relation: [2/(2`+ 1)]

∫ π
0 sin θ dθ P`(cos θ) P`′ (cos θ) = δ``′ ). This

extracts the Ain
`′ term we want, and it also simplifies the right-hand side:

−2 Ain
`′a

`′−1 = − q

2π a2εo

∫ π

0
sin θ dθ

δ(θ) P`′ (cos θ)

sin θ
(3.144)

= − q

2π a2εo
P`′ (cos (θ = 0)) = − q

2π a2εo
(3.145)

Ain
`′ =

1

a`′+1

q

4π εo
(3.146)
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Writing the full solution, we have

V (r < a, θ) =
q

4π εo

∞∑
`=0

 r`

a`+1
−

R
a

(
R2

a

)`
r`+1

P`(cos θ) (3.147)

V (r > a, θ) =
q

4π εo

∞∑
`=0

 a`

r`+1
−

R
a

(
R2

a

)`
r`+1

P`(cos θ) (3.148)

The form is hardly one we would have guessed! Separation of variables is more
algorithmic than method of images, but it is also less intuitive. We will connect the
two next.

Recognize that the integral over the inhomogeneous boundary condition that we
expect from past experience with separation of variables has already been done on the
prior page, so it is no longer explicit here; it yielded the a−(`+1) factor that is present
in all the terms (in the first term for the r > a solution, it is multiplied by a2`+1, a
factor that came from the homogeneous boundary conditions, so it is no longer
obvious). Also, that integral did not include an integral over φ as we might have
expected. We could have integrated over φ on both sides if we wanted, yielding a
closer analogy to Equation 3.92, but it would have just yielded a common factor of 2π
on the two sides since neither side has φ dependence. We did not need to do this
because the problem is azimuthally symmetric and thus we know the solution must
include only the m = 0 term. We will see such an integral when we consider cases
without azimuthal symmetry.
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Connecting Method of Images to Separation of Variables via a Useful
Expansion in Legendre Polynomials

We have two techniques — method of images and separation of variables — that we
can evidently use for the same problem. By the Uniqueness Theorem, the solutions
must be the same. Comparing Equations 3.147 and 3.148 that we just obtained via
separation of variables to Equation 3.25 obtained via method of images, the
connection is hardly obvious! To see it, we must first prove a theorem.

We will show

1

|~r − ~r ′| =
∞∑
`=0

r`<

r`+1
>

P`(cos γ) (3.149)

with r< = min(|~r |, |~r ′|) r> = max(|~r |, |~r ′|) cos γ = r̂ · r̂ ′

This will let us go back and forth between separation-of-variables solutions and
functions that look like the Coulomb potential (e.g., point charge near the grounded
sphere!). Griffiths sort of derives this, using a far less interesting and powerful
technique. He also does it in §3.4.1, after the discussion of separation of variables, so
he is unable to use this theorem to connect the method of images and separation of
variables solutions for the point charge near the grounded, conducting sphere.
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To prove this, orient the coordinate system so ~r ′ = r ′ ẑ. The function on the
left-hand side of Equation 3.149 is the potential at ~r of a point charge q = 4π εo in
magnitude (not units!) at r ′ along the z-axis. It satisfies azimuthal symmetry and
thus is expandable in terms of the above solutions of Laplace’s Equation in spherical
coordinates with azimuthal symmetry (because these solutions form a complete,
orthonormal set!):

1

|~r − ~r ′| =
∞∑
`=0

(
A` r` +

B`

r`+1

)
P`(cos θ) (3.150)

Consider two cases separately:

I r < r ′

We must eliminate the B` coefficients to keep the function finite as r → 0. To
find the A`, let’s consider the point ~r = r ẑ (i.e., cos γ = 1), which implies

1

r ′ − r
=

1

|~r − ~r ′| =
∞∑
`=0

A` r` (3.151)

(Recall, P`(1) = 1.) Thus, the A` are just the coefficients of the power series
expansion of the left side, which we know (recall: (1− x)−1 = 1 + x + x2 + · · ·
for 0 < x < 1) is

1

r ′ − r
=

1

r ′
1

1− r
r ′

=
1

r ′

∞∑
`=0

( r

r ′

)`
(3.152)

The series converges because x = r/r ′ < 1. Thus, A` = 1/(r ′)`+1. This now
sets the {A`} for arbitrary ~r (i.e., arbitrary cos γ rather than the special case
cos γ = 1 we have considered).
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I r > r ′

We must eliminate the A` coefficients to keep the function finite as r →∞.
Again, consider ~r = r ẑ, which implies

1

r − r ′
=

1

|~r − ~r ′| =
∞∑
`=0

B`

r`+1
(3.153)

For this case, we consider an expansion in r ′/r rather than r/r ′ because now
0 < r ′/r < 1 while, above, 0 < r/r ′ < 1. Again, the B` are just the coefficients
of the power series expansion of the left side, which we know is

1

r − r ′
=

1

r

1

1− r ′
r

=
1

r

∞∑
`=0

(
r ′

r

)`
(3.154)

Thus, B` = (r ′)`.

Combining the above two cases, and generalizing back from cos θ to cos γ, yields
Equation 3.149.

A few notes on the above derivation:

I Note some elements of technique: without loss of generality, we: a) set
~r ′ = r ′ ẑ so cos γ = cos θ; and b) evaluated the expression at cos θ = 1, similar
to the manner in which we applied the boundary conditions for the point charge
near the grounded sphere. These are useful techniques to keep in mind for the
future.
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I Note that the process was effectively separation of variables, separately in the
r < r ′ and r > r ′ spaces (like our separate consideration of r < R and r > R in
the previous example) but with an unusual boundary condition: Rather than
specifying a condition on the function (the “potential”) on the boundary r = r ′,
we used the fact that we knew the solution along the line ~r = r r̂ ′ (which we
took to be ~r = r ẑ in this case). That is, we specified the potential for a locus
of points in the volume V rather than on the surface S(V). We do not have a
general theorem about such boundary conditions because the derivation of the
Uniqueness Theorem used Green’s Theorem, which involves S. Evidently,
though, appropriate specification of the potential on some locus of points in V is
also sufficient to yield a unique solution!

I We could have derived the result instead by treating this as a separation of
variables problem with a Neumann boundary condition at r = r ′ due to the
singularity there, which is the same singularity one gets for the potential of a
point charge of value q = 4π εo as we explained above. Explicitly, we would
combine the solution to Example 3.6 (a spherical shell of charge σ(R, θ) in free
space) with the charge density we developed for the point charge near the
conducting sphere. In fact, we can read off the result from Equations 3.147
and 3.148: let R → 0, replace a by r ′, and replace q by 4π εo ! That approach
is a bit more cumbersome but benefits from the Uniqueness Theorem and the
full separation-of-variables machinery. We did not do that here because we knew
ahead of time the solution on the ~r = r r̂ ′ locus, and this approach introduced
you to a new technique.
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With that theorem proven, we can make the advertised connection. If we compare
Equations 3.147 and 3.148 from separation of variables for the point charge near the
conducting sphere to Equation 3.149, we see that all four terms in the former are of
the form used in the latter. The first term of the first equation has r< = r and r> = a
as appropriate for r < a, while the first term of the second equation has r< = a and
r> = r as needed for r > a. The second terms of both equations are of the same form
with r< = R2/a, r> = r and the charge multiplied by −R/a. Thus, we recover

V (~r) =
q

4π εo

 1

|~r − a ẑ| −
R/a∣∣∣~r − R2

a
ẑ
∣∣∣
 (3.155)

which matches Equation 3.25. Remarkable! This is a case where we were able to use
separation of variables to recover the full potential and thus the full method of images
solution, which we know then gives us the Green Function: it is possible!

Could we have done a similar thing if we had a point charge in the five-sides-grounded
box problem? There is no reason to think it would not work.

In fact, we will later show how to use a similar technique to find the Green Function in
spherical coordinates for systems without azimuthal symmetry.
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Separation of Variables in Spherical Coordinates without Azimuthal
Symmetry

The Full Polar Equation Solution: the Associated Legendre Polynomials

There is a relation yielding the associated Legendre polynomials for m ≥ 0 from the
Legendre polynomials:

Pm
` (x) = (−1)m(1− x2)m/2 dm

dxm
P`(x) (3.156)

which, using Rodrigues’ Formula (Equation 3.112), implies

Pm
` (x) =

(−1)m

2` `!
(1− x2)m/2 d`+m

dx`+m
(x2 − 1)` (3.157)

which is now valid for all m.

Section 3.9.1 The Full Polar Equation Solution: the Associated Legendre Polynomials Page 204



Section 3.9 Advanced Electrostatics: Separation of Variables in Spherical Coordinates without Azimuthal Symmetry

Some properties of the Pm
` :

I P0
` = P` (m = 0 in Equation 3.156).

I The parity in x (evenness/oddness) of the associated Legendre functions is
given by (−1)`+m (where −1 implies oddness): the parity of P` is given by
(−1)`, and each derivative changes the parity by a factor of −1 (note that the
powers of (1− x2) have no effect on the parity because it is an even function).

I The {Pm
` } for a given m form an orthogonal set. We can see this by going back

to the polar equation (Equation 3.103 or 3.109) and recognizing that it is
literally a different differential equation for every value of m. The solutions at
different m are related to each other by Equation 3.156 because the differential
equations are related to each other, but they are different equations and thus
their solutions form different orthogonal sets. We will address their
normalization imminently.

There are a number of other properties of these functions, but it is more useful to
consider them together with the φ solutions.
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The Full Solution to the Angular Piece of Laplace’s Equation: the Spherical
Harmonics

When one combines the Pm
` (cos θ) and the e imφ solutions of the polar and azimuthal

equations, one obtains the Spherical Harmonics

Y`m(θ, φ) =

√
2 `+ 1

4π

(`−m)!

(`+ m)!
Pm
` (cos θ) e imφ (3.158)

They are an orthonormal, complete basis for functions on the sphere (θ, φ) (assuming
the z-axis is part of the sphere; recall our comment about a second set of solutions to
the Legendre equation if it is not). The (`−m)!/(`+ m)! factors come from
normalizing the Pm

` , while the 2π comes from normalizing the e imφ. They satisfy
numerous important and useful conditions:

I Conjugation:

Y`(−m)(θ, φ) = (−1)mY ∗`m(θ, φ) (3.159)

I Orthonormality:

∫ 2π

0
dφ

∫ π

0
sin θ dθY ∗`′m′ (θ, φ) Y`m(θ, φ) = δ``′δmm′ (3.160)
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I Completeness (cos θ is the argument because the differential is
sin θ dθ = −d(cos θ)):

∞∑
`=0

∑̀
m=−`

Y ∗`m(θ ′, φ ′)Y`m(θ, φ) = δ(φ− φ ′) δ(cos θ − cos θ ′) (3.161)

I m = 0 devolves to Legendre polynomials:

Y` 0(θ, φ) =

√
2 `+ 1

4π
P`(cos θ) (3.162)

This should be obvious from Equation 3.156, the relation between the Legendre
and the associated Legendre polynomials.

I The θ = 0 behavior is simple given Equation 3.156 (the (1− x2) factor):

Pm 6=0
` (±1) = 0 =⇒ Y`m 6=0(θ = 0, φ) = Y`m 6=0(θ = π, φ) = 0 (3.163)

This condition ensures the Y`m 6=0 are single-valued at the poles.

(Single-valuedness is automatic for m = 0 because e i(0)φ = 1.) Recall that we
also stated P`(1) = 1, P`(−1) = (−1)`, which implies

Y` 0(θ = 0, φ) =

√
2 `+ 1

4π
Y` 0(θ = π, φ) = (−1)`

√
2 `+ 1

4π
(3.164)
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I The above implies that any expansion in terms of Y`m simplifies at θ = 0, π:

given g(θ, φ) =
∞∑
`=0

∑̀
m=−`

A`mY`m(θ, φ) (3.165)

then g(θ = 0, φ) =
∞∑
`=0

√
2 `+ 1

4π
A` 0 (3.166)

and g(θ = π, φ) =
∞∑
`=0

(−1)`
√

2 `+ 1

4π
A` 0 (3.167)

I The Addition Theorem for Spherical Harmonics: Given r̂ and r̂ ′ pointing in the
directions (θ, φ) and (θ ′, φ ′), respectively, then

P`(r̂ · r̂ ′) =
4π

2 `+ 1

∑̀
m=−`

Y ∗`m(θ ′, φ ′) Y`m(θ, φ) (3.168)

where r̂ · r̂ ′ = cos γ = cos θ cos θ ′ + sin θ sin θ ′ cos(φ− φ ′). The proof of this
can be found in Jackson §3.6.
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I An important corollary of the Addition Theorem can be obtained by combining
the above with Equation 3.149, the formula for the inverse of the relative
distance between two points in terms of the Legendre polynomials:

1

|~r − ~r ′| =
∞∑
`=0

r`<

r`+1
>

P`(cos γ)

Plugging in the Addition Theorem gives us

1

|~r − ~r ′| = 4π
∞∑
`=0

∑̀
m=−`

1

2 `+ 1

r`<

r`+1
>

Y ∗`m(θ ′, φ ′)Y`m(θ, φ) (3.169)

The utility of this relation is even more obvious than that of Equation 3.149,
especially for doing integrals over charge distributions with the relative distance
function (i.e., calculating the potential due to Coulomb’s Law): decompose the
charge distribution in terms of spherical harmonics and integrate the charge
distribution in a particular spherical harmonic Y`m over r ′ with weighting by
(r ′)` to obtain the component of the potential at a distance r from the origin
with spatial dependence Y`m(θ, φ)/r`+1.
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The Full Solution of Laplace’s Equation in Spherical Coordinates

Putting it all together, we see that the most general solution to Laplace’s Equation in
spherical coordinates is r

V (r , θ, φ) =
∞∑
`=0

∑̀
m=−`

(
A`m r` +

B`m

r`+1

)
Y`m(θ, φ) (3.170)

Again, the coefficients {A`m} and {B`m} are set by the volume under consideration
and one or the other entire set may vanish. As well, application of the boundary
conditions will require the orthonormality relations for the spherical harmonics.

As with the case of azimuthal symmetry, we note that, in the process of doing
separation of variables, we have proven that the angular solution satisfies the
eigenvalue-eigenfunction equation

∇2Y`m(θ, φ) = − `(`+ 1)

r2
Y`m(θ, φ) (3.171)

As before, the appearance of r2 on the right side is not surprising. Note also that m
does not appear in the angular equation. This is because Laplace’s Equation itself is
spherically (and therefore azimuthally) symmetric. The charge distribution and
boundary conditions are what may break the spherical symmetry.
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Expansion of the Green Function in Spherical Coordinates in Terms of the
Spherical Harmonics

The fact that the spherical harmonics combined with the usual power laws in radius
solve Laplace’s Equation for problems that are separable in spherical coordinates can
be used to show that the Green Function for such problems will have a convenient
expansion in terms of the radial solutions and spherical harmonics, like
Equation 3.170. It is convenient to recall at this point that a Green Function is
specified (is unique) once one specifies the geometry and the type of boundary
condition; the value of the boundary condition does not affect the Green Function.
So, once we have specified a geometry and type of boundary condition, the expansion
can be determined and is unique. Alternatively, one can think of this expansion as a
generalization of the corollary of the Addition Theorem, Equation 3.169. It is shown
by using the completeness property of the spherical harmonics and the
eigenvalue-eigenfunction equation for the angular solution. But let’s see that this is
true explicitly for a couple example geometries first:

I Free space
The corollary of the Addition Theorem above is the desired expansion of the
Green Function for charge in free space with no finite radius boundaries and
with the condition V → 0 as r →∞.
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I Point charge near a grounded, conducting sphere
For this geometry, we saw that the Green Function can be written as sum of the
Coulomb potential of two point charges, the original one at r ′ ẑ and the image
charge q′ = −q R/r ′ at ẑ R2/r ′:

G(~r , ~r ′) =
1

4π εo

 1

|~r − ~r ′| −
R/r ′∣∣∣∣~r − ~r ′ ( R

r ′

)2
∣∣∣∣
 (3.172)

Using the same corollary of the Addition Theorem, we can immediately write
(using the fact r ′ (R/r ′)2 < r ′ always because the the image charge is always
at radius < R while the true charge is at r ′ > R):

G(~r , ~r ′) =
1

εo

∞∑
`=0

∑̀
m=−`

 r`<

r`+1
>

− R

r ′

[
r ′
(

R
r ′

)2
]`

r`+1

 Y ∗`m(θ ′, φ ′) Y`m(θ, φ)

2 `+ 1

(3.173)

=
1

εo

∞∑
`=0

∑̀
m=−`

[
r`<

r`+1
>

− 1

R

(
R2

r r ′

)`+1
]

Y ∗`m(θ ′, φ ′) Y`m(θ, φ)

2 `+ 1

(3.174)

Note also the symmetry in ~r and ~r ′ is manifest.
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In both cases, we finally have forms for the Green Function that could plausibly come
from separation of variables. Note, however, that we did not use separation of
variables to obtain it; we used the method of images combined with the corollary of
the Addition Theorem.

Earlier, we solved for the potential of the latter configuration using separation of
variables with azimuthal symmetry, Equations 3.147 and 3.148 reproduced here but
rewritten using the r<, r> notation:

V (r , θ) =
q

4π εo

∞∑
`=0

 r`<

r`+1
>

−
R
a

(
R2

a

)`
r`+1

P`(cos θ)

with r< = min(r , a) r> = max(r , a) (3.175)

Why was this not enough to give us the full Green Function? Because this solution for
the potential in terms of Legendre polynomials assumed the point charge was along
the z-axis.

What we can do is generalize this solution by replacing cos θ with cos γ = r̂ · r̂ ′ and a
with r ′ followed by application of the Addition Theorem. Then the solution would be
in a form where we could read off the Green Function expansion in spherical
coordinates not assuming azimuthal symmetry. But this approach is not the same as
obtaining the solution directly, and clearly the above approach does not generalize to a
system that does not have azimuthal symmetry.
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The general approach to the problem of finding the Green Function for an arbitrary
(spherical) geometry is to go back to the definition of the Green Function:

−εo∇2
~r G(~r , ~r ′) = δ(~r − ~r ′) (3.176)

and decompose both sides in terms of spherical harmonics. We do not know the Green
Function yet, so its expansion is the arbitrary general form, which here we write

G(~r , ~r ′) =
∞∑
`=0

∑̀
m=−`

A`m(r |~r ′) Y`m(θ, φ) (3.177)

where the coefficients in the expansion A`m depend on r , as usual, and they also
depend parametrically on ~r ′ because it is a parameter in the differential equation.
(We do not know the solutions for the radial dependence of the A`m yet for the
general case we are trying to solve (which is not Laplace’s Equation!), so we cannot
assume they are the power laws we saw for solutions to Laplace’s Equation.)
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The right side can be rewritten using the breakdown of the delta function into delta
functions in each spherical coordinate followed by completeness of the spherical
harmonics. The breakdown of the delta function is:

δ(~r − ~r ′) =
δ(r − r ′)

r2
δ(φ− φ ′) δ(cos θ − cos θ ′) (3.178)

The 1/r2 on the radial component is required to cancel the r2 in the volume element
in spherical coordinates. The fact that the delta function in θ is a function of cos θ
and cos θ ′ is because the volume element contains sin θ dθ = d(cos θ). One could
have instead written δ(θ − θ ′)/ sin θ as we did when rewriting the point charge near
the grounded, conducting sphere as a surface charge density σ(θ), Equation 3.129.
Using completeness of the spherical harmonics, we have

δ(~r − ~r ′) =
δ(r − r ′)

r2

∞∑
`=0

∑̀
m=−`

Y ∗`m(θ ′, φ ′) Y`m(θ, φ) (3.179)
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Thus, our differential equation for the Green Function becomes

−εo∇2
~r

∞∑
`=0

∑̀
m=−`

A`m(r |~r ′) Y`m(θ, φ) =
δ(r − r ′)

r2

∞∑
`=0

∑̀
m=−`

Y ∗`m(θ ′, φ ′) Y`m(θ, φ)

(3.180)

Note that the Laplacian acts on the unprimed coordinates only. When we evaluate the
action of the Laplacian, a cross term ~∇~r A`m(r |~r ′) · ~∇~r Y`m(θ, φ) appears, but it

vanishes because the first term points along r̂ while the second is along θ̂ and φ̂,
leaving only ∇2

~r acting on each factor in the product individually. We wrote down
earlier Equation 3.171, the eigenvalue-eigenfunction equation satisfied by the angular
solutions of Laplace’s Equation, which we use here to evaluate ∇2

~r Y`m(θ, φ):

− εo

∞∑
`=0

∑̀
m=−`

[(
∇2
~r −

`(`+ 1)

r2

)
A`m(r |~r ′)

]
Y`m(θ, φ) (3.181)

=
δ(r − r ′)

r2

∞∑
`=0

∑̀
m=−`

Y ∗`m(θ ′, φ ′) Y`m(θ, φ)

Note that the Laplacian on the left side is now acting with its radial derivatives only
on A`m; its action on the spherical harmonics has yielded the `(`+ 1)/r2 term.
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The coefficients of the individual Y`m(θ, φ) on the two sides must be equal because of
the orthonormality relation for the spherical harmonics, implying

−εo

[(
∇2
~r −

`(`+ 1)

r2

)
A`m(r |~r ′)

]
=
δ(r − r ′)

r2
Y ∗`m(θ ′, φ ′) (3.182)

Now, given that we have Y ∗`m(θ ′, φ ′) on the right side (from applying completeness),
and again the spherical harmonics are orthonormal functions, the dependence of
A`m(r |~r ′) on its ~r ′ angular coordinates must be proportional to Y ∗`m(θ ′, φ ′).
Therefore, we may write (with g`(r , r ′) still to be determined)

A`m(r |r ′, θ ′, φ ′) = g`(r , r ′) Y ∗`m(θ ′, φ ′) (3.183)

Plugging in this form to the above reduced version of Laplace’s Equation and
canceling Y ∗`m(θ ′, φ ′), we get:

−εo

(
∇2
~r −

`(`+ 1)

r2

)
g`(r , r ′) =

δ(r − r ′)

r2
(3.184)

Only the Laplacian’s radial derivatives yield a nonzero contribution here, so we have
(also multiplying both sides by −r2/εo ):

d

dr

[
r2 d

dr
g`(r , r ′)

]
− `(`+ 1) g`(r , r ′) = − δ(r − r ′)

εo
(3.185)
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We see that, when r 6= r ′ (r ′ is a parameter, not a variable, here), g`(r , r ′) satisfies
the radial ODE in r from separation of variables in spherical coordinates,
Equation 3.102. Therefore, in the two separate regions r < r ′ and r > r ′, the
solutions to that ODE are also our solutions here:

g`(r , r ′) =

{
Ain
` (r ′) r` + B in

` (r ′) r−(`+1) r < r ′

Aout
` (r ′) r` + Bout

` (r ′) r−(`+1) r > r ′
(3.186)

Because r ′ is a parameter of the differential equation, the coefficients and therefore
the solutions depend on it parametrically. Therefore, the general form for the
expansion of the Green Function in spherical harmonics is

r < r ′ : G(~r , ~r ′) =
∞∑
`=0

∑̀
m=−`

[
Ain
` (r ′) r` +

B in
` (r ′)

r`+1

]
Y`m(θ, φ) Y ∗`m(θ ′, φ ′) (3.187)

r > r ′ : G(~r , ~r ′) =
∞∑
`=0

∑̀
m=−`

[
Aout
` (r ′) r` +

Bout
` (r ′)

r`+1

]
Y`m(θ, φ) Y ∗`m(θ ′, φ ′)

(3.188)
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To determine the coefficients, we need to apply boundary conditions. Since we have
not yet specified the geometry and boundary conditions, the only generic boundary
condition we can write down is the one at r = r ′, which we obtain by integrating
Equation 3.185 from r = r ′ − ε to r = r ′ + ε and letting ε→ 0:∫ r ′+ε

r ′−ε
dr

{
d

dr

[
r2 d

dr
g`(r , r ′)

]
− `(`+ 1) g`(r , r ′)

}
= −

∫ r ′+ε

r ′−ε
dr
δ(r − r ′)

εo

(3.189)

The first term is the integral of a total differential, so it is trivially integrated. For the
second term, the form of g`(r , r ′), where it is sum of two terms, each of which
includes a power law in r and some function of r ′ not dependent on r , ensures it
cannot diverge at r = r ′. Therefore, the second term is an integral of a function with
no singularity at ε = 0 (i.e., at r = r ′) and thus, as ε→ 0, that integral vanishes. The
right side gives −1/ε0 when integrated. Therefore, we have

lim
ε→0

[
r2 d

dr
g`(r , r ′)

]∣∣∣∣r=r ′+ε

r=r ′−ε
= − 1

εo

d

dr
gout
` (r , r ′)

∣∣∣∣
r=r ′
− d

dr
g in
` (r , r ′)

∣∣∣∣
r=r ′

= − 1

ε0 (r ′)2
(3.190)

where gout
` (r , r ′) is the r > r ′ solution and g in

` (r , r ′) is the r < r ′ solution. This is a
Neumann-type boundary condition as we had for the examples of the arbitrary charge
density on a sphere σ(R, θ) and for the point charge near the conducting sphere
σ(a, θ) = δ(cos θ)/2π a2, but this form is equivalent to what we obtained in those
cases after we used orthonormality in θ to isolate the expansion coefficients.
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We note, as an aside, that we derived the above matching condition Equation 3.190 in
a somewhat different way here than when we considered the above examples. In the
examples, we used the fact that we knew the boundary condition on the normal
derivative of the potential from Gauss’s Law. Here, we effectively rederived that
boundary condition for the special case of a radial boundary because we have only to
determine the radial function g(r , r ′). We could have gone back a step and written
down the boundary condition on the normal derivative of the potential and derived the
same condition above, but it would have required going back to the full potential and
applying orthonormality and completeness again. We circumvented that step by
rederiving the boundary condition considering only the radial function.

Evaluating the above condition explicitly using the r < r ′ and r > r ′ pieces of the
solution, and multiplying both sides by (r ′)2, we obtain

`
[
Ain
` (r ′)− Aout

` (r ′)
]

(r ′)`+1 + (`+ 1)
[
Bout
` (r ′)− B in

` (r ′)
]

(r ′)−` =
1

εo
(3.191)

Since Ain
` , B in

` , Aout
` , and Bout

` all depend on r ′, all the powers of r ′ match up. The
above is an inhomogeneous boundary condition on g`(r , r ′).
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The finite discontinuity in the radial derivative of g`(r , r ′) implies that g`(r , r ′) itself
must be continuous at r = r ′: the derivative would need to have a singularity in order
for there to be a discontinuity in g`(r , r ′). Therefore, we also have the condition

gout
` (r = r ′, r ′)− g in

` (r = r ′, r ′) = 0 (3.192)

Explicitly evaluating this condition, again using the two portions of the solution, yields[
Ain
` (r ′)− Aout

` (r ′)
]

(r ′)2 `+1 +
[
B in
` (r ′)− Bout

` (r ′)
]

= 0 (3.193)

The above is a homogeneous boundary condition on g`(r , r ′).

The above two matching conditions, along with application of the boundary conditions
that define Dirichlet or Neumann Green Functions (Equations 3.47 and 3.49), provide
four conditions for the four unknowns Ain

` (r ′), B in
` (r ′), Aout

` (r ′), and Bout
` (r ′), which

should fully specify them. We finally have a completely algorithmic way to obtain the
full Green Function! What a powerful technique! This general approach can be
applied for any coordinate system in which Laplace’s Equation and the boundary
conditions are separable.

Section 3.9.4 Expansion of the Green Function in Spherical Coordinates in Terms of the Spherical Harmonics Page 222



Section 3.9 Advanced Electrostatics: Separation of Variables in Spherical Coordinates without Azimuthal Symmetry

We also note that the above two equations imply the solutions Ain
` (r ′), B in

` (r ′),
Aout
` (r ′), and Bout

` (r ′) will be power laws in r ′. This is sensible: because we expect
the Green Function to be symmetric in ~r and ~r ′, the functional dependences on ~r and
~r ′, and thus on r and r ′, must be the same, and, so, because G has power-law
dependence on r , it must also for r ′.

We note that the above procedure is almost identical to what we would have done had
we used separation of variables more explicitly. We certainly assumed a SoV-style
expansion for the Green Function, Equation 3.177. As noted above, we could have
applied a Neumann-style boundary condition at r = r ′ by arguing that G(~r , ~r ′) is the
potential at ~r due to a point charge at ~r ′. That would have yielded the same
conditions on g`(r , r ′) that integrating the ODE, Equation 3.185, yielded. We chose
to do it the way we did so we would have to rely less on such analogies. But one can
see that the approaches are equivalent.
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Example 3.9: Expansion in spherical harmonics for the Green Function for
R < r <∞ with Dirichlet boundary conditions at r = R and r →∞

These boundary conditions impose the requirement GD (~r , ~r ′) = 0 for ~r ∈ S,V,
~r ′ ∈ S. We use the symmetry of the Dirichlet Green Function to convert this to the
requirement GD (~r , ~r ′) = 0 for ~r ∈ S, ~r ′ ∈ S,V because we do not know the
dependence of the coefficients on r ′ and we want to obtain relations between the
coefficients of the expansion that are valid at all r ′, not just values on the boundary,
because those full dependences are needed to use the matching conditions at r = r ′

that we just derived. One can check that applying these conditions at ~r ′ ∈ S does not
result in useful information.

Our condition implies

0 = GD (~r ∈ S, ~r ′ ∈ S,V) =
∞∑
`=0

∑̀
m=−`

g`(r ∈ S, r ′ ∈ S,V) Y ∗`m(θ ′, φ ′) Y`m(θ, φ)

(3.194)

Applying orthonormality of the Y`m(θ ′, φ ′), we obtain

0 = g`(r ∈ S, r ′ ∈ S,V) Y`m(θ, φ) (3.195)

By applying orthonormality of the Y`m(θ, φ), or simply noting Y`m(θ, φ) is in general
nonzero, we obtain

g`(r ∈ S, r ′ ∈ S,V) = 0 (3.196)

Section 3.9.4 Expansion of the Green Function in Spherical Coordinates in Terms of the Spherical Harmonics Page 224



Section 3.9 Advanced Electrostatics: Separation of Variables in Spherical Coordinates without Azimuthal Symmetry

We will apply the above homogeneous boundary condition first, then the matching
conditions (one homogeneous and one inhomogeneous boundary condition) at r = r ′,
because the Dirichlet BC are simpler algebraically (this is the same order of steps we
used when we solved this problem using separation of variables).

First, consider the boundary at r = R. Since r ′ > r = R for all ~r ′ ∈ V, this implies
that we should require g`(r = R, r ′) = 0 for the r < r ′ solution, yielding:

Ain
` (r ′) R` + B in

` (r ′) R−(`+1) = 0 =⇒ B in
` (r ′) = −R2 `+1 Ain

` (r ′) (3.197)

Next, consider the boundary at r →∞: g`(r →∞, r ′ ∈ V) = 0. Here, it is the
r > r ′ solution that applies, which implies Aout

` (r ′) = 0 for all r ′.

Next, we apply the matching conditions at r = r ′. First, the homogeneous one,
continuity of g`(r , r ′) at r = r ′ (Equation 3.193), which implies

Ain
` (r ′)(r ′)2`+1 +

{[
−Ain

` (r ′) R2`+1
]
− Bout

` (r ′)
}

= 0

=⇒ Bout
` (r ′) = Ain

` (r ′)
[
(r ′)2`+1 − R2`+1

]
(3.198)

The condition on the change in the radial derivative at r = r ′, the inhomogeneous
boundary condition, yielded Equation 3.191, which we plug into to obtain

`Ain
` (r ′) (r ′)`+1 + (`+ 1)Ain

` (r ′)
[
(r ′)2`+1 − R2`+1 + R2`+1

]
(r ′)−` =

1

εo

=⇒ Ain
` (r ′) =

1

2 `+ 1

1

εo

1

(r ′)`+1
(3.199)
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Putting it all together, we have that the Green Function for this Dirichlet boundary
condition, expanded in terms of spherical harmonics, is

G(~r , ~r ′) =


1
εo

∑∞
`=0

∑`
m=−`

[
r`

(r ′)`+1 − 1
R

(
R2

r r ′

)`+1
]

Y`m(θ,φ) Y∗`m(θ ′,φ ′)
2 `+1

r < r ′

1
εo

∑∞
`=0

∑`
m=−`

[
(r ′)`

r`+1 − 1
R

(
R2

r r ′

)`+1
]

Y`m(θ,φ) Y∗`m(θ ′,φ ′)
2 `+1

r > r ′

(3.200)

=
1

εo

∞∑
`=0

∑̀
m=−`

[
r`<

r`+1
>

− 1

R

(
R2

r r ′

)`+1
]

Y`m(θ, φ) Y ∗`m(θ ′, φ ′)

2 `+ 1
(3.201)

This solution is of course consistent with Equation 3.174, where we used the Addition
Theorem for Spherical Harmonics to rewrite the Green Function for this geometry and
type of boundary conditions in terms of the spherical harmonics, except now that we
used separation of variables from the start rather than relying on the method of
images and the Addition Theorem.

Note that, as predicted, the solution consists of sums of power laws in r ′ as well as r
and is of course symmetric under exchange of ~r and ~r ′.

Interesting exercises would be to see that the above expression approaches |~r − ~r ′|−1

as ~r → ~r ′ (use the Addition Theorem to recover the method of images solution) and
also to recover the defining differential equation, Equation 3.176.
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Examples of Using the Expansion of the Green Function in Terms of the
Spherical Harmonics

We did a lot of gymnastics to get the expansion of the Green Function in terms of
spherical harmonics. Let’s see how it can be used. For each of the examples we will
consider, it would be possible to solve for the potential without explicitly using our
expansion by splitting the volume into regions on two sides of ~r ′ and using separation
of variables with application of boundary conditions (including matching conditions at
the chosen internal boundary). The advantage of using the Green Function is that it
obviates re-solving the same kind of problem many times by simply providing integrals
that need to be done.
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Another point: in separation of variables, we always end up using orthonormality of
the specific set of solutions to Laplace’s Equation for the geometry to obtain the
solution coefficients from the inhomogeneous boundary condition(s), Dirichlet or
Neumann, and the matching conditions, if any. That general approach will become
codified here in the way the Green Function is integrated with the charge distribution
and boundary conditions in Equations 3.47 and 3.49. In particular, the Green Function
connects particular spherical harmonic modes of the charge distribution and/or the
voltage (Dirichlet) and/or charge (Neumann) boundary conditions to the
corresponding spherical harmonic modes of the potential. This correspondence makes
the structure of the solution much easier to understand. The effect of a spherical
harmonic mode in charge distribution and/or the boundary conditions at one radius r ′

on the potential at another radius r is just a function of the two radii, the g(r , r ′)
function (charge distribution in volume or Neumann boundary condition) or its radial
derivative (Dirichlet boundary condition).

The application of the Green Function is like a propagator in QM, propagating from
the initial condition to later times. We have to do less work to obtain the QM
propagator because the solution to the time piece of Schrödinger’s Equation is trivial
once one has the eigenvalues of the space piece.
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For our examples, we will consider charge distributions inside a conducting sphere. We
quote the general result from Jackson for the Green Function expansion in spherical
harmonics for a geometry consisting of the volume between two spheres at r = a and
r = b with Dirichlet BC on the two surfaces:

GD (~r , ~r ′) (3.202)

=
1

εo

∞∑
`=0

∑̀
m=−`

[
r`< −

1

a

(
a2

r<

)`+1
][

1

r`+1
>

− 1

b

( r>

b2

)`] Y ∗`m(θ ′, φ ′) Y`m(θ, φ)[
1−

(
a
b

)2 `+1
]

(2 `+ 1)

where, as usual, r< = min{r , r ′} and r> = max{r , r ′}. Obtaining this more general
result is a matter of doing the same thing as we did to obtain the result for a spherical
conducting boundary at r = R except that the Aout

` term cannot be assumed to vanish.

Next, taking the limit a→ 0, we get the result we will need for our work below where
we want to solve for the potential inside a sphere at r = b with Dirichlet BC:

GD (~r , ~r ′) =
1

εo

∞∑
`=0

∑̀
m=−`

r`<

[
1

r`+1
>

− 1

b

( r>

b2

)`] Y ∗`m(θ ′, φ ′) Y`m(θ, φ)

2 `+ 1
(3.203)

You will also be able to read off this simpler result from a method of images problem
you will do in homework. On to our examples!
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Example 3.10: Potential inside a conducting sphere of radius b due to an
arbitrary Dirichlet boundary condition potential at b but no charge in the
volume

With no charge in the volume, we just need to calculate the surface term in
Equation 3.48, for which we need the normal gradient of GD at the surface
(remember, n̂ points out of V):

n̂(~r ′) · ~∇~r ′GD (~r , ~r ′)
∣∣∣
~r ′∈S

=
1

εo

∞∑
`=0

∑̀
m=−`

Y ∗`m(θ ′, φ ′) Y`m(θ, φ)

2 `+ 1
r`

d

dr ′

[
1

(r ′)`+1
− 1

b

(
r ′

b2

)`]∣∣∣∣∣
r ′=b

= − 1

εo

1

b2

∞∑
`=0

∑̀
m=−`

( r

b

)`
Y ∗`m(θ ′, φ ′) Y`m(θ, φ) (3.204)

Therefore, the potential in the volume for the Dirichlet B.C. V (b, θ, φ) is

V (~r) =
∞∑
`=0

∑̀
m=−`

( r

b

)`
Y`m(θ, φ)

∫
dΩ′Y ∗`m(θ ′, φ ′) V (b, θ ′, φ ′) (3.205)

We see that the spherical harmonic component `m of the potential at r is determined
by the spherical harmonic component `m of the potential on the boundary: very
simple and consistent with the QM propagator picture.
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Example 3.11: Potential inside a grounded spherical conductor with a ring of
charge of radius a in the xy plane

This time, we do the volume integral but there is no integral over the surface. The
charge density due to the ring is

ρ(~r ′) =
Q

2π a2
δ(r ′ − a) δ(cos θ ′) (3.206)

Again, one can check that the charge density is correct by integrating it: the a−2

cancels the (r ′)2 factor in the volume element and the argument of the θ ′ delta
function is cos θ ′ because the volume element contains d(cos θ ′).

We use Equation 3.48 as usual, in this case with no surface term because the
boundary has V = 0. The potential is then

V (~r) =

∫
V

dτ ′ρ(~r ′) GD (~r , ~r ′)

=
Q

2π εo a2

∞∑
`=0

∑̀
m=−`

Y`m(θ, φ) (3.207)

×
∫
V

dτ ′δ(r ′ − a) δ(cos θ ′) r`<

[
1

r`+1
>

− 1

b

( r>

b2

)`] Y ∗`m(θ ′, φ ′)

2 `+ 1
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Because the charge density has no azimuthal dependence, the φ ′ integral picks out
the m = 0 term. Recall that Y`0 =

√
(2`+ 1)/4πP`, so we may rewrite as

V (~r) =
Q

4π εo a2

∞∑
`=0

P`(cos θ)

∫ 1

−1
d(cos θ ′) δ(cos θ ′) P`(cos θ ′) (3.208)

×
∫ b

0
(r ′)2dr ′δ(r ′ − a) r`<

[
1

r`+1
>

− 1

b

( r>

b2

)`]

=
Q

4π εo

∞∑
`=0

P`(cos θ) P`(0) r`<

[
1

r`+1
>

− 1

b

( r>

b2

)`]
(3.209)

where now r< = min{r , a} and r> = max{r , a} because the δ function does the r ′

integral for us, effectively replacing r ′ with a. (The next example will show the case of
a more complex charge distribution for which the radial integral is not done so easily.)
Now, recall P`(0) = 0 for odd ` and P`(0) = [(−1)n (2n− 1)!!]/2n n! for even ` = 2 n,
so we may reduce the above further to (replacing ` with 2 n so n runs over all
nonnegative integers rather than ` running over all nonnegative even integers):

V (~r) =
Q

4π εo

∞∑
n=0

(−1)n (2n − 1)!!

2n n!
r2n
<

[
1

r2n+1
>

− 1

b

( r>

b2

)2n
]

P2n(cos θ) (3.210)

where r< = min(r , a) and r> = max(r , a) again: i.e., not surprisingly, the solution has
a different form depending on whether one wants to know the potential inside the ring
(r < a) or outside the ring (r > a). This is now the complete solution.
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To get some intuition for the solution, let’s calculate the induced surface charge
density at r = b. We obtain it from the normal gradient of V , which, recall, is just ~E ,
and the change in its normal component at a boundary gives the surface charge
density. Since the normal gradient is just d/dr for this particular geometry, it does not
act at all on P2n. In calculating this gradient, r< = a and r> = r since we will in the
end evaluate at r = b > a. Therefore:

σ(~r) = εo
dV

dr

∣∣∣∣
r>=r=b,r<=a

= − Q

4π b2

∞∑
n=0

(4n + 1) (−1)n (2n − 1)!!

2n n!

( a

b

)2n
P2n(cos θ)

= − Q

4π b2

[
1 +

∞∑
n=1

(4n + 1) (−1)n (2n − 1)!!

2n n!

( a

b

)2n
P2n(cos θ)

]
(3.211)

The expression is written in the above suggestive form on the last line so that it is
easy to obtain the total induced surface charge. Since P0(cos θ) = 1, the integral of
the n > 0 terms over cos θ can be viewed as integrating P2n with P0; by
orthonormality of the Legendre polynomials, these terms all yield zero. The first term
yields −Q when integrated over the sphere. This is what we would expect from
Gauss’s Law applied just inside the r = b boundary. All the other terms yield θ
dependence in the charge density but their averages vanish (easily seen by using
orthonormality with P0, which is a constant).
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We have seen in this example how the integration of the charge density with the Green
Function breaks the charge density down into its spherical harmonic components,
calculates the potential due to each component individually (and fairly trivially, just
multiplying by a function of the radius of the source charge and the radius at which
the potential is desired) and then sums up those components. The same kind of
correspondence clearly holds for the induced surface charge density.

Note that the additional 4n + 1 factor implies the θ dependence of the induced surface
charge density is different from that of the original ring charge; i.e., the induced
surface charge is not just a ring.
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To get some intuition about the surface charge distribution, let’s go back to the
potential and rewrite it into a method of images solution. Using Equation 3.149 (the

expansion of |~r − ~r ′|−1 in Legendre polynomials), we can imagine that the first term

arises from the convolution of |~r − ~r ′|−1 with the ring charge distribution (though we
won’t prove it explicitly). What about the second term? Let’s manipulate it a bit:

−r2n
<

1

b

( r>

b2

)2n
∣∣∣∣
r<=a,r>=r

= −a2n r2n

b4n+1
= −b

a

r2na2n+1

b4n+2
= −b

a

r2n

(b2/a)2n+1
(3.212)

= −b

a

r2n
<

r2n+1
>

∣∣∣∣∣
r<=r,r>=b2/a

note: meaning of

r< and r> changed!
(3.213)

Thus, we see the second term has the right form for the potential at r< = r due to an
image charge at radius r> = b2/a and normalization −b/a relative to the true charge.
(Note that the meaning of r< and r> change between the initial and final expression
above.) The ring shape comes from the weighted sum over Legendre polynomials,
which is the same as the corresponding sum for the potential of the true charge, the
first term.

Seeing that the image charge is a ring at radius b2/a explains the induced surface
charge density distribution via its proportionality to the field lines from the true charge
to the image charge at the r = b surface. Drawing a picture using the image charge
configuration should make this clear.
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Example 3.12: Potential inside a grounded spherical conductor with a line
charge density along the z axis

This is done in Jackson Section 3.10. We reproduce it here because it has some
calculational twists.

The first twist is figuring out how to write down the charge density in spherical
coordinates. One could probably rigorously derive the form by writing down the charge
density trivially in Cartesian or cylindrical coordinates and then applying Jacobian
transformation to convert it to spherical coordinates, but there is an easier, more
intuitive way.

It is all present at cos θ = 1 and cos θ = −1, so clearly delta functions for these
positions need to be included. It has azimuthal symmetry, so there will be no φ
dependence, only a factor of 1/2π. The charge is distributed in radius, so there is
some to-be-determined radial dependence f (r). To figure out f (r), let’s write down
the requirement that the integral be the total charge Q:

ρ(~r) =
Q

2π
f (r) [δ(cos θ − 1) + δ(cos θ + 1)] (3.214)

Q =

∫
V

dτ ρ(~r)

=
Q

2π

∫ b

0
dr r2 f (r)

∫ 1

−1
d(cos θ) [δ(cos θ − 1) + δ(cos θ + 1)]

∫ 2π

0
dφ

= 2 Q

∫ b

0
dr r2 f (r)
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If we choose f (r) = c/r2 where c is a constant to be determined, then the remaining
integral becomes trivial and yields b, which we can use to find c:

Q = 2 Q c b =⇒ c =
1

2b
(3.215)

=⇒ ρ(~r) =
Q

4π b r2
[δ(cos θ − 1) + δ(cos θ + 1)] (3.216)

Now, since the sphere is grounded, we just need to do the integral of the charge
density with the Dirichlet Green Function:

V (~r) =
1

εo

∫
V

dτ ′ ρ(~r ′) GD (~r , ~r ′) (3.217)

=
Q

4π εo b

∞∑
`=0

∑̀
m=−`

∫
V

dτ ′
δ(cos θ ′ − 1) + δ(cos θ ′ + 1)

(r ′)2

× r`<

[
1

r`+1
>

− 1

b

( r>

b2

)`] Y ∗`m(θ ′, φ ′) Y`m(θ, φ)

2`+ 1
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We apply azimuthal symmetry as we did in the previous example, selecting the m = 0
terms that we can write as Legendre polynomials. The normalization of the spherical
harmonics cancels the factor of 2`+ 1 in the denominator but adds a factor of 4π in
the denominator. The φ integral cancels a factor of 2π in the denominator. The θ ′

integrals can be done trivially, selecting P`(1) and P`(−1). Note also that the (r ′)2

from the dτ ′ cancels the (r ′)2 in the denominator from the charge density. Thus, we
have

V (~r) =
Q

8π ε0 b

∞∑
`=0

P`(cos θ)

∫ b

0
dr ′ r`<

[
1

r`+1
>

− 1

b

( r>

b2

)`]
[P`(1) + P`(−1)]

We know P`(1) = 1 and P`(−1) = (−1)`, so the term containing these two factors
yields 2 for even ` and 0 for odd `. Thus, the above reduces to

V (~r) =
Q

4π ε0 b

∑
` even

P`(cos θ)

∫ b

0
dr ′ r`<

[
1

r`+1
>

− 1

b

( r>

b2

)`]
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The integral over radius must be broken into two pieces, one for r ′ < r and one for
r ′ > r , because the r< and r> variables take on different values for these two regions
(by definition!). Doing so, and doing the integrals (they are straightforward) yields

∫ b

0
dr ′ r`<

[
1

r`+1
>

− 1

b

( r>

b2

)`]
=

2`+ 1

`+ 1

1

`

[
1−

( r

b

)`]
(3.218)

The second portion of the above quantity is well-defined for ` 6= 0, but not for ` = 0.
We need to use L’Hôpital’s rule to evaluate it for ` = 0:

lim
`→0

1

`

[
1−

( r

b

)`]
= lim
`→0

d
d`

[
1−

(
r
b

)`]
d

d`
`

= − lim
`→0

(
r
b

)` (
ln r

b

)
d

d`
`

d
d`
`

= ln
b

r
(3.219)

Therefore, we may write the full solution as, separating out the ` = 0 term and
rewriting in terms of ` = 2 n,

V (~r) =
Q

4π εo b

[
ln

b

r
+
∞∑

n=1

4n + 1

2n (2n + 1)

[
1−

( r

b

)2n
]

P2n(cos θ)

]
(3.220)
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Let’s calculate the induced surface charge density and the total induced charge again:

σ(θ) = εo
∂V

∂r

∣∣∣∣
r=b

= − Q

4π b2

[
1 +

∞∑
n=1

4n + 1

2n + 1
P2n(cos θ)

]
(3.221)

Note again how the surface charge density has a different n-dependent weighting than
the potential. Finally, integrating over the sphere to get the total induced charge, all
n ≥ 1 terms vanish, yielding

Qind =

∫
r=b

b2 dφ d cos θ σ(θ) = −Q (3.222)

as we expect from Gauss’s Law. It would again be interesting to rewrite the solution
in the form of a method of images solution, which you have the tools to do. It clearly
should look like a line charge at the north and south poles. Its density will presumably
fall off as 1/z2 because the true charge density is uniform (in linear units, z) and the
image charge magnitude and position both scale as 1/z.
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Section 3.10 Advanced Electrostatics: Multipole Expansions

Multipole Expansions

Dipoles: Quick Review

Recall from Ph1b the idea of an electric dipole: two charges of equal and opposite
magnitude ±q spaced very close together at ~r+ and ~r−. The net charge cancels
almost perfectly, so, rather than the potential falling off like 1/r at large radius, it falls
off as 1/r2 with functional form

V (~r) =
1

4π εo

~p · r̂
r2

as
r

|~r+|
,

r

|~r−|
,

r

|~r+ − ~r−|
→ ∞ (3.223)

where ~p = q(~r+ − ~r−) is the dipole moment.

This idea generalizes. When one has a charge distribution with vanishing net charge,
but inside of which there is a variation in the charge density, that variation is still
noticeable at large distance as a set of potentials that fall off more quickly than 1/r .
The first additional term is the dipole, falling as 1/r2, the second is the quadrupole,
falling as 1/r3, the third is the octupole, falling as 1/r4, and so on. The nomenclature
comes from the minimum number of different source charges one must have to obtain
that moment: one for monopole, two for dipole, four for quadrupole, etc.
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Multipoles: Full Derivation

We derive the full form by considering the potential due to a charge distribution near
the origin as viewed at a point ~r such that r is much larger than the extent of the
charge distribution. This the key assumption! We begin with

V (~r) =
1

4π εo

∫
V

dτ ′
ρ(~r ′)

|~r − ~r ′| (3.224)

We now use Equation 3.149, taking r< = r ′ and r> = r because r is outside the
charge distribution. Thus,

V (~r) =
1

4π εo

∫
V

dτ ′ ρ(~r ′)
∞∑
`=0

(r ′)`

r`+1
P`(cos γ) (3.225)

where cos γ = r̂ · r̂ ′ is the angle between the two vectors. There is a common 1/r we
can factor out, leaving

V (~r) =
1

4π εo

1

r

∞∑
`=0

1

r`

∫
V

dτ ′ρ(~r ′)
(
r ′
)`

P`(cos γ) (3.226)

This is the multipole expansion of the potential of the charge distribution. One can
see that the successive terms fall off as successively higher powers of 1/r . The angular
dependence is given by the Legendre polynomials in cos γ = r̂ · r̂ ′.
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The Monopole, Dipole, and Quadrupole Terms

Let’s write out the first three terms more explicitly to get some physical intuition:

I Monopole term
The first term is

V1(~r) =
1

4π εo

1

r

∫
V

dτ ′ρ(~r ′) =
1

4π εo

Q

r
(3.227)

This is the standard Coulomb’s Law term due to the total charge. Far enough
away, all charge distributions look pointlike. But, if Q = 0, this term vanishes
identically and the higher-order terms must be considered. Even if Q 6= 0, if one
is close enough to the charge distribution to see its non-pointlike nature, the
higher-order terms will be important corrections to the monopole term.
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I Dipole term
The second term is

V2(~r) =
1

4π εo

1

r2

∫
V

dτ ′ρ(~r ′) r ′ cos γ =
1

4π εo

1

r2

∫
V

dτ ′ρ(~r ′) r ′ r̂ ′ · r̂

=
1

4π εo

1

r2
r̂ ·
∫
V

dτ ′ρ(~r ′)~r ′ (3.228)

or V2(~r) =
1

4π εo

1

r2
r̂ · ~p where ~p =

∫
V

dτ ′ρ(~r ′)~r ′ (3.229)

is the dipole moment vector. It is the generalization of ~p = q (~r+ − ~r−). It can
be written in component form (which is how you would actually calculate it —
recall our discussion during the first lecture of how to break vector integrals into
a set of scalar integrals!) as

pj =

∫
V

dτ ′ ρ(~r ′) r ′j = r̂j · ~p (3.230)
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I Quadrupole term
The third term is

V3(~r) =
1

4π εo

1

r3

∫
V

dτ ′ρ(~r ′) (r ′)2 1

2

(
3 cos2 γ − 1

)
=

1

4π εo

1

r3

∫
V

dτ ′ρ(~r ′) (r ′)2 1

2

(
3
(
r̂ · r̂ ′

) (
r̂ ′ · r̂

)
− 1
)

=
1

4π εo

1

r3
r̂ ·
[∫
V

dτ ′ρ(~r ′) (r ′)2 1

2

(
3 r̂ ′ r̂ ′ − 1

)]
· r̂ (3.231)

or V3(~r) =
1

4π εo

1

r3

1

2
r̂ · Q · r̂ where Q =

∫
V

dτ ′ρ(~r ′)
[
3~r ′~r ′ − (r ′)21

]
(3.232)

is the quadrupole moment and 1 = diag(1, 1, 1) is the identity tensor with ones

along the diagonal. Because it is composed of ~r ′ ~r ′ and 1, Q is a tensor,

implying that one can take a dot product with a vector on each side. Written
out in component form (which is again how you would calculate it):

Qjk =

∫
V

dτ ′ ρ(~r ′)
[
3 r ′j r ′k − (r ′)2δjk

]
= r̂j · Q · r̂k (3.233)

It is now obvious that Qjk is symmetric in its indices.
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Origin Dependence of the Dipole Moment

Suppose we take a charge distribution and shift the origin by a vector ~a such that the
charge distribution is now centered around ~a. Then the new dipole moment is

~p ′ =

∫
dτ ′ρ ′(~r ′)~r ′ =

∫
dτ ρ(~r) (~a + ~r) = ~a Q + ~p (3.234)

where we define the charge distribution in the new coordinate system ρ ′(~r ′) in terms
of the original charge distribution ρ(~r) to be such that ρ ′(~r ′) = ρ(~r = ~r ′ − ~a) when
~r ′ = ~r + ~a. Thus, an origin shift can induce an artificial dipole moment for a charge
distribution that has a monopole moment. This part of the dipole moment is not real:
it is a reflection of the fact that the multipole potentials are written in terms of
distance from the origin under the assumption that the charge distribution is centered
around the origin. When it is not, this is an unnatural coordinate system to use,
requiring corrections of order 1/r2 to the standard monopole term (∝ Q/r) to handle
the fact that the charge distribution is displaced. The above tells us the correction
term has the same form as a dipole term. Obviously, one should choose the origin
wisely to avoid such complications.

Note also the somewhat counterintuitive implication that, if Q = 0, then the dipole
moment is independent of origin! Our assumption that the charge distribution,
including its displacement from the origin, is small compared to the to the observation
point implies that a must also be small so that any corrections, which are of order
a3/r3, are small compared to the leading 1/r2 dependence for the dipole term.
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Field of an Electric Dipole

This is simply a matter of taking the gradient. If we let ~p = p ẑ, then this is easy:

V2(~r) =
p cos θ

4π εo r2
(3.235)

=⇒ Er (~r) = −∂V2

∂r
= −2 p cos θ

4π εo r3
(3.236)

Eθ(~r) = −1

r

∂V2

∂θ
=

p sin θ

4π εo r3
(3.237)

Eφ(~r) = − 1

r sin θ

∂V2

∂φ
= 0 (3.238)

or ~E(~r) =
p

4π εo r3

(
2 r̂ cos θ + θ̂ sin θ

)
(3.239)
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To generalize this result for an arbitrary orientation of ~p requires some vector algebra.
We have Equation 3.229 for the dipole potential in generic form, which we write out as

V2(~r) =
1

4π εo

1

r3
~r · ~p =

1

4π εo

1

r3

∑
i

ri pi (3.240)

Now, we take the gradient, first noting

∂

∂rj

ri

r3
=

∂

∂rj

ri

(r2)3/2
= −3

2

ri

(r2)5/2

∂ r2

∂rj

+
δij

r3
= −3

2

ri

r5

(
2 rj

)
+
δij

r3
(3.241)

Where we used r3 =
(
r2
)3/2

and r2 =
∑

k r2
k to more easily calculate the partial

derivative. Therefore, with rj and r̂j being the jth Cartesian coordinate and unit vector,

~E2(~r) = −~∇V2(~r) = −
∑

j

r̂j
∂V2

∂rj

=
1

4π εo r5

∑
ij

r̂j pi

[
3 ri rj − δij r2

]
=

1

4π εo r5

∑
j

[
rj r̂j

(
3
∑

i

pi ri

)
− pj r̂j r2

]
=

1

4π εo r5

[
3 (~p · ~r)~r − r2~p

]

=⇒ ~E2(~r) =
1

4π εo r3
[3 (~p · r̂) r̂ − ~p] (3.242)
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Electrostatic Potential Energy of a Multipole Distribution in an External
Potential

The general expression for the potential energy of a charge distribution in an external
potential is

U =

∫
V
ρ(~r ′) V (~r ′) (3.243)

Under the assumption that V (~r ′) varies slowly (but need not be constant!) over the
spatial extent of the charge distribution, we can rewrite this in terms of moments of
the charge distribution and derivatives of the potential. To do so, we need to expand
V (~r) about some point in the distribution. To make the calculation easier, assume the
charge distribution is centered on the origin, around which we will expand. (We will
generalize later.) We use the multidimensional Taylor expansion of V (~r):

V (~r ′) = V (~r ′ = ~0) +
3∑

j=1

r ′j
∂V

∂rj

∣∣∣∣∣
~r ′=~0

+
1

2

∑
j,k=1

r ′j r ′k
∂2V

∂rj ∂rk

∣∣∣∣
~r ′=~0

+ · · · (3.244)

We can already foresee how integrating the above form for V (~r ′) with ρ(~r ′) is going
to result in a dipole moment in the first term and quadrupole moment in the second.

Section 3.10.6 Electrostatic Potential Energy of a Multipole Distribution in an External Potential Page 250



Section 3.10 Advanced Electrostatics: Multipole Expansions

Using Ej = − ∂V
∂rj

, we may simplify

V (~r ′) = V (~0)− ~r ′ · ~E(~0) +
1

6

3∑
j,k=1

3 r ′j r ′k
∂2V

∂rj ∂rk

∣∣∣∣
~0

+ · · · (3.245)

= V (~0)− ~r ′ · ~E(~0) +
1

6

3∑
j,k=1

(
3 r ′j r ′k − (r ′)2δjk

) ∂2V

∂rj ∂rk

∣∣∣∣
~0

+ · · · (3.246)

where we were able to add the (r ′)2δjk term because

∑
j,k

(r ′)2δjk
∂2V

∂rj ∂rk

∣∣∣∣
~0

= (r ′)2∇2V (~r ′ = 0) = 0 (3.247)

because the charge distribution sourcing V is not present near the origin. Remember,
ρ(~r) is not the distribution sourcing V ; V is provided to us and is due to some charge
distribution far away from the origin.
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With the above expansion, the electrostatic potential energy is now (note that ~E(~0)
and ∂2V /∂rj∂rk

∣∣
~0

are constant with respect to r ′, so they come outside of the r ′

integral)

U = V (~0)

∫
V

dτ ′ρ(~r ′)− ~E(~0) ·
∫
V

dτ ′ ρ(~r ′)~r ′ (3.248)

+
1

6

3∑
j,k=1

∂2V

∂rj ∂rk

∣∣∣∣
~0

∫
V

dτ ′ρ(~r ′)
[
3 r ′j r ′k − δjk (r ′)2

]
+ · · ·

= Q V (~0)− ~p · ~E(~0) +
1

6

3∑
j,k=1

Qjk
∂2V

∂rj ∂rk

∣∣∣∣
~0

+ · · · (3.249)

We generalize for a charge distribution centered around ~r instead of the origin:

U(~r) = Q V (~r)− ~p · ~E(~r) +
1

6

3∑
j,k=1

Qjk
∂2V

∂rj ∂rk

∣∣∣∣
~r

+ · · · (3.250)

= Q V (~r)− ~p · ~E(~r) +
1

6
~∇~r · Q · ~∇~r V (~r) + · · · (3.251)

where we have written the last term in tensor dot product form. There are now
contributions to the potential energy from the relative alignment of ~p and ~E and from
the orientation of Q’s principal axes relative to the principal axes of the potential’s

curvature matrix. Note that ~∇~r acts on the spatial dependence of V (~r); ~r ′ has
already been integrated over to obtain Q.
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Force on a Multipole Distribution in an External Field

We can calculate the force on the charge distribution by taking the derivative of U
with respect to the charge distribution’s nominal position ~r , now replacing one
derivative of V with the electric field ~E in the quadrupole term:

~F (~r) = −~∇U(~r) = Q
(
−~∇V (~r)

)
+ ~∇

(
~p · ~E(~r)

)
+

1

6

3∑
j,k,m=1

r̂m Qjk
∂2Ej

∂rm ∂rk
+ · · ·

= Q ~E(~r) +
(
~p · ~∇

)
~E(~r) +

1

6

3∑
j,k,m=1

r̂m Qjk
∂2Ej

∂rm ∂rk
+ · · ·

= Q ~E(~r) +
(
~p · ~∇

)
~E(~r) +

1

6
~∇
[
~∇ ·
(

Q · ~E(~r)
)]

+ · · · (3.252)

In going from the first to the second row, we used the vector identity
~∇
(
~a · ~f (~r)

)
=
(
~a · ~∇

)
~f (~r) when ~a is a constant vector and ~f (~r) has no curl. Note

that all ~∇ are with respect to ~r (since ~r ′ has been integrated over already).

We see that the total force is a sum of contributions from the interaction of the
monopole with the electric field, the dipole with gradients in the electric field and, the
quadrupole with the local curvature (second derivatives) of the electric field.
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Torque on a Multipole in an External Field

Let’s also calculate the torque. As you know from Ph106a, to calculate a torque, we
need to take the gradient of the potential energy in spherical coordinates with respect
to the orientation of the charge distribution relative to the electric field.

The monopole term yields no torque because there is no orientation angle involved: Q
and V (~r) are scalars.

Considering the dipole term, we understand that there are only two vectors involved, ~p
and ~E , and the potential energy only depends on the angle between them. So the
torque will be given by the derivative with respect to this angle, which we call θp to

differentiate it from the θ coordinate of the system in which we consider ~E . This angle
will be measured from ~E to ~p. Then,

~Nelec = − ∂

∂θp

(
−~p · ~E(~r)

)
(3.253)

=
∂

∂θp

p
∣∣∣~E(~r)

∣∣∣ cos θp = −p
∣∣∣~E(~r)

∣∣∣ sin θp

= ~p × ~E(~r) (3.254)

This is a result you are familiar with from Ph1b, indicating the torque acts in a
direction to align the dipole moment with the field direction.
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Moving on to the quadrupole term, we recognize from Ph106a that any symmetric
tensor can be diagonalized via a rotation. Let’s write

Q = R(φQ , θQ , ψQ )Q [R(φQ , θQ , ψQ )]T with Q = diag(Q1,Q2,Q3) (3.255)

where the Qi are quadrupole moments along the principal axes of the quadrupole
tensor and R(φQ , θQ , ψQ ) is the rotation matrix that rotates from the frame in which
the coordinate axes align with the quadrupole tensor’s principal axes to the arbitrary
frame we started in, with the three Euler angles (φQ , θQ , ψQ ) defining the orientation
of the principal axes of Q relative to the this arbitrary frame. This kind of

diagonalization should be familiar to you from Ph106a, with R rotating from the
“body” frame (the one fixed to the charge distribution’s quadrupole principal axes) to
the “space” frame. The quadrupole potential energy term is then

U3 = −1

6
~∇~r ·

{
R(φQ , θQ , ψQ )Q [R(φQ , θQ , ψQ )]T

}
· ~E(~r) (3.256)
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To calculate the torque, we need to take the gradient of U3 with respect to the
orientation of the quadrupole. This amounts to taking gradients of R and RT with
respect to this orientation. As you know from the case of the symmetric top, the Euler
angles are particularly useful angles with respect to which these derivatives can be
taken. ∂/∂φQ gives the torque about the z-axis of the space frame, which causes
precession around that axis. ∂/∂θQ gives the torque that causes motion in the polar
angle direction with respect to the same space-frame z-axis, which is like nutation in
the case of a top. And ∂/∂ψQ calculates the torque about one particular principal axis
of the quadrupole, chosen at will, which accelerates or decelerates the rotation about
that axis. You are familiar with symmetric tops, with I1 = I2. Here, we can have
symmetric quadrupoles, with Q1 = Q2. In this case, the ψQ angle is the angle about
the 3 axis of the quadrupole (the principal axis that aligns with the z-axis in the body
frame). We do not take this further because, as you know from the study of tops in
Ph106a, the phenomenology can be quite rich.
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Polarizability and Polarization

Review of Polarizability of Materials

Griffiths §4.1 does a good job of providing physical motivation for the study of the
polarizability of materials, and also reviews material you saw in Ph1b, so we only
summarize the basics here.

I Atoms and molecules are polarizable, meaning that they can acquire a dipole
moment when an external electric field is applied because of the separation of
the positive and negative charge in response to the applied field. The charge
distribution that results is such that its field is in the opposite direction as the
applied field at the location of the atom or molecule.

I We assume that this polarizability is a linear process, so that the induced dipole
moment is linear in the applied electric field, though the response may be
anisotropic. The polarizability tensor α relates the induced dipole moment to
the applied field:

~p = α · ~E (4.1)
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I As we showed in our discussion of multipoles, dipoles can experience torques
and forces in an electric field. If a dipole is placed in an electric field, it feels a
torque (Equation 3.254)

~N = ~p × ~E (4.2)

If the electric field is nonuniform, the dipole feels a force (Equation 3.252)

~F =
(
~p · ~∇

)
~E (4.3)

I If a medium consists of polarizable atoms or molecules, then that medium can
become polarized under the application of an electric field. The polarization (or
polarization density) of the medium is

~P = n ~p (4.4)

where n is the density of polarizable atoms or molecules and ~p is the induced
dipole per atom or molecule.
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Bound Charges and the Potential of a Polarizable Material

When a medium is polarized and acquires a polarization vector ~P, then it can generate
its own electric field. This comes from the superposition of the dipole fields of the
individual polarized atoms or molecules. In Ph1b, you saw how the polarization could
be interpreted as yielding bound charge densities: when the medium polarizes, the
positive components of some dipoles are cancelled by the negative components of
nearby dipoles, but there can appear a net effective charge: on the boundaries, where
the cancellation fails, and in the bulk if the dipole density is not uniform, also causing
the cancellation to fail. This argument was made in Purcell in Ph1b to derive the
bound charge densities, and Griffiths makes it in §4.2.2. Here we derive the
relationship between the polarization vector and the bound charge density in rigorous
fashion.

The total electric potential generated by a polarizable medium is found by summing
up the dipole potentials of the individual dipoles:

V (~r) =
1

4π εo

∫
V

dτ ′
~P(~r ′) · (~r − ~r ′)
|~r − ~r ′|3 (4.5)

We use the identity (~r − ~r ′)/|~r − ~r ′|3 = ~∇~r ′ (1/|~r − ~r ′|) (note: no minus sign because

this is ~∇~r ′ , not ~∇~r , and we have ~r −~r ′ in the numerator, not ~r ′−~r) to rewrite this as

V (~r) =
1

4π εo

∫
V

dτ ′ ~P(~r ′) · ~∇~r ′
(

1

|~r − ~r ′|

)
(4.6)
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We can integrate by parts to obtain

V (~r) =
1

4π εo

[∫
V

dτ ′ ~∇~r ′ ·
(

~P(~r ′)

|~r − ~r ′|

)
−
∫
V

dτ ′
1

|~r − ~r ′|
(
~∇~r ′ · ~P(~r ′)

)]
(4.7)

The first term can be converted to a surface integral via the divergence theorem:

V (~r) =
1

4π εo

[∫
S(V)

da′
n̂(~r ′) · ~P(~r ′)

|~r − ~r ′| −
∫
V

dτ ′
1

|~r − ~r ′|
(
~∇~r ′ · ~P(~r ′)

)]
(4.8)

We thus see that the potential appears to be that of a surface charge density σb(~r ′)
on S(V) and a volume charge density ρb(~r ′) in V with (n̂ is the outward normal from
the polarizable material):

σb(~r ′) = n̂(~r ′) · ~P(~r ′) ρb(~r ′) = −~∇~r ′ · ~P(~r ′) (4.9)

V (~r) =
1

4π εo

[∫
S(V)

da′
σb(~r ′)

|~r − ~r ′| +

∫
V

dτ ′
ρb(~r ′)

|~r − ~r ′|

]
(4.10)

These charges are called “bound charges” because they are bound to the polarizable
medium.
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Example 4.1: Potential and Field of a Uniformly Polarized Sphere

This problem from Ph1b is much easier to solve with our knowledge of solutions to
Laplace’s Equation than it was without such techniques. The polarization density is a
constant ~P = P ẑ. The bound volume charge density vanishes because ~P is constant.
The bound surface charge density on the surface at radius R is

σb = n̂(~r) · ~P = r̂ · P ẑ = P cos θ (4.11)

Therefore, Laplace’s Equation holds everywhere except at r = R, so we apply the same
techniques as we developed previously. Recall that we discussed this same problem in
Example 3.6 (Griffiths Example 3.9) for a generic σ(θ). The generic solution was

V (r < R, θ) =
∞∑
`=0

A`r
`P`(cos θ) V (r > R, θ) =

∞∑
`=0

B`

r`+1
P`(cos θ) (4.12)

with A` =
1

2 εo R`−1

∫ π

0
dθ ′ sin θ ′ σ(θ ′) P`(cos θ ′) B` = A` R2 `+1 (4.13)

Since σ(θ) = P cos θ = P P1(cos θ), the orthonormal functions do their job and we get
(making sure to include the normalization factor 2/(2 `+ 1) = 2/3):

V (r < R, θ) =
P r cos θ

3 εo
V (r > R, θ) =

P R3 cos θ

3 εo r2
(4.14)
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We can write these more simply. We recognize z = r cos θ and that the total dipole
moment of the sphere is ~p = 4π R3P ẑ/3, yielding

V (r < R, θ) =
P z

3 εo
V (r > R, θ) =

~p · r̂
4π εo r2

(4.15)

Thus, the field inside the sphere is uniform, ~E = −~P/3 εo , and the field outside the
sphere is that of a dipole ~p. Note that the field outside the sphere is a perfect dipole
field all the way to r = R; this is not an approximation (until you get so close to the
surface that you can see the discretization of the dipoles).

We remind the reader of the Ph1b technique, where we obtained this same result by
treating the sphere as two spheres of uniform charge density ρ = q/(4π R3/3) with

their centers displaced by ~d = ~p/q. The field inside a uniform sphere of charge is

proportional to the radial vector outward from its center, so the two vectors ~r − ~d/2

and ~r + ~d/2 end up differencing (because the two spheres have opposite charge) to

yield ~d , yielding the uniform internal field. Outside the spheres, they look like point
charges, so the system looks like a point dipole ~p.

One could also use this argument to figure out that the charge density on the surface
is σ = P cos θ and evaluate the potential and field of that charge distribution.
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The Electric Displacement Field

Definition of the Electric Displacement Field

We proved earlier that the potential due to a polarization density ~P(~r) is

V (~r) =
1

4π εo

[∫
S(V)

da′
n̂(~r ′) · ~P(~r ′)

|~r − ~r ′| +

∫
V

dτ ′
−~∇~r ′ · ~P(~r ′)

|~r − ~r ′|

]
(4.16)

These are analogues of Coulomb’s law for ρb, so the potential and field due to the
polarization density satisfy

∇2Vb = − 1

εo
ρb

~∇ · ~Eb =
1

εo
ρb = − 1

εo

~∇ · ~P (4.17)

If there is a free charge density ρf (which will contribute to V and ~E !), then we see
that the total potential and field satisfy

∇2V = − 1

εo
(ρf + ρb) ~∇ · ~E =

1

εo

(
ρf − ~∇ · ~P

)
(4.18)
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We will see later that it will be convenient to have a field that depends primarily on
the free charge density. Thus, we define the electric displacement field by

~D = εo
~E + ~P (4.19)

We immediately see that Gauss’s Law can be written as

~∇ · ~D = ρf ⇐⇒
∮
S

da n̂ · ~D = Qfree,encl (4.20)

The Helmholtz Theorem tells us that any vector field can be written as the sum of a
curl-free component (sourced by the divergence of the field) and a divergence-free

component (sourced by the curl of the field). Thus, to fully understand ~D, we also
need to determine its curl:

~∇× ~D = εo ~∇× ~E + ~∇× ~P = ~∇× ~P (4.21)

Because the right side may not vanish, the left side may not vanish. This possibly
nonzero curl is an important distinction between ~D and ~E .

While Gauss’s Law does indeed hold for ~D, the possibility that ~∇× ~D 6= 0 implies that
the standard symmetry assumptions we make to apply Gauss’s Law to find the field
may not apply.
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However, if one knows that, due to symmetry or some other consideration,
~∇× ~P = 0, then one can apply the standard techniques for using Gauss’s Law
combined with symmetry to calculate the displacement field. (~∇× ~P = 0 should be

interpreted as also requiring that any boundaries be normal to ~P because we will see
below that, unlike for ~E , the tangential component of ~D is not continuous if ~P has a
tangential component.)

When the above is true, ~D provides a calculational convenience: if a free charge
density ρf and a polarization field ~P are specified, then we should calculate ~D from
the free charge density using Gauss’s Law and then obtain the electric field from
~E = (~D − ~P)/εo . This simplification is possible only because of the particular form of

the bound charge density, ρb = −~∇ · ~P, which parallels the mathematical form of
Gauss’s Law, along with the condition ~∇× ~P = 0.

Note the extra condition ~∇× ~P = 0; this reflects the fact that ~P has more degrees of
freedom than a scalar field ρb, so those extra degrees of freedom need to be specified
via the curl-free condition for ~D to be derivable from ρf alone.

The situation will simplify somewhat when we consider linear, uniform dielectrics
where ~P ∝ ~E ; then ~∇× ~P = 0 is guaranteed, though the requirement that ~P be
normal to any boundaries may still create complications.
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Boundary Conditions on the Displacement Field

We derived boundary conditions on ~E earlier, Equations 2.59 and 2.61:

n̂ ·
(
~E2 − ~E1

)
=

1

εo
σ ŝ ·

(
~E2 − ~E1

)
= 0 (4.22)

where n̂ is the normal vector pointing from region 1 into region 2 and ŝ is any
tangential vector (i.e., ŝ · n̂ = 0). We derived the equation for the normal component

using the divergence of ~E . So, here, we can use the fact that ~∇ · ~D = ρf , which yields

n̂ ·
(
~D2 − ~D1

)
= σf (4.23)

Note that, by definition, we have σb = n̂ · ~P where n̂ is the outward normal going from
a region with a polarization density to vacuum. Therefore, by superposition,

n̂ ·
(
~P2 − ~P1

)
= −σb (4.24)

We could also have used ρb = −~∇ · ~P and followed the same type of derivation as
used for ~E and ~D. The sign on the right side of the boundary condition enters because
of the sign in ~∇ · ~P = −ρb.
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In general, we know nothing about ~∇× ~P, so the boundary condition on the
tangential component of ~D just reflects the fact that its curl is the curl of the
polarization field. We obtain this condition by inserting the relation between ~E , ~D,
and ~P into the above tangential condition:

ŝ ·
(
~D2 − ~D1

)
= ŝ ·

(
~P2 − ~P1

)
(4.25)

Note that, even in the case of linear dielectrics, the right side can be nonzero, as we
will see below.
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What Sources ~D? When Does It Vanish?

Consider the uniformly polarized sphere we just discussed in Example 4.1. In that
example, the displacement field is

~D(r < R) = εo
~E + ~P = −

~P

3
+ ~P =

2

3
~P (4.26)

~D(r > R) = εo
~E = εo

(
field of an electric dipole ~p =

4π

3
R3 ~P

)
(4.27)

There is no free charge in the problem, yet we have a nonzero ~D! The nonzero nature
of ~∇× ~D implies that ~D has another sourcing term that is not captured by Gauss’s
Law for ~D. In this case, this sourcing term manifests as a discontinuity of the
tangential component of ~P at r = R: ~P · θ̂ = P ẑ · θ̂ = −P sin θ. This nonzero value
of ŝ · ~P is what makes ŝ · ~D 6= 0 and thus we cannot apply the usual symmetry
arguments to use Gauss’s Law for ~D (which would otherwise tell us ~D = 0 because

ρf = 0 everywhere). For ~D to vanish completely, one not only needs the free charge to

vanish but there must also be no nontrivial boundary conditions on ~D.
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Linear Dielectrics

So far, we have considered situations where ~P has been specified for us. But, it is
usually caused by an external field, and so what we really want to do is figure out
what observed potential and field arise by summing the externally applied
potential/field and that due to the polarization of the dielectric in response to that
external potential/field. For most substances, at least at low fields, the relation
between the two is linear and there is a simple scalar constant of proportionality:

~P = εo χe
~E (4.28)

where χe is the electric susceptibility. Such materials are called linear dielectrics. An
immediate implication of the above is:

~D = εo
~E + ~P = εo (1 + χe ) ~E ≡ ε ~E (4.29)

where ε ≡ εo (1 + χe ) is the permittivity of the material and εr ≡ 1 + χe is the relative
permittivity or dielectric constant of the material.

A very important point is that ~E above is the total field, not just the externally
applied field. You can think of polarization as an iterative process: an applied field ~E0

causes polarization ~P0, which creates its own field ~E1, which the polarization responds
to by adding a contribution ~P1, which creates its own field ~E2, and so on. The process
converges to the final total electric field ~E and polarization ~P.

Page 271



Section 4.3 Electrostatics in Matter: Linear Dielectrics

Example 4.2: Conducting sphere with dielectric shell around it

Consider a conducting sphere of radius a with (free) charge Q on it surrounded by a
(thick) shell of dielectric ε with inner and outer radii a and b. Because the system is

spherically symmetric and contains a linear dielectric, we know that ~E , ~D, and ~P all
have the form

~E = E(r) r̂ ~D = D(r) r̂ ~P = P(r) r̂ (4.30)

This ensures that the curl of all three vanish and that, at the boundaries, we have no
tangential components of ~D and ~P. We have now satisfied all the conditions required
for us to be able to derive ~D directly from the free charge by Gauss’s Law, which yields

~D(~r) =
Q

4π r2
r̂ r > a (4.31)

(~D = ~E = ~P = 0 for r < a.) Then we just apply the relation between ~D and ~E :

~E(~r) =
Q

4π ε(r) r2
r̂ =

{ (
Q/4π ε r2

)
r̂ a < r < b(

Q/4π εo r2
)

r̂ b < r
(4.32)

The electric field is screened (reduced) inside the dielectric and unchanged outside.
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Let’s calculate the polarization vector and bound charge density:

~P(~r) = εo χe (r) ~E(~r) = (ε(r)− εo ) ~E(~r) =
ε(r)− εo

ε(r)

Q

4π r2
r̂

=

{ ε−εo
ε

Q
4π r2 r̂ a < r < b

0 b < r
(4.33)

ρb = −~∇ · ~P = 0 (4.34)

σb =

{
−r̂ · ~P(r = a) = − ε−εo

ε
Q

4π a2 r = a

r̂ · ~P(r = b) = ε−εo
ε

Q
4π b2 r = b

(4.35)

Note the ε in the denominator! We see that ~P is radially outward and decreasing with
r like 1/r2 as ~E does. Note that, even though ~P is position-dependent, its divergence
vanishes, so there is no bound charge density. There is surface charge density, negative
at r = a and positive at r = b. This is to be expected, as the dielectric polarizes so
the negative ends of the dipoles are attracted to Q on the conducting sphere and the
positive ends are repelled, leaving uncancelled layers of negative charge on the inner
boundary and positive charge on the outer boundary.

The electric field is reduced inside the dielectric because the negative charge on the
inner boundary screens (generates a field that partially cancels) the field of the free
charge on the conducting sphere: the total surface charge density σf + σb at r = a is
less than Q/4π a2, and it is the total charge that determines ~E .
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Note that, because of the neutrality of the dielectric, the total surface charge on the
outer boundary cancels that on the inner boundary, so the net charge enclosed inside a
sphere of radius r > b is just Q: outside the dielectric, no screening effect is present.

It is worth thinking about the above a bit: it occurs both because the dielectric has no
net charge and the problem is spherically symmetric. In contrast, we will see a
dielectric sphere can polarize in an external field and generate a field outside itself in
spite of having no net charge, which is possible because spherical symmetry is broken
in that case. But there is no monopole field, only a dipole field.

Note also that, once you have calculated σb and ρb, you can ignore the presence of
the dielectric: as we stated earlier, the total field is sourced by the sum of the free and
bound charge densities and the dielectric has no further effect, which one can see here
from noticing that ~E in the dielectric is what one would have calculated if one had
been given σf + σb at r = a.
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Finally, let’s calculate the electric potential from ~E (not ~D!):

V (~r) = −
∫ ~r

∞
d~s ′ · ~E(~r ′) = −

∫ r

∞
dr ′E(r ′)

V (r > b) = − Q

4π

[∫ r

∞
dr ′

1

εo r2

]
=

Q

4π

1

εo r
(4.36)

V (a < r < b) = − Q

4π

[∫ b

∞
dr ′

1

εo r2
+

∫ r

b
dr ′

1

ε r2

]
=

Q

4π

[
1

εo r

∣∣∣∣b
∞

+
1

ε r

∣∣∣∣r
b

]
=

Q

4π

[
1

b

(
1

εo
− 1

ε

)
+

1

ε r

]
(4.37)

V (r < a) = V (r = a) =
Q

4π

[
1

b

(
1

εo
− 1

ε

)
+

1

ε a

]
(4.38)

where V is constant for r < a because r < a is occupied by a conductor.

A final comment: if one takes the ε→∞ limit, one can see that one recovers the
behavior one would have if the entire region r < b were filled with conductor. A
conductor can be considered to be an infinitely polarizable dielectric, with ~E = 0
inside, which requires χe →∞.
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Example 4.3: Parallel plate capacitor with dielectric

You all know from Ph1b that filling the volume between the plates of a parallel-plate
capacitor increases the capacitance to C = εr Cvac where Cvac is the capacitance with
vacuum between the plates. We remind you why this is true.

Let the capacitor plates lie parallel to the xy -plane at z = 0 (negative plate) and
z = a (positive plate) so ẑ is the unit vector pointing from the negative plate to the

positive one. In such a geometry, we know from symmetry that ~E , ~D, and ~P are all
parallel to ẑ and independent of xy , assuming we ignore the capacitor edges. Thus, at
the interfaces at z = 0 and z = a, all these vectors are normal to the interface and so
no tangential components are present. These features of the fields imply that we can
apply Gauss’s Law to the free charge density to find ~D.

The free charge density is σf = ±Q/A where Q is the charge on the plates (+Q at
z = a and −Q at z = 0) and A is the plate area. Gauss’s Law for an infinite sheet of
charge (Griffiths Example 2.5) tells us that the field of a single sheet is E = σ/2 εo .
Therefore, we have for this case

~D =

{
−Q

A
ẑ 0 < z < a

0 z < 0, z > a
(4.39)

because the fields of the two plates cancel for z < 0 and z > a but add for 0 < z < a,
and there is no εo because we are calculating ~D, not ~E .
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This implies:

~E =

{
− 1
ε

Q
A

ẑ 0 < z < a
0 z < 0, z > a

~P =

{
− ε−εo

ε
Q
A

ẑ 0 < z < a
0 z < 0, z > a

(4.40)

ρb = −~∇ · ~P = 0 (4.41)

σb = n̂ · ~P =

{
ẑ · ~P(z = a) z = a

−ẑ · ~P(z = 0) z = 0
=

{ − ε−εo
ε

Q
A

z = a
ε−εo
ε

Q
A

z = 0
(4.42)

The electric field is, like in Example 4.2, screened inside the dielectric, with its
amplitude reduced by a factor εr = ε/εo . The bound surface charge densities near the
plates are the source of this screening, contributing a field opposite to the field of the
free charge. The electric field inside the dielectric is the field one expects from surface
charge densities σf + σb = ±(εo/ε) (Q/A). Finally, the voltage is

V (0 < z < a) = −
∫ z

0
d~s ′ · ~E(~r ′) = −

∫ z

0
dz ′
(
−1

ε

Q

A

)
=

1

ε

Q

A
z (4.43)

From this, we can calculate the capacitance, which comes out as expected:

C =
Q

∆V
=

Q

(1/ε) (Q/A) a
= ε

A

a
= εr Cvac (4.44)

C is increased because ∆V is reduced because of the screening inside the dielectric.
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Example 4.4: Parallel plate capacitor with two-layer dielectric

Let’s repeat, but now with a capacitor that has two slabs of dielectric with different ε:
ε1 for 0 < z < a and ε2 for a < z < b, where the top plate is now at z = b. Because
the interface is normal to ~P, we can apply Gauss’s Law for ~D as we did before,
yielding no change in ~D, but now the ε quantities in ~E and ~P depend on z.

The volume bound charge density vanishes again. The surface charge density at the
top and bottom has the same expression, but again with ε being evaluated for the
particular value of z. The surface bound charge density at the z = a interface is

σb(z = a) = n̂1 · ~P1 + n̂2 · ~P2 = ẑ · ~P1 − ẑ · ~P2 =
Q

A

(
− ε1 − εo

ε1
+
ε2 − εo

ε2

)
(4.45)

Depending on which dielectric constant is greater, this can be positive or negative. Of
course, it vanishes if ε1 = ε2. The potential and capacitance are

V (0 < z < a) =
1

ε1

Q

A
z V (a < z < b) =

1

ε1

Q

A
a +

1

ε2

Q

A
(z − a) (4.46)

C =
Q

∆V
=

(
a

ε1
+

b − a

ε2

)−1

A = εeff
A

b
= εeff ,r Cvac (4.47)

where 1/εeff = [a/ε1 + (b − a)/ε2]/b is the thickness-weighted inverse mean of the
dielectric constants and εeff ,r = εeff /εo . This is the same as two capacitors in series,
which is not surprising since that problem has the same equipotential surfaces. The
total field is that of three sheets of surface charge σf + σb, with σf = 0 at the
interface between the two dielectrics.
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Example 4.5: Capacitor with two side-by-side (parallel) dielectrics

Now, allow the capacitor to have plate spacing a but with two different dielectrics
side-by-side, with ε1 occupying A1 and V1 and ε2 occupying A2 and V2. It is a
reasonable guess that one should treat this as two capacitors in parallel so that

C = C1 + C2 =
1

a
(ε1A1 + ε2A2) (4.48)

But let’s derive this from scratch, appreciating the subtlety at the interface.

Because the voltage difference between the two plates is independent of ε (they are

equipotentials), it is reasonable to guess that ~E is the same in ε1 and ε2: this is the
key insight! Because the dielectrics are uniform in z, it is also reasonable to assume
the field is independent of z as one would have in the single-dielectric case. So, our
guess for the form of the fields is:

~E = −E0 ẑ ~D =

{
−ε1 E0 ẑ in V1

−ε2 E0 ẑ in V2

~P =

{
− (ε1 − εo ) E0 ẑ in V1

− (ε2 − εo ) E0 ẑ in V2
(4.49)

We see this form respects the tangential boundary conditions at the interface between
the two dielectrics, as it has to:

ẑ ·
(
~E2 − ~E1

)
= 0 ẑ ·

(
~D2 − ~D1

)
= (ε1 − ε2) E0 = ẑ ·

(
~P2 − ~P1

)
(4.50)
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Because ~D and ~P are different in the two volumes, we must allow the free (and bound)
charge densities to be different. This provides us a set of equations to solve for E0:

ε1 E0 = σf ,1 ε2 E0 = σf ,2 A1 σf ,1 + A2 σf ,2 = Q (4.51)

=⇒ E0 =
1

εeff

Q

A
εeff =

ε1 A1 + ε2 A2

A1 + A2
A = A1 + A2 (4.52)

C =
Q

∆V
=

Q

a E0
= εeff

A

a
= εeff ,r Cvac (4.53)

which matches our parallel-capacitor expectation. The displacement field, polarization
field, and free and bound charge densities are

~D =

{
− ε1
εeff

Q
A

ẑ in V1

− ε2
εeff

Q
A

ẑ in V2

~P =

{
− ε1−εo

εeff

Q
A

ẑ in V1

− ε2−εo
εeff

Q
A

ẑ in V2
ρb = −~∇ · ~P = 0

(4.54)

|σf | =

{
ε1
εeff

Q
A

in V1
ε2
εeff

Q
A

in V2
|σb| =

{
ε1−εo
εeff

Q
A

ẑ in V1
ε2−εo
εeff

Q
A

ẑ in V2
(4.55)

σb always has the opposite sign as σf . For Q > 0, the sign of σf is positive at z = a
and negative at z = 0. Note that, because ~P is different in V1 and V2, so too does σb

differ between the two dielectrics.
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Finally, if one calculates the total charge density σf + σb at z = 0 or z = a, one gets

σt,1 = σf ,1 + σb,1 =

(
ε1

εeff
− ε1 − εo

εeff

)
Q

A
=

εo

εeff

Q

A
(4.56)

σt,2 = σf ,2 + σb,2 =

(
ε2

εeff
− ε2 − εo

εeff

)
Q

A
=

εo

εeff

Q

A
(4.57)

This makes sense: since the electric field is the same in V1 and V2, the total (free +
bound) surface charge density sourcing it should be the same. The total charge
density is a factor εo/εeff smaller than would be present in the absence of dielectrics
because the bound charge density screens the free charge density. The free charge
density is different in the two regions because the opposite-sign bound charge density
is different because of the different dielectric constants. In contrast to our naive
expectation, the free charge density is not uniform on the conductor; rather, it
redistributes itself so the fundamental condition, that the conductors be
equipotentials, is satisfied when one includes the effect of the dielectric. Instead, the
total charge density is uniform, which yields a field independent of (x , y), which is
what ensures the equipotential condition is met.
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Boundary Value Problems with Linear Dielectrics

General Conditions for Linear, Homogeneous Dielectrics

In linear, homogeneous dielectrics,

ρb = −~∇ · ~P = −~∇ ·
(
ε− ε0

ε
~D

)
= −

(
ε− ε0

ε

)
~∇ · ~D = −

(
ε− ε0

ε

)
ρf (4.58)

(Homogeneity is required so the gradient does not act on ε.) Therefore, if there is no
free charge density in a linear, homogeneous dielectric, there is no bound charge
density either. Thus, the dielectric volume satisfies Laplace’s Equation. All our
machinery for solving Laplace’s Equation applies here.
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We always need boundary conditions, though, and we can use the ones we derived
earlier (the tangential ~E and ~D conditions will yield the same condition on V , so we
start with the simpler one):

n̂ ·
[
~D2 − ~D1

]
= σf ŝ ·

[
~E2 − ~E1

]
= 0 (4.59)

Writing this in terms of the potential, we have

n̂ ·
[
ε2
~∇V2 − ε1

~∇V1

]
= −σf ŝ ·

[
~∇V2 − ~∇V1

]
= 0 (4.60)

And, we always require V1 = V2: the potential must be continuous. While we have
three conditions, in general the continuity and tangential gradient conditions will be
redundant: the normal gradient condition must be independent because it depends on
the free surface charge density while the two others do not. The continuity condition
is simpler and so is the one that should be used.
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Example 4.6: Spherical cavity in a dielectric medium with uniform field applied

Let’s apply the above to a spherical cavity of radius R in a medium with permittivity ε
with a uniform field ~E = E0ẑ applied. There is no free charge anywhere. Our
boundary conditions therefore are

V (r →∞) = −E0 z = −E0 r P1(cos θ) (4.61)

and, with Vin(r) = V (r < R) and Vout (r) = V (r > R),

εo
∂Vin

∂r

∣∣∣∣
r=R

= ε
∂Vout

∂r

∣∣∣∣
r=R

and Vin(r = R) = Vout (r = R) (4.62)

We also choose the zero of the potential to be at z = 0, V (z = 0) = 0, by symmetry
as in the case of the conducting sphere in a uniform electric field.
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As usual, we begin by writing our generic solutions to Laplace’s Equation in spherical
coordinates:

Vin(r) =
∞∑
`=0

Ain
` r`P`(cos θ) Vout (r) =

∞∑
`=0

(
Aout
` r` +

Bout
`

r`+1

)
P`(cos θ) (4.63)

where we have applied the requirement that V be finite at the origin to eliminate the
1/r`+1 terms for Vin. Recall that we cannot eliminate the r` terms for Vout because
the potential does not vanish at infinity.

Let’s first apply the r →∞ condition. We did this before in the case of a metal
sphere in a uniform field, and we found

Aout
1 = −E0 Aout

6̀=1 = 0 (4.64)

Next, we apply the continuity condition at r = R, making use of orthonormality of the
P`:

Ain
1 R = −E0R +

Bout
1

R2
Ain
` 6=1R` =

Bout
6̀=1

R`+1
(4.65)
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Finally, let’s take the radial derivative and apply the matching condition on it, again
using orthonormality:

ε0Ain
1 = −ε

(
E0 +

2

R3
Bout

1

)
ε0Ain

` 6=1 `R`−1 = −ε
Bout
6̀=1

R`+2
(`+ 1) (4.66)

Doing the algebra, we find

Ain
6̀=1 = Bout

6̀=1 = 0 Bout
1 = − ε− εo

2 ε− εo
E0 R3 Ain

1 = − 3 ε

2 ε+ εo
E0 (4.67)

Thus, the potential is

Vin(r) = V (r < R) = − 3 ε

2 ε+ εo
E0 r cos θ = − 3 ε

2 ε+ εo
E0 z (4.68)

Vout (r) = V (r > R) = −E0 r cos θ − ε− εo

2 ε+ εo
E0

R3

r2
cos θ (4.69)

= −E0 z +
~p · r̂

4π εo r2
with ~p = −4π

3
R3 E0

3 εo

2 ε+ εo
(ε− εo ) ẑ
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The potential inside the cavity is that of a uniform electric field in the same direction
as the applied field but multiplied by the factor 3 ε/(2 ε+ εo ) > 1, while the potential
outside is that of the uniform field plus that of a dipole whose orientation is opposite
the uniform field and whose magnitude is given above. It is as if the cavity acquired a
polarization density in the negative z direction, though of course that cannot happen
because χe (r < R) = 0 there and thus ~P(r < R) = εoχe (r < R)~E(r < R) = 0. The
polarization density outside the cavity is just the total (not the applied uniform) field
times ε− εo (which is not particularly illuminating).

The (bound) surface charge density is

σb = n̂ · ~P(r = R) = n̂ · (ε− εo ) ~Eout (r = R)

= (ε− εo )

(
−r̂ · E0 ẑ − ∂

∂r

ε− εo

2 ε+ εo
E0

R3

r2
cos θ

∣∣∣∣
r=R

)
= −3 εo

ε− εo

2 ε+ εo
E0 cos θ

(Notice that n̂ = −r̂ because n̂ is taken to point out of the dielectric medium in the
definition of σb.) We see the boundary of the cavity acquires a surface charge density
with the same magnitude and cosine dependence as the bound charge on the surface
of a uniformly polarized sphere, though with opposite sign (so there is negative charge
at the +z end and positive charge at the −z end). The sign follows naturally from our
arguments about cancellation of dipole charge.

The field is enhanced in the cavity for two reasons: first, there is no polarizable
material to screen the electric field, and, second there is surface charge density on the
cavity’s boundary that creates an additional field in the direction of the uniform field.
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For reference, we note that the solution for a dielectric sphere (Griffiths Example 4.7)
in a uniform field looks very similar:

V (r < R) = − 3 εo

2 εo + ε
E0z V (r > R) = −E0z +

~p · r̂
4π εo r2

(4.70)

with ~p =
4π

3
R3 E0

3 εo

2 εo + ε
(ε− εo ) ẑ ≡ 4π

3
R3 ~P(r < R) (4.71)

σb = 3 εo
ε− εo

2 εo + ε
E0 cos θ (4.72)

Basically, exchange εo and ε everywhere to go between the two results. In this case,
the sphere acquires a polarization density 3 εo (ε− εo )/(2 εo + ε), now in the direction
of the applied field. The surface charge density is also of same form as the cavity case
with the ε↔ εo exchange. That exchange flips the sign so that the +z end acquires a
positive charge, again as expected from the dipole charge cancellation argument. The
field amplitude is reduced (screened) in the dielectric.

From the polarized sphere, one can recover the case of a conducting sphere in an
external uniform field by taking ε→∞ as noted earlier.
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Electrostatic Energy in and Forces on Linear Dielectrics

Electrostatic Potential Energy due to an Assembly of Free Charge in the
Presence of Dielectrics

It turns out that electrostatic potential energy in the presence of dielectrics is a subtle
topic because of the existence of the charges forming the dielectric. There are
different kinds of electrostatic potential energy: that needed to assemble the free and
bound charge distributions versus that needed to assemble the free charge distribution
and polarize the preexisting dielectric. It is generally the latter we are interested in, so
we consider that case.

Suppose we have a system in which an electric field ~E(~r) and its potential V (~r) have
already been set up and we want to bring in additional free charge δρf from infinity
(assuming the potential vanishes at infinity). In this case, the change in potential
energy is

δU =

∫
V

dτ ′
[
δρf (~r ′)

]
V (~r ′) (4.73)

The free charge density is related to the displacement field by ~∇ · ~D = ρf , so a change

δρf corresponds to a change in the divergence of the displacement field δ
(
~∇ · ~D

)
.

Linearity of the divergence lets us rewrite this as δρf = ~∇ · δ ~D.
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Then, we may integrate by parts and apply the divergence theorem:

δU =

∫
V

dτ ′
[
~∇ · δ ~D(~r ′)

]
V (~r ′)

=

∫
V

dτ ′ ~∇ ·
[
V (~r ′) δ ~D(~r ′)

]
−
∫
V

dτ ′
[
δ ~D(~r ′)

]
· ~∇V (~r ′)

=

∮
S(V)

da′ n̂(~r ′) ·
[
V (~r ′) δ ~D(~r ′)

]
+

∫
V

dτ ′
[
δ ~D(~r ′)

]
· ~E(~r ′) (4.74)

Assuming the potential falls off at infinity, the surface term can be taken out to
infinity to vanish. (Recall, V ∼ 1/r and D ∼ 1/r2 while da′ r2, so the integral falls off
as 1/r .) So, we are then left with

U =

∫ ~D

0

∫
V

dτ ′ ~E(~r ′) · d ~D(~r ′) (4.75)

There are two integrals here, one over volume and one over the value of ~D from zero
to its final value. ~E is of course tied to ~D and they vary together.
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For the case of a linear (but perhaps not homogeneous) dielectric, we may use
~D(~r) = ε(~r)~E(~r) and therefore

U =

∫ ~E

0

∫
V

dτ ′ ε(~r ′) ~E(~r ′) · d ~E(~r ′)

=
1

2

∫ ~E

0

∫
V

dτ ′ε(~r ′) d
[
~E(~r ′) · ~E(~r ′)

]
=

1

2

∫
V

dτ ′ ε(~r ′) E 2(~r ′) =
1

2

∫
V

dτ ′ ~E(~r ′) · ~D(~r ′) (4.76)

If the medium is linear and homogeneous, one can pull ε outside the integral at any
point, yielding

U =
ε

2

∫
V

dτ ′
∣∣∣~E(~r ′)

∣∣∣2 =
1

2 ε

∫
V

dτ ′
∣∣∣~D(~r ′)

∣∣∣2 (4.77)

We may infer that the energy density, neglecting the energy density intrinsic to the
creation of the dipoles, is

u(~r) =
ε

2

∣∣∣~E(~r)
∣∣∣2 =

1

2 ε

∣∣∣~D(~r)
∣∣∣2 (4.78)
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By contrast, if we wanted to know the total electrostatic potential energy stored in the
assembly of the free and bound charge, we would just do the usual volume integral of
E 2 with εo instead of ε. That energy is smaller because ε > εo . The reason for this
difference is that assembling the medium in the first place, which consists of bringing
positive and negative charges together, creates a system with negative potential
energy, and thus the total potential energy of the system would be lower if we
accounted for the energy of assembling the medium. But we will never pull the
dielectric apart, so it is natural to treat that component of the potential energy as an
offset that is inaccessible and neglect it in the electrostatic potential energy.
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Energy of a Dielectric in an External Field

A topic naturally related to the above is the electrostatic energy of a polarizable
material in an external field.

Suppose we start with a system with a free charge distribution ρf that sources a field
~E1 in a dielectric medium ε1, yielding a displacement ~D1 = ε1

~E1. The initial energy is

U1 =
1

2

∫
dτ ~E1 · ~D1 (4.79)

Now, with the charges sourcing ~E1 held fixed, let’s introduce a piece of dielectric
occupying the volume V2 and having dielectric constant ε2, replacing the dielectric of
dielectric constant ε1 there. The remainder of space outside V2 is occupied by ε1 in
both configurations. The electric field and displacement field everywhere change to ~E2

and ~D2, where ~D2(~r) = ε(~r) ~E2(~r). Note that ~E1 and ~E2 are not identical outside V2,

and the same is true for ~D1 and ~D2. The dielectric affects the field everywhere, not
just inside V2. The energy is now

U2 =
1

2

∫
dτ ~E2 · ~D2 (4.80)

The difference in energy between the two configurations is therefore

U2 − U1 =
1

2

∫
dτ
[
~E2 · ~D2 − ~E1 · ~D1

]
(4.81)
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Let us rewrite the energy difference as

U2 − U1 =
1

2

∫
dτ
[
~E2 · ~D1 − ~E1 · ~D2

]
+

1

2

∫
dτ
[
~E2 + ~E1

]
·
[
~D2 − ~D1

]
(4.82)

It holds that ~∇×
[
~E2 + ~E1

]
= 0, so it can be derived from a potential V , so the

second integral becomes

−1

2

∫
dτ
(
~∇V
)
·
[
~D2 − ~D1

]
(4.83)

We integrate by parts (the surface term vanishes because it depends on ~D2 − ~D1,
which should vanish as one goes far from the dielectric) to obtain

1

2

∫
dτ V ~∇ ·

[
~D2 − ~D1

]
(4.84)

This divergence vanishes because the free charge has not changed between the two
configurations (recall, ~∇ · ~D = ρf ).
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So the second term in the energy vanishes, leaving

U2 − U1 =
1

2

∫
dτ
[
~E2 · ~D1 − ~E1 · ~D2

]
(4.85)

Now, outside V2, it holds that ~D2 = ε1
~E2 (remember, ε only changed inside V2), and

recall also ~D1 = ε1
~E1 everywhere, so the two terms cancel each other there and the

integrand vanishes outside V2. Therefore, we can restrict the integral to V2:

U2 − U1 = −1

2

∫
V2

dτ (ε2 − ε1) ~E2 · ~E1 (4.86)

This is already interesting — even though the field changes in all of space, we need
only look at the before and after fields in the volume V2 rather than the entire system.
If ε1 = εo (vacuum outside V2 and in V2 before the introduction of ε2), then we can

use ~P = (ε2 − εo ) ~E2 to rewrite as

W = U2 − U1 = −1

2

∫
V2

dτ ~P · ~E1 ⇐⇒ w = −1

2
~P · ~E1 (4.87)

where we recall that ~E1 is the electric field in the absence of the dielectric and ~P is the
polarization density of the dielectric, and w refers to an energy density. This is just
like the energy of a dipole in an external electric field, except that the factor of 1/2
accounts for the integration from zero field to actual field, from the fact that the
dielectric polarizes in response to the applied field. We see that the introduction of
the dielectric into an existing electric field in vacuum, holding the source charges fixed,
reduces the overall electrostatic energy.
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Why is the integrand not ~P · ~E2 or ~D2 · ~E2? Because we are asking for the difference in
energy between the field configurations without and with the dielectric. There was field
in V2 before the dielectric was placed there, so we have to subtract off that original
field energy density, and we also need to consider the field energy density difference
between the two configurations outside the dielectric. It turns out that the above
integrand correctly accounts for the differencing relative to the no-dielectric starting
condition. We can see this by trying to evaluate the potential alternate expressions:

−1

2

∫
V2

dτ ~P · ~E2 = −1

2

∫
V2

dτ
(
~D2 − εo

~E2

)
· ~E2 =

1

2

∫
V2

dτ

[
εo

∣∣∣~E2

∣∣∣2 − ~D2 · ~E2

]
(4.88)

This is some sort of difference between the total electrostatic potential energy in V2

and the electrostatic potential energy neglecting that associated with the assembly of
the dielectric medium. The expression has two problems: there is no differencing with
the initial configuration, and it neglects the energy stored in V1. It is part of the
energy difference we are interested in, but not all of. The use of ~D2 · ~E2 would suffer
the same problems.
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Force and Torque on a Linear, Homogeneous Dielectric in an External Field
with Free Charge Fixed

Let us first consider the force on the dielectric in the case that the free charge is held
fixed. There are no batteries involved, so we need only consider the electrostatic
energy of the field. We take the negative of its gradient with respect to some
generalized displacement ξ to find the generalized force Fξ:

Fξ
∣∣
Q

= −
(
∂W

∂ξ

)
Q

= −
(
∂W

∂C

)
Q

∂C

∂ξ
(4.89)

where we made the second step because, if Q is held fixed, the variation of the system
energy is given entirely by the variation of the capacitance. ξ can be a spatial
displacement coordinate like x , y , or z, or it can be an angular orientation coordinate,
in which case the generalized force is actually a torque.

Any system of conductors can be reduced to a capacitance matrix, so the above can
also be written using Equation 2.82 (recall, D = C−1)

Fξ
∣∣
Q

= − ∂

∂ξ

1

2

N∑
i,j=1

Qi Qj Dij

∣∣∣∣∣∣
Q

= −1

2

N∑
i,j=1

Qi Qj
∂Dij

∂ξ
= −1

2
QT

[
∂

∂ξ
C−1

]
Q

(4.90)

(We have intentionally avoided using the confusing notation C−1
ij , using Dij instead.)
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Example 4.7: Force on a Dielectric Slab in a Parallel Plate Capacitor, Free
Charge Fixed

Let’s consider a parallel-plate capacitor with plate separation d , plate side dimensions
` and w , and with a slab of linear, homogeneous dielectric partially inserted between
the plates, with vacuum from 0 to x and dielectric from x to ` with 0 < x < `.

Let’s do this by calculating the total energy of the slab in the capacitor, with E
dependent on the position of the slab. The energy is (using the calculation of C from
the earlier example)

W =
1

2

Q2

C
with C =

εo w x + εw (`− x)

d
(4.91)

Therefore,

Fx |Q = −
(
−1

2

Q2

C 2

)
dC

dx
=

1

2

Q2

C 2

(εo − ε) w

d
= −1

2
V 2 (ε− εo )

w

d
(4.92)

which matches Griffiths Equation 4.65 (recall, εoχe = ε− εo ).
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Intuitively, the dielectric is pulled in because it lowers the energy of the configuration:
the field energy density is proportional to ε|~E |2, and |~E | ∝ ε−1, so the field energy
density is ∝ ε−1: larger ε implies lower energy.

Microscopically, what is happening is that the fringing field of the capacitor polarizes
the dielectric, leading to bound charge on the surface. The bound charge on the
surface is attracted to the free charge on the capacitor plates, causing the dielectric to
be pulled in. It’s a runaway effect, with the movement of the dielectric into the
capacitor leading to greater polarization of the fringing field region, increasing the
bound surface charge density and thereby leading to a greater attractive force. The
system only reaches equilibrium when the dielectric is maximally contained in the
capacitor. (It would be interesting to calculate the trajectory, in particular the
harmonic oscillations that would occur around the equilibrium position because the
slab will have been accelerated and thus have some kinetic energy when it gets to the
equilibrium position.)
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Force and Torque on a Linear, Homogeneous Dielectric in an External Field
with Voltages Fixed

In general, we do not encounter the above situation. Rather, we hold the voltages
constant on a set of electrodes while we consider the work done during a virtual
displacement dξ.

Before we get into it, though, let’s ask ourselves what we expect to have happen.
Should the force change depending on whether we hold the voltage or the charge
fixed? No, because the force is due to the arrangement of charges on the conductors
and the dielectric at the current instant in time, not at some point in the future that
is affected by whether the charges or voltages are kept constant.

Let’s model the fixed voltage situation in two steps, first disconnecting the batteries
and holding the charge fixed while we move the dielectric as we did above, then
reconnecting the batteries so that charge flows on to or off of the electrodes and
restores them to their original potentials.
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Since we are now focusing on a situation with voltages on electrodes, it makes sense
to think about a set of electrodes i = 1...N with voltages Vi and charges Qi . The
electrodes have a capacitance matrix C . Let’s first consider the change in electrostatic

energy for the first step with the charges held fixed (again, using D = C−1):

dWfield |Q = d

1

2

N∑
i,j=1

Qi Qj Dij


Q

=
1

2

N∑
i,j=1

Qi Qj dDij (4.93)

The change in the inverse capacitance matrix results in a change in the voltages on
the electrodes given by

dVi |Q =
N∑

j=1

dDij Qj (4.94)
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Now, let’s return the voltages to their original values by allowing charge to flow on/off
the electrodes from batteries while holding the dielectrics fixed (i.e., Dij held
constant). The charge transfer required to undo the above voltage changes is

dQk |V =
N∑

i=1

Cki (−dVi )Q = −
N∑

i,j=1

Cki Qj dDij (4.95)

The change in the electrostatic energy of the configuration (energy flowing out of the
battery into the field) due to this flow of charge is

dW bat
field

∣∣∣
V

=
N∑

k=1

Vk dQk |V = −
N∑

i,j,k=1

Vk Cki Qj dDij = −
N∑

i,j=1

Qi Qj dDij

= −2 dWfield |Q (4.96)

where we used Cki = Cik and
∑N

k=1 Vk Cik = Qi .
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Therefore, the total infinitesimal change in energy is

dWfield |V = dWfield |Q + dW bat
field

∣∣∣
V

= dWfield |Q − 2 dWfield |Q = − dWfield |Q (4.97)

As we explained earlier, the force cannot depend on whether the charge is held fixed or
the voltage is held fixed. To ensure we get the same force in the two cases, we
therefore must conclude

Fξ
∣∣
V

=

(
∂Wfield

∂ξ

)
V

= −
(
∂Wfield

∂ξ

)
Q

= Fξ
∣∣
Q

(4.98)

That is, when the battery is involved, we must consider the energy of the entire
system and take the positive gradient of the field energy rather than considering only
the energy of the field and taking the negative gradient of that energy. The reason
these two gradients are different, with a sign between them, is because the derivative
is calculationally different depending on whether V or Q is held fixed.
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We can see this works mathematically by trying it:

(
∂Wfield

∂ξ

)
V

=
∂

∂ξ

1

2

N∑
i,j=1

Vi Vj Cij


V

=
1

2

N∑
i,j=1

Vi Vj
∂Cij

∂ξ

=
1

2
V T

[
∂

∂ξ
C

]
V (4.99)

Since ∂C−1/∂ξ = −C−1[∂C/∂ξ]C−1 (one can see this by evaluating

∂[C C−1]/∂ξ = ∂1/∂ξ = 0), this form yields Equation 4.90 for Fξ
∣∣
Q

. Thus,

Fξ
∣∣
V

=

(
∂Wfield

∂ξ

)
V

= −
(
∂Wfield

∂ξ

)
Q

= Fξ
∣∣
Q

(4.100)

One can check this result using the parallel plate capacitor example by starting with
W = C V 2/2 instead of W = Q2/2 C . Taking the positive derivative at fixed V gives
the same result as taking the negative derivative at fixed Q because C is in the
numerator in the first case while C is in the denominator in the second.
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Study Guidelines

As with basic electrostatics, you have seen much of the material in this section before
in Ph1c. As with electrostatics, we will use more rigor here. We will also consider
some more advanced topics such as the multipole expansion of the magnetic vector
potential, off-axis fields for azimuthally symmetric configurations, etc. As with basic
electrostatics, we won’t do any examples in lecture or the notes where they would
duplicate Ph1c. But you should be review the examples in Griffiths Chapter 5 and
make sure you are comfortable with them.
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Lorentz Forces and Current Densities

Force on a Moving Point Charge in a Magnetic Field

The magnetic force on a point charge q moving with velocity ~v in a magnetic field ~B
is given by the Lorentz Force Law:

~Fmag = q
(
~v × ~B

)
(5.1)

If an electric field is present, the total electrostatic and magnetostatic force on q is

~F = q
(
~E + ~v × ~B

)
(5.2)

Note that the electrostatic force on q is not modified by the fact that it is moving.

See the nice examples in Griffiths of cyclotron and cycloid motion (Examples 5.1 and
5.2). These are at the level of Ph1c, so we do not spend time in lecture on them.
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Magnetic Forces Do No Work

Because ~Fmag ∝ ~v × ~B, it holds that ~Fmag ⊥ ~v . Since the differential of work done by

a force is dW = ~F · d ~̀= ~F · ~v dt, we thus see that dW = 0 for magnetic forces. This
may seem counterintuitive. In cases where it appears work is being done, there is
usually a battery involved that is doing the work, while the magnetic force is
redirecting the force doing the work (in the same way that a constraint force in
mechanics does no work).

The one exception to this is the case of intrinsic magnetic moments of fundamental
particles, which emerge from quantum field theory. In such cases, the magnetic
moment is not identified with a current loop, it is just an intrinsic property of the
particle. Since our proof above requires the Lorentz Force Law, and such moments are
not assocated with a current that experiences the Lorentz Force, the proof does not
apply. In cases concerning such moments, work can be done by the field of the
moment or on the magnetic moment by an external magnetic field because no battery
is required to maintain the magnetic moment.
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Line Currents

A current carried by a wire can be modeled as a constant line charge density λ that is
moving at fixed speed v :

I = λ v (5.3)

For the sake of the generalizations we will consider below, let us write this as a
position-dependent vector

~I(~r) = λ(~r) ~v(~r) (5.4)

where ~v(~r) is a function of position and its direction follows the wire. By conservation

of charge, the only position dependence of ~I(~r) can be its direction. This implies that
any position dependence in λ(~r) must be canceled by the position dependence of the
magnitude of ~v(~r). If λ is position-independent, then only the direction of ~v may
change with position.

For magnetostatics, we assume that such a line current, and the surface and volume
current densities that follow below, are time-independent, or steady: they were set up
an infinitely long time ago and have been flowing at their current values since then.
We also ignore the discretization of the charge density (in this case λ) and consider it
to be a continuous quantity. This is called the steady-state assumption or
approximation.
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Force on a Line Current

It is straightforward to calculate the force on a line current by integrating the Lorentz
Force Law over the wire:

~Fmag =

∫
dq
[
~v(~r)× ~B(~r)

]
=

∫
C

d` λ
[
~v(~r)× ~B(~r)

]
(5.5)

~Fmag =

∫
C

d`
[
~I(~r)× ~B(~r)

]
(5.6)

where we have used the fact that d ~̀, ~v , and ~I are all in the same direction at any
point on the wire because the current flows in the wire. Now, realizing that I is
independent of position along the wire (due to conservation of charge as noted
above), we can pull it out in front of the integral, yielding

~Fmag = I

∫
C

[
d ~̀× ~B(~r)

]
(5.7)

Griffiths Example 5.3 is a nice example of calculating the force on a current loop and
also illustrates the point of the battery supplying the energy to do the work that
appears to be done by the magnetic field. The magnetic field acts like a constraint
force to redirect that work.
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Current Densities

Just as we generalized point charges to line, surface, and volume charge densities, we
can generalize single moving point charges to line, surface, and volume current
densities. We have already made the first generalization, which is straightforward to
understand since one intuitively thinks of a current as an ensemble of point charges
moving through a wire.

A surface current density is a current flowing in a sheet; think of water flowing over
the surface of an object. The surface current density ~K is defined by

d~I(~r) = ~K(~r) d`⊥ =
∣∣∣K̂(~r)× d ~̀

∣∣∣ ~K(~r) (5.8)

where d`⊥ is an infinitesimal length perpendicular to ~K and d ~̀ is an arbitrary
infinitesimal length. The cross-product takes the projection of d ~̀ perpendicular to ~K .

If one thinks about the surface current density as a moving distribution of a surface
charge density, then

~K(~r) = σ(~r) ~v(~r) (5.9)

where σ(~r) is the surface charge density at ~r and ~v(~r) is the velocity of the surface
charge density at ~r .
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A volume current density is a current flowing in a bulk volume; think of water flowing
in a pipe or in a river. The volume current density ~J is defined by

d~I(~r) = ~J(~r) da⊥ =
∣∣∣Ĵ(~r) · n̂

∣∣∣ da ~J(~r) (5.10)

where n̂ is the normal to the area element da. (If we had defined a normal n̂ to the

line element d ~̀ in the plane of the sheet, we could have used a dot product instead of
a cross product in the definition of the surface current density. But it is conventional
to do it as we have done it.)

If one thinks about the volume current density as a moving distribution of a volume
charge density, then

~J(~r) = ρ(~r) ~v(~r) (5.11)

where ρ(~r) is the volume charge density at ~r and ~v(~r) is the velocity of the volume
charge density at ~r .
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Forces on Current Densities

We can integrate the force over the current densities just as we did for the line current:

~Fmag =

∫
dq
[
~v(~r)× ~B(~r)

]
=

∫
S

da σ(~r)
[
~v(~r)× ~B(~r)

]
(5.12)

~Fmag =

∫
S

da
[
~K(~r)× ~B(~r)

]
(5.13)

~Fmag =

∫
dq
[
~v(~r)× ~B(~r)

]
=

∫
V

dτ ρ(~r)
[
~v(~r)× ~B(~r)

]
(5.14)

~Fmag =

∫
V

dτ
[
~J(~r)× ~B(~r)

]
(5.15)

It should be clear that we could have considered Equation 5.15 to be the fundamental
statement of the Lorentz Force Law and derived the lower-dimensional versions by
inclusion of appropriate delta functions in the definition of ρ or ~J. Such a reduction
would be cumbersome because the sheet or line carrying the current may not be easy
to parameterize, but the reduction is conceptually straightforward.
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Conservation of Charge and the Continuity Equation

We defined the current densities above in terms of the infinitesimal current passing
through an infinitesimal line element (for a surface current density) or through an
infinitesimal area element (for a volume current density). Let’s integrate the latter
over a surface to obtain the total current passing through that surface:

IS =

∫
S

da n̂(~r) · ~J(~r) (5.16)

If we take S to be a closed surface, we may apply the divergence theorem to the above:∮
S

da n̂(~r) · ~J(~r) =

∫
V(S)

dτ ~∇ · ~J(~r) (5.17)

where V(S) is the volume enclosed by S. By conservation of charge, the current is
just the time derivative of the charge enclosed by S, with the sign such that if a
positive current is exiting S, then the charge enclosed must be decreasing, assuming
that the surface itself is time-independent. With this, we have

IS = − d

dt
QV(S) = − d

dt

∫
V(S)

dτ ρ(~r) = −
∫
V(S)

dτ
∂ρ(~r)

∂t
(5.18)
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Thus, we have ∫
V(S)

dτ ~∇ · ~J(~r) = −
∫
V(S)

dτ
∂ρ(~r)

∂t
(5.19)

Since the surface S is arbitrary, it must hold that the integrands are equal everywhere:

~∇ · ~J(~r) = −∂ρ(~r)

∂t
(5.20)

This is the continuity equation and is effectively the differential version of conservation
of charge.

With this equation, we can define our steady-state assumption more mathematically:
it corresponds to ∂ρ/∂t = 0, which then implies ~∇ · ~J = 0. The interpretation is that
the charge density at any point cannot change with time, which implies that the net
current flow into or out of any point vanishes.
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Fields of and Magnetic Forces between Currents

Biot-Savart Law

For a steady-state current distribution — one in which the current densities are
time-independent — it is an empirical observation, validated by the Lorentz force that
moving charges or currents experience, that the magnetic field at ~r due to the current
distribution is given by

~B(~r) =
µo

4π

∫
d`′

~I(~r ′)× (~r − ~r ′)
|~r − ~r ′|3 =

µo

4π
I

∫
d ~̀′(~r ′)× (~r − ~r ′)

|~r − ~r ′|3 (5.21)

µo = 4π × 10−7 N A−2 is the permeability of free space. The magnetic field carries
units of teslas, T = N/(A ·m). The Biot-Savart Law is the analogue in magnetostatics
of Coulomb’s Law in electrostatics, and it has the same 1/r2 dependence.

You are well aware of the result that the field of a straight wire along the z-axis
carrying current I at a transverse distance s from the wire is

~B(~r) =
µo

2π

I

s
φ̂ (5.22)

where φ̂ is the azimuthal unit vector in cylindrical coordinates. The field forms circles
around the wire with orientation set by the right-hand rule. This is derived in Griffiths
Example 5.5, which we will not repeat here since you saw it in Ph1c.
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Force between Two Current-Carrying Wires

We can combine the Lorentz Force Law and the Biot-Savart Law to calculate the force
between two current-carrying wires; this force is the empirical basis for magnetostatics,
as it is much easier to measure the force between two wires than it is to create ideal
test charges and measure their motion in the magnetic field of a wire. We just plug
the Biot-Savart Law into the Lorentz Force Law for a line current distribution,
Equation 5.6, to find the force on the first wire due to the field of the second wire:

~Fmag = I1

∫
C1

d ~̀× ~B(~r) (5.23)

=
µo

4π
I1I2

∫
C1

∫
C2

d ~̀(~r)×
[
d ~̀′(~r ′)× (~r − ~r ′)

]
|~r − ~r ′|3 (5.24)

Consider the special case of both wires running parallel to the z axis separated by s ŝ
in the xy -plane, with the first wire on the z-axis itself. Then d ~̀= ẑ dz, d ~̀′ = ẑ dz ′,
~r = z ẑ, ~r ′ = s ŝ + z ′ ẑ.
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Therefore,

d ~̀(~r)×
[
d ~̀′(~r ′)× (~r − ~r ′)

]
= dz dz ′ ẑ ×

[
ẑ ×

(
(z − z ′) ẑ − s ŝ

)]
(5.25)

= dz dz ′ s ŝ (5.26)

and |~r − ~r ′|3 =
[
(z − z ′)2 + s2

]3/2
(5.27)

Thus, ~Fmag =
µo

4π
I1I2 s ŝ

∫ ∞
−∞

dz

∫ ∞
−∞

dz ′
1

[(z − z ′)2 + s2]3/2
(5.28)

=
µo

4π
I1I2 s ŝ

∫ ∞
−∞

dz

[
z ′ − z

s2 [(z − z ′)2 + s2]1/2

]∣∣∣∣∣
∞

−∞

(5.29)

=
µo

4π
I1I2 s ŝ

∫ ∞
−∞

dz
2

s2
=
µo

2π

I1I2

s
ŝ

∫ ∞
−∞

dz (5.30)

where we did the integral using the trigonometric substitution z ′ − z = s tan θ. The
total force is infinite, but we can abstract out of the above expression the force per
unit length on the first wire, which is attractive (pointing towards the second wire) if
the currents flow in the same direction:

~fmag =
µo

2π

I1I2

s
ŝ (5.31)
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General Expressions for Fields due to Current Densities

The obvious generalizations of the Biot-Savart Law are

~B(~r) =
µo

4π

∫
da′

~K(~r ′)× (~r − ~r ′)
|~r − ~r ′|3

~B(~r) =
µo

4π

∫
dτ ′

~J(~r ′)× (~r − ~r ′)
|~r − ~r ′|3

(5.32)

Griffiths notes that a line current distribution is the lowest-dimensional current
distribution one can have because the zero-dimensional version — a point charge
moving with velocity ~v — does not constitute a steady-state current: the charge
passing a given point in space is time-dependent.

As with the Lorentz Force Law, it should also be clear that one could consider the
volume version to be the fundamental statement of the Biot-Savart Law and one can
derive the lower-dimensional versions by including delta functions in the definition of
~J. This does not apply to a reduction to zero dimensionality, as noted above.

There are good examples of the use of the Biot-Savart Law in Griffiths. Again, these
are at the level of Ph1c, so we do not spend time in lecture on them.
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Another Form for the Biot-Savart Law

We begin by using Equation 2.53 to rewrite the Biot-Savart Law expression for the
magnetic field:

~B(~r) =
µo

4π

∫
V

dτ ′
~J(~r ′)× (~r − ~r ′)
|~r − ~r ′|3 = − µo

4π

∫
V

dτ ′ ~J(~r ′)× ~∇~r
(

1

|~r − ~r ′|

)
(5.33)

We use one of the product rules for the curl, ~∇× (f ~a) = f (~∇× ~a)− ~a× (~∇f ), and

notice that ~∇~r × ~J(~r ′) = 0 because ~J(~r ′) is a function of ~r ′ while ~∇~r is with respect
to ~r , to obtain

~B(~r) = ~∇× µo

4π

∫
V

dτ ′
~J(~r ′)

|~r − ~r ′| (5.34)

where we have brought ~∇~r outside the integral over ~r ′ because it acts with respect to
~r . We also dropped the ~r subscript since now, being outside the integral, it must act
only on ~r . This form is obviously suggestive of the idea of ~B being derived from a
vector potential, which we will return to shortly.

We note that, while our derivation of this equation did not appear to require any
assumptions about the way the current behaves at infinity, we will see later that the
steady-state assumption does imply the net current through any sphere must vanish.
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Curl and Divergence of the Magnetic Field; Ampere’s Law

Curl of the Magnetic Field

From the field of a current-carring wire, Equation 5.22, we get the clear impression
that ~B has curl and that the curl is related to the current sourcing the field. Here, we
explicitly calculate this curl from the Biot-Savart Law. Griffiths Section 5.3.2 provides
one technique for this; we use Jackson’s technique instead to avoid duplication.
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We take the curl of Equation 5.34 and apply the BAC − CAB rule for the triple vector
product, ~∇× (~∇× ~a) = ~∇(~∇ · ~a)−∇2~a, writing the coordinate that ~∇ acts on
explicitly:

~∇~r × ~B(~r) = ~∇~r ×
[
~∇~r ×

µo

4π

∫
V

dτ ′
~J(~r ′)

|~r − ~r ′|

]
(5.35)

=
µo

4π

[
~∇~r
(
~∇~r ·

∫
V

dτ ′

(
~J(~r ′)

|~r − ~r ′|

))
−∇2

~r

∫
V

dτ ′

(
~J(~r ′)

|~r − ~r ′|

)]
(5.36)

=
µo

4π

[
~∇~r
∫
V

dτ ′ ~∇~r ·
(

~J(~r ′)

|~r − ~r ′|

)
−
∫
V

dτ ′∇2
~r

(
~J(~r ′)

|~r − ~r ′|

)]
(5.37)

We were able to bring ~∇~r and ∇2
~r inside the integrals because ~∇~r is with respect to ~r

and the integral is over ~r ′. Similarly, because ~∇~r is with respect to ~r and ~J is a
function of ~r ′, ~J passes through the divergence in the first term and the Laplacian in
the second one, preserving the necessary dot product in the first term and the
vectorial nature of the second term:

~∇~r × ~B(~r) =
µo

4π

[
~∇~r
∫
V

dτ ′ ~J(~r ′) · ~∇~r
(

1

|~r − ~r ′|

)
−
∫
V

dτ ′ ~J(~r ′)∇2
~r

(
1

|~r − ~r ′|

)]
(5.38)
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We know from electrostatics that

~∇~r
(

1

|~r − ~r ′|

)
= −~∇~r ′

(
1

|~r − ~r ′|

)
∇2
~r

(
1

|~r − ~r ′|

)
= −4π δ(~r − ~r ′)

The first equation may seem surprising if one considers the exchange ~r ↔ ~r ′, but one
can see it is true by simply evaluating the gradient on both sides or by defining
~s = ~r − ~r ′ and applying the offset and inversion techniques we used in electrostatics.
The second is Equation 3.35 with the exchange ~r ↔ ~r ′ (where here there is no sign
flip because the Laplacian is quadratic in the derivatives and the delta function is
symmetric in its argument). Applying them, we obtain

~∇× ~B(~r) =
µo

4π

[
−~∇~r

∫
V

dτ ′ ~J(~r ′) · ~∇~r ′
(

1

|~r − ~r ′|

)
+ 4π

∫
V

dτ ′ ~J(~r ′) δ(~r − ~r ′)
]

(5.39)

The second term just becomes 4π ~J(~r), yielding

~∇× ~B(~r) =
µo

4π

[
−~∇~r

∫
V

dτ ′ ~J(~r ′) · ~∇~r ′
(

1

|~r − ~r ′|

)]
+ µo

~J(~r ′) (5.40)
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We can apply the product rule ~∇ · (f ~a) = ~a · ~∇f + f ~∇ · ~a to rewrite the first term:

∫
V

dτ ′ ~J(~r ′) · ~∇~r ′
(

1

|~r − ~r ′|

)
=

∫
V

dτ ′ ~∇~r ′ ·
(

~J(~r ′)

|~r − ~r ′|

)
−
∫
V

dτ ′
~∇~r ′ · ~J(~r ′)

|~r − ~r ′|
(5.41)

=

∮
S(V)

da′ n̂(~r ′) ·
(

~J(~r ′)

|~r − ~r ′|

)
= 0 (5.42)

The second term vanishes because ~∇~r ′ · ~J(~r ′) = 0 under the steady-state assumption
by the continuity equation with ∂ρ/∂t = 0. We used the divergence theorem to
transform the first term into a surface integral, and then we take the surface to
infinity. Assuming the currents are localized, the integrand vanishes on that surface,
causing the first term to vanish. Thus, we obtain, under the steady-state assumption,

~∇× ~B(~r) = µo
~J(~r) (5.43)

This equation is the differential version of Ampere’s Law, which we will return to
shortly.
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Let’s discuss some subtleties in the above derivation connected to the vanishing of the
~∇(~∇ · ~a) term. There are two points to make:

I When we get to the definition of the vector potential ~A, we will be able to
interpret the vanishing of that term as implying ~∇ · ~A = 0 for the form of the
vector potential implied by Equation 5.34. ~∇ · ~A will not vanish for any other
form of the vector potential that yields the same field. Just keep this point in
mind, we’ll provide more explanation later.

I We assumed that the currents are localized (confined to a finite volume) to
make the surface term vanish. This is not the minimal condition required. We
only need the integral to vanish. If we let the surface go off to infinity while
keeping the point ~r at which we want to know the field at finite distance from
the origin, then 1/|~r − ~r ′| → 1/r ′. Thus, we can also make the integral vanish

by simply requiring that the net flux of ~J through a surface of radius r ′

vanishes. Griffiths notes this subtlety in Footnote 14 in §5.3.2. It explains how
Ampere’s Law works for an infinitely long wire: for any sphere at large radius, as
much current flows in as out of that sphere, so the integral vanishes.

Do we have to make this requirement? It may seem that we do not; we would
just get a nonstandard Ampere’s Law if we did not. But we do have to make it
to be self-consistent with our steady-state assumption. If there were a net
current through some sphere, then the charge contained in that volume would
be changing with time, violating our steady-state assumption. This is the point
we made in connection to Equation 5.34.
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Divergence of the Magnetic Field

The vector identity ~∇ · (~∇× ~a) = 0 combined with Equation 5.34 immediately implies

~∇ · ~B(~r) = 0 (5.44)

The magnetic field has no divergence. This immediately implies there are no magnetic
point charges: magnetic fields are sourced by currents only. It should be realized that
this apparent fact is really an assumption inherent in the Biot-Savart Law. If we had
added to the Biot-Savart Law a second term that looks like Coulomb’s Law, due to
magnetic monopoles, then the above divergence would have yielded that density of
magnetic charge on the right side. It is an empirical observation that there are no
magnetic monopoles, and hence we assume that magnetic fields are only sourced by
currents via the Biot-Savart Law. That magnetic fields are sourced by currents at all is
also an empirical observation; the Biot-Savart Law simplify codifies that observation.
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General Thoughts on the Curl and Divergence of the Electric and Magnetic
Field

Considering the corresponding expressions for electrostatics, we recognize that the
electric field has divergence equal to the charge density because of the empirical
observation of Coulomb’s Law describing the electric field. It has a vanishing curl
because of the empirical absence of a current that sources electric fields in the way
that electric currents source magnetic fields; if there were a Biot-Savart-like term that
added to Coulomb’s Law, then the electric field would have curl. (In fact, when we
consider time-varying fields, we will see that such a term comes into existence,
proportional to ∂ ~B/∂t.) We can in fact guess that, if magnetic monopoles existed,
moving magnetic monopoles would generate an electric field in the same way that
moving electric monopoles generate a magnetic field.

The key point in all of the above is that the nature of the divergence and the curl of
the electric and magnetic fields reflect empirical observations about the way these
fields are generated. These are not derivable results: they are inherent in the formulae
we wrote down for the electric and magnetic fields, which themselves are based on
observations.

We will see later that we can replace the assumption of Coulomb’s Law and the
Biot-Savart Law with assumptions about the potentials from which the electric and
magnetic fields can be derived. But, again, we can only make those assumptions
because they yields the correct empirical relations, Coulomb’s Law and the Biot-Savart
Law.
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Integral form of Ampere’s Law

We obtained the differential version of Ampere’s Law above by taking the curl of the
Biot-Savart Law for the magnetic field. We may obtain the integral form of Ampere’s
Law from it. We begin by integrating over an open surface S with normal n̂(~r):∫

S
da n̂(~r) ·

[
~∇× ~B(~r)

]
= µo

∫
S

da n̂ · ~J(~r) (5.45)

The left side can be transformed using Stokes’ Theorem into a line integral around the
edge of S, which we denote by the closed contour C(S), while the right side is just
total current passing through C(S), Iencl :

∮
C(S)

d ~̀ · ~B(~r) = µoIencl (5.46)

yielding the integral version of Ampere’s Law.

As before, there are a number of examples in Griffiths that are at the level of Ph1c, so
we do not spend time on them here.
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Magnetic Vector Potential

Form for the Magnetic Vector Potential

We saw (Equations 5.43 and 5.44) that the magnetic field has no divergence and has
curl. You know from vector calculus (Griffiths §1.6) that this implies the magnetic
field can be written purely as the curl of a vector potential. Equation 5.34 gave us its
form:

~B(~r) = ~∇× ~A(~r) ~A(~r) =
µo

4π

∫
V

dτ ′
~J(~r ′)

|~r − ~r ′| (5.47)

But this form, implied by the Biot-Savart Law, is not the only form. We had freedom
with the electrostatic potential to add an offset. Here, we can add any curl-less
function to ~A without affecting ~B. The form above corresponds to the additional
condition

~∇ · ~A(~r) = 0 (5.48)

If one tries to test this requirement on the above form for ~A, one will find oneself
doing the same manipulations needed to derieve Ampere’s Law, Equation 5.43. In
repeating those manipulations, which is possible for this form of ~A only, one sees that
~∇ · ~A = 0 is the representation of the steady-state assumption and that the net
current through a surface of any radius vanishes (and also how the latter implies the

former). For a different choice of ~A (and thus of ~∇ · ~A), the mathematical
manifestation of this physical requirement will be different. In fact, it must be,
because ~∇ · ~A = 0 is unique to this form.
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Explicit Proof that ~∇ · ~A = 0 Can Always Be Obtained

It is interesting to prove “mechanically” that the choice ~∇ · ~A is possible even if one,
for some reason, started out with a form that did not satisfy this condition. Suppose
one has a vector potential ~A0 that is not divergenceless. We need to add to it a
function that makes the result divergenceless. For reasons we will see below, let’s add
a function ~∇λ(~r):

~A = ~A0 + ~∇λ (5.49)

Then

~∇ · ~A = ~∇ · ~A0 +∇2λ (5.50)

If we require the left side to vanish, then we have a version of Poisson’s Equation:

∇2λ = −~∇ · ~A0 (5.51)

One thus sees one of the motivations for the assumed form ~∇λ.
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Let’s choose boundary conditions that place the boundary at infinity with the field
falling off at infinity. For these boundary conditions, we know from Coulomb’s Law
that the solution to Poisson’s Equation is

λ(~r) =
1

4π

∫
V

dτ ′
~∇ · ~A0(~r ′)

|~r − ~r ′| (5.52)

The vector calculus identity ~∇× ~∇λ = 0 implies that ~∇× ~A = ~∇× ~A0 and thus the
magnetic field is the same for the two vector potentials (our second motivation for the

choice to add ~∇λ). We thus have an explicit formula for the term that has to be

added to ~A0 so that the resulting form ~A is divergenceless while leaving the magnetic
field unchanged.

The above explicit formula may not be valid if we assume different boundary
conditions, but we know Poisson’s Equation always has a solution, so we are
guaranteed that the desired function λ(~r) exists.
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Let us make a final point about how the above relates to the connection between
~∇ · ~A = 0 and the behavior of the currents at infinity. It is not true that starting with
~∇ · ~A0 6= 0 corresponds to a different physical assumption about the currents at
infinity: changing ~∇ · ~A has no effect on the fields and thus can have no effect on the
currents. Our standard formula for ~A is only valid under the assumption ~∇ · ~A = 0,
and so the relation between ~∇ · ~A and the assumption about how the currents behave
is only valid for that form. If one assumes a different form for ~A, one that has
~∇ · ~A 6= 0, then taking its divergence will not necessarily result in the particular
expressions that we encountered before in deriving the differential form of Ampere’s
Law, so the interpretation of ~∇ · ~A = 0 will be different, and the mathematical
manifestation of the currents vanishing at infinity will also change. One benefit of the
choice ~∇ · ~A = 0 is that this mathematical manifestation is simple.
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Alternate Proof of the Form for the Magnetic Vector Potential

We can arrive at Equation 5.47 via a slightly different path, which makes uses of
Ampere’s Law and the same triple vector identity we used to prove Ampere’s Law,
~∇× (~∇× ~a) = ~∇(~∇ · ~a)−∇2~a:

Ampere’s Law: ~∇× (~∇× ~A) = ~∇× ~B = µo
~J (5.53)

use vector identity: ~∇(~∇ · ~A)−∇2 ~A = µo
~J (5.54)

set ~∇ · ~A = 0: ∇2 ~A = −µo
~J (5.55)

Note that the vector components of ~A and ~J line up. Thus, the last equation is a
component-by-component Poisson’s Equation. Again, under the assumption that the
currents are localized and for appropriate boundary conditions (as we assumed in
providing the alternate version of the Biot-Savart Law that we previously used to
define ~A), we know the solution:

∇2 ~A(~r) = −µo
~J(~r)

localized currents⇐⇒ ~A(~r) =
µo

4π

∫
V

dτ ′
~J(~r ′)

|~r − ~r ′| (5.56)

This is just Equation 5.47 again. Essentially, we can think of the three components of
the current density as sourcing the three components of the vector potential in the
same way that the electric charge density sources the electric potential.
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The Vector Potential for Line and Surface Currents

We can consider the specific cases of line and surface current densities as volume
current densities that include delta functions specifying the localization to a line or
sheet. When one does the volume integral, the delta function reduces the
three-dimensional integral over the volume to one- or two-dimensional integrals over a
line or sheet, yielding:

~A(~r) =
µo

4π

∫
C

d`
~I(~r ′)

|~r − ~r ′|
~A(~r) =

µo

4π

∫
S

da′
~K(~r ′)

|~r − ~r ′| (5.57)

Note that the units of the vector potential are unchanged: the change in the units of
the current densities are canceled by the change in the units of the measure of
integration.
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Example 5.1: Spinning Sphere of Charge (Griffiths Example 5.11)

The calculation of the vector potential for a spinning spherical shell of charge is a
straightforward application of the definition of the vector potential. The only
complication is the vector arithmetic.

Center the sphere of radius R at the origin. Let the surface change density be σ and
the angular rotation frequency be ~ω = ω ẑ. Then the surface current density is

~K(~r) = σ ~v(θ) = σ ~ω × ~r = φ̂ σ ω R sin θ (5.58)

We need to calculate

~A(~r) =
µo

4π
R2
∫ 2π

0
dφ ′

∫ π

0
dθ ′ sin θ ′

σ ω sin θ ′ φ̂

|~r − ~r ′| (5.59)

=
µo

4π
σ ω R3

∫ 2π

0
dφ ′

∫ π

0
dθ ′ sin θ ′

sin θ ′ (−x̂ sinφ ′ + ŷ cosφ ′)

|~r − ~r ′| (5.60)

(The R2 out front is because an area integral, not just a solid angle integral, needs to
be done.) This is done in Griffiths Example 5.11 via explicit integration. We will use a
different technique benefiting from our knowledge of the spherical harmonics and the
Addition Theorem.
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We use Equation 3.169, the Spherical Harmonic Addition Theorem Corollary, which
expands |~r − ~r ′|−1 in terms of spherical harmonics, recognizing |~r ′| = R because the
integral is over the sphere of radius R:

1

|~r − ~r ′| = 4π
∞∑
`=0

∑̀
m=−`

1

2 `+ 1

r`<

r`+1
>

Y ∗`m(θ ′, φ ′)Y`m(θ, φ) (5.61)

Let’s consider the x̂ piece of the above angular integral; the other term will be similar
in spirit. We will write the numerator in terms of spherical harmonics and use the
expansion. We abbreviate

∫ 2π
0 dφ ′

∫ π
0 dθ ′ sin θ ′ =

∫
dΩ′ and recall

Y`,−m = (−1)mY ∗`,m. Applying these facts yields

∫
dΩ′

sin θ ′ (− sinφ ′)

|~r − ~r ′| = (5.62)

∫
dΩ′

√
8π

3

Y1,1(θ ′, φ ′) + Y1,−1(θ ′, φ ′)

2 i

∞∑
`=0

∑̀
m=−`

4π

2 `+ 1

r`<

r`+1
>

Y ∗`m(θ ′, φ ′)Y`m(θ, φ)
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The integral over Ω′ gives δ`,1δm,1 and δ`,1δm,−1, eliminating the sum and yielding

∫
dΩ′

sin θ ′ (− sinφ ′)

|~r − ~r ′| =
4π

2 i

√
8π

3

1

3

r`<

r`+1
>

[Y1,1(θ, φ) + Y1,−1(θ, φ)] (5.63)

= −4π

3

r<

r2
>

sin θ sinφ (5.64)

where the 1/3 came from 1/(2 `+ 1). We get back the same type of angular
dependence, but with the 1/|~r − ~r ′| turned into the prefactor shown, which has the
correct dimensions.

We can repeat the same kind of manipulation for the ŷ term, yielding∫
dΩ′

sin θ ′ (cosφ ′)

|~r − ~r ′| =
4π

3

r<

r2
>

sin θ cosφ (5.65)

Therefore,

~A(~r) =
µo

4π
σ ω R3 4π

3

r<

r2
>

sin θ [−x̂ sinφ+ ŷ cosφ] =
µo

4π
σ ω

4π R3

3

r<

r2
>

sin θ φ̂

(5.66)

where r< = min(r ,R) and r> = max(r ,R). While the vector potential’s r dependence
change from r inside the sphere to 1/r2 outside the sphere, the direction and angular

dependence are always φ̂ sin θ. One can see that ~A points in the same direction as ~K .
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Example 5.2: Solenoid (Griffiths Example 5.12)

The calculation of the vector potential for a solenoid, which is the equivalent of a
spinning cylinder of charge if one ignores the small axial current contribution, is more
interesting because one need not do it by explicit integration as done for the spinning
sphere of charge. Instead, one can use some intuition along with the combination of
Stokes’ Theorem and the relation between ~B and ~A:∮

C(S)
d ~̀ · ~A =

∫
S

da n̂ · ~∇× ~A =

∫
S

da n̂ · ~B (5.67)

The intuition part is to recognize that, because ~B is along the z-axis inside the
solenoid and vanishing outside and because ~A “wraps around” ~B, it is natural to
assume ~A is along φ̂. (This directionality can also be seen from the inherent

coalignment of ~A and ~J from the integral formula for ~A.) Then one can do the
calculation in the same way as one applies the integral form of Ampere’s Law, except
that instead of current through a surface (“enclosed current”), we have enclosed
magnetic flux, and, instead of a line integral of magnetic field around the edge of the
surface, we have a line integral of vector potential. Please study the details in
Griffiths, as a variant on this problem will be given in homework.
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Uniqueness Theorem for Magnetic Fields

This is Griffiths Problem 5.56.

Just as we did for electric fields, we can show that, given a current distribution and a
well-defined set of boundary conditions, the magnetic field obtained is unique. We
assume that a current distribution ~J(~r) in a volume V is specified. We will see later
how specific we must be about the boundary conditions.

First, we need something analogous to the Green’s Identities we used in the case of
electrostatics. Using the vector identity ~∇ · (~a× ~b) = ~b · ~∇× ~a− ~a · ~∇× ~b, letting ~u
and ~v be two arbitrary vector fields, and applying the identity with ~a = ~u and
~b = ~∇× ~v , we may write∫
V

dτ ~∇ · (~u × (~∇× ~v)) =

∫
V

dτ
[
(~∇× ~v) · (~∇× ~u)− ~u · (~∇× (~∇× ~v))

]
(5.68)

Since the expression on the left-hand side is a divergence, we may turn it into a
surface integral using the divergence theorem:∮
S(V)

da n̂ · (~u × (~∇× ~v)) =

∫
V

dτ
[
(~∇× ~u) · (~∇× ~v)− ~u · (~∇× (~∇× ~v))

]
(5.69)

We will use this below.
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Now, suppose that we have two different magnetic field configurations ~B1 6= ~B2,
derived from two different magnetic vector potentials ~A1 6= ~A2, that both satisify
Ampere’s Law for the same current distribution: ~∇× ~B1 = ~∇× ~B2 = µo

~J. Let
~A3 = ~A2 − ~A1 and ~B3 = ~B2 − ~B1. We apply the above vector identity with
~u = ~v = ~A3:∮
S(V)

da n̂ · (~A3 × (~∇× ~A3)) =

∫
V

dτ
[
(~∇× ~A3) · (~∇× ~A3)− ~A3 · (~∇× (~∇× ~A3))

]
(5.70)

We have that ~∇× (~∇× ~A3) = ~∇× ~B3 = ~∇× ~B2 − ~∇× ~B1 = µo ( ~J − ~J) = 0 by
Ampere’s Law and the assumption that both field configurations are sourced by the
same current distribution, so the second term on the right side vanishes. Exchanging
the two sides, plugging in ~B3 = ~∇× ~A3, and using the cyclic property of the triple
scalar product, ~a · (~b × ~c) = ~c · (~a× ~b) = ~b · (~c × ~a), we have∫

V
dτ
∣∣∣~B3

∣∣∣2 =

∮
S(V)

da n̂ · (~A3 × ~B3) =

∮
S(V)

da ~B3 · (n̂ × ~A3) (5.71)

=

∮
S(V)

da ~A3 · (~B3 × n̂) = −
∮
S(V)

da ~A3 · (n̂ × ~B3) (5.72)
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From the above equation, we can see what (minimal) boundary condition information

we must have to obtain uniqueness of ~B: we must have that, at any given point on
the surface, ~A, ~B, n̂ × ~A, or n̂ × ~B is specified. If this is true, then ~A3 = ~A2 − ~A1 = 0
where ~A is specified, ~B3 = ~B2 − ~B1 = 0 where ~B is specified,
n̂× ~A3 = n̂× (~A2 − ~A1) = 0 where n̂× ~A is specified, and n̂× ~B3 = n̂× (~B2 − ~B1) = 0

where n̂ × ~B is specified. Requiring one of these four conditions at every point on
S(V) ensures the integrand on the right side vanishes at every point on S(V) and thus
the right side vanishes. Since the integrand on the left side is nonnegative, it must
therefore vanish everywhere: ~B3 = 0. Hence, ~B1 = ~B2 and the fields are identical and
the field solution is unique.

Specifying ~A is like a Dirichlet boundary condition where we specify the electrostatic
potential on the boundary, and specifying n̂ × ~B = n̂ × (~∇× ~A) is a lot like a
Neumann boundary condition where we specify the normal gradient of the
electrostatic potential n̂ · ~∇V (which is proportional to the normal component of the

electric field, n̂ · ~E). In fact, we will see via Ampere’s Law that this is equivalent to
specifying the surface current density flowing on the boundary. The other two types of
conditions, specifying n̂ × ~A or specifying ~B, have no obvious analogue.
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Uniqueness of the Vector Potential?

We have already discussed how the ~A that generates a particular ~B is unique up to the
gradient of an additional function if its divergence is left unspecified. The above
theorem for the uniqueness of the magnetic field therefore now tells us that
specification of ~J in the volume and of ~A, ~B, n̂ × ~A, or n̂ × ~B on the boundary gives a
vector potential that is unique up to the gradient of an additional function if its
divergence is unspecified. But what do we need to know to completely determine the
vector potential?

Obtaining a unique vector potential is the equivalent of being able to also know the λ
function (up to an offset). We showed that λ satisfies Poisson’s Equation with ~∇ · ~A
as the source, Equation 5.51. So, clearly, to obtain a unique ~A, we would need to
specify ~∇ · ~A. We also would need appropriate boundary conditions for this Poisson
Equation. We may conclude from our proof of the uniquess of the scalar potential (up

to an offset) that we must either specify λ or n̂ · ~∇λ on the boundary to obtain a

unique λ (again, up to an offset) and thus a unique ~A.

Which of the above conditions provide the necessary boundary condition on λ? Only
specification of ~A on the boundary is certain to be sufficient. This gives ~∇λ and thus
n̂ · ~∇λ, a Neumann boundary condition for λ and thus sufficient to render λ unique.
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We can see specifying n̂ × ~A would only be sufficient in special cases. Doing so
specifies n̂ × ~∇λ, which gives the component of ~∇λ tangent to the boundary. If the
boundary is either at infinity or is a single, closed boundary, it seems likely one could
then construct λ on the boundary by doing the line integral of n̂ × ~∇λ, much like one
constructs the scalar potential from its gradient, the electric field. (It is ok that we

would only know the component of ~∇λ tangent to the boundary, as n̂ · ~∇λ will have
zero dot product with the line element d ~̀ involved in the line integral.) As with the
scalar potential, the offset is not important. However, if the boundary is not simply
connected, then there is no way to connect λ on different pieces of the boundary
without specifying its value on at least one point on each of those pieces. But we do
not specify λ anywhere if we are given n̂ × ~A and thus n̂ × ~∇λ on the boundary. So
specifying n̂ × ~A (and ~∇ · ~A) is sufficient to make ~A unique only if the boundary is
simply connected.

We can be assured that specifying ~B or n̂ × ~B is entirely insufficient: because ~B is
unaffected by λ, providing information about ~B cannot give us any information about
λ.

Lastly, we remind the reader that, even if ~A is specified on the boundary, one also
needs to know ~∇ · ~A in the volume. Providing the former without the latter is
equivalent to having a boundary condition but no differential equation to solve: the
source term in the latter is unspecified.

Section 5.6.6 Uniqueness of the Vector Potential? Page 346



Section 5.6 Magnetostatics: Magnetic Vector Potential

The Magnetostatic Scalar Potential

If one considers current-free regions, then we have ~∇× ~B = 0 and the magnetic field
should be derivable from a scalar potential:

~B(~r) = −~∇U(~r) (5.73)

One must take some care, though: in addition to being current-free, the region under
consideration must be simply connected. Griffiths Problem 5.29 shows a situation
where the current in a region may vanish but ~∇× ~B 6= 0 because the region is not
simply connected and the enclosed volume outside the region contains current.

With the above assumptions, and noting ~∇ · ~B = 0, we can infer that U satisfies
Laplace’s Equation:

∇2U(~r) = −~∇ · ~B(~r) = 0 (5.74)

Our usual assumption of simple boundary conditions — everything falls off to zero at
infinity — yields a trivial result here, U(~r) = 0, so we must assume less trivial
boundary conditions to obtain a nonzero U. We will return to the use of the
magnetostatic scalar potential in connection with magnetically polarizable materials.
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Boundary Conditions on Magnetic Field and Vector Potential

We will use techniques similar to those we used in determining the boundary
conditions on the electric field. We will not immediately apply these conditions to
boundary value problems for currents in vacuum because there are no nontrivial
boundary-value problems of this type. That is because there is no way to directly set
the vector potential, unlike for the electostatic potential. There is also no equivalent
to the perfect conductor, which yields equipotential surfaces in electrostatics. One
only has Neumann boundary conditions, with current densities on surfaces, from which
one can calculate the field directly via the Biot-Savart Law rather than solving
Laplace’s or Poisson’s Equation. We will find the boundary conditions more useful in
the context of magnetically polarizable materials.
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Boundary Conditions on the Magnetic Field

Recall that Gauss’s Law, ~∇ · ~E = ρ/εo , implied that the normal component of the
electric field satisfied Equation 2.59

n̂(~r) ·
[
~E2(~r)− ~E1(~r)

]
=

1

εo
σ(~r) (5.75)

Since ~∇ · ~B = 0, we can conclude by analogy that

n̂(~r) ·
[
~B2(~r)− ~B1(~r)

]
= 0 (5.76)

That is, the normal component of the magnetic field is continuous at any boundary.
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For the tangential component, we return to the derivation leading to Equation 2.61.
In that case, we considered a contour C that consisted of two legs C1 and C2 parallel
to the interface and to each other and two legs normal to the interface whose length
would be shrunk to zero. We saw

∮
C

d ~̀ · ~E(~r) = −
∫ ~rb−n̂(~r) dz

2

C1,~ra−n̂(~r) dz
2

~E1(~r) · d ~̀+

∫ ~rb+n̂(~r) dz
2

C2,~ra+n̂(~r) dz
2

~E2(~r) · d ~̀ (5.77)

dz→0−→
∫ ~rb

C2,~ra

[
~E2(~r)− ~E1(~r)

]
· d ~̀ (5.78)

where the ends of the loop are near ~ra and ~rb, n̂ is the normal to the surface (parallel
to the short legs of the loop), t̂ is the normal to the loop area, ŝ = t̂ × n̂ is the unit
vector parallel to the long legs of the loop, and ds is a line element along ŝ. In the
electric field case, the left side of the above expression vanished. In the case of the
magnetic field, Ampere’s Law tells us that it is the current enclosed flowing in the
direction t̂. Therefore, the magnetic field version of the above equation is:

µo

∫
C2

ds t̂(~r) · ~K(~r) =

∫ ~rb

C2,~ra

[
~B2(~r)− ~B1(~r)

]
· d ~̀ (5.79)

where C1 → C2 in the plane of the interface as dz → 0. We neglect any volume
current density passing through the area enclosed by the contour C because the
integral of that volume current density vanishes as dz → 0.
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Since the contour C2 is arbitrary, the integrands must be equal[
~B2(~r)− ~B1(~r)

]
· ŝ(~r) = µo t̂(~r) · ~K(~r) (5.80)

Next, we use t̂ = n̂ × ŝ:[
~B2(~r)− ~B1(~r)

]
· ŝ(~r) = µo

[
n̂(~r)× ŝ(~r)

]
· ~K(~r) (5.81)

Finally, using the cyclic nature of triple vector products ,
~a · (~b × ~c) = ~c · (~a× ~b) = ~b · (~c × ~a):

[
~B2(~r)− ~B1(~r)

]
· ŝ(~r) = µo

[
~K(~r)× n̂(~r)

]
· ŝ(~r) (5.82)

Note that this condition holds for any ŝ tangential to the interface. To give some
intuition, n̂ × ~K has the magnitude of ~K (because n̂ ⊥ ~K always) but points in a

direction perpendicular to ~K while still tangent to the interface. The sign is set by the
cross-product right-hand rule.
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We can combine the conditions on the normal and tangential components of ~B to
obtain one compact expression for the boundary condition on the magnetic field. By
the definition of the cross product, ~K × n̂ is always perpendicular to n̂ and thus has no
component along n̂. Therefore, the expression

~B2(~r)− ~B1(~r) = µo
~K(~r)× n̂(~r) (5.83)

captures both boundary conditions: the projection of ~B normal to the interface (along
n̂) is continuous because the projection of the right side along that direction vanishes,

and the projection of ~B along any ŝ parallel to the interface can be discontinuous by
the projection of µo

~K × n̂ along that direction. This is a very nice relation: given ~K ,
it provides a way to calculate the change in the entire magnetic field across the
interface, not just the change of a component.
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We can rewrite the above in another way. Take the cross product of both sides with
n̂(~r) from the left. The right side becomes a triple vector product, which we can

rewrite using the BAC − CAB rule, ~a× (~b × ~c) = ~b(~a · ~c)− ~c(~a · ~b). The second term

has n̂ · ~K , which vanishes, while the first term has n̂ · n̂ = 1. Thus, we have

n̂(~r)×
[
~B2(~r)− ~B1(~r)

]
= µo

~K(~r) (5.84)

The earlier form is more useful when ~K is specified, and the second form would more
easily yield ~K if the fields are specified. Note, however, that this form does not
preserve the information about the normal component of ~B because the contribution
of that component to the left side vanishes.
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Boundary Conditions on the Vector Potential

As one might expect by analogy to the electrostatic case, the vector potential itself
has to be continuous across a boundary:

~A2(~r)− ~A1(~r) = 0 (5.85)

This is seen easily:

I We have chosen the divergence of ~A to vanish, so the normal component of ~A
must be continuous, just as we found the normal component of ~B is continuous
for the same reason.

I The curl of ~A does not vanish, ~∇× ~A = ~B. This implies the line integral of ~A
around the contour C used above is nonzero and equals ΦS(C) =

∫
S(C) da n̂ · ~B,

the magnetic flux of ~B through the surface S(C) defined by C. But, as the area
of the contour is shrunk to zero, the magnetic flux vanishes via an argument
similar to the one we used to show that the flux of the electric field always goes
to zero as the area through which it is calculated goes to zero: while the field
can be quite singular (1/r2), there are always cancellations that cause the flux

to vanish. Therefore, the tangential component of ~A is also continuous.
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While the vector potential itself is continuous, its derivatives are not necessarily
continuous because its derivatives are related to ~B, which is not necessarily continuous.
Evaluating these discontinuities is a bit harder than in the case of the electric potential
because the derivatives are not related in a trivial component-by-component way to
the field. We need an expression involving second derivatives of ~A if we want to obtain
boundary conditions on the first derivatives of ~A. Let’s use Equation 5.56:

∇2 ~A(~r) = −µo
~J(~r) (5.86)

Consider a projection of this equation in Cartesian coordinates by taking the dot
product with a Cartesian unit vector on the left and then passing it through the
Laplacian, rewritten so the divergence is clear:

~∇ · ~∇
(

x̂ · ~A(~r)
)

= −µo x̂ · ~J(~r) (5.87)

We have used Cartesian coordinates rather than a coordinate system using n̂, t̂, and ŝ
because the latter vary in direction depending on where one is on the surface; their
derivatives do not vanish, so we would not have been able to pull them inside the
Laplacian as we did with x̂ .
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Given the above, we now apply the same kind of geometry we used to derive the
boundary condition on the normal component of ~E . That yields

n̂ ·
[
~∇
(

x̂ · ~A2(~r)
)
− ~∇

(
x̂ · ~A1(~r)

)]
= −µo x̂ · ~K(~r) (5.88)

n̂ · ~∇
[
x̂ · ~A2(~r)− x̂ · ~A1(~r)

]
= (5.89)

where x̂ · ~K is what is left of x̂ · ~J as the Gaussian volume used in that proof shrinks to
zero thickness in the direction normal to the interface, just as ρ reduced to σ in the
case of the electric field.

The above argument holds for the ŷ and ẑ projections of ~A and ~K also, so we may
combine them to obtain

n̂ · ~∇
[
~A2(~r)− ~A1(~r)

]
= −µo

~K(~r) (5.90)

Thus, we see that the normal derivative of each component of the vector potential has
a discontinuity set by the surface current density in the direction of that component of
the vector potential. This is a lot like the discontinuity in the normal gradient of the
electric potential being determined by the surface charge density at the boundary.
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We may derive, from the above, conditions in the normal and tangential directions by
recognizing that (

n̂ · ~∇
)

n̂ = 0
(

n̂ · ~∇
)

ŝ = 0 (5.91)

These relations should be intuitively obvious: the direction of n̂, ŝ, and t̂ change as
one moves transversely along the surface (along ŝ or t̂), but they simply are not
defined off the surface and thus they can have no derivative in that direction. This
implies that the normal derivative of the normal component of ~A has no discontinuity
since there can be no surface current in that direction:

n̂ · ~∇
{

n̂ ·
[
~A2(~r)− ~A1(~r)

]}
= 0 (5.92)

It also implies that the normal gradient of the vector potential in a particular direction
parallel to the interface changes by the surface current density in that direction:

n̂ · ~∇
{

ŝ ·
[
~A2(~r)− ~A1(~r)

]}
= −µo ŝ · ~K(~r) (5.93)
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Next, let’s consider the tangential derivatives of the vector potential. Here, we use the
vector identity

~∇× ~∇~A(~r) = 0 (5.94)

where again we consider each component of ~A as a scalar function and the above
equation holds for all three components. If we again project by Cartesian components;
e.g.

~∇× ~∇
(

x̂ · ~A(~r)
)

= 0 (5.95)

then we can apply the same type of argument as we applied for calculating the
boundary condition on the tangential components of ~E , which in this case yields

ŝ ·
[
~∇
(

x̂ · ~A2(~r)
)
− ~∇

(
x̂ · ~A1(~r)

)]
= 0 (5.96)

ŝ · ~∇
[
x̂ · ~A2(~r)− x̂ · ~A1(~r)

]
= (5.97)

Since the argument again generalizes to any Cartesian component, we may combine
the three expressions to obtain

ŝ · ~∇
[
~A2(~r)− ~A1(~r)

]
= 0 (5.98)

for any ŝ parallel to the interface: the tangential derivatives of ~A are continuous across
an interface.
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Magnetic Multipoles

Derivation of Magnetic Multipole Expansion

Since the vector potential is sourced by the current distribution in a manner similar to
the way the charge distribution sources the electric potential, it is natural to develop
the same multipole expansion. We follow Jackson for the sake of generality and
variety; you can of course read the derivation in Griffiths, too. We continue to make
the steady-state assumption, and now we also make the assumption the currents are
localized. We start with the equation for the vector potential in terms of the current
distribution:

~A(~r) =
µo

4π

∫
V

dτ ′
~J(~r ′)

|~r − ~r ′| (5.99)

We recall Equation 3.149:

1

|~r − ~r ′| =
∞∑
`=0

r`<

r`+1
>

P`(cos γ) (5.100)

where r< and r> and the smaller and larger of r and r ′.
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As with the multipole expansion for the electrostatic potential, we will take r � r ′:
we want to know what the potential looks like far away from the current distribution.
Therefore, r< = r ′ and r> = r :

~A(~r) =
µo

4π

∫
V

dτ ′ ~J(~r ′)
∞∑
`=0

(r ′)`

r`+1
P`(cos γ) (5.101)

where cos γ = r̂ · r̂ ′ is the angle between the two vectors.

There is a common 1/r we can factor out, leaving

~A(~r) =
µo

4π

1

r

∞∑
`=0

1

r`

∫
V

dτ ′ ~J(~r ′)
(
r ′
)`

P`(cos γ) (5.102)

Section 5.8.1 Derivation of Magnetic Multipole Expansion Page 361



Section 5.8 Magnetostatics: Magnetic Multipoles

Now, consider the first term, which is just the volume integral of the current density.
Under the steady-state assumption, it is intuitively clear this integral must vanish. To
prove this explicitly, we first use the vector identity ~∇ · (f ~a) = f ~∇ · ~a + ~a ~∇f with

~a = ~J and f = ri any of the Cartesian coordinates:

~∇ · (ri
~J) = ri

~∇ · ~J + ~J · ~∇ri = 0 +
3∑

j=1

Jj
∂

∂rj

ri =
3∑

j=1

Jjδij = Ji (5.103)

where the first term vanishes because of the steady-state assumption and so continuity
implies ~∇ · ~J = 0. With this, we can compute the integral using the divergence
theorem:∫

V
dτ ′ Ji (~r

′) =

∫
V

dτ ′ ~∇′ ·
[
r ′i
~J(~r ′)

]
=

∮
S(V)

da′ n̂(~r ′) ·
[
r ′i
~J(~r ′)

]
= 0 (5.104)

where the surface integral in the last term vanishes because the current distribution is
localized.
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So, we are left with

~A(~r) =
µo

4π

1

r

∞∑
`=1

1

r`

∫
V

dτ ′ ~J(~r ′)
(
r ′
)`

P`(cos γ) (5.105)

This is the multipole expansion of the vector potential of the current distribution. As
with the multipole expansion of the electric potential, one can see that the successive
terms fall off as successively higher powers of 1/r .

It makes sense that there is no monopole term because ~∇ · ~B = 0: if there were a way
to make a current distribution look like a monopole from far away, then one would
have a field configuration with a nonzero Gauss’s law integral of magnetic flux through
a closed surface containing the current distribution, which is not allowed by ~∇ · ~B = 0.
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The Magnetic Dipole Term

Let’s consider the first nonzero term in more detail, which we subscript with a 2

because it will look like the electric dipole potential, and let’s expand ~J in terms of its
components so it is easier to work with:

~A2(~r) =
µo

4π

1

r2

∫
V

dτ ′ ~J(~r ′) r ′ P2(cos γ) =
µo

4π

1

r3

∫
V

dτ ′ ~J(~r ′)~r · ~r ′ (5.106)

=
µo

4π

1

r3

3∑
i,j=1

r̂i

∫
V

dτ ′ Ji (~r
′) rj r ′j (5.107)

We must first prove an identity. We start with the same vector identity as before, now
with f = ri rj and ~a = ~J:

~∇ · (ri rj
~J) = ri rj

~∇ · ~J + ~J · ~∇(ri rj ) = 0 + rj
~J · ~∇ri + ri

~J · ~∇rj (5.108)

= rj Ji + ri Jj (5.109)

where we have again used ~∇ · ~J = 0. We apply the same technique of integrating over
volume and turning the left side into a surface term that vanishes, so we are left with∫

V
dτ ′

[
r ′i Jj (~r

′) + r ′j Ji (~r
′)
]

= 0 (5.110)
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We can use this identity to rewrite the ~A2 term as:

~A2(~r) =
µo

4π

1

r3

3∑
i,j=1

r̂i rj

∫
V

dτ ′
1

2

[
Ji (~r

′) r ′j − Jj (~r
′) r ′i

]
(5.111)

where we split out half of the Ji r ′j factor and used the identity to exchange the
indices. You have learned in Ph106a and hopefully elsewhere that the cross-product
can be written

(~a× ~b)k =
3∑

m,n=1

εkmn am bn with εkmn =

 1 for cyclic index permutations
−1 for anticyclic index permutations

0 when any two indices are identical

(5.112)

where εkmn is the Levi-Civita symbol. Multiplying this definition by εijk and summing
over k gives

3∑
k=1

εijk (~a× ~b)k =
3∑

k,m,n=1

εijk εkmn am bn =
3∑

k,m,n=1

εkij εkmn am bn (5.113)
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There is an identity for the Levi-Civita symbol

3∑
k=1

εkij εkmn = δim δjn − δin δjm (5.114)

(this is the identity that produces the BAC − CAB rule,

~a× (~b × ~c) = ~b(~a · ~c)− ~c(~a · ~b)) which lets us rewrite the above as

3∑
k=1

εijk (~a× ~b)k =
3∑

m,n=1

am bn
(
δim δjn − δin δjm

)
= ai bj − aj bi (5.115)

This is exactly the expression we have inside the integral above.

Using the above identity, we may rewrite the ~A2 term as

~A2(~r) =
µo

4π

1

r3

3∑
i,j,k=1

r̂i rj

∫
V

dτ ′
1

2
εijk

[
J(~r ′)× ~r ′

]
k

(5.116)

= − µo

4π

1

r3

1

2

3∑
i

r̂i

{
~r ×

∫
V

dτ ′
[
~r ′ × J(~r ′)

]}
i

(5.117)

= − µo

4π

1

r3

1

2
~r ×

∫
V

dτ ′
[
~r ′ × J(~r ′)

]
(5.118)
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If we define the magnetization density ~M(~r) and the magnetic dipole moment ~m by

~M(~r) =
1

2
~r × ~J(~r) and ~m =

∫
V

dτ ′ ~M(~r ′) (5.119)

then the 2 term is the magnetic dipole vector potential

~A2(~r) =
µo

4π

~m × ~r
r3

(5.120)

Interestingly, this form has the same radial dependence as that of the electrostatic
potential of a dipole, but the cross-product in the numerator differs from the dot
product in the numerator of the electric dipole potential. However, because the
magnetic field is obtained from the curl of the vector potential, while the electric field
is obtained from the gradient of the electric potential, we will see that the two forms
result in the same field configuration (up to normalization)!
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Specialization of Magnetic Dipole Potential to a Current Loop

Now, let us consider a current loop. The only assumption we make is that the current
throughout the loop is the same so that we can extract it from the integral. The
volume integral reduces to a line integral over the loop contour:

~A2(~r) = − µo

4π

1

r3

1

2
~r ×

∮
C
~r ′ × I d ~̀′(~r ′) = − µo

4π

1

r3
~r × I

∮
C

~r ′ × d ~̀′(~r ′)

2
(5.121)

The integral is now just a geometric quantity that has units of area. Separating out
the magnetic moment, we have

~A loop
2 (~r) =

µo

4π

~mloop × ~r
r3

~mloop = I

∮
C

~r ′ × d ~̀′(~r ′)

2
(5.122)
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For the case of a loop confined to a plane that contains the origin, the quantity
~r ′ × d ~̀′/2 is the differential area element for the loop: it is the area of the triangle

formed by ~r ′, the vector from the origin to a point on the loop, and d ~̀′, the line
element tangent to the loop at ~r ′ and in the direction of the current, and this cross
product has the standard right-hand-rule orientation. The integral thus calculates the
area of the loop! Thus, for a planar loop, the above reduces to

~A2(~r) = − µo

4π

1

r3
~r × I n̂ a (5.123)

where a is the loop area and n̂ is the normal to the loop with orientation defined by
the current via the right-hand rule. Therefore, for this case, we have

~A flat loop
2 (~r) =

µo

4π

~mflat loop × ~r
r3

~mflat loop = I n̂ a (5.124)
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Field of a Magnetic Dipole

If we let ~m = m ẑ, then the dipole vector potential is

~A2(~r) =
µo

4π

m sin θ

r2
φ̂ ≡ A2,φ φ̂ (5.125)

This form offers some intuition about how ~A2(~r) behaves. In general, ~A2 “circulates”

around ~m using the right-hand rule in the same way that ~A “circulates” around ~B or
~B “circulates” around ~J using the right-hand rule. Since we are considering the
distribution from far enough away that it is indistinguishable from a simple circular
current loop in the xy -plane, the direction of ~A2 just results from the fact that ~A is
the convolution of ~J with a scalar function: the direction of ~A always follows that of ~J.

If we take the curl of this in spherical coordinates, we obtain

B2,r (~r) =
1

r sin θ

∂

∂θ
(sin θA2,φ) = 2

µo

4π

m cos θ

r3
(5.126)

B2,θ(~r) = −1

r

∂

∂r
(r A2,φ) =

µo

4π

m sin θ

r3
(5.127)

B2,φ(~r) = 0 (5.128)

or ~B2(~r) =
µo

4π

m

r3

(
2 r̂ cos θ + θ̂ sin θ

)
(5.129)

which matches the form of Equation 3.239 for an electric dipole.
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Let’s derive the more generic result by releasing the condition ~m = m ẑ:

~B2(~r) = ~∇× ~A =
3∑

i,j,k=1

εijk r̂i
∂Ak

∂rj

=
µo

4π

3∑
i,j,k,`,m=1

εijk r̂i
∂

∂rj

εk`m

(m`rm

r3

)
(5.130)

=
µo

4π

3∑
i,j,k,`,m=1

εijkεk`m r̂i

[
m`δjm

r3
− 3

2

m`rm

r5

(
2rj

)]
(5.131)

We use the cyclicity of the Levi-Civita symbol in its indices and the identities∑3
k=1 εkij εk`m = δi`δjm − δimδj` and

∑3
j,k=1 εjki εjk` = 2δi` to rewrite the above in a

form identical to that of the electric dipole, Equation 3.242:

~B2(~r) =
µo

4π

3∑
i=1

r̂i

2mi

r3
− 3

r5

mi

3∑
j=1

rj rj − ri

3∑
j=1

mj rj

 (5.132)

=
µo

4π

3∑
i=1

r̂i
3 ri ( ~m · ~r)−mi (~r · ~r)

r5
(5.133)

=⇒ ~B2(~r) =
µo

4π

3 ( ~m · r̂) r̂ − ~m

r3
(5.134)
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Force on a Magnetic Dipole (à la Jackson)

As we did for electric multipoles, let’s consider the problem of the force and torque on
a magnetic dipole. However, because there is no magnetic potential energy function,
we must begin from the Lorentz Force on the current distribution, which is given by

~Fmag =

∫
V

dτ ~J(~r)× ~B(~r) (5.135)

As we did in the case of the force on an electric multipole, we Taylor expand ~B(~r).
Again, as we did for electrostatics, we place the multipole at the origin and will
generalize the result later. The expansion is

Bk (~r) = Bk (~r = ~0) +
3∑

m=1

rm
∂Bk

∂rm

∣∣∣∣
~r=~0

+ · · · (5.136)
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Thus, the Lorentz Force is

~Fmag =
3∑

i,j,k=1

εijk r̂i

∫
V

dτ Jj (~r) Bk (~r) (5.137)

=
3∑

i,j,k=1

εijk r̂i

[
Bk (~0)

∫
V

dτ Jj (~r) +
3∑

m=1

(
∂Bk

∂rm

∣∣∣∣
~0

)∫
V

dτ Jj rm + · · ·
]

(5.138)

We have done both these integrals before. The first one contains the monopole of the
current distribution, which vanishes as in Equation 5.104. Since we will see that the
second term is in general nonzero and is proportional to the magnetic dipole moment,
let’s call it ~Fdip and focus on it, dropping the higher-order terms. It is very similar in
structure to what we encountered in calculating the dipole term in Equation 5.107.
Applying the same tricks we used there to obtain Equation 5.116, we may rewrite it as

~Fdip =
3∑

i,j,k,m,n=1

εijk r̂i

(
∂Bk

∂rm

∣∣∣∣
~0

)∫
V

dτ
1

2
εjmn

[
~J(~r)× ~r

]
n

(5.139)

= −
3∑

i,j,k,m,n=1

εijkεjmn r̂i

(
∂Bk

∂rm

∣∣∣∣
~0

)
mn with ~m =

1

2

∫
V

dτ
[
~r × ~J(~r)

]
(5.140)
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We use the vector identity Equation 5.114,
∑3

j=1 εjikεjmn = δimδkn − δinδkm, and also
use εijk = −εjik to adjust the indices to match this expression, yielding

~Fdip =
3∑

i,k,m,n=1

(δimδkn − δinδkm) r̂i

(
∂Bk

∂rm

∣∣∣∣
~0

)
mn (5.141)

=
3∑

i,k=1

r̂i

[(
∂Bk

∂ri

∣∣∣∣∣
~0

)
mk −

(
∂Bk

∂rk

∣∣∣∣∣
~0

)
mi

]
(5.142)

= ~∇
(
~m · ~B

)∣∣∣
~0
− ~m

(
~∇ · ~B

)∣∣∣
~0

(5.143)

The second term vanishes. Generalizing the first term to a dipole at an arbitrary
position, we have

~Fdip = ~∇
[
~m · ~B(~r)

]
with ~m =

1

2

∫
V

dτ
[
~r ′ × ~J(~r ′)

]
(5.144)

The force causes the magnetic dipole to move to a local maximum of ~m · ~B. Note how
it is identical to the force on an electric dipole in an electric field, Equation 3.252.
We’ll address below the implication that the magnetic field can do work on the dipole.
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Section 5.8 Magnetostatics: Magnetic Multipoles

Torque on a Magnetic Dipole (à la Jackson)

We may obtain from the Lorentz Force Law on a current distribution the
corresponding torque:

~Nmag =

∫
V

dτ ~r ×
[
~J(~r)× ~B(~r)

]
(5.145)

where we have just added up the torque volume element by volume element in the
same way we summed the force. When we Taylor expand the magnetic field, we have

~Nmag =

∫
V

dτ ~r ×
[
~J(~r)× ~B(~0)

]
+ · · · (5.146)

Because of the ~r × inside the integrand, the zeroth-order term no longer vanishes and
so we do not need to consider the next order term in the Taylor expansion. We will
write the zeroth-order term as ~Ndip below for reasons that will become clear.
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Section 5.8 Magnetostatics: Magnetic Multipoles

To get the above expression into a familiar form, we need to repeat the same kinds of
vector arithmetic tricks we have used before. First, we apply the BAC − CAB rule,
~a× (~b × ~c) = ~b(~a · ~c)− ~c(~a · ~b), which we can do without having to write things in
terms of indices because there are no derivatives floating around:

~Ndip =

∫
V

dτ ~r ×
[
~J(~r)× ~B(~0)

]
=

∫
V

dτ ~J(~r)
[
~r · ~B(~0)

]
−
∫
V

dτ ~B(~0)
[
~r · ~J(~r)

]
(5.147)

We can make the second term vanish by the same kinds of tricks we used earlier
during the vector potential multipole expansion:

~r · ~J(~r) =
[
r ~∇r

]
· ~J(~r) =

1

2

[
~∇r2

]
· ~J(~r) =

1

2

{
~∇ ·
[
r2 ~J(~r)

]
− r2 ~∇ · ~J(~r)

}
(5.148)

In this expression, the second term vanishes under the steady-state assumption, and
the first term can be turned into a surface integral with integrand r2 ~J(~r). Since we
are considering a localized current distribution, the surface can be taken far enough
out that ~J(~r) vanishes on the surface.
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The first term looks again like the expression we have encountered in Equation 5.107,
which becomes apparent when we write it out in component form:

~Ndip =
3∑

i,j=1

r̂i Bj (~0)

∫
V

dτ Ji (~r) rj (5.149)

We again apply the same tricks used to arrive at Equation 5.116:

~Ndip =
3∑

i,j=1

r̂i Bj (~0)

∫
V

dτ
1

2
εijk

[
~J(~r)× ~r

]
k

= −1

2
~B(~0)×

∫
V

dτ ~r × ~J(~r) (5.150)

= −~B(~0)× ~m with ~m =
1

2

∫
V

dτ
[
~r × ~J(~r)

]
(5.151)

Generalizing to a multipole distribution centered on an arbitrary point, the
zeroth-order term in the torque is (and hence the dip subscript)

~Ndip = ~m × ~B(~r) with ~m =
1

2

∫
V

dτ ′
[
~r ′ × ~J(~r ′)

]
(5.152)

The magnetic dipole feels a torque that tends to align it with the magnetic field (the

torque vanishes when ~m is aligned with ~B), again like the situation for an electric
dipole in an electric field.
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Potential Energy of a Magnetic Dipole

We can do the line integral of the force or the angular integral of the torque to
determine that we can write a potential energy

U(~r) = − ~m · ~B(~r) (5.153)

This form for the potential energy expresses two features of magnetic dipoles: they like
to be aligned with the local magnetic field, and they seek the region of largest ~m · ~B.

The thing that should be concerning about this expression is that we argued earlier
that magnetic fields can do no work, yet here we have the possibility of such work.
That is because we are assuming ~m is held fixed. For a finite current loop, there must
be a battery doing work to keep the current fixed as ~m moves or turns relative to ~B:
such motion yields changing magnetic fields, which, as you know from Ph1c, generate
voltages around the loop in which the current for ~m flows. The battery will be the
thing doing the work to counter these voltages and keep the current flowing. If ~m is a
property of a fundamental particle, then there is no explicit battery: it is simply an
empirical fact that | ~m| cannot change, and one that we must incorporate as a
postulate.
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Paramagnetism and Diamagnetism

See Griffiths Sections 6.1.1 and 6.1.3 and Purcell Sections 11.1 and 11.5 for
discussions of paramagnetism and diamagnetism. This will be discussed in class
briefly, but there is little to add to their discussions, but we briefly summarize that
discussion here.

Diamagnetism arises due to the orbital angular momentum of electrons: when they
execute their orbits in a magnetic field, the magnetic field adds to (~B||~ω|| − ~m) or

partially cancels (~B|| − ~ω|| ~m) the Coulomb force that provides the centripetal force.
This causes the electron velocity to, respectively, increase or decrease. In both cases,
this change in speed yields a change ∆ ~m|| − ~B. We will see later that an ensemble of
magnetic dipoles that change in this way yield an additional field that partially cancels
the applied magnetic field, hence the term diamagnetism.
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Paramagnetism arises from an entirely quantum-mechanical phenomenon: electrons
have a magnetic moment antiparallel to their spin and, when electrons are unpaired in
atomic orbitals, those magnetic moments are uncanceled. We saw in the previous
section that magnetic dipoles align with a magnetic field, opposite to the effect seen
in diamagnetism. We will see that an ensemble of such aligning magnetic moments
yields a field in the same direction as the applied field, hence the term paramagnetism.

We remind you that unpaired electrons are present not just in atoms with odd
numbers of electrons but also in electrons with even Z in which there are not enough
electrons to fill a particular atomic orbital shell (`) that has multiple `z values.
Because of Coulomb repulsion, such electrons tend to spread out among different `z

values, and then there is an ”exchange” term that we will discuss later that causes the
lower-energy state to be the one in which the spatial wavefunction is antisymmetric
under exchange, which then implies the spin state must be symmetric under exchange
in order for the entire state to be antisymmetric under exchange.
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The Field of a Magnetized Object

Bound Currents

Suppose we have an object with a position-dependent macroscopic density of
magnetic moments, or macroscopic magnetization density ~M(~r), where the magnetic
moment of an infinitesimal volume dτ is

d ~m = ~M(~r) dτ (6.1)

~M is not to be confused with the magnetization density M(~r); the latter can be for
some arbitrary current distribution, while the former is specifically to be considered to
be a density of magnetic dipole moments. M(~r) should give ~M(~r) for this special case
of pure dipoles. We will, confusingly, drop “macroscopic” from here on out. Assuming
we are looking at the dipoles from a macroscopic enough scale that the dipole
approximation is valid, we may use our expression for the vector potential of a
magnetic dipole, Equation 5.120, to calculate the contribution to the vector potential
at ~r due to the above infinitesimal volume at ~r ′:

d ~A(~r) =
µo

4π

d ~m(~r ′)× (~r − ~r ′)
|~r − ~r ′|3 =

µo

4π

dτ ′ ~M(~r ′)× (~r − ~r ′)
|~r − ~r ′|3 (6.2)
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Integrating over the volume containing the magnetization density, we have

~A(~r) =
µo

4π

∫
V

dτ ′
~M(~r ′)× (~r − ~r ′)
|~r − ~r ′|3 (6.3)

Now, we use (~r − ~r ′)/|~r − ~r ′|3 = ~∇~r ′ |~r − ~r ′|−1 (note that the gradient is with
respect to ~r ′, not ~r !), which allows us to apply the product rule for curl,
~∇× (f ~a) = f ~∇× ~a− ~a× ~∇f :

~A(~r) =
µo

4π

∫
V

dτ ′ ~M(~r ′)× ~∇~r ′
(

1

|~r − ~r ′|

)
(6.4)

=
µo

4π

∫
V

dτ ′
~∇~r ′ × ~M(~r ′)

|~r − ~r ′| − µo

4π

∫
V

dτ ′ ~∇~r ′ ×
(

~M(~r ′)

|~r − ~r ′|

)
(6.5)

=
µo

4π

∫
V

dτ ′
~∇~r ′ × ~M(~r ′)

|~r − ~r ′| +
µo

4π

∫
S(V)

da′
~M(~r ′)× n̂(~r ′)

|~r − ~r ′| (6.6)

where, in the last step, we have used a vector identity that we will prove on the
following slide.
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Let’s prove the vector identity we just used, which is a corollary of the divergence
theorem for the curl. Let ~a(~r) be an arbitrary vector field and let ~c be an arbitrary
constant vector. Then the divergence theorem tells us∫

V
dτ ~∇ · [~a(~r)× ~c] =

∮
S(V)

da n̂(~r) · [~a(~r)× ~c] (6.7)

Now, apply the cyclicity of triple scalar products (along with the fact that ~c is

constant and can thus it can be moved past ~∇) and bring ~c outside the integrals
(since it is a constant vector):

~c ·
∫
V

dτ
[
~∇× ~a(~r)

]
= ~c ·

∮
S(V)

da [n̂(~r)× ~a(~r)] (6.8)

Since ~c is arbitrary, the expression must hold for any ~c and thus:∫
V

dτ
[
~∇× ~a(~r)

]
=

∮
S(V)

da [n̂(~r)× ~a(~r)] (6.9)

which is what we wanted to prove.
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Making some definitions, we recognize that the vector potential can be considered to
be sourced by a bound volume current density ~Jb(~r) and a bound surface current

density ~Kb(~r):

~Jb(~r) = ~∇× ~M(~r) ~Kb(~r) = ~M(~r)× n̂(~r) (6.10)

~A(~r) =
µo

4π

∫
V

dτ ′
~Jb(~r ′)

|~r − ~r ′| +
µo

4π

∮
S(V)

da′
~Kb(~r ′)

|~r − ~r ′| (6.11)

The way in which these current densities source ~A is identical to the way in which free
current densities do. Moreover, we can see the clear analogy to bound volume and
surface charges in the case of polarized materials.

Griffiths Section 6.2.2 gives a nice discussion of the physical interpretation of bound
currrents that will be presented in class, but there is not much to add here.
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Example 6.1: Uniformly Magnetized Sphere

Center the sphere of radius R at the origin. Let ~M = M ẑ. Then

~Jb(~r) = ~∇×M ẑ = 0 ~Kb(~r) = M ẑ × n̂ = M ẑ × r̂ = φ̂M sin θ (6.12)

We need to calculate

~A(~r) =
µo

4π
R2
∫ 2π

0
dφ ′

∫ π

0
dθ ′ sin θ ′

M sin θ ′ φ̂

|~r − ~r ′| (6.13)

=
µo

4π
R2
∫ 2π

0
dφ ′

∫ π

0
dθ ′ sin θ ′

M sin θ ′ (−x̂ sinφ ′ + ŷ cosφ ′)

|~r − ~r ′| (6.14)

(The R2 out front is because an area integral, not just a solid angle integral, needs to
be done.) Recall that we did this calculation when we considered the magnetic vector
potential of a spinning spherical shell with a uniform charge density, Example 5.1. In
that case the surface current density was ~K = φ̂ σ ω R sin θ, so we can use that result
with σ ω R replaced by M. The result is

~A(r ≤ R, θ, φ) =
µo

3
M r sin θ φ̂ ~A(r ≥ R, θ, φ) =

µo

4π

(
4π

3
R3M

)
sin θ

r2
φ̂ (6.15)

Section 6.2.1 Bound Currents Page 387



Section 6.2 Magnetostatics in Matter: The Field of a Magnetized Object

Evaluating the curl of the first term to obtain the magnetic field, we have inside the
sphere

~B(r ≤ R) = ~∇× ~A(r ≤ R) =
1

3
µo M

[
2 r̂ cos θ − θ̂ sin θ

]
=

2

3
µo

~M (6.16)

which is a uniform field pointing in the same direction as the magnetization.

For r ≥ R, we have

~A(r ≥ R) =
µo

4π

~m × r̂

r2
~m =

4π

3
R3 ~M (6.17)

which is the vector potential (thus yielding the field of) a pure dipole with magnetic
moment given by integrating the uniform magnetization density over the sphere. This
form is exact for all r ≥ R.
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Let’s compare to the case of a uniformly polarized dielectric sphere:

r ≤ R ~E(~r) = − 1

3 εo

~P ~B(~r) =
2

3
µo

~M (6.18)

r ≥ R V (~r) =
1

4π εo

~p · r̂
r2

~A(~r) =
µo

4π

~m × r̂

r2
(6.19)

~p =
4π

3
R3 ~P ~m =

4π

3
R3 ~M (6.20)

Inside the sphere, the difference is a factor of −2 and the exchange of 1/εo for µo .
Outside the sphere, the two potentials result in fields identical up to the replacement
of ~P/εo by µo

~M. The difference in the r ≤ R expressions reflects the fact that the

magnetic field of the bound surface current (i.e., of ~M) is aligned with ~M while the

electric field of the surface bound charge density (i.e., of ~P) is opposite to ~P. This
sign difference is a generic phenomenon, resulting in the very different behavior of
electrostatic and magnetostatic fields in matter.
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The Auxiliary Field ~H and Magnetic Permeability

Definition of the Auxiliary Field

We saw that ~A is sourced by the bound current density ~Jb = ~∇× ~M in the same way
it would be sourced by a free current density ~Jf . Therefore, Ampere’s Law is satisfied
with the sum of the two currents:

1

µo

~∇× ~B = ~Jf + ~Jb = ~Jf + ~∇× ~M (6.21)

If we want to write an Ampere’s Law in terms of the free currents only, in the same
way that we wanted to write Gauss’s Law in terms of the free charges only, then we
can define the auxiliary field

~H ≡
~B

µo
− ~M (6.22)

In contrast to electrostatics, where the displacement field was the sum of the electric
field and the polarization density, here the auxiliary field is the difference of the
magnetic field and the magnetization density. The sign flip comes from the differing
signs in the definition of the bound charge and current densities: ρb = −~∇ · ~P while
~Jb = ~∇× ~M, which itself comes from the commutative vs. anticommutative natures
of the dot and cross product.
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With this definition of ~H, we then have

~∇× ~H =
1

µo

~∇× ~B − ~∇× ~M = ~Jf + ~Jb − ~Jb = ~Jf (6.23)

Therefore, we have a modified Ampere’s Law

~∇× ~H = ~Jf ⇐⇒
∮
C

d ~̀ · ~H(~r) =

∫
S(C)

da n̂(~r) · ~Jf (~r) = If ,enc (6.24)

Thus, as intended, we have an Ampere’s Law in terms of the free currents only, which
(partially) source ~H. The fact that ~H satisfies Ampere’s Law in the free current leads
some to use the name applied field for it. That may be misleading, though, because
the free current does not tell one everything one must know to determine ~H (in the

same way that ρf does not completely determine the displacement field ~D).

To fully specify ~H, we need to know its divergence, which is given by applying
~∇ · ~B = 0:

~∇ · ~H = −~∇ · ~M (6.25)

This nonvanishing of ~∇· ~H is analogous to the nonvanishing of ~∇× ~D in electrostatics.

There is an example of how to calculate ~H using the above Ampere’s Law in Griffiths
Example 6.2.
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Boundary Conditions on ~H

From the boundary conditions on ~B at an interface, we can derive boundary
conditions on ~H. The continuity of the normal component of the magnetic field
(Equation 5.76) along with Equation 6.22 implies

n̂(~r) ·
[
~H2(~r)− ~H1(~r)

]
= −n̂(~r) ·

[
~M2(~r)− ~M1(~r)

]
(6.26)

Applying the same arguments using Ampere’s Law for ~H as we did using Ampere’s
Law for ~B, we can also conclude the analogy of Equation 5.82:

[
~H2(~r)− ~H1(~r)

]
· ŝ(~r) =

[
~Kf (~r)× n̂(~r)

]
· ŝ(~r) (6.27)

where ~Kf is the free surface current density at the interface.
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Recall that we found alternative forms of the corresponding boundary conditions for
~B, Equations 5.83 and 5.84:

~B2(~r)− ~B1(~r) = µo
~K(~r)× n̂(~r)

n̂(~r)×
[
~B2(~r)− ~B1(~r)

]
= µo

~K(~r)

There is no trivial analogue of the first one because it relied on the normal component
of ~B being continuous. However, we can obtain the analogue of the second equation,
though we have to do it in a different way because, for ~B, we used the first equation
above to obtain the second one.
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We start by using ŝ = t̂ × n̂ and then applying the cyclicity of the triple scalar product
on both sides: [

~H2 − ~H1

]
·
[
t̂ × n̂

]
= [n̂ × ŝ] · ~Kf (6.28)

t̂ ·
(

n̂ ×
[
~H2 − ~H1

])
= t̂ · ~Kf (6.29)

The same equation holds trivially with t̂ replaced by n̂: the left side vanishes because
n̂ is perpendicular to any cross product involving n̂ and the right side vanishes because
~Kf is always perpendicular to n̂. This, combined with the fact that t̂ in the above can
be any vector in the plane of the boundary, implies the more general statement

n̂(~r)×
[
~H2(~r)− ~H1(~r)

]
= ~Kf (~r) (6.30)

which is the analogue of the second equation on the previous slide. But note that this
equation provides no information about the normal component of ~H because it is
related to the normal component of ~M.
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What Sources ~H? When Does It Vanish?

Considering the uniformly magnetized sphere example we just looked at, we see

~H(r < R) =
~B(r ≤ R)

µo
− ~M =

2

3
~M − ~M = −1

3
~M (6.31)

~H(r > R) =
~B(r ≥ R)

µo
=

field of the magnetic dipole ~m = 4π
3

R3 ~M

µo
(6.32)

This example highlights the importance of the nonvanishing of ~∇ · ~H. There is no free
current in this problem, so one might be inclined to think ~H vanishes by analogy to
the fact ~B would vanish if there were no total current. But the nonzero nature of
~∇ · ~H means that ~H has another sourcing term that is not captured by Ampere’s Law
alone. In this case, this sourcing term manifests as a discontinuity of the normal
component of ~M at r = R. This is analogous to the way that, even if there is no free
charge, there may be a displacement field ~D, sourced by ~∇× ~P and/or a discontinuity

in the tangential component of ~P, as we saw in for the polarized sphere (Example 5.1)
and the spherical cavity in a dielectric with uniform field applied (Example 5.6). To

have ~H vanish identically, one needs to have ~∇ · ~M = 0 and also trivial boundary
conditions on ~M (no change in n̂ · ~M).
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This all makes sense given the Helmholtz theorem: since ~∇ · ~H does not vanish, ~H is
not just the curl of a vector potential, but must be the sum of the gradient of a scalar
potential and the curl of a vector potential. Ampere’s Law for ~H tells us that the free
current density sources the vector potential, while −~∇ · ~M sources the scalar potential.
We will see later that the latter point allows us to use our electrostatic boundary value
problem techniques.

In particular, in the example of the uniformly magnetized sphere, we see that ~H is
identical in form to ~E from the uniformly polarized sphere up to the replacement
~P/εo → ~M, so the scalar potential that yields ~M will have the same form, up to this

replacement, as the scalar potential that yields ~E . We’ll pursue this analogy in detail
when we discuss boundary value problems for magnetostatic systems.

We can make the same point about ρf not being the only source of ~D; when ~∇× ~P is
nonzero, then ~D receives an additional sourcing term. It was not convenient to make
this point when we discussed ~D initially because we had not yet learned about vector
potentials and how to discuss sourcing of ~D by a vector field, ~∇× ~P. But now we do,
and so it should be clear that ~D received a contribution that is sourced by ~∇× ~P in
the same way that ~H receives a contribution that is sourced by ~∇× ~H = ~Jf .

In particular, in Example 4.5, the capacitor with two side-by-side dielectrics, we saw
such a situation, manifested by the discontinuity in the tangential component of ~P at
the interface between the two dielectrics.
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Who Cares About ~H?

Is ~H any more useful than ~D was?

The thing that limits the utility of ~D is that, in practice, one rarely controls free
charge, the most obvious source for ~D. In practice, one sets potentials using batteries
or other voltage sources. Potentials specify ~E , not ~D. Consider the example of the
parallel-plate capacitor with side-by-side dielectrics: σf ended being an output of the
calculation after calculating ~E rather than an input that yielded ~D.

On the other hand, ~H is sourced by the free currents, which is the thing one explicitly
controls in the lab. For that reason alone, we expect ~H is of greater utility than ~D.
We will see this more clearly when we consider specific types of permeable materials.

The other reason we will find ~H more useful is that, in reality, we frequently come
across ferromagnets, where ~M is provided and thus we are given the ~∇ · ~M source for
~H, but we rarely encounter ferroelectrics, where ~P and thus the ~∇× ~P source for ~D
are provided. We would find ~D useful as a calculation tool if we were given a system
in which ~∇× ~P were nonzero or, more likely, ~P were tangent to boundaries between a
ferroelectric and vacuum or between different ferroelectrics. Then ~∇× ~P and any
discontinuity in n̂ × ~P would source ~D in the same way that ~J and a boundary ~K
source ~B.
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Magnetic Permeability in Linear Materials

Many magnetic materials we will consider have a linear relationship between the field
and the magnetization. The magnetic susceptibility of a material is defined to be the
constant of proportionality between ~M and ~H:

~M = χm
~H (6.33)

(One can see why ~H is sometimes called the applied field!) Since ~B = µo

(
~H + ~M

)
,

we have

~B = µo

(
~H + ~M

)
= µo (1 + χm) ~H ≡ µ ~H (6.34)

where we have defined the magnetic permeability µ = µo (1 + χm). The quantity
µr = 1 + χm is the relative permeability. The definition of χm and µ follows a
different convention than the definition of χe and ε. This is for the reason we
discussed above: we experimentally control the free current and thus ~H, whereas in
electrostatics we control the voltages and thus ~E . We define the permittivity and the
permeability to be the constant of proportionality relating the thing we do control to
the thing we do not control.
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Paramagnetic materials have χm > 0 because the magnetization is in the same
direction as the field and so the field due to the free currents is added to by the field
from the magnetization.

Diamagnetic materials have χm < 0 because the magnetization is in the direction
opposite the field and so the field due to the free currents is partially canceled by the
field from the magnetization.

For electrostatics in matter, we were concerned entirely with dielectric materials:
because every atom has some polarizability, every material is dielectric to some extent.
In that case, the “di” prefix went with χe > 0 (in contrast to χm < 0 here) because of

the different convention for the relation between ~E and ~D.

Diamagnetic materials exist via the same kind of classical argument, now involving the
response of currents in materials to applied fields.

The analogous paraelectric materials (χe < 0) do not exist for the most part — it is
hard to understand how one can get an electrically polarizable material to have χe < 0.
Metals can have negative permittivity at high frequencies (optical), but not DC.

Paramagnetic materials exist only because of quantum mechanics — the existence of
magnetic moments not caused by an applied field. There are no such
quantum-mechanics-caused electric dipole moments, mainly because such moments
violate time-reversal symmetry while magnetic moments do not. They work differently
because the “current” sourcing a magnetic dipole moment reverses sign under time
reversal while the charges sourcing an electric dipole moment do not.
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Example 6.2: Magnetizable Rod with Uniform Current (Griffiths 6.17)

Let’s consider a rod of radius R whose axis is in the z direction and which carries a
current ~I = I ẑ distributed uniformly across its cross section. Assume the material is
linear with magnetic susceptibility χm. Let’s find ~H, ~M, and ~B.

Let’s first see how far we can get without using χm. Ampere’s Law for ~H tells us∮
C
~H · d ~̀=

∫
S(C)

da n̂ · ~Jf (6.35)

This system has azimuthal symmetry as well as translational symmetry in z, so we can
guess ~H = ~H(s) where s is the radial coordinate in cylindrical coordinates. By the

right-hand rule and the z translational symmetry, we expect ~H = H(s) φ̂. This

eliminates any concern about ~∇ · ~M or n̂ · ~M: we know ~M = χm
~H ∝ ~H, therefore we

know, for the assumed form of ~H, ~∇ · ~M = 0 inside the cylinder and n̂ · ~M = 0 at the
surface of the cylinder. ( ~M = 0 outside the cylinder.) Adding in that we know
~Jf = ẑ I/π R2, Ampere’s Law in ~Jf and ~H tells us

s ≤ R : 2π s H(s) = π s2 I

π R2
⇐⇒ ~H(s) =

I

2π

s

R2
φ̂ (6.36)

s ≥ R : 2π s H(s) = π R2 I

π R2
⇐⇒ ~H(s) =

I

2π

1

s
φ̂ (6.37)
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If we do not know χm, we do not know ~M inside the material and so we cannot
calculate ~B for s ≤ R. For s ≥ R, we have vacuum and so ~M = 0 and ~B = µo

~H:

~B(s ≥ R) = µo
~H(s ≥ R) =

µo I

2π s
φ̂ (6.38)

Note that ~B(s ≥ R) is unaffected by the presence of the magnetizable material — this
is the same field we would have had with χm = 0 inside the rod. We will see why
below.

Next, if we use the linearity of the material with susceptibility χm, we have

~M(s ≤ R) = χm
~H(s ≤ R) = χm

I

2π

s

R2
φ̂ =

µ− µo

µo

I

2π

s

R2
φ̂ (6.39)

and therefore

~B(s ≤ R) = µ ~H(s ≤ R) =
µ I

2π

s

R2
φ̂ (6.40)

All three fields are azimuthal inside and outside R. For paramagnetic materials,
χm ≥ 0 (µ ≥ µo ), so ~M is parallel to ~H and |~B| > µo | ~H| inside R. For diamagnetic

materials, χm < 0 (µ ≤ µo ), so ~M is antiparallel to ~H and |~B| ≤ µo | ~H| inside R.
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Let’s check the boundary conditions. All the fields are tangential at the boundary, so
continuity of the normal component of ~B trivially satisfied (Equation 5.76), as is the

equality of the change in the normal components of ~H and − ~M (Equation 6.26).

There is no free surface current density, so we expect the tangential component of ~H
to be continuous. We see this indeed holds, with value

φ̂ · ~H(s = R) =
I

2π R
(6.41)

The ẑ tangential component is trivially continuous since it vanishes.
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For the sake of completeness, let’s calculate the bound surface current and check that
the tangential boundary condition on ~B is correct. The bound surface current is
~Kb = ~M × n̂ (Equation 6.10). In this case, n̂ = ŝ, the radial unit vector in cylindrical
coordinates, so

~Kb(s = R) = M(s = R) φ̂× ŝ = −χm
I

2π R
ẑ (6.42)

For a paramagnetic materials (χm > 0), the surface current points along −ẑ while, for
diamagnetic materials (χm < 0), it points along +ẑ. One can see this physically by
considering the direction of alignment of the dipoles and which direction the
uncancelled current on the boundary flows. From the direction of this surface current,
one can then see that the field of this surface current adds to the field of the free
current for the paramagnetic case and partially cancels it for the diamagnetic case.
(Note that we get this behavior even though the surface current is antiparallel to
(parallel to) the direction of the volume current in the paramagnetic (diamagnetic)
case. We get this behavior because the region of interest is inside the surface current
density, not outside it. We’ll look at the field outside next.) With the surface bound

current in hand, let’s check the boundary conditions on ~B. It has no normal
component in either region, so continuity of the normal component is trivially
satisified. The discontinuity in the tangential component matches Equation 5.84:

n̂ ×
[
~B2 − ~B1

]
= ŝ × [µo − µ]

I

2π R
φ̂ = −µoχm

I

2π R
ẑ = µo

~Kb (6.43)
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Let’s also calculate the bound volume current density, ~Jb = ~∇× ~M from
Equation 6.10. It is

~Jb(~r) = ~∇× ~M = χm ~∇× ~H = χm
~Jf = χm

I

πR2
ẑ (6.44)

For paramagnetic materials, ~Jb is parallel to ~Jf and thus its field adds to the field of
the free current, while, for diamagnetic materials, it is antiparallel and it partially
cancels the free current’s field.

Note that the integral of ~Jb over the cross section and the integral of ~Kb over the
circumference are equal in magnitude (χm I) and opposite in sign, canceling perfectly.
This is why the magnetic field outside the wire is only that due to the free current.

A modest extension to this problem would be to include a free surface current in the ẑ
direction, which would then cause a discontinuity in the φ̂ component of ~H. You
should try this on your own.
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Boundary Value Problems in Magnetic Materials

Griffiths does not really consider boundary value problems in magnetostatics, so we
follow Jackson §5.9–5.12.

General Conditions for Linear, Homogeneous Magnetic Materials

In linear, homogeneous dielectrics, we showed ρb ∝ ρf . We just saw that a similar
relation holds for linear, homogeneous magnetic materials, which we can derive
generally:

~Jb = ~∇× ~M = ~∇×
(
µ− µo

µo

~H

)
=

(
µ− µo

µo

)
~∇× ~H =

(
µ− µo

µo

)
~Jf (6.45)

In particular, if there is no free current in a linear, homogeneous magnetic material,
then there is no bound current either. In such situations, the magnetic field is
derivable from a scalar potential and Laplace’s Equation holds everywhere there is no
free current! Boundary conditions, and matching conditions between regions, will
determine ~H. We’ll explore such situations shortly.
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The General Technique

In general, it always holds that

~B = ~∇× ~A ~H = ~H(~B) ~∇× ~H = ~Jf (6.46)

Therefore, one can always write the differential equation

~∇× ~H(~∇× ~A) = ~Jf (6.47)

If the relation between ~H and ~B is not simple, the above equation may be difficult to
solve.
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For linear magnetic materials, though, the above reduces to

~∇×
(

1

µ
~∇× ~A

)
= ~Jf (6.48)

If we further specify that µ is constant over some region, then in that region we have

~∇×
(
~∇× ~A

)
= ~∇

(
~∇ · ~A

)
−∇2 ~A = µ ~Jf (6.49)

Finally, if we specify ~∇ · ~A = 0, this simplifies to a component-by-component Poisson
Equation:

∇2 ~A = −µ ~Jf (6.50)

In principle, one can apply the same techniques as we used for solving Poisson’s
Equation in electrostatics to solve this component by component. Boundary
conditions must be specified either directly (recall that we proved that if any one of ~A,
~B, n̂ × ~A, or n̂ × ~B is specified at every point on the boundary, then the resulting field
(though not necessarily the vector potential) is unique) or by matching using the
conditions on the normal and tangential components at boundaries.
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Another technical challenge associated with the above equation is that it only
separates cleanly into component-by-component Poisson Equations in Cartesian
coordinates. If the current distribution it not naturally represented in Cartesian
coordinates (e.g., even a simple circular current loop), then separation of variables
may not be feasible. Method of images may work, or one may have to resort to other
techniques or numerical solution. None of this technical complication takes away from
the fact that there will be a unique solution for each component independently. The
technical complication just makes it hard to actually obtain that solution.
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Hard Ferromagnets ( ~M fixed and ~Jf = 0): Magnetostatic Scalar Potential

If there are no free currents, then ~∇× ~H = 0 and we are assured that ~H can be

derived from a magnetostatic scalar potential. Here, we use ~B = µo

(
~H + ~M

)
with

~M fixed. Then ~∇ · ~B = 0 gives

~∇ · µo

(
~H + ~M

)
= 0 (6.51)

−∇2VM + ~∇ · ~M = 0 (6.52)

∇2VM = −ρM with ρM = −~∇ · ~M (6.53)

(note the canceling minus signs in the definitions!) where ρM is termed the
magnetostatic charge density. Note the close similarity to the definition of the bound
charge density ρb = −~∇ · ~P for dielectrics. This analogy also implies the existence of
surface magnetostatic charge density σM = n̂ · ~M, which will be related to the
discontinuity in the normal gradient of VM in a manner timilar to that for V . This
equation can be solved by the standard techniques for solving Poisson’s Equation.
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Example 6.3: Uniformly Magnetized Sphere, Again

Let’s apply the above kind of formalism for the uniformly magnetized sphere, which
satisfies the hard ferromagnet condition. Again, ~M = M ẑ. This implies
ρM = −~∇ · ~M = 0 and σM = n̂ · ~M = M cos θ. We solved this same problem before for
the uniformly polarized dielectric sphere via separation of variables in spherical
coordinates, which yielded Equation 4.15. Making the replacement P/εo → M
(because ρ/εo is replaced by ρM in Equation 6.53), we obtain

VM (r ≤ R) =
M z

3
VM (r ≥ R) =

~m · r̂
4π r2

with ~m =
4π

3
π R3 ~M (6.54)

~H = −~∇VM =

{
− ~M

3
r ≤ R

~H field of a magnetic dipole ~m r ≥ R
(6.55)

~B = µo

(
~H + ~M

)
=⇒ ~B(r ≤ R) = µo

(
−1

3
~M + ~M

)
=

2

3
µo

~M (6.56)

~B(r ≥ R) = µo
~H = ~B field of a magnetic dipole ~m

(6.57)

This matches our previous solution for the magnetic field of this system that we
obtained by calculating the vector potential of the bound surface current (Example
7.1).
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Hard Ferromagnets ( ~M fixed and ~Jf = 0) via Vector Potential

We have already done this analysis, yielding Equations 6.10 and 6.11:

~Jb(~r) = ~∇× ~M(~r) ~Kb(~r) = ~M(~r)× n̂(~r)

~A(~r) =
µo

4π

∫
V

dτ ′
~Jb(~r ′)

|~r − ~r ′| +
µo

4π

∮
S(V)

da′
~Kb(~r ′)

|~r − ~r ′|

We can, in fact, directly calculate the field from the bound currents using the
Biot-Savart Law. The approach described above of using the magnetostatic scalar
potential for such cases will in general be calculationally easier if the problem is
amenable to the techniques for solving Poisson’s Equation, but the Biot-Savart Law is
certainly always guaranteed to work.

Example 6.4: Uniformly Magnetized Sphere, Again

We don’t need to do this again: the above vector potential based on the bound
current density (in this case, only a bound surface current density) is exactly how we
solved this system before in Example 7.1.
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No Free Currents, Linear Materials via Scalar Potential

If there are no free currents, then ~∇× ~H = 0 and again we are assured that ~H can be
derived from a magnetostatic scalar potential

~H = −~∇VM (~r) (6.58)

Again, if we know the relationship ~B = ~B( ~H), then we can use the divergence
equation:

~∇ · ~B
(
−~∇VM

)
= 0 (6.59)

Again, if the relation between ~H and ~B is not simple, the above equation may be
difficult to solve.
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Again, though, for the case of linear magnetic materials, we have

~∇ ·
(
µ ~∇VM

)
= 0 (6.60)

In a region where µ is constant, it can be passed through the divergence and we can
reduce this to

∇2VM = 0 (6.61)

We now have Laplace’s Equation. Again, boundary conditions and/or matching
conditions will allow one to solve for VM . In a region where µ is constant, we could
equally well write ~B = −~∇UM and solve ∇2UM = 0 with appropriate boundary
conditions. In general, we will use VM because its boundary conditions are simpler:
the tangential gradient of UM can have discontinuities due to bound surface currents,
while we will see we can write boundary conditions on VM without referencing the
analogue for VM , the bound magnetostatic surface charge density.

The importance of boundary conditions should be even more clear in such cases: since
there is no source term in the equation, the boundary conditions entirely determine
the solution.

Section 6.4.5 No Free Currents, Linear Materials via Scalar Potential Page 414



Section 6.4 Magnetostatics in Matter: Boundary Value Problems in Magnetic Materials

Example 6.5: Magnetically Permeable Sphere in External Field

This is now a “soft,” linear material, where we cannot take ~M to be fixed. But it is a
situation with no free currents, so Laplace’s Equation holds (except at the r = R
boundary, but we develop matching conditions there).

Fortunately, we do not need to solve the boundary value problem from scratch because
this problem is directly analogous the case of a dielectrically polarizable sphere in an
external electric field. We have the following correspondence:

εo
~E = −εo ~∇V ~H = −~∇VM (6.62)

εo∇2V = 0 ∇2VM = 0 (6.63)

~P =
ε− εo

εo

~E ~M =
µ− µo

µo

~H (6.64)

~D = εo
~E + ~P ~B/µo = ~H + ~M (6.65)

εo
~E

r→∞−→ εo
~E0

~H
r→∞−→ ~B0/µo (6.66)

~D
r→∞−→ εo

~E0
~B/µo

r→∞−→ ~B0/µo (6.67)

We have carefully avoided making correspondences in the above between ρb and ρM

and between σb and σM because, in both cases, these quantities are not specified
ahead of time: there is not permanent polarization, there is only polarization in
response to applied field.
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Let’s also compare the matching conditions. We want to use the matching conditions
that incorporate only the free charge densities because we do not know the bound
charge densities ahead of time. For the electrostatic case, we used

n̂ ·
[
~D>(R)− ~D<(R)

]
= σf = 0 (6.68)

ŝ ·
[
εo
~E>(R)− εo

~E<(R)
]

= 0 (6.69)

The corresponding matching conditions for the magnetic case are

n̂ ·
[
~B>(R)

µo
−
~B<(R)

µo

]
=

1

µo
n̂ ·
[
~B>(R)− ~B<(R)

]
= 0 (6.70)

ŝ ·
[
~H>(R)− ~H<(R)

]
= ŝ ·

[
~Kf × n̂

]
= 0 (6.71)

Thus, not only is there a perfect correspondence between fields, potentials, and
r →∞ boundary conditions in the two problems, there is also a correspondence
between matching conditions at r = R. Thus, we can just apply the solution to the
electrostatic problem with the substitutions εo

~E → ~H, εo V → VM , ~P → ~M, and
~D → ~B/µo .
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Applying this correpondence to Equations 4.70 and 4.71 gives us

VM (r < R) = − 3µo

2µo + µ
H0 z = − 3µo

2µo + µ

B0

µo
z (6.72)

VM (r > R) = −H0 z +
~m · r̂

4π r2
= −B0

µo
z +

~m · r̂
4π r2

(6.73)

~m ≡ 4π

3
R3 ~M(r < R) =

4π

3
R3 H0

3 (µ− µo )

2µo + µ
ẑ =

4π

3
R3 B0

µo

3 (µ− µo )

2µo + µ
ẑ

(6.74)

From the above, we calculate the fields and the magnetostatic surface charge density
(ρM = 0 because ~M is uniform):

~H(r < R) =
3µo

2µo + µ

~B0

µo
=

~B0

µo
−

~M(r < R)

3
(6.75)

~M(r < R) = 3
µ− µo

2µo + µ

~B0

µo
σM = 3

µ− µo

2µo + µ

B0

µo
cos θ (6.76)

~B(r < R) = µo

[
~H(r < R) + ~M(r < R)

]
= µo

[
~B0

µo
−

~M(r < R)

3
+ ~M(r < R)

]

= ~B0 +
2

3
µo

~M(r < R) =

(
3µ

2µo + µ

)
~B0 (6.77)
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Explicitly, we find that:

I Like ~E , ~H is uniform inside the sphere and points in the direction of the uniform
field. For χm > 0, like for χe > 0, it is smaller in magnitude than the uniform
field at infinity.

I The magnetization density is in the direction of the uniform field for χm > 0 as
it was for ~P and χe > 0.

I The magnetostatic surface charge density has a cos θ dependence and is positive
at the north pole for χm > 0, as it was for the electrostatic surface charge
density and χe > 0.

I ~B is enhanced relative to the uniform field for χm > 0. We did not calculate ~D
in the electrostatic case, but we would have found that it, too, was enhanced
relative to the uniform field.

We again see the fact that ~H corresponds to ~E and ~B to ~D. In the electrostatic case,
we noted how the field of the polarization counters the uniform field so that the total
field inside the sphere is smaller in magnitude than the uniform field. That is true here
too, but for ~H, not for ~B. ~B itself is enhanced inside the sphere! This difference in the
behavior of the “true” fields arises directly from the above somewhat unexpected
correspondence of ~H rather than ~B to ~E .
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There is a shortcut method that is much faster, so good to know from the point of
view of technique. It makes the ansatz that the sphere magnetizes uniformly so then
the total field is the superposition of a uniform field and a uniformly magnetized
sphere (Equation 6.16). This assumption is made initially without relating ~M and ~H.

It then uses the relation ~M = χm
~H (equivalently, ~B = µ ~H) to relate the two and

solve for the fields.

The ansatz based on superposition gives

~B(r < R) = ~Buniform + ~Bsphere = ~B0 +
2

3
µo

~M (6.78)

~H(r < R) = ~Huniform + ~Hsphere = ~Huniform +

(
~Bsphere

µo
− ~Msphere

)

=
~B0

µo
− 1

3
~M (6.79)

Then we apply ~B(r < R) = µ ~H(r < R) to relate the above two equations and solve

for ~M. One finds one gets the same result. One can then calculate the field at r ≥ R
from superposition. Admittedly, this technique is somewhat backhanded; when trying
to understand things for the first time, reapplying the scalar potential to the full
problem is more straightforward.
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Example 6.6: Magnetically Permeable Spherical Shell

Consider a spherical shell of inner radius a and outer radius b consisting of a highly
permeable (µ/µo � 1) material placed in a uniform external field ~B0. We shall see
that this shell shields its inner volume from the external field by a factor µ/µo . This
technique is of great importance for magnetically sensitive experiments and equipment.

There are no free currents, so we may use the magnetostatic scalar potential
technique. Furthemore, ~∇ · ~H = 0 in each region since µ is constant in each region.
So the scalar potential VM satisfies Laplace’s Equation, allowing us to apply our
techniques for the solution of Laplace’s Equation from electrostatics.

In particular, given the azimuthal symmetry, we may assume the solution in each of
the three regions is of the form given in Equation 3.115:

VM (r < a, θ) ≡ V1(r , θ) =
∞∑
`=0

A` r`P`(cos θ) (6.80)

VM (a < r < b, θ) ≡ V2(r , θ) =
∞∑
`=0

(
C` r` +

D`

r`+1

)
P`(cos θ) (6.81)

VM (r > b, θ) ≡ V3(r , θ) = −H0 r cos θ +
∞∑
`=0

E`

r`+1
P`(cos θ) (6.82)

where we have already applied the requirements that VM be finite as r → 0 and that
it yield the uniform field as r →∞ with H0 = B0/µo . We have also assumed that VM

has no constant offset as r →∞.
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There are no free currents, so our matching conditions are (as for the magnetically

permeable sphere, Equations 6.70 and 6.71) that the normal component of ~B and the

tangential component of ~H be continuous. Using ~H = −~∇VM , we thus have the four
conditions

µo
∂V1

∂r

∣∣∣∣
a

= µ
∂V2

∂r

∣∣∣∣
a

µ
∂V2

∂r

∣∣∣∣
b

= µo
∂V3

∂r

∣∣∣∣
b

(6.83)

∂V1

∂θ

∣∣∣∣
a

=
∂V2

∂θ

∣∣∣∣
a

∂V2

∂θ

∣∣∣∣
b

=
∂V3

∂θ

∣∣∣∣
b

(6.84)

Note that we do not impose continuity on VM . In the electrostatic case, we imposed
continuity of V and the boundary condition on the normal derivative, ignoring
continuity of the tangential derivative. In electrostatics, continuity of V comes from
constructing it as the line integral of the electric field, which we in turn were motivated
to write down in order to calculate the work done by the electric field on a point
charge. Since ~H does not do such work, writing down the line integral is not physically
motivated, though it is mathematically reasonable to do so because ~H = −~∇VM . So,
here, we instead use continuity of the radial and tangential derivatives. This is an
arbitrary choice driven by our physical intuition. We will see below that continuity of
VM would yield information redundant with tangential derivative continuity.
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Before we dive into a lot of calculation, let’s see what we can figure out without doing
much work. The radial derivative equations only connect terms on the two sides of the
equations with the same ` because they do not modify the orthonormal P`(cos θ).
What about the angular derivative equations? Recall Equation 3.156:

Pm
` (x) = (−1)m(1− x2)m/2 dm

dxm
P`(x) (6.85)

Let’s write ∂P`(cos θ)
∂θ

using this:

∂P`(cos θ)

∂θ
=

dP`(cos θ)

d cos θ

d cos θ

dθ
=

P1
` (cos θ)

(−1)1(1− cos2 θ)1/2
(− sin θ) (6.86)

= P1
` (cos θ) (6.87)

where we note that, since 0 < θ < π, there is no sign ambiguity and thus
sin θ = (1− cos2 θ)1/2. The P1

` (cos θ) are also orthonormal polynomials (the Pm
` over

all ` at fixed m form an orthonormal set in order for the Y`m to form an orthonormal
set), so the same point we made above about the equations connecting terms at the
same ` holds for these equations also. Note however that, for ` = 0, the ∂/∂θ
matching condition yields zero.

Note also that, for ` ≥ 1, these equations are the same as one would have obtained by
requiring continuity of VM since ∂/∂θ doesn’t modify the radial factor of each term.
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Taking the necessary derivatives for the radial derivative equations and then equating
the two sides of all six equations (four for ` > 0, only two for ` = 0) term-by-term
gives us:

` > 0 : µo `A`a
`−1 = µ `C` a`−1 − µ (`+ 1)

D`

a`+2
(6.88)

µ `C` b`−1 − µ (`+ 1)
D`

b`+2
= −µo H0 δ`1 − µo (`+ 1)

E`

b`+2
(6.89)

A` a` = C` a` +
D`

a`+1
(6.90)

C` b` +
D`

b`+1
= −H0b δ`1 +

E`

b`+1
(6.91)

` = 0 : 0 = −µ D0

a2
−µ D0

b2
= −µo

E0

b2
(6.92)

We explicitly write out the ` = 0 equations because they yield qualitatively different
conditions than the ` > 0 terms.
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For ` > 1, solving for C` and D` results in both vanishing, so then A` and E` vanish
for ` > 1.

For ` = 0, the radial derivative matching equations imply D0 = E0 = 0. We expect
E0 = 0 because it would yield a magnetic monopole potential for r > b, which we
know is physically disallowed.

There are no equations that explicitly determine A0 and C0, which correspond to
offsets of VM for r < a and a < r < b. We actually don’t need to find them, since
they do not affect ~H when the gradient is taken. (Recall, there is no issue of this
potential being related to work or a potential energy, so we do not need to worry
about discontinuities due to offsets.) But we can specify them by applying a restricted
version of continuity of VM , which is that we require VM have the same offset in all
regions. The lack of an offset for r > b then implies A0 = 0 and C0 = 0.
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For ` = 1, we can do a lot of algebra to find explicit formulae for all the coefficients
(you can find these in Jackson §5.12). These formulae are not particularly
illuminating, but they become more intuitive when we take the limit µ/µo � 1.
Inserting those coefficients into the solutions, we obtain

V1(r , θ)

µ
µo
�1

= A1 r cos θ = − 9

2 µ
µo

(
1− a3

b3

) H0 r cos θ (6.93)

V2(r , θ)

µ
µo
�1

=

(
C1 r +

D1

r2

)
cos θ = − 3

µ
µo

(
1− a3

b3

) H0

(
r +

1

2

a3

r2

)
cos θ (6.94)

V3(r , θ)

µ
µo
�1

=

(
−H0 r +

E1

r2

)
cos θ = H0

−r +
b3

r2

1−
3
(

1 + 1
2

a3

b3

)
µ
µo

(
1− a3

b3

)
 cos θ

(6.95)

Note that we include the term of order µo/µ in the r > b solution so we can see that
the matching condition on the tangential derivative at r = b (equivalent to matching
of VM itself) is explicitly satisfied even in the limit µ/µo � 1.
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Here are the resulting fields in the three regions:

~H1(r , θ)

µ
µo
�1

= −9

2

H0 ẑ

µ
µo

(
1− a3

b3

) ~B1(r , θ) = µo
~H1(r , θ) (6.96)

~H2(r , θ)

µ
µo
�1

=
3 H0 ẑ

µ
µo

(
1− a3

b3

) +
3 ( ~ma · r̂) r̂ − ~ma

4π r3
~B2(r , θ) = µ ~H2(r , θ) (6.97)

~H3(r , θ)

µ
µo
�1

= H0 ẑ +
3 ( ~mb · r̂) r̂ − ~mb

4π r3
~B3(r , θ) = µo

~H3(r , θ) (6.98)

with ~ma = −9

2

H0

µ
µo

(
1− a3

b3

) (4π

3
a3

)
ẑ (6.99)

~mb = 3

1−
3
(

1 + 1
2

a3

b3

)
µ
µo

(
1− a3

b3

)
H0

(
4π

3
b3

)
ẑ (6.100)

It is not obvious but it is true that ~mb incorporates ~ma, which is why there is no
explicit contribution from ~ma to the field at r > b. We will see this more clearly below.
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The following features can be pointed out:

I Inside r < a, we have a uniform field weakened by a factor of µ/µo (for both B
and H).

I In the permeable material, we have a uniform H field as well as a dipole field,
but both are of order (µo/µ) H0 (i.e., attenuated) with the dipole moment
pointed to −ẑ. The dipole field cancels the uniform field at the poles at r = a
and adds to it at the equator.

I In the permeable material, the B field receives a factor of µ, so the B field
receives uniform field and dipole contributions of order B0 in the permeable
material, though the vanishing at the poles at r = a remains.

I One caveat to the above two statements is due to the (1− a3/b3) factor in the
denominator of both terms (explicitly in the first term, hiding in ~ma in the
second term). If the shell is quite thin, then a/b is close to unity and this factor
is much smaller than unity, resulting in an enhancement in both H2 and B2 by
the geometric factor (1− a3/b3)−1. This factor accounts for the fact that
magnetic field lines cannot be broken, and so the vast majority of the field lines
that would have threaded through the r < b region (a fraction 1− µo/µ of
them) now must flow entirely through the a < r < b region: the factor is the
ratio of the volume of the sphere of radius b to the volume of the shell.

I Finally, the field outside is the uniform field (for H and B) plus that of a dipole
in the +ẑ direction. The dominant part of the dipole field cancels the uniform
field at the equator at r = b, leaving a small residual field of order µo/µ smaller.
At the poles, the dipole field adds to the uniform field, increasing the fields to
3 H0 and 3 B0 there.
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Here is a picture from Jackson of ~B. Note the concentration of field lines in the
permeable material and their absence in the empty central region.

c© 1999 Jackson, Classical Electrodynamics
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Let’s now consider the analogy to electrostatic shielding. Electrostatic shielding is
easily provided by conductors, and perfect conductors (ε/εo →∞) provide perfect
electrostatic shielding. They do this by setting up surface charge that perfectly cancels
the externally applied field both in the conductor and in the cavity.

The net effect for magnetostatic shielding effect is very similar — zero field in the
cavity as µ/µo →∞ — but the physical cause is quite different, resulting in a nonzero

(and potentially high) ~B field in the permeable material rather than zero field as in the
electrostatic case. The fundamental reason is that magnetic field lines do not
terminate: there are no magnetic monopoles. (The one exception is the field of the
magnetic moment of a fundamental particle.) Therefore, the shielding effect is
obtained by redirecting the field lines away from the cavity and into the permeable
material, not by terminating the field lines. The high magnetic permeability of the
materials causes magnetic dipoles to orient themselves such that they generate surface
currents that cancel the externally applied field in the cavity (both ~H and ~B) and

enhance ~B in the material by the volume factor needed to accommodate all the field
lines that would have gone through the cavity. In the limit of the equivalent of an
electric conductor, with µ/µo →∞, the shielding would be perfect, as for an electric
conductor.
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All that said, we get a perfect analogy to an electric conductor if we instead look at
the auxiliary field ~H and the magnetostatic surface charge density σM . ~H does get
very small in the permeable material and in fact vanishes in the µ/µo →∞ limit. If

we calculate the magnetostatic surface charge density σM from the discontinuity in ~H
or ~M, one would see that σM would look very much like σb for the case of a spherical
shell of high dielectric susceptibility (ε/εo � 1) and, in the limit µ/µo →∞, σM

would mimic the surface charge density of the electrical conductor limit (which is the

same as ε/εo →∞). In particular, σM would only be nonzero at r = b: ~H would
vanish for r < a and a < r < b, so there could be no discontinuity in the radial
derivative of ~H at r = a, which would occur if σM 6= 0 there. That is, in the
magnetostatic scalar potential picture, the ~H field lines do terminate on the
magnetostatic surface charge at r = b, yielding vanishing ~H for r < b. Of course, ~H is
not a physical field, so the analogy is only mathematical, not physical.

Either way one does it, this calculation has important practical implications: such
highly permeable materials are in widespread use for magnetic shielding from,
especially, Earth’s field in magnetically sensitive experiments and equipment such as
SQUIDs (very sensitive magnetometers) and photomultiplier tubes (where the
electrons’ paths can be substantially bent and thus the gain modified by magnetic
fields).
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While we have benefited from our boundary-value problem techniques to get directly
to the fields without having to calculate the bound surface currents, it would be nice
to see how the bound surface currents give the observed fields. Recall Equation 5.84,
which gives the bound surface current density from the change in the tangential
component of the magnetic field:

~K(~r) =
1

µo
n̂(~r)×

[
~B>(~r)− ~B<(~r)

]
(6.101)

where n̂ points from the < region to the > region. In our case, ~K = ~Kb because there
are no free currents. Since n̂ = r̂ for our spherical surfaces and ~B only has
components in the r̂ and θ̂ directions, this reduces to

Kb(r) φ̂ =
1

µo

[
B>,θ − B<,θ

]
φ̂ =

1

µo

[
−µ>

r

∂VM

∂θ

∣∣∣∣
r>

+
µ<

r

∂VM

∂θ

∣∣∣∣
r<

]
φ̂ (6.102)

=
µ< − µ>

µo

1

r

∂VM

∂θ

∣∣∣∣
r

φ̂ (6.103)

where < and > indicate the two sides of the particular boundary at r and we use the
fact that the tangential component of ~H, which is given by −(1/r) ∂VM/∂θ here, is
continuous and thus has the same value on both sides of the interface at r . So it is
straightforward to calculate the surface currents given VM .
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We also know how to calculate ~B given surface currents derived from a uniform
magnetization: we did it in our first calculation of the magnetic field of the
permanently magnetized sphere (Equation 6.16) and saw (valid only for ~Kb ∝ φ̂ sin θ!)

~B ~M
(r < R) =

2

3
µo

~M =
2

3
µo

~Kb · φ̂
sin θ

ẑ

~B ~M
(r > R) =

µo

4π

3 ( ~m · r̂) r̂ − ~m

r3
~m =

4

3
π R3 ~M =

4

3
π R3

~Kb · φ̂
sin θ

ẑ

where the relation between ~M and ~Kb comes from the definition of the bound surface
current, ~Kb = ~M × n̂ = M ẑ × r̂ = φ̂M sin θ. Here, the ~H and ~B fields are uniform for
r < a, and the fields are the sum of a uniform field and the field of a dipole for
a < r < b. It thus looks like we have the superposition of a uniform magnetization in
one direction for r < a and a uniform magnetization in the opposite direction for
a < r < b, with the two magnetizations having a fractional difference of magnitude of
µo/µ. (The fact that we have permeable materials present is irrelevant for the

calculation of ~B: once one has all the bound currents, one can calculate ~B directly
from them.) So, we expect that, in this case, we can just add the field of the above
form due to the bound currents to the uniform applied field to get the total field in
the three regions.
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That is, we expect (again, valid only for ~Ka, ~Kb ∝ φ̂ sin θ!)

~B1(r , θ) = ~B0 +
2

3
µo

~Kb(a) · φ̂+ ~Kb(b) · φ̂
sin θ

ẑ (6.104)

~B2(r , θ) = ~B0 +
2

3
µo

~Kb(b) · φ̂
sin θ

ẑ +
µo

4π

3 ( ~ma · r̂) r̂ − ~ma

r3
(6.105)

~B3(r , θ) = ~B0 +
µo

4π

3 ( ~mb · r̂) r̂ − ~mb

r3
(6.106)

~ma =
4

3
π a3

~Kb(a) · φ̂
sin θ

ẑ ~mb = ~ma +
4

3
π b3

~Kb(b) · φ̂
sin θ

ẑ (6.107)

and then we can obtain ~H from the usual relation ~H(~r) = ~B(~r)/µ(~r). Note that we
now see explicitly that ~mb incorporates ~ma as we had stated without proof above.
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The explicit results for the bound surface currents are

~Kb(a, θ) =
µ< − µ>

µo

1

a

∂VM

∂θ

∣∣∣∣
a

φ̂ = −φ̂
(
µ

µo
− 1

)
9

2 µ
µo

(
1− a3

b3

) B0

µo
sin θ

O(µo/µ)0

≈ −φ̂ 9

2
(

1− a3

b3

) B0

µo
sin θ (6.108)

~Kb(b, θ) =
µ< − µ>

µo

1

b

∂VM

∂θ

∣∣∣∣
b

φ̂ = φ̂

(
µ

µo
− 1

) 3
(

1 + 1
2

a3

b3

)
µ
µo

(
1− a3

b3

) B0

µo
sin θ

O(µo/µ)0

≈ φ̂
3
(

1 + 1
2

a3

b3

)
(

1− a3

b3

) B0

µo
sin θ (6.109)

We will explain the choice for the order of the approximation below.
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There is an important subtletly in trying to do this calculation of surface currents
using the approximate forms for the fields we have written down (valid for µo/µ� 1).

We expect the magnetic field for r < a to be of order (µo/µ) B0. But ~B0 is in the

expression for ~B1, so that implies the second term in that expression due to the surface
currents will carry one term of order B0 to cancel B0 and then a second term of order
(µo/µ) B0 to give the residual field. As we explained above, our expressions for the
contribution of the surface current to the field are of the following form for r . b:

BK ∼ µo K ∼ ±µo
µ− µo

µo

1

r

∂VM

∂θ
∼ µo

(
µ

µo
− 1

)
Hθ (6.110)

∼ µo

(
O
(
µ

µo

)1

+O
(
µo

µ

)0
)
O
(
µo

µ

)1

H0 (6.111)

∼
[
O
(
µo

µ

)0

+O
(
µo

µ

)1
]

B0 (6.112)

(In the second line, we used H ∼ O(µo/µ)1H0, which one can see from the

expressions for ~H1 and ~H2. It is not so obvious that this is true for ~H3 at r ∼ b, but it
must be true because Hθ is continuous. It turns out to be true because the dipole
field cancels the applied field to first order in H0 (i.e., zeroth order in µo/µ) at the
equator, leaving a residual field of order O(µo/µ)1H0. The cancellation does not
happen at the poles, but Hθ = 0 at the poles.)
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We now see the problem. The term that is O(µo/µ)0 will cancel the ~B0 term. So then
the O(µo/µ)1B0 term is all that is left and is our full field, as expected. But we have
not done the approximation self-consistently. We would have obtained a term of the
same order by including terms O(µo/µ)2 in the expression for H because they would
yield O(µo/µ)1 terms when multiplied by the O(µ/µo )1 term from the (µ/µo − 1)
prefactor. Without including that term, we will get the incorrect coefficient for the
residual field.

We could have included that higher order term, but then we would run into the same
problem at the next order: our calculation of the field using the surface currents would
be correct to O(µo/µ)1, but our expression for the fields would have terms of order
O(µo/µ)2 that we would not be able to fully reproduce. Given that it would be
algebraically challenging to do this even to O(µo/µ)1 correctly, we punt on trying to
calculate the residual field.
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However, we can self-consistently check our results (Equations 6.96-6.100) to
O(µo/µ)0, so let’s do that because it will show us that the zeroth order field does
vanish at r < a and it will tell us interesting things for other regions.

First, for r < a, we have, to zeroth order in µo/µ,

ẑ · ~B1(r , θ)
O(µo/µ)0

≈ B0 +
2

3

B0

1− a3

b3

[
−9

2
+ 3

(
1 +

1

2

a3

b3

)]
= 0 (6.113)

ẑ · ~H1(r , θ) =
~B1(r , θ)

µo

O(µo/µ)0

≈ 0 (6.114)

As expected, both the magnetic and auxiliary fields vanish to zeroth order in µo/µ
inside the cavity.
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For a < r < b, we have

ẑ · ~B2(r , θ)
O(µo/µ)0

≈ B0 +
2

3

B0

1− a3

b3

(3)

(
1 +

1

2

a3

b3

)
+
µo

4π

3 ( ~ma · r̂) cos θ −ma

r3

=
3 B0

1− a3

b3

+
µo

4π
ma

3 cos2 θ − 1

r3
(6.115)

ẑ · ~H2(r , θ) =
~B2(r , θ)

µ

O(µo/µ)0

≈ 0 (6.116)

with ~ma
O(µo/µ)0

≈ − 4π

3
a3

(
9

2

)
1

1− a3

b3

B0

µo
ẑ (6.117)

The total magnetic field in the permeable material is of order B0 because both terms
shown are of order B0. In the limit a� b, one recovers 3 B0 as we expect from the
case of the permeable sphere (Equation 6.77 with µo/µ→ 0). The auxiliary field
vanishes in the permeable material to order (µo/µ)0 because one must divide the
entire expression by µ to get H from B, which combines with the µo in the expression
for B to give a prefactor of µo/µ that vanishes at the level of approximation we are

considering. The vanishing of ~H in the permeable material is exact in the limit
µ/µo →∞ because the above approximations become exact.
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Finally, let’s look at r > b, for which we obtain

ẑ · ~B3(r , θ)
O(µo/µ)0

≈ B0 +
µo

4π

3 ( ~mb · r̂) cos θ −mb

r3
(6.118)

with ~mb

O(µo/µ)0

≈ 4π

3

1

1− a3

b3

B0

µo

[
−9

2
a3 + b3 (3)

(
1 +

1

2

a3

b3

)]
ẑ

= 3

(
4π

3
b3

)
B0

µo
ẑ (6.119)

ẑ · ~H3(r , θ) =
~B3(r , θ)

µo
(6.120)

One can see that the expressions for ~B0 and ~mb match to zeroth order in µo/µ the
results we obtained via the boundary value problem technique, Equations 6.96-6.100.
The expression for H has the same form with B0 replaced by H0 and it also matches
the expressions we obtained earlier, again to zeroth order in µo/µ.

So, in the end, we see that, to the level of approximation for which we can
self-consistently do calculations, the fields we calculate from the surface currents
match the fields that we used to calculate those surface currents.
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Nonlinear Materials and Ferromagnetism

There are materials whose magnetic response is nonlinear. In such materials, in
addition to the tendency of magnetic dipoles due to unpaired electrons to align with
the applied magnetic field, these dipoles interact with each other in such a way as to
prefer aligning with each other, too. This extra preference for magnetization causes
the magnetization to depend nonlinearly on ~H.

Beyond nonlinearity, there is the phenomenon of ferromagnetism, in which there are
additional interactions that cause the magnetization to be preserved even after the
applied field is reduced.

Both phenomena are caused by unpaired electrons as paramagnetism is; one might
have guessed this by the fact that all three phenomena involve the alignment of
magnetic dipoles with the applied field. The additional dipole-dipole interaction that
causes nonlinearity is due to the exchange effect in quantum mechanics. We will
explain this in the following.
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The Exchange Effect in a Single Atom: Hund’s Rules

As you know, electrons in atoms occupy shells corresponding to different energies for
the electron-nucleus Coulomb interaction. Only a certain number of states are allowed
for each shell (n2 for shell n), and electrons can be put in a shell with spin “up” or
spin “down” (multiplying by 2 the number of allowed states).

When a shell is partially filled, the electrons prefer to be unpaired, meaning that they
have different orbital wavefunctions (probability distributions) and the same spin
direction (i.e., aligned spins) rather than the same orbital wavefunction and different
spin directions. This behavior, where electrons prefer to be in different orbitals but
have the same spin, is frequently termed Hund’s Rules.

The reason for this preference against having the same orbital wavefunction is that the
electrostatic repulsive energy of two electrons in the same orbital state is high: in
quantum mechanics, that energy is determined by the integral of the product of their
wavefunctions weighted by 1/|~r − ~r ′| where ~r and ~r ′ are their positions, so the less
similar their wavefunctions are, the lower the (positive) electrostatic repulsive energy is.
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Next, considering the Pauli exclusion principle, the overall state (spatial wavefunction
and spin) must be antisymmetric under exchange of the two electrons. One could
achieve this by taking the spatial wavefunction to be antisymmetric and the spin state
to be symmetric under exchange or vice versa. It turns out that, when one calculates
the Coulomb repulsion energy integral, there is a second term that arises due to the
extra terms created by requiring the overall state to be symmetric or antisymmetric
under exchange. Moreover, because of the symmetry constraints on the overall state,
this exchange term is negative when the spatial state is antisymmetric and positive
when it is symmetric. Thus, the exchange term ensures that the antisymmetry of the
overall state is preferred to be in the spatial wavefunction, not the spin state.

With the above, it would still be possible for the electrons to either have the same spin
projection or for them to have opposite spin projections and the spin state to be the
symmetric combination of the two possible anti-aligned states. It turns out that
spin-orbit coupling causes the latter state to be higher energy, so the case in which the
two electrons are aligned is preferred. Thus, we are able to explain Hund’s Rules.
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The Exchange Effect Among Atoms: Nonlinearity

In addition, though, one needs a mechanism for unpaired electrons in nearby atoms to
align with each other; alignment of the unpaired electrons in a single atom is not
enough. A similar exchange interaction is required, of which there are many types that
depend on the details of the material and how the electrons in nearby atoms interact.
The key requirement for such exchange effects to occur, though, is delocalization —
the electron wavefunctions must be large enough that they spread to nearby atoms —
so that there can be exchange interactions between electrons in adjacent atoms. This
explains why nonlinearity occurs only in atoms with d- and f -shell electrons — the
electrons in these orbitals are more weakly bound than s- and p-shell electrons,
providing the necessary delocalization.

The exchange interaction leads to a nonlinear magnetic permeability, where these
interactions cause the magnetic dipoles to prefer to align with each other
macroscopically when they have been nudged into alignment by an applied field. This
would yield a relationship of the form ~B = ~F ( ~H), which cannot be summarized by a
simple constant of proportionality, but the relation is at least well-defined.
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Interactions with the Crystal: Ferromagnetism

Ferromagnets have domains, which are regions of coaligned magnetic dipoles, caused
by the aforementioned nonlinearity: it is energetically favorable for the magnetic
moments of unpaired electrons in nearby atoms to align. By default, these domains
are macroscopic in size (fractions of a mm, perhaps), but they do not align with each
other because alignment would create a large magnetic field outside the material,
which is not a low-energy state (which we will see when we talk about magnetic
energy). When a large field is applied, though, the energy cost of not aligning with the

magnetic field ( ~m · ~Bapplied ) is larger than the energy savings of not having a large field

energy (|~Bmaterial |), and so the domains align with the applied field.

We then must consider the phenomenon of saturation, whereby, at large fields, one
gets to the point where all the unpaired electrons’ dipole moments are aligned with
the field and there are no more magnetic dipoles left to align. The magnetization
density stops increasing and saturates. The applied field ~H may continue to be
increased, but ~B = µo ( ~H + ~Msat ), where ~Msat is the saturated magnetization density.

Thus, ~B increases due to the first term only. (At lower fields, ~M increases with ~H,

leading to a large amplification of ~H to yield ~B.)
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After bringing a nonlinear paramagnetic material into saturation, what happens when
one turns off the applied field? The large exchange interaction energy makes it
favorable for the moments to remain aligned with the direction of the applied
magnetic field that has been removed. It is not that full alignment is the
lowest-energy state, but that there is an energy barrier between the fully aligned state
and the lower-energy state with randomly aligned domains. In fact, to reduce ~M and
~B to zero requires a significant ~H in the direction opposite to ~B. After ~B goes
through zero, it can then begin to align with ~H again and one can reach saturation in
the other direction. And so on.

This phenomenon of the magnetization (and thus ~B) being dependent on past history

is called hysteresis: not only is ~B a nonlinear function of ~H, but, in addition, ~B
depends on the history of ~H. Hysteresis curves are shown in Griffiths Figures 6.28 and
6.29.

The exchange phenomenon explains why ferromagnetics becomes less magnetized if
they are dropped. The mechanical shock of dropping provides enough vibrational
energy to exceed the barrier between the fully aligned state and the random domain
state, allowing the domains to randomize in direction again.
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We note that ferromagnets have a Curie or transition temperature, Tc . This
temperature corresponds to roughly the exchange energy of nearby dipoles. When the
temperature is larger than Tc , the thermal energy available overcomes the exchange
energy, causing magnetic ordering to go away. If a saturated ferromagnetic is raised
above Tc , the ordering will dissipate. Then, when recooled in zero applied field,
randomly oriented domains will appear but there will be no overall ordering of the
magnetic dipoles. Cooling in a high enough applied field, by contrast, will result in
magnetic ordering and a permanent ~M.

That is, if you heat the refrigerator magnet you have dropped many times past its Tc

and then cool it slowly in a field large enough to obtain ~Msat , it will work well again!

There is not much more we can say about ferromagnetism without considering specific
cases.
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Currents and Ohm’s Law

Ohm’s Law and Joule Heating: Differential Version

We state the very nonobvious point that the current due to an ensemble of flowing
charges is proportional to the force on a single charge ~f acting on them:

~J ∝ ~f (7.1)

Since current is proportional to velocity, and force is proportional to acceleration, why
is this true? In an ideal conductor, it would not be true, we would expect current to
be proportional to the integral of the force over time. But in all real conductors, there
are two important effects that change this picture:

I The first is the random thermal motion of the charge carriers. The forces we
can apply yield velocities that are small perturbations to this random thermal
motion. So the mean speed of the carriers is dominated by the thermal speed
vthermal . This thermal motion is even larger than would be obtained from
thermal equipartition, mv2

thermal/2 = 3kB T/2, because Fermi exclusion causes
the electrons active in electrical conduction to have quite high energies (the
Fermi energy). In Cu, for example, they have TF = 80, 000 K and
vthermal = vF = 1600 km/s in Cu.

I The second is scattering, which is the cause of the randomness of the thermal
motion. The charge carriers scatter off of impurities, defects, and thermal
vibrations present in the material. This scattering is elastic in general, resulting
in no loss of energy but in a redirection of velocity.
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In the presence of such effects, our picture should not be of a charge carrier smoothly
accelerating under the influence of an external force, but rather of a carrier with a
large randomly directed velocity, scattering frequently, and with acceleration by the
force between scatters resulting in a net motion in the direction of the electric force.
The scattering randomly redirects the velocity, so the velocity due to the externally
applied force is, on average, reset to zero after each collision. If the thermal speed is
vthermal and the typical distance traveled between scatters is λ, then the time available
for the externally applied force to accelerate a carrier between scatters is

t =
λ

vthermal
(7.2)

The average velocity acquired from the applied force during this time is

~vave =
1

2
~a t =

1

2

~f

m

λ

vthermal
(7.3)

This velocity is the average overall velocity because of the zeroing of the
instantaneous velocity after each collision.
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If we then use ~J = n q ~vave where n is the number density of charge carriers and q is
the charge per carrier, and we use ~f = q ~E , we then can write

~J =

(
n q2 λ

2 m vthermal

)
~E =⇒ ~J = σ ~E σ =

n q2 λ

2 m vthermal
(7.4)

Thus, we see our earlier expression is justified. This is Ohm’s Law.

There is power dissipated in this process — the work done on the charge carriers by
the electric field is lost to random motion when they scatter. The infinitesimal amount
of energy lost per unit time dP in an infinitesimal volume dτ is equal to the work
done by the electric field on the charge carriers:

dP = number density · velocity · force

carrier
dτ = n ~vave · ~f dτ = n

~J

n q
· q ~E dτ = ~J · ~E dτ

(7.5)

This is known as Joule Dissipation or Joule Heating.

We note that the possibility of ~E 6= 0 does not contradict our earlier discussions of
conductors in electrostatics; here, we have non-stationary charges, where in that case
we considered the final static situation after any currents had flowed.
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Integral Version of Ohm’s Law and Joule Heating

We integrate the above to obtain a more familiar version of Ohm’s Law. We start with:

I =

∫
S

da n̂ · ~J =

∫
S

da σ n̂ · ~E (7.6)

Let’s assume the cross-sectional area of the conductor is constant and the conductor is
uniform. This lets us do the area integral trivially, yielding I = σ A n̂ · ~E . If we then do
a line integral directed along the wire, such that d ~̀∝ n̂, we have

I` =

∫
d` I = σ A

∫
d` n̂ · ~E = σA

∫
d ~̀ · ~E = σA V (7.7)

=⇒ V = IR with R =
`

A

1

σ
≡ `

A
ρ and ρ =

1

σ
(7.8)

which is the familiar version of Ohm’s law in terms of current, voltage, and resistance.
This is the integral version of Ohm’s Law while ~J = σ ~E is the differential (or local)
version. We also define the resistivity ρ as the reciprocal of the conductivity σ. We
can also integrate the Joule heating expression to get the usual integral expression for
Joule heating:

P =

∫
V

dP =

∫
V

dτ ~J · ~E =

∫
S

da

∫
d`

I

A
n̂ · ~E = IV = I 2R =

V 2

R
(7.9)
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Steady-State Assumption and Uniform Conductivity =⇒ Zero Charge Density

Do we need to worry about charge accumulation in conductors? Let’s calculate the
divergence of ~E to find the charge density, assuming uniform conductivity:

~∇ · ~E =
1

σ
~∇ · ~J = 0 (7.10)

where the first step was possible by Ohm’s Law and the assumed uniformity of the
conductivity and the second step by the steady-state assumption on macroscopic
scales. So the answer is no, as long as the conductivity is uniform and the system is
steady-state, no charge density accumulates. Note that this is not a circular argument:
the steady-state assumption corresponded to ∂ρ/∂t = 0, not ρ = 0. Now, with the
combination of ∂ρ/∂t = 0 and Ohm’s Law, we conclude ρ = 0.

Later, we will see how it is possible for charge to accumulate when we consider
non-steady-state systems (in particular, with sinusoidal currents).

Note that our microscopic picture is not consistent with the steady-state assumption,
but, averaged over time, our macroscopic picture is. On the microscopic scale, there
are nonzero positive and negative charge density fluctuations away from the mean
density associated with the nonuniform motion of the carriers (even on scales over
which we can treat the carrier density as continuous), and then, of course, on the
most microscopic scales, the smooth charge density consists of individual electrons
that have some finite spatial extent.
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Uniformity of Electric Field in a Uniform Wire

We implicitly assumed in proving the integral version of Ohm’s Law above that the
uniformity of the conductor implied that the field and thus the current were uniform
over the cross-sectional area. We can prove this. We did not explicitly require that the
electric field also be uniform with position along the wire, but we can prove that, too.

We define a uniform conductor to be one with uniform conductivity and uniform
cross-sectional area.

We proved above that the charge density vanishes in a uniform conductor with steady
currents. Therefore, the conductor satisfies Laplace’s Equation. Dirichlet boundary
conditions are set at the two ends of the conductor by the potential difference ∆V .
We assume these equipotentials are (by connections to a battery) transverse to the

wire axis at z = 0 and z = `. On the outer surface of the wire, ~J · n̂ = 0 because no
current flows out of the wire, which implies that ~E · n̂ = 0, which provides a boundary
condition on the normal gradient of the potential (a Neumann boundary condition).
(Equivalently, this implies the charge density vanishes at the surface.)
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We guess a solution that satisfies these boundary conditions,

V (~r) =
∆V

`
z =⇒ ~E = −~∇V = −∆V

`
ẑ (7.11)

Note that we do not need the sinusoidal solutions from separation of variables here —
we only need the linear solution (which we ignored in our discussion of separation of
variables in linear coordinates). This will be of relevance for the homework, too!

This linear solution satisfies the boundary conditions — equipotential surfaces at
z = 0 and z = ` and vanishing normal derivative at the outer surface (whose normal is
always perpendicular to ẑ) — and therefore it must be the solution.

Therefore, it is valid to assume that the field is uniform over the cross-sectional area
of the wire and along the length of the wire if the wire is of fixed cross-sectional area,
the conductivity is uniform, and the currents are steady-state. The latter two
conditions told us Laplace’s Equation is satisfied, while the former one provided the
z-translation symmetry needed to guess the solution.

What happens to this argument if the wire changes in some way along its length; e.g.,
the conductivity changes, or the wire diameter changes?
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Motional Electromotive Force

We deviate from Griffiths somewhat in the introduction of electromotive forces; his
§7.1.2 just seems confusing.

Moving Rectangular Loop

Consider a rectangular loop with a resistor in it with part of the loop’s area
intersecting a region of uniform magnetic field perpendicular to the loop into the page,
as shown in the figure.

~B
⊗

c© 2013 Griffiths, Introduction to Electrodynamics
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Let’s consider the force on a charge carrier in the portion of the wire that intersects the
field. If ~v = v x̂ and ~B = −B ẑ (into the page), then these charges feel a Lorentz force

~Fmag = (q v x̂)× (−B ẑ) = q v B ŷ (7.12)

Since this force is aligned with the vertical portion of the wire, the carriers in that
section can move. Assuming for the moment the charge carriers are positive (the
argument can be reversed if they are negative), they would start to collect at b at the
top end of the vertical portion and a deficit would appear at a at the bottom end. The
local electrostatic repulsion between like charges would cause the charge carriers to
start flowing through the rest of the circuit and would prevent this clumping of
carriers. In this way, a current is generated around the loop without the influence of a
large-scale electric field in the circuit. If the loop is pulled at constant speed, one
satisfies the steady-state assumption, with no charge buildup.
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There is work done on a charge carrier during its movement up the vertical portion of
the wire

Wab =

∫ b

a
d ~̀ · ~Fmag = q v B h (7.13)

We will see below that this work is not done by the Lorentz force as suggested above
(recall, the Lorentz force can do no work because ~Fmag ⊥ ~v), but it is nevertheless
done. The energy gained by the charge carriers via this work is dissipated as Joule
heating in the resistor because the carriers quickly reach some steady-state velocity
and a steady-state current flows.

We define the work done per unit charge on the charges as they move from a to b as
the motional electromotive force or motional emf:

E =
Wab

q
= v B h (7.14)
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Let’s think about how we can interpret E. Let I be the current that flows. I is q times
the number of charges that flow per unit time past a given point. Therefore I E is the
power being supplied to the ensemble of charges, the work done on them per unit
time. By conservation of energy, it is also the power being dissipated in Joule heating
in R. But we know that latter quantity is also I2R. Equating the two, we see

E = IR (7.15)

That is, E plays the role of voltage in Ohm’s Law for the resistor. E has the right units
for this purpose. In fact, if one attaches a voltmeter across the resistor R, it will
report a voltage V = E: a voltmeter works essentially by measuring the current in a
very large resistor R′ � R placed in parallel with R, and the current that will flow
through R′ is identical to what would flow if a battery E were placed across R with R′

in parallel. So, what appeared to just be a work done on a unit charge now can be
interpreted as equivalent to a voltage! But be sure to remember that the current is
generated by movement of the circuit in a magnetic field; it is not due to an electric
field! We will return to the distinction between E and a voltage later when we consider
electromagnetic induction and Faraday’s Law.
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Let’s now think about what force is doing the work. As we discussed some time ago,
the Lorentz force does no work because ~F ⊥ ~v . However, a force must pull the loop.
There is a force counteracting this force that the pulling force must match to keep the
loop at constant speed: the Lorentz force due to the velocity the carriers have
acquired in the ŷ direction, which we will denote by ~u = u ŷ . This force is

−~Fpull = ~F ′mag = q u ŷ ×−B ẑ = −q u B x̂ (7.16)

The total velocity of the charge carriers is

~w = ~v + ~u = v x̂ + u ŷ (7.17)

The pulling force must cancel ~F ′mag , so the work done per unit time by the pulling
force is

dWpull

dt
= ~Fpull · ~w = q u B x̂ · (v x̂ + u ŷ) = q u B v (7.18)
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Note that the charge carriers move on a diagonal line relative to the lab frame as they
move from point a to point b on the wire, with this line partly in the direction of ~Fpull .
It takes the charge carriers a time t = h/u to move on this trajectory since their ŷ

direction speed is u. Therefore, the work done by ~Fpull during the movement of a
charge from a to b is:

Wpull =
dWpull

dt

h

u
= q B v h (7.19)

=⇒ Wpull

q
= B v h = E (7.20)

That is, the work done by the pulling force, per unit charge, matches the motional
emf. The pulling force provides the energy that is eventually dissipated as heat as the
carriers flow through the resistor.
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Mechanically, how does this work? A magnetic field does no work, so it should only
change the direction of the velocity of the charge carriers. So, initially, when the
pulling force begins to act and the carriers start to move in the x direction and feel a
Lorentz force in the y direction, their x velocity starts to be transformed into y
velocity. But the loop is being pulled at constant speed v x̂ , so the walls of the wire
exert a force so the carriers’ x velocity remains equal to v x̂ as the magnetic force
acts. Similarly, as the carriers acquire a velocity in the y direction, they feel ~F ′mag in
the −x̂ direction, and the walls of the wire must exert a force to keep them moving at
v x̂ in the x direction. By Newton’s third law, the charge carriers exert a reaction force
on the walls of the wire, which would slow down the loop if there were not a force
pulling it. Thus, we see it is the force pulling the loop that ultimately provides the
work to drive the current.

And note: All this motion is accomplished without a large-scale electric field. Of
course, it relies on the microscopic Coulomb repulsion between like charge carriers and
the Coulomb binding to the wire that keeps the charge carriers from flying out of the
wire.
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Returning to the emf itself, we can rewrite it in a useful form. We define the magnetic
flux to be the integral of ~B dotted into the normal to a surface over the surface:

Φ =

∫
S

da n̂ · ~B(~r) (7.21)

Using the definition of x in the figure, we have in this case

Φ = B h x (7.22)

The time derivative is

dΦ

dt
= B h

dx

dt
= −B h v (7.23)

(x decreases with time for v > 0) which is just the negative of the motional emf. That
is, we have

E = −dΦ

dt
(7.24)
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Moving Arbitrary Loop

Let’s prove rigorously that this rule holds more generally for any shape of loop with
any type of motion through an arbitrary magnetic field. Consider the motion of a
closed loop of arbitrary shape over a time dt. The loop is defined by a contour C(t)
that depends on t. Each point on the loop has a velocity ~v that may depend on the
position on the loop. Regardless, each piece of the loop moves by the vector ~v dt
during this time where ~v is position-dependent. The charges in that piece of the loop
acquire a velocity ~u along the direction of the loop due to the action of the Lorentz
force during that time.

c© 2013 Griffiths, Introduction to Electrodynamics
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We can see, through some work, that the motion ~v also describes the change in the
area of and flux through the loop. The flux changes by

dΦ =

∫
S(C(t+dt))

da n̂C · ~B −
∫
S(C(t))

da n̂C · ~B (7.25)

We subscript n̂ with C to distinguish it from a different n̂ we define below. Let’s
rewrite this expression in a more usable form. Consider a closed surface that consists
of the surfaces defined by C(t) and C(t + dt) as well as the ribbon-like surface
connecting the two contours. (If the two contours were circular loops, the ribbon-like

surface would be the wall of the cylinder formed by the two contours.) ~∇ · ~B = 0 tells

us the surface integral of n̂S · ~B (where n̂S is the outward surface normal, identical to
n̂C for only some parts of the surface) through this surface vanishes. That surface
integral is related to the above integrals by

0 =

∮
closed S

da n̂S · ~B = −
∫
S(C(t+dt))

da n̂C · ~B +

∫
S(C(t))

da n̂C · ~B +

∫
ribbon

da n̂S · ~B

(7.26)

where we have used the fact that n̂S = −n̂C on the S(C(t + dt)) surface and n̂S = n̂C
on the S(C(t)) surface. (The direction of n̂C is set by the direction of d ~̀ in the figure
and the right-hand rule.) The negative sign is present in the former because the
orientation of n̂C that maintains its direction as the contour moves has n̂C(t + dt) on
this surface pointing into the enclosed volume rather than outward.
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The first two terms give −dΦ, so

dΦ =

∫
ribbon

da n̂S · ~B (7.27)

The area element on the ribbon (with outwardly directed normal as in the above
integral) is given by

n̂S da = d~r × d ~̀ (7.28)

where: d ~̀ is the line element along C(t) with orientation set by consistency with n̂C
for S(C(t)) and the right-hand rule; and d~r is the change in the vector position of
that line element between t and t + dt. The difference between these two positions is
related to ~v , d~r = ~v dt, so:

n̂S da = ~v dt × d ~̀ (7.29)

Therefore, dΦ =

∮
C(t)

(
~v dt × d ~̀

)
· ~B (7.30)

We turned an area integral into a line integral, but it still calculates magnetic flux.
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Since ~u ‖ d ~̀, we can add ~u to ~v to obtain ~w without affecting the integral:

dΦ =

∮
C(t)

(
~w dt × d ~̀

)
· ~B (7.31)

Using the cyclic property of the triple vector product, reversing the resulting cross
product ~B × ~w , and moving dt to the left side, we obtain

dΦ

dt
= −

∮
C(t)

d ~̀ ·
(
~w × ~B

)
(7.32)

The quantity ~w × ~B is just the Lorentz force per unit charge:

dΦ

dt
= −

∮
C(t)

d ~̀ ·
~Fmag

q
(7.33)
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The integral of the Lorentz force per unit charge integrated around the loop is the
generalization for arbitrary loops of our earlier expression for the motional emf for the
rectangular loop (earlier, we integrated over only the section of length h from a to b

of the rectangular loop for which ~Fmag was nonzero), so

E =

∮
C(t)

d ~̀ ·
~Fmag

q
= −dΦ

dt
moving circuit (7.34)

The motional emf, as defined by the line integral of the Lorentz force per unit charge
around the loop, is given by the negative of the rate of change of the magnetic flux
through the loop. The signs of the line integral and the flux are set by requiring that
the orientation of the line integral (via d ~̀) be consistent via the right-hand rule with
the orientation of the surface normal n̂C used for the flux calculation.
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Example 7.1: Alternating Current Generator (Griffiths 7.10)

The classic and pervasive use of the above relationship is the alternating current
generator. Consider a square loop placed in a uniform magnetic field and rotated
about a midline at constant angular speed ω. That is, the rotation is such that, at one
point of the motion, the magnetic field is normal to the loop while, one fourth of the
period before or after this time, the magnetic field is in the plane of the loop. What is
the motional emf around the loop generated by this motion?

c© 2013 Griffiths, Introduction to Elec-

trodynamics

The magnetic field is constant, so the flux is
just given by B times the area of the loop pro-
jected onto the direction of ~B:

Φ(t) = a2 ~B · n̂(t) = A B cosωt (7.35)

where we have chosen n̂ ‖ ~B at t = 0 and
written a2 = A. Thus, the motional emf is

E(t) = −dΦ

dt
= A B ω sinωt (7.36)

This is of course how 60-Hz AC voltage is gen-
erated.
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It is instructive to think again about the Lorentz force experienced by the charge
carriers in the loop and see how it generates the motional emf. Let the magnetic field
be ~B = B ẑ and let the axis of rotation be +ŷ . Suppose the loop is just moving past
having n̂ = −x̂ , as shown in the figure. Then the carriers all have a velocity parallel to
±x̂ due to the motion of the loop (this is ~v). (They also have motion in the ẑ

direction, but this is parallel to ~B and thus no Lorentz force is generated.) The
carriers in the sections of the loop parallel to ẑ (perpendicular to the axis of rotation,
parallel to the field) cannot move in response to this force because they feel a force in
the ŷ direction, transverse to the section of wire they are in. Those in the parts of the
loop parallel to ±ŷ (parallel to axis of rotation) also feel a force along ŷ , and they can
move along ŷ . As the loop turns away from this orientation, the arm at +ẑ a/2 has
velocity in the +x̂ direction and vice versa for the arm at −ẑ a/2. Positive charge
carriers in these arms feel forces in the −ŷ and +ŷ directions, respectively. This forces
a current to flow in direction defined by the −n̂ = +x̂ orientation by right-hand rule,
generating a field through the loop in the −n̂ = +x̂ direction.

As the loop passes through this orientation, the flux is zero and is changing from
negative (n̂ · ~B < 0) to positive (n̂ · ~B > 0). One can see that the driven current is in
the direction needed for its field to counter the change in magnetic flux. This is a
manifestation of Lenz’s Law, which we will return to later.
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If one taps the loop as is typical for such a generator, as shown in the figure, the tap
connected to the +ẑ a/2 arm will have positive voltage and the tap connected to the
−ẑ a/2 arm will have negative voltage because they need to drive a current in an
external circuit that carries current in the direction consistent with that argued above,
from the +ẑ a/2 arm to the −ẑ a/2 arm.

Note the polarity of the above statement: we decide the sign of the voltage at the
taps not by what is needed to drive the current in the loop (which is driven by the
Lorentz force, not by this voltage) but rather by the sign needed to drive the current
in the external load (the resistor) so that current exits the loop, goes through the
load, and returns to the loop, where it is needed to conserve charge.
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Electromagnetic Induction

Faraday’s Law

We are going to consider three different physical situations:

I Moving loops: As we considered above, the magnetic field is stationary but the
loop is moving.

I Moving magnetic fields: The loop is held fixed but the magnetic field is
changing because the currents sourcing the field are being translated.

I Changing magnetic fields: Both the loop and the sources of the field are
stationary, but the currents sourcing the field are changing.

We just proved using the Lorentz Force Law that the first situation results in a
motional emf: a force that causes the flow of a current around the loop, given by
Equation 7.34:

E =

∮
C(t)

d ~̀ ·
~Fmag

q
= −dΦ

dt
moving circuit (7.37)
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Faraday’s Law consists of the empirical observation that the same rule applies for the
second and third situations. The subtlety is this: this law could not have been derived
using the Lorentz Force applied to the situation described above of a fixed loop and a
moving and/or changing magnetic field: there is no magnetic force if the charge
carriers are not being forced to move in the magnetic field by the loop being pulled. A
natural and important corollary is that the emf that appears for a moving or changing
magnetic field is not due to a magnetic force. Rather, since the loop is at rest in the
second and third situations, the force that appears arises from a true electric field.
Mathematically, we write Faraday’s Law as

E =

∮
C(t)

d ~̀ ·
~Felec

q
= −dΦ

dt
moving or changing magnetic field (7.38)

We see that it is identical in form to the Lorentz Force law applied to a moving loop
with the replacement of ~Fmag by ~Felec .
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Combining the two forms, and defining ~Eind = ~Felec/q where ind indicates that the
electric field here is not an electrostatic one due to Coulomb’s Law but rather an
“induced” field due to the changing magnetic flux, we then may write a common law
that applies in any situation:

E =

∮
C(t)

d ~̀ ·
[
~Eind +

~Fmag

q

]
= −dΦ

dt
= − d

dt

∫
S(C(t))

da n̂(~r , t) · ~B(~r , t) (7.39)

If there is any ambiguity in the sign, one should apply Lenz’s Law: the emf has a sign
such that the polarity of the current it would drive produces a magnetic field that
counters the change in magnetic field. We will prove Lenz’s Law explicitly later.
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Quasistatic Assumption

Note that we have implicitly assumed in our derivations that the current everywhere in
the loop responds instantaneously to the total emf on the left side, that there is no
time delay between a buildup of charge at one point in the circuit and the driving of a
current around the loop. We made the same assumption in deriving Ohm’s Law. This
is the “quasistatic assumption,” that all fields and currents everywhere change
instantaneously and that information is propagated infinitely quickly. Formally, this
assumption consists of saying that, given a typical physical scale for a system ` and a
typical timescale for variation t, we have

t � `/c (7.40)

where c is the speed of light that will be defined later.

We will release this assumption when we discuss electromagnetic waves and radiation.
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Motional EMF, Faraday’s Law, Galilean Relativity, and Galilean Field
Transformations

When first proposed, Faraday’s Law was an empirical observation. However, it could
have been justified using the principle of Galilean relativity: physics is the same in all
inertial reference frames, those moving at constant velocity.

Consider the problem of the magnetic field moving at fixed velocity. One could go to
the rest frame of the magnetic field and consider the loop to be moving at fixed
velocity as in our moving loop cases. The magnetic force implied by the motional emf
appears. In Galilean relativity, forces are invariant upon change of inertial (fixed
velocity) frame. This would imply that the magnetic force in the field-fixed frame is
still present in the loop-fixed frame, but now we interpret it as an electric force
because the loop is not moving.

In the case of changing magnetic fields, we simply have to invoke the expectation that
the loop has no way of knowing whether it experiences a changing field because the
current sourcing the field is moving or because it is changing: it only knows about the
field that results, not the source of the field.

This Galilean relativity argument was, however, not recognized until after Faraday’s
observation.
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We can make use of this argument to understand how electric and magnetic fields mix
with each other under such Galilean (nonrelativistic) transformations. Let’s assume we
have written down our law, Equation 7.39, in both the rest frame of the loop and in
the lab frame in which the loop is moving. The fields and position vectors in the loop
rest frame are given ′ symbols, the ones in the lab frame have no primes. The total
emf can be determined explicitly using a voltmeter to measure the voltage across the
resistor in the loop, and it is a scalar that is independent of frame (the reading on the
voltmeter doesn’t change if you see the voltmeter moving with the loop!). So we can
equate the lab and rest frame expressions through E:

∮
C′

d ~̀′ · ~E ′ind =

∮
C(t)

d ~̀ ·
[
~Eind +

~Fmag

q

]
(7.41)

(C′ = C(t = 0) can be assumed by appropriate choice of when the lab and loop rest
frame coordinate systems coincide). Now, let’s use our expression for the magnetic
force term from our derivation of Equation 7.34, dropping the ~u contribution that we
had added in: ∮

C′
d ~̀′ · ~E ′ind =

∮
C(t)

d ~̀ ·
[
~Eind + ~v × ~B

]
(7.42)
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Since the circuit is arbitrary, we may thus conclude

~E ′ind = ~Eind + ~v × ~B (7.43)

The equation can be taken to be completely general because adding a standard
electrostatic field to both sides would leave the statement true while accounting for
such electrostatic fields:

~E ′ = ~E + ~v × ~B ~E = ~ECoul + ~Eind (7.44)

Therefore, this is a rule for how electric fields transform from one frame to another
under Galilean relativity, regardless of the source of the field. Electric fields are not the
same in a fixed and a moving frame if magnetic fields are present, even before special
relativity is considered! Special relativity then only adds correction coefficients to the
above equation.

It is important to note that the expectation that the electrostatic fields do not depend
on frame has been an assertion so far, based on the assumption that Coulomb’s Law is
unaffected by whether the charges are moving or not. We will return to this point
later in connection to Maxwell’s Equations, as it will lead to a symmetrization of the
above equation between ~E and ~B.

Galilean relativity is consistent with the quasistatic assumption. We need only consider
special relativity when the nonzero travel time of light becomes important because
special relativity says the speed of light is the same in all frames.
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Example 7.2: A Stationary Alternating Current Generator

Recall the previous example of an AC generator that used a rotating square loop in a
constant magnetic field. Instead, hold the loop fixed but assume that the magnetic
field is being varied sinusoidally, ~B(t) = ~B0 cos ωt. Then the flux is

Φ(t) = A ~B(t) · n̂ = A B0 cosωt (7.45)

Therefore, the emf generated is

E(t) = −dΦ

dt
= A B0 ω sinωt (7.46)

just as before.

Note, again, the polarity of the emf! As before, the emf’s polarity is such that it
causes current to flow in an external resistor attached to the two ends of the circuit in
a direction consistent with the current that flows in the loop.
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Something one has to be careful about is incorrectly believing that, because of the
emf’s sign, it should also drive a current in the zero-resistance loop in the direction
implied by the emf. That erroneous belief arises because one is assuming the electric
field is conservative, that the integral of ~E around a loop vanishes. No: that sign of
emf would drive current in the wrong direction! For the current flowing in the loop,
the emf measures the work per unit charge done by ~Eind + ~Fmag/q as they push the
current around the loop, but they are not pushing the charges down an electrostatic
potential! The effect of having this current flow is that the same current flows
through the resistor, creating an apparent potential drop across the resistor that we
can measure with a voltmeter. But the voltmeter is just measuring the current flowing
through a known resistance, which, by Ohm’s Law, is proportional to the line integral
of the electric field through the resistor. The voltmeter’s ability to measure something
that looks like a voltage does not imply that an electrostatic potential can be defined
everywhere in the loop and resistor!

In thinking about what causes the current to flow, it is better to visualize the electric
field: one recognizes that the changing magnetic field generates an electric field that
pushes current in the direction it needs to flow to counter the change in magnetic
field. This electric field has nonzero loop integral around the circuit! Therefore, the
existence of the emf E at the ends of the circuit does not imply the same emf is
experienced by the current flowing in the loop itelf; the nonzero loop integral of the
electric field invalidates the rule that the total voltage drop around a loop must
vanish, which is the source of the misconception that E, appearing at the ends of the
circuit, is also the driver of the current in the loop.
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Differential Version of Faraday’s Law

Consider the special case of an arbitrary closed contour C fixed in space.
Equation 7.39 tells us ∮

C
d ~̀ · ~E = − d

dt

∫
S(C)

da n̂(~r) · ~B(~r , t) (7.47)

Let’s use Stokes’ Theorem on the left side, and, since the contour is time-independent,
we can move the time derivative inside the integral on the right side. We turn it into a
partial derivative to make it clear that we do not need to worry about any possible
time-dependence of ~r (of which there is none here). This yields

∮
S(C)

da n̂(~r) ·
[
~∇× ~E(~r)

]
= −

∫
S(C)

da n̂(~r) · ∂
~B(~r , t)

∂t
(7.48)

Since the loop is arbitrary, the integrands must be equal:

~∇× ~E(~r) = −∂
~B(~r , t)

∂t
(7.49)

This differential version of Faraday’s Law is the generalization of ~∇× ~E = 0 for
time-dependent situations. We now explicitly see what was said in the previous
example: a changing ~B creates a nonconservative electric field!
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Biot-Savart and Ampere’s Law for the Induced Electric Field in the Absence of
Charges

If we consider the special case of no charge density, then we have

~∇ · ~E = 0 ~∇× ~E = −∂
~B

∂t
(7.50)

This is mathematically identical to the equations of magnetostatics,

~∇ · ~B = 0 ~∇× ~B = µo
~J (7.51)

In magnetostatics, we saw that the above two equations, combined with the
assumption ~∇ · ~A = 0, yielded Poisson’s Equation for ~A with µo

~J as the source
(Equation 5.56). By correspondence, we can thus state

~E = ~∇× ~AE ∇2 ~AE =
∂ ~B

∂t
~∇ · ~AE = 0 (7.52)

This is of course very interesting: we see that ~E receives a contribution from a vector
potential that satisfies Poisson’s Equation with ∂ ~B/∂t as the source!
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Now, if we assume appropriate boundary conditions — fields falling off at infinity, no
other surfaces on which the vector potential or field are specified — then we know
from Equation 5.56 that the solution to the Poisson’s Equation for ~AE is

~AE (~r) = − 1

4π

∫
V

dτ ′
∂ ~B(~r ′)
∂t

|~r − ~r ′| (7.53)

Finally, we may take the curl of the above expression to recover the analogue of the
Biot-Savart Law. We did this backwards in the case of magnetostatics: we started
with the empirical Biot-Savart Law and derived that the field could be written as the
curl of the form of the vector potential corresponding to the above. Nevertheless, that
proof could be reversed, so we may conclude that the analogous Biot-Savart Law
holds (compare to Equation 5.32)

~E(~r) = − 1

4π

∫
V

dτ ′
∂ ~B(~r ′)
∂t

× (~r − ~r ′)
|~r − ~r ′|3 = − 1

4π

∂

∂t

∫
V

dτ ′
~B(~r ′)× (~r − ~r ′)
|~r − ~r ′|3

(7.54)

where we pulled the time derivative outside the integral under the assumption that the
volume itself is time-independent.
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We also note that, because ~E satisfies the analogue of Ampere’s Law, one can apply

standard Ampere’s Law techniques for finding ~E when ∂ ~B
∂t

is given.

Caution: We have made the quasistatic assumption, that all time derivatives are small
enough that the propagation time for disturbances in the magnetic fields is much less
than the timescales on which the field vary. This is what allows us to use the
magnetostatic formulae in time-varying situations. If the time derivatives become
large, then one needs the full formalism of electromagnetic waves, which we will
develop later.
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Poisson’s Equation for Induced Electric Field, Proof of Lenz’s Law

Further pursuing the analogy to magnetostatics, let’s see what we get if take the curl
of the curl of the induced electric field:

~∇×
(
~∇× ~Eind

)
= ~∇×

(
−∂

~B

∂t

)
= − ∂

∂t

(
~∇× ~B

)
= −µo

∂ ~J

∂t
(7.55)

We may rewrite the left side using the vector identity for the curl of the curl as we did
when deriving Poisson’s Equation for ~A in terms of ~J (Equation 5.56):

~∇
(
~∇ · ~Eind

)
−∇2 ~Eind = −µo

∂ ~J

∂t
(7.56)

If we again assume no charge density (valid since we are considering only the induced

electric field ~Eind ) and that the currents are localized so the fields fall off appropriately

at infinity, we have a Poisson’s Equation for ~Eind , whose solution we know:

∇2 ~Eind = µo
∂ ~J

∂t

localized currents⇐⇒ ~Eind (~r) = − µo

4π

∫
V

dτ ′
∂ ~J(~r ′)
∂t

|~r − ~r ′| (7.57)

Because of the vector alignment of ~Eind and −∂ ~J/∂t, we thus have Lenz’s Law : the
induced electric field is in the direction needed to drive a current to counter the
change in the current that is causing the changing magnetic field.
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Furthermore, using Equation 5.56, the relation between ~A and ~J obtained by solving
the Poisson Equation ∇2 ~A = −µo

~J, we have

~Eind (~r) = − ∂

∂t

µo

4π

∫
V

dτ ′
~J(~r ′)

|~r − ~r ′| = −∂
~A

∂t
(7.58)

which is a rather remarkable statement — this is an almost trivial sourcing equation
for ~Eind , certainly much simpler than the sourcing equation involving ∂ ~J/∂t or the

Biot-Savart Law for ~Eind sourced by ∂ ~B/∂t.

We will return to this contribution to the electric field when we reconsider our scalar
and vector potentials after writing down Maxwell’s Equations and in light of the fact
that Faraday’s Law implies the electric field is not curl-free and thus cannot be derived
from a scalar potential.
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Example 7.3: Induced Electric Field for Coaxial Conductors (Griffiths 7.16)

An alternating current I = I0 cosωt flows down a long straight wire of negligible radius
and returns along a coaxial conducting tube of radius a and negligible thickness. Both
conductors are assumed to be perfect (infinite conductivity). We want to find the
induced electric field as a function of the transverse radius s in cylindrical coordinates.

For reasons that we will be able to explain later when we discuss EM waves in the
presence of conductors, the currents flow in sheets at the surfaces of the conductors
because they have infinite conductivity.

In the region between the wire and the outer conductor, the field of the wire is the
usual ~B(s, t) = φ̂ µo I(t)/2π s. The magnetic field of the return-current cylinder is
zero inside (consider an Amperian loop in the xy -plane with radius s < a: none of the
return current flows through the surface enclosed by that loop). Outside the
return-current sheet, its magnetic field is that of a wire carrying the total return
current, which has the same magnitude but opposite sign of the field of the inner wire.
Thus, the total magnetic field is the inner conductor’s magnetic field between the
conductors and is zero outside the outer conductor.

The system has azimuthal and z-translation symmetry, so the induced electric field
must have the form ~E = Es (s) ŝ + Eφ(s) φ̂+ Ez (s) ẑ.
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If we think about what kind of Amperian loop has a nonzero flux of ∂ ~B/∂t (not ~J!), it

is a loop in the sz plane with normal in the φ̂ direction. Let’s first consider a loop of
this kind with one z leg at infinity and the other at s > a. The contributions to the
loop integral of the electric field along the two radial legs cancel, and the contribution
from the leg at infinity vanishes assuming the fields fall off as s →∞, so this loop
only gets a contribution from the z leg at finite radius, which picks out Ez (s > a).

The enclosed flux of ∂ ~B/∂t vanishes, so we can conclude Ez (s > a) = 0.

Now, repeat with one z leg at s between 0 and a and one z leg outside the outer
conductor. The radial legs cancel and the z leg outside the outer conductor
contributes nothing. When calculating the enclosed flux of ∂ ~B/∂t, a similar thing
holds: there is no magnetic field outside a, so the area integral only goes from s to a.
If the loop’s z dimension is `, we have

Ez (s < a) ` = −
∫ `

0
dz

∫ a

s
ds′

∂Bφ(s′, t)

∂t
= − µo

2π

∂ I

∂t
`

∫ a

s

ds′

s′
(7.59)

=
µo

2π
ω I0 ` sinωt ln

a

s
(7.60)

=⇒ Ez (s < a) =
µo

2π
ω I0 sinωt ln

a

s
(7.61)

Note the sign: taking the loop normal to be φ̂ implies that the z leg with the nonzero
contribution yields a positive contribution. Then the usual minus sign enters, which is
cancelled by the sign of the derivative of cosωt.
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We can see Eφ(s) vanishes by using a loop in the sφ plane that has radial legs (φ
constant) and azimuthal legs (s constant). One azimuthal leg can be taken to infinity
so it yields no contribution, and the radial legs’ contributions cancel, leaving only the
contribution from the azimuthal leg at finite radius. But, unlike the Ez case, this loop
has no magnetic flux and thus no ∂ ~B/∂t through it, so Eφ(s) = 0.

Finally, consider Es , which we can show to vanish by both a conceptual and a
mechanical argument. As we argued above, Es can be a function of s only and must
be independent of z. Suppose Es points outward along ŝ at a particular s and consider
Es (s, z = 0). If we rotate the system about this direction by 180◦, then the current
changes direction. But Es (s, z = 0) cannot change direction (sign) — it is tied to the
current distribution. Yet the reversal of the direction of the current changes the sign
of ~B and thus ∂ ~B/∂t. Then, by the Biot-Savart Law for ~E , ~E should change sign. We
have a contradiction unless Es (s, z = 0) = 0. Because of z-translation symmetry, the
same must hold at any z.

More mechanically, consider the Biot-Savart integral for ~E . Given that ~B and ∂ ~B/∂t

are both proportional to φ̂, the vector ~r − ~r ′ must have a piece proportional to ẑ to
yield a contribution to the ŝ component of ~E . But ~B is independent of z, while the ẑ
component of ~r − ~r ′ is odd about z = z ′. So the integrand is odd about z = z ′,
causing the integral to vanish.

Thus, ~E(s < a, t) = ẑ
µo

2π
ω I0 sinωt ln

a

s
~E(s > a, t) = 0 (7.62)
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There are many other approaches to this problem.

I We could have derived the same ~E by first determining ~A and taking its time
derivative. We calculated ~A of a wire in Ph106b Problem Set 7:

~A(s) = −µoI

2π
ln

s

a
(7.63)

The vector potential vanishes for s > a because the vector potential of the
return current cancels the above vector potential of the wire. If we take
I = I0 cosωt and calculate ~E = −∂ ~A/∂t, we get the same result as we obtained
already.

I We could have also used the same Poisson’s Equation solution form for the
Poisson’s Equation in which ∂ ~J/∂t sources ~E .

I Lastly, instead of using the Ph106b PS7 solution for ~A, we could have obtained
~A from ~B using the same types of loops we used to obtain ~E from ∂ ~B/∂t.

No matter how one finds ~E , one can see the sign makes sense. This ~E tries to drive a
current parallel or antiparallel to the current already flowing in the wire. When the
current is decreasing, the electric field is increasing to try to drive a current in the same
direction in which current is being lost by the decreasing current. It tries to generates
a magnetic field that would compensate for the magnetic field that is being removed
by the decreasing central conductor current. And vice versa for an increasing current.

Note how, when we can calculate the induced electric field directly, there is no
ambiguity about the direction the driven current would flow, unlike for E.
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Mutual Inductance

Except for the example we just did, We have so far considered magnetic fields and
fluxes in the abstract, without any concern about where they come from. But they are
generated by currents, so it is natural to want to connect the Faraday’s Law emf to
changing currents. We do that through mutual inductance.

Consider two circuits C1 and C2. Suppose a current I1 is flowing in C1. The magnetic
flux at C2 is

Φ21 =

∫
S(C2)

da2 n̂2 · ~B1(~r2) =

∫
S(C2)

da2 n̂ ·
[
~∇× ~A1(~r2)

]
=

∮
C2

d ~̀2 · ~A1(~r2) (7.64)

where we used the fact that ~B is derived from a vector potential followed by Stokes’
Theorem. Now, let’s use the relation between ~A1 and the current in C1 using the usual
solution of the Poisson’s Equation for ~A1 (assuming appropriate boundary conditions):

Φ21 =
µo

4π

∮
C2

d ~̀2 ·
∮
C1

I1d ~̀1

|~r2 − ~r1|
=
µo

4π
I1

∮
C2

∮
C1

d ~̀2 · d ~̀1

|~r2 − ~r1|
(7.65)
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We rewrite this as follows:

Φ21 = M21 I1 M21 =
µo

4π

∮
C2

∮
C1

d ~̀2 · d ~̀1

|~r2 − ~r1|
Neumann Formula (7.66)

where M21 is the mutual inductance between C1 and C2 and has units of Henries
(volt-second/amp). Two important characteristics:

I M21 = M12 because the definition is symmetric.

I M21 is a completely geometric quantity: it does not care about the amount of
current flowing, just on the relative positions of the two contours. It is like the
capacitance matrix in this respect.

We may now take the time derivative to calculate the emf at C2 due to a change in I1:

E2 = −dΦ21

dt
= −M21

dI1

dt
(7.67)

If unclear, the sign should be chosen to satisfy Lenz’s Law.
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Self-Inductance

The above derivation works even when C1 and C2 are identical: a current loop induces
an emf on itself. In practice, calculating the integral can be difficult because of the
singularity at ~r1 = ~r2, but one can be assured that self-inductance exists and is not
infinite. The symbol used is L and the corresponding equations are

Φ = L I L =
µo

4π

∮
C

∮
C

d ~̀2 · d ~̀1

|~r2 − ~r1|
E = −L

dI

dt
(7.68)

In both the cases of mutual inductance and self-inductance, one rarely does the
integral directly. Instead, one tries to find the field using Ampere’s Law, then calculate
the flux, and finally get M or L from Φ/I. This eliminates the need to deal directly
with the singularity in the above integral.
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Generalization to Volume Currents

We may generalize the above to volume currents by using the usual relation between
the vector potential and the volume current density (assuming appropriate boundary
conditions):

~A(~r) =
1

4π

∫
V

dτ ′
~J(~r ′)

|~r − ~r ′| (7.69)

=⇒ Mij =
µo

4π

1

Ii Ij

∫
Vi

dτ

∫
Vj

dτ ′
~J(~r) · ~J(~r ′)

|~r − ~r ′| (7.70)

L =
µo

4π

1

I2

∫
V

dτ

∫
V

dτ ′
~J(~r) · ~J(~r ′)

|~r − ~r ′| (7.71)

where Vi is the volume of the ith inductor. We notice that the currents do not drop
out as cleanly, but, assuming linear behavior of the current flow (the current does not

flow differently as the overall magnitude of the current is changed), we expect ~J ∝ I
and indeed, once the functional dependence of the current density on position has
been established, the inductances are purely geometrical quantities as for the case of
line currents.

This is not a rigorous proof. We will return to this when we discuss magnetic energy.
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Example 7.4: Self and Mutual Inductances of Solenoids

Let’s first calculate the self-inductance of a solenoid of radius a. Recall that the field
of a solenoid is only nonzero inside it and has value

~B = µo n I ẑ (7.72)

where n is the number of turns per unit length, the solenoid axis is along ẑ, and the
current flows along the φ̂ direction. The magnetic flux threading the solenoid and the
self-inductance are therefore

Φ = n ` π a2 B = µo n2 ` π a2 I =⇒ L = µo n2 ` π a2 (7.73)

If we have two interpenetrating solenoids with turn densities n1 and n2, radii a1 < a2,
and lengths `1 < `2, then the flux into solenoid 1 of the field from solenoid 2 and the
mutual inductance are

Φ12 = n1 `1 π a2
1 B2 = µo n1 n2 `1 π a2

1 I2 =⇒ M = µo n1 n2 `1 π a2
1 (7.74)

It is interesting and useful to note that we may also calculate Φ21 using M given the
symmetry of M. This is very convenient, as calculating the contribution to Φ21 from
the portion of solenoid 1’s field past its ends would be nontrivial. It is also interesting
to see that the mutual inductance is not manifestly symmetric under index exchange
1↔ 2. This reflects the asymmetry of the setup between solenoids 1 and 2.

Section 7.4.3 Generalization to Volume Currents Page 497



Lecture 22:

Electrodynamics III:

Magnetic Energy of Currents and Fields
Magnetic Energy in the Presence of Magnetizable Materials

Magnetic Forces

Date Revised: 2024/04/10 17:00
Revised lecture break

Date Given: 2024/04/09

Page 498



Section 7.5 Electrodynamics: Magnetic Energy and Forces

Magnetic Energy and Forces

Magnetic Energy in Terms of Currents

Let’s consider the work that has be done to drive current against the emf in an
inductive object (e.g., a simple loop or a solenoid). The emf is sometimes called the
“back emf” because it is the line integral of a force that tries to drive a current that is
intended to counter the changing field due to the current one is varying and so the
current one is varying must be driven against the emf.

That is, when a varying current is driven through an inductive object, it has to be
driven against a force per unit charge whose line integral (note that we did not say
potential!) along the current’s path is E. (The force is due to an induced electric field
for this case of a stationary loop that is experiencing a dΦ/dt due to its own current
varying.) The force that must be exerted, and the work that must be done, is above
and beyond the force needed to overcome the inertia of the charge carriers (i.e., the
Newton’s Law force F = m a).

The rate at which this work is being done is given by the same expression we derived
before for the work done by the pulling force in the case that the field was fixed but
the loop was moving: it is the work done per unit charge by the battery to push the
current against the back emf, −E, times the charge flowing past a given point per unit
time, I:

dW

dt
= Power = −I E = L I

dI

dt
(7.75)
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We can integrate this over time to get the total work done and the magnetic energy
created:

W =
1

2
L I2 (7.76)

It is natural to ask why, when we considered the situation with the loop being pulled
through a magnetic field, we did not worry about this magnetic energy: we said that
the work done by the pulling force was completely dissipated in the Joule heating of
the resistor. Or, put another way, why did we not need to include a resistor in the
calculation here? When we include the resistor, some of the work done by the pulling
force as the loop was accelerated from rest to ~v goes into this magnetic energy, the
L I2/2 energy. Once at fixed velocity, however, the current and thus this energy stay
constant. The pulling force continues to do work, however. Since we specifically made
the steady-state assumption — that the loop had been moving at fixed ~v for all time
and would stay moving for all time — this transient process of creating L I2/2 was not
relevant, and our conservation of energy argument was valid; we just neglected noting
the path that the energy took through the magnetic energy in the steady state. Now,
without the resistor, we are focused entirely on the transient portion of the process,
hence the importance of the magnetic energy.
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Let’s generalize the above result. Consider a system of N inductive elements with
inductance matrix Mij (Mii ≡ Li , Mij = Mji ). We turn on the currents in the order
i = 1, 2, · · · ,N. We first have to maintain the current Ii against the emf on inductor i
felt due to its changing current. Once it has reached its final value, we also have to
maintain it as the currents in the inductors j > i are increased from 0 to their final
values (note: j > i , not j < i as we had in electrostatics). The required power is:

dW

dt
=

N∑
i=1

dWi

dt
=

N∑
i=1

(−Ii Ei ) =
N∑

i=1

Ii Mii
dIi

dt
+ Ii

N∑
j>i

Mij
dIj

dt


=⇒ W =

N∑
i=1

1

2
Mii I

2
i + Ii

N∑
j>i

Mij Ij

 =
1

2

N∑
i,j=1

Mij Ii Ij (7.77)

where we have symmetrized the sum over j by including a factor of 1/2, and then we
combined the cross-terms with the self-terms. If we rewrite all our relations using
matrix notation, with I being a column vector of currents, Φ being a column vector of
fluxes, and M being the matrix of mutual inductances, we have

Φ = M I W =
1

2
ΦT I =

1

2
IT M I (7.78)

Note: we could have calculated the above somewhat differently, considering the work
done to maintain the loops j < i at their final current values, plus the work done in
loop i itself, while loop i is begin ramped to its final value. The result would be the
same.
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Magnetic Energy in Terms of Magnetic Field

Let’s manipulate our circuit equations above to try to get the energy in terms of the
magnetic field. First, we can rewrite the circuit expressions using the vector potential:

L I = Φ =

∫
S(C)

da n̂ · ~B =

∮
C

d ~̀ · ~A (7.79)

=⇒ W =
1

2
L I2 =

I

2

∮
C

d ~̀ · ~A =
1

2

∮
C

d`~I · ~A (7.80)

We can obviously generalize this for volume currents to

W =
1

2

∫
V

dτ ~J · ~A (7.81)

Aside: The above equation now justifies Equation 7.71: if one uses Equation 5.56 to
write ~A in terms of ~J and then calculates L = 2 W /I 2, one recovers Equation 7.71. By
considering two separate volume current distributions, one can recover Equation 7.70
also.
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We can use Ampere’s Law to obtain

W =
1

2µo

∫
V

dτ ~A ·
(
~∇× ~B

)
(7.82)

We use the product rule for the divergence of a cross-product,
~∇ · (~a× ~b) = ~b · (~∇× ~a)− ~a · (~∇× ~b) to rewrite this as

W =
1

2µo

∫
V

dτ
[
~B ·
(
~∇× ~A

)
− ~∇ ·

(
~A× ~B

)]
(7.83)

=
1

2µo

∫
V

dτ |~B|2 − 1

2µo

∮
S(V)

da n̂ ·
(
~A× ~B

)
(7.84)

Now, the original volume integral was over only the region containing the current, but
the volume integral could be extended to a larger region since there would be no
additional contribution. So we do the usual thing and expand the volume to include
all of space and take the bounding surface to infinity.
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We assume that ~A× ~B falls off more quickly than 1/r2 (true for finite current
distributions) so that the surface term goes to zero, or that the particulars of the
configuration ensure the integral vanishes even if the current distribution is not finite
and we expect a finite energy. Therefore,

W =
1

2µo

∫
dτ |~B|2 (7.85)

Thus we see that the magnetic energy is just given by the integral of the square of the
field. We now see that the magnetic energy created as the currents are ramped from
zero to their final values is stored in the field. (We specifically avoided saying earlier
where it was stored!)

It is interesting to think about how it is possible to store energy in a magnetic field
given that the field can do no work. One has to think of this as the work done to drive
against the induced electric field as the field was increased from zero to its final value.
As usual, this work is supplied by a battery, not the magnetic field.
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On the point about the surface term in the case of configurations for which the fields
do not fall of at infinity:

I For an infinite solenoid, the surface term only includes the endcaps of the
solenoid, since ~B vanishes outside the solenoid. The contributions of the two
endcaps vanish because ~A× ~B points along ŝ in cylindrical coordinates, but the
endcap’s normal is along ẑ. While the surface term vanishes, the energy is still
infinite because the volume integral is over an infinite volume with a constant
energy density.

I For an infinite wire, even when calculated per unit length, all the terms are
logarithmically infinite. This is because the current and the fields do not die off
quickly enough at infinity. The calculation fails even if one does the calculation
using ~J · ~A, and even for a finite diameter wire (if one accounts for the fact that
~J becomes a surface current in the perfect conductor case).
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Example 7.5: Magnetic Energy in a Solenoid

A solenoid of radius a with n turns per unit length and current I has a field
B = µo n I. Therefore, the magnetic energy in such a solenoid of length ` is

W = π a2 `
1

2µo
B2 =

1

2
µo n2I2π a2 ` (7.86)

Note that we can extract from this the self-inductance using W = L I2/2, yielding
L = µo n2 π a2 ` as we obtained by calculating the flux. To put some numbers on this,
the LHC CMS experiment (http://home.web.cern.ch/about/experiments/cms) has
a solenoid with a field of 4 T with radius a = 3 m and length 13 m. The stored energy
is therefore about 2.5 gigajoules, an enormous number.

Example 7.6: Magnetic Energy in a Coaxial Cable

This is Griffiths Example 7.13. For a coaxial cable of length ` with inner and outer
conductor radii a and b, the energy and resulting self-inductance are

W =
µo

4π
I2 ` ln

b

a
L =

µo

2π
` ln

b

a
(7.87)
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An Alternate Logical Path

We followed Griffiths in first developing concepts for inductance and energy using
current loops and then generalizing both to volume current distributions in a fairly
obvious way. That said, there is a more rigorous way to do all of this by first
considering the work done in maintaining current densities in the presence of the
electric field generated by changes in those current densities. This then leads to the
idea of ~J · ~A being the energy density in the magnetic field. Then one can define
inductances by writing the field energy in terms of the total currents that normalize
the current distributions. It can then be shown that these inductances relate currents
to fluxes and thus rates of change of currents to emfs. This alternative logical path is
followed in Jackson §5.16–5.17.
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Magnetic Energy of an Assembly of Free Currents in the Presence of
Magnetizable Materials

This analysis is done similarly to the electrostatic case and follows Jackson §5.16.
Recall that we discussed the distinction between the total energy needed to assemble
the final configuration, including the construction of the bound dipoles, and the
energy needed to bring the free charges in assuming the bound dipoles already exist
and neglecting the potential energy of creating them. In this case, we assume the
bound magnetic dipoles are created and maintained by someone else — someone else
has built them and raised their currents to their full values for us and also maintains
those currents in the presence of back emf generated when the free currents change —
and we need only consider the work that has to be done to turn on some free currents
in the presence of these bound magnetic dipoles.

This separation is not academic: all naturally occurring magnetic materials rely on the
magnetic dipole moments of fundamental particles. Those magnetic dipoles are
unchangeable, and thus the energy stored in them is effectively a constant offset that
we have no experimental access to. It therefore makes sense to ignore it in
calculations of magnetic energy.
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Consider the differential of work the battery must do to maintain the free currents ~Jf

during a change in the magnetic field δ ~B. (We need not specify whether this change is

due to a change in ~Jf and/or the location of the magnetizable materials — all that

matters is δ ~B.) Equation 7.80 implies that the change in energy would be (holding the
geometry fixed)

δW = −I E δt = I
dΦ

dt
δt = I δΦ = I δ

[∫
S(C)

da n̂ · ~B
]

= I δ

[∮
C

d ~̀ · ~A
]

= I

∮
C

d ~̀ · δ ~A

(7.88)

for which the volume generalization would be

δW =

∫
V

dτ ~Jf · δ ~A =

∫
V

dτ
(
~∇× ~H

)
· δ ~A (7.89)

Apply the same algebra and the same discarding of the surface term as in free space:

δW =

∫
V

dτ ~H ·
(
~∇× δ ~A

)
=

∫
V

dτ ~H · δ ~B (7.90)

For nonlinear materials, we would need to apply the specific ~B( ~H) function go further.

For linear materials, we use δ ~B = µδ ~H to do the integral and obtain the expected
analogue to the free-space result:

W =
1

2µ

∫
V

dτ |~B|2 =
µ

2

∫
V

dτ | ~H|2 =
1

2

∫
V

dτ ~H · ~B (7.91)
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Magnetic Energy of a Magnetizable Material in an External Field

We can do this derivation along the lines of what we did for polarizable materials,
following Jackson §5.16. Let’s assume that we have a configuration of currents that
generates fields ~B1 and ~H1 in a volume containing a permeable material µ1. Now,
bring in a material of permeability µ2 such that it occupies a volume V2 contained in
V while holding the free source currents fixed. The fields (everywhere) change to ~B2

and ~H2.

The energy difference we want to calculate is

U2 − U1 =
1

2

∫
dτ
[
~B2 · ~H2 − ~B1 · ~H1

]
(7.92)

Section 7.5.5 Magnetic Energy of a Magnetizable Material in an External Field Page 510



Section 7.5 Electrodynamics: Magnetic Energy and Forces

We can apply similar manipulations as we did for the electrostatic case. First, we
rewrite the above as

U2 − U1 =
1

2

∫
dτ
[
~B2 · ~H1 − ~B1 · ~H2

]
+

1

2

∫
dτ
[
~B1 + ~B2

]
·
[
~H2 − ~H1

]
(7.93)

Since ~∇ ·
[
~B1 + ~B2

]
= 0, it can be derived from a vector potential ~A, allowing us to

rewrite the second term as

1

2

∫
dτ
[
~H2 − ~H1

]
·
(
~∇× ~A

)
(7.94)

We use again the vector identity ~∇ · (~a× ~b) = ~b · (~∇× ~a)− ~a · (~∇× ~b) to integrate by
parts, and we turn the divergence into a surface term that we can discard because
~H2 − ~H1 should vanish as we go far from the permeable material, yielding for the
second term

1

2

∫
dτ ~A · ~∇×

(
~H2 − ~H1

)
(7.95)

The curl in the integrand vanishes because ~H2 and ~H1 are sourced by the same free
currents.
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We are thus left with the first term from the equation we started with

U2 − U1 =
1

2

∫
dτ
[
~B2 · ~H1 − ~B1 · ~H2

]
(7.96)

Applying linearity, ~B = µ ~H, we then obtain

U2 − U1 =
1

2

∫
dτ (µ2 − µ1) ~H2 · ~H1 (7.97)

Finally, we recognize µ2 − µ1 = 0 except in V2, so

U2 − U1 =
1

2

∫
V2

dτ (µ2 − µ1) ~H2 · ~H1 =
1

2

∫
V2

dτ

(
1

µ1
− 1

µ2

)
~B2 · ~B1 (7.98)

This is the analogue of Equation 4.86 aside from a sign flip, which mechanically is due
to the fact that ~B = µ ~H (rather than ~H = µ ~B). If we take µ1 = µ0 and µ2 = µ, we

can use ~M2 = (µ2/µ0 − 1) ~H2 = (µ/µ0 − 1) ~H2 to rewrite this as

W = U2 − U1 =
1

2

∫
V2

dτ ~M · ~B1 ⇐⇒ w =
1

2
~M · ~B1 (7.99)

where now we replace ~M2 by ~M since ~M1 = ~0 if µ1 = µo . So ~M is the magnetization
density of the volume occupied by µ and ~B1 is the magnetic field in the absence of the
permeable material. There is a sign flip relative to the electrostatic case
(Equation 4.87) that, mechanically, came from the sign flip in Equation 7.98.
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How do we understand this sign flip conceptually? Trying to track the sign through
the derivation is not illuminating. But it can be understood by comparing to our
calculation of the energy of magnetic dipole in an external field, Equation 5.153,
where we assumed that the magnetic dipole moment and field were given and held
fixed without our having to account for how this was done. In that case, the potential
energy of the configuration was U = − ~m · ~B. (The factor of 1/2 here comes from the

linear relationship between ~m and ~B and the integration from zero field to ~B, which is
not important for this discussion). We see that we have a sign flip relative to that
situation. It is sensible, then, to attribute the sign flip to the fact that, in deriving the
expression w = |~B|2/2µ that was the starting point for this derivation, we accounted
for the work done by the batteries to maintain the free currents as the permeable
material was brought in. No such work was required in the previously considered case
of a fixed dipole moment ~m and fixed field ~B.

Note that, importantly, we do not account for how the magnetization density ~M is
maintained. This is to be distinguished from not considering how ~M is created, which
we argued was just an unchangeable offset. We may ignore this additional
consideration here because, again, the magnetization density is, in naturally occurring
systems, due to fundamental magnetic dipoles that require no batteries to maintain
their magnetic moments.

When we compare to the electrostatic analogy, Equation 4.87, we recognize a sign flip,
too. The rationale is the same: in the electrostatic case, we do not have to do any
work to maintain the free charges sourcing the applied field ~E at their nominal
positions, while here we do have to do work with a battery to maintain currents at the
nominal values and positions due to the back emf from the changing ~M.
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Magnetic Forces from Magnetic Energy with Fluxes Fixed

To evaluate magnetic forces, we need to consider what happens if we have an
infinitesimal generalized displacement of one of our inductors. Because it is more
straightforward, let’s first consider the fixed fluxes case, which is analogous to holding
charges fixed in electrostatics. If dΦ/dt = 0, then there are no emfs and there is no
need for a battery to do work to drive currents against those emfs. So we only need to
consider dWfield |Φ. We can directly calculate the generalized force from the energy
holding the fluxes fixed:

Fξ

∣∣∣∣∣
Φ

= −
(
∂Wfield

∂ξ

)
Φ

= −1

2

N∑
i,j=1

Φi Φj

∂M−1
ij

∂ξ

∣∣∣∣∣
Φ

= −1

2
ΦT

[
∂

∂ξ
M−1

]
Φ

∣∣∣∣∣
Φ

(7.100)

which is the analogue of Equation 4.90.

It’s not clear at a microscopic level (i.e., what has to happen to the currents) how one
maintains fixed fluxes as inductors are moved around. But, certainly, one is assured
that, if one sets up a system of inductors with currents and then disconnects them
from their batteries, any movement of the loops must keep the fluxes fixed and change
the currents accordingly since there are no batteries to work against the emfs and
maintain the currents. This issue will be revisited in homework and is discussed in
Griffiths Section 8.3 (4th edition).
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Magnetic Forces from Magnetic Energy with Currents Fixed

We follow Jackson §5.16. Let’s approach this case like we did in electrostatics, first
fixing the fluxes (charges), allowing the currents (voltages) to change, and then
returning the currents (voltages) to their original values. The contribution to the
change in energy from the fluxes-fixed portion is

dWfield

∣∣∣
Φ

=
1

2

N∑
i,j=1

Φi Φj d
[
M−1

]
ij

(7.101)

This causes changes in the currents (at fixed flux)

dIi

∣∣∣
Φ

=
N∑

j=1

d
[
M−1

]
ij

Φj (7.102)

If we add back current to return to a fixed-current situation, then changes in fluxes
result:

dΦk

∣∣∣
I

=
N∑

i=1

Mki (−dIi )Φ = −
N∑

i,j=1

Mki d
[
M−1

]
ij

Φj (7.103)
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The above infinitesimal flux changes cause emfs. The currents Ii must be maintained
by batteries in the presence of these emfs. The work done by the batteries over the
infinitesimal time dt needed to make the flux changes is

dW bat
field

∣∣∣
I

= dt
dW bat

field

dt

∣∣∣∣∣
I

= dt
n∑

k=1

(−Ik Ek ) = dt
n∑

k=1

Ik
dΦk

dt

∣∣∣∣∣
I

(7.104)

=
n∑

k=1

Ik dΦk

∣∣∣
I

= −
n∑

i,j,k=1

Ik Mki d
[
M−1

]
ij

Φj (7.105)

= −
n∑

i,j=1

Φi Φj d
[
M−1

]
ij

= −2 dWfield

∣∣∣
Φ

(7.106)

Note that we did not need to worry about the work done by the battery to make the
canceling change in current dIk because this current change would be multiplied
against dt Ek = −dΦk , which is already infinitesimal. We need only consider the
above term consisting of the nominal currents Ik multiplied against dt Ek . We had the
same situation in electrostatics, where we did not consider the dVk dQk terms, only
the Vk dQk terms.
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The total change in the field energy is then obtained by adding the two contributions
to the field energy: the field energy change at fixed flux followed by the energy added
to the field by the batteries as they return the currents to their initial values:

dWfield

∣∣∣
I

= dWfield

∣∣∣
Φ

+ dW bat
field

∣∣∣
I

= dWfield

∣∣∣
Φ
− 2 dWfield

∣∣∣
Φ

= −dWfield

∣∣∣
Φ

(7.107)

We thus find a perfect analogy to the electrostatic case, where we found
dWfield |V = −dWfield |Q . We may thus use the same guidance: the force cannot
depend on whether the situation used is fixed flux or fixed current, and so the forces
calculated at fixed flux and fixed current must be the same. Thus, we must conclude

Fξ
∣∣
I

=

(
∂Wfield

∂ξ

)
I

= −
(
∂Wfield

∂ξ

)
Φ

= Fξ
∣∣
Φ

(7.108)

That is, just like in the electrostatic case, when the battery is involved and we
consider the energy of the entire system, we see we must take the positive gradient of
the field energy at fixed current, rather than considering only the energy of the field
and taking the negative gradient of the field energy at fixed current. The reason these
two gradients are different, with a sign between them, is because the derivative is
calculationally different depending on whether I or Φ is held fixed.
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We can see this works mathematically by trying it:

(
∂Wfield

∂ξ

)
I

=
∂

∂ξ

1

2

N∑
i,j=1

Ii Ij Mij


I

=
1

2

N∑
i,j=1

Ii Ij
∂Mij

∂ξ

=
1

2
IT

[
∂

∂ξ
M

]
I (7.109)

Since ∂M−1/∂ξ = −M−1[∂M/∂ξ]M−1 (one can see this in the same way we proved

the analogous relationship for C), this form yields Equation 7.100 for Fξ
∣∣
Φ

. Thus,

Fξ
∣∣
I

=

(
∂Wfield

∂ξ

)
I

= −
(
∂Wfield

∂ξ

)
Φ

= Fξ
∣∣
Φ

(7.110)
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Maxwell’s Equations

The Inconsistency in our Equations

Let’s write the full set of equations we have come to:

~∇ · ~E =
ρ

εo

~∇ · ~B = 0 (7.111)

~∇× ~E = −∂
~B

∂t
~∇× ~B = µo

~J (7.112)

Now, we know that the divergence of a curl vanishes: it’s a vector identity. We should
check that it holds! For the electric field, we have

~∇ · ~∇× ~E = ~∇ · −∂
~B

∂t
= − ∂

∂t
~∇ · ~B = 0 (7.113)

If we repeat with ~B, we obtain

~∇ · ~∇× ~B = µo ~∇ · ~J = −µo
∂ρ

∂t
6= 0 in general (7.114)
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There is a more physical way to see this by applying Ampere’s Law to a circuit
containing a parallel-plate capacitor. Construct an Ampere’s Law loop around the wire
carrying the current. Ampere’s Law is satisfied because there is magnetic field in an
azimuthal direction around the wire (giving a nonzero line integral of ~B) and there is
current passing through the disk-like surface whose boundary is the contour.

Now pick another surface that passes between the capacitor plates. This is an equally
valid surface; nothing about our proof of Ampere’s Law from the Biot-Savart Law
assumed a particular choice of surface for the Ampere’s Law surface integral. But this
surface has no current intersecting it because it passes through the capacitor!

The reason this problem happens and we never noticed it before is because we have a
non-steady-state case here: charge piles up on the capacitor plates giving ∂ρ/∂t 6= 0;
we had assumed all along during magnetostatics and during our discussion of
induction that ∂ρ/∂t = 0.

While charge cannot jump across the capacitor plates so that there can be a current to
keep Ampere’s Law satisfied, we do recognize that, as charge enters one plate of the
capacitor, an equal amount of charge leaves the other plate, ensuring that dQ/dt = 0
for the capacitor as a whole. This is suggestive of the idea that perhaps there is some
sort of current flowing across the capacitor gap, just not the physical movement of
charges we are used to. This new current will be called the displacement current.
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The Displacement Current

In order to solve the above problem, we need something that will cancel

µo ~∇ · ~J = −µo
∂ρ

∂t
= −µo

∂

∂t

(
εo ~∇ · ~E

)
= −µo ~∇ ·

(
εo
∂ ~E

∂t

)
(7.115)

Let’s just add the necessary term to Ampere’s Law:

~∇× ~B = µo
~J + µo εo

∂ ~E

∂t
(7.116)

Physically, what we have done is defined a second current density so that the
divergence of the total current density ~J + εo ∂ ~E/∂t vanishes. This vanishing is
equivalent to the vanishing of the flux of the total current through any surface, which
is what is needed to solve the problem we pointed out: now the surface integral of the
enclosed current does not depend on the surface chosen.

Was it ok to do this? Does it violate any of our previous conclusions? The only
equation we have modified is the ~∇× ~B equation, so we only need to consider our
study of magnetostatics, where we applied this equation. The addition preserves the
usual behavior of ~∇× ~B for magnetostatics because ∂ ~E/∂t = 0 in magnetostatics.

Why? Two things can result in time dependence of ~E . The first is time dependence in
ρ. But in magnetostatics, we make the steady-state assumption, explicitly requiring no
buildup of charge and hence ∂ρ/∂t = 0. The second is time dependence of ~B, which

can yield time dependence of ~E via Faraday’s Law. But magnetostatics assumes ~B is
constant in time, so there is no worry there.
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The added term is called the displacement current density,

~Jd ≡ εo
∂ ~E

∂t
(7.117)

This is the “current” we foresaw we needed. It is not a physical current carried by
charges, but it represents the fact that, when charge builds up in some point in a
circuit because of a gap that prevents physical current from flowing, it causes a
changing electric field that then pushes charge away from that point, causing current
to flow. One needs a changing electric field because otherwise one would quickly
reach a steady state in which no new charge would move and thus there would be no
source for current. (Maintaining fixed charge on a capacitor does not require current
to flow.) Effectively, the displacement current carries the current across physical gaps
in the circuit. It is therefore justified, both on the basis of units and on physical
intuition, to call it a current. One could even argue that the name is suitable: the
“displacement” current causes the displacement of charges on the two sides of a gap
across which true current cannot flow. (This argument is in disagreement with
Griffiths’ statement that the displacement current has nothing to do with current.)

More importantly, we also now see for the first time that a changing electric field
sources a magnetic field. Unlike with Faraday’s Law, however, there is no negative
sign and the induced magnetic field does not act in such a way as to try to cancel the
changing electric field.
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By construction, ~Jd solves the problem with ~∇ · ~∇× ~B, and we already intuitively
expect it will sove the problem with the integral version of Ampere’s Law, but let’s see
that explicitly. The electric field in the capacitor is

~E =
σ

εo
n̂ =

1

εo

Q

A
n̂ (7.118)

where n̂ is the normal from the positive plate to the negative plate. Therefore, the
displacement current is

~Jd = εo
∂ ~E

∂t
=

1

A

dQ

dt
n̂ =

I

A
n̂ (7.119)

The integral form of Ampere’s Law with the displacement current is therefore∮
C

d ~̀ · ~B = µo Iencl + µo

∫
S(C)

da n̂ · ~Jd (7.120)

If we choose the first surface we discussed earlier, the flat surface in the plane of the
contour C, we get the first term but the second term vanishes, yielding µo I. If we
choose the second surface, the one between the capacitor plates, the first term
vanishes but the second term gives µo I. Thus, the inconsistency seen earlier has been
eliminated.
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Example 7.7: Displacement Current for Coaxial Conductors (Griffiths 7.36)

This is a continuation of the example from earlier. We want to calculate the
displacement current density and the total displacement current and to compare
quantitatively I and Id .

The displacement current density is ~Jd = εo ∂ ~E/∂t:

~Jd (s < a) = εo
∂

∂t
ẑ
µo

2π
ω I0 sinωt ln

a

s
= ẑ µo εo

ω2 I0

2π
cosωt ln

a

s
(7.121)

Let’s integrate over the (s, φ) plane to get the total displacement current:

Id =

∫
S(C)

n̂ · ~JD =

∫ 2π

0
dφµo εo

ω2 I0

2π
cosωt

∫ a

0
s ds ln

a

s

= µo εo ω
2 I0 cosωt

(
a2

[
x2

2

(
ln x − 1

2

)]∣∣∣∣0
x=1

)

= µo εo ω
2 I0

a2

4
cosωt (7.122)

where the indeterminate form x2 ln x as x → 0 must be evaluated by L’Hopital’s rule
(write it as (ln x)/(1/x2)) to be seen to vanish.
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We did not include the displacement current in the calculation of the magnetic field in
the system. Is that a problem?

Well, the problem is, in principle, even worse: we ought to include the displacement
current in the calculation of ~B, but then our calculation of ~E via Faraday’s Law needs
to also be corrected for the ~B due to the displacement current, yielding a correction to
~E , which itself will yield a correction to ~Jd , and so on. The proper way to handle this
is to develop the formalism for electromagnetic waves, where we self-consistently solve
all of Maxwell’s Equations.

For now, it is instructive to look at the relative size of ~Jd and ~J so we can understand
why these corrections are small and thus why our previous results, while not precisely
correct, are an excellent approximation.
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The ratio of the amplitudes of the displacement current and the true current, up to
factors of order unity, is

Id (t)

I(t)
=
µo εo ω2 a2 I0 cosωt

I0 cosωt
=
ω2 a2

c2
=

(a/c)2

1/ω2
(7.123)

The numerator of the final expression is the square of the light travel time over the
length scale of the problem, a. The denominator is, up to a factor (2π)2, the square
of the oscillation period. Thus, this quantity is a measure of how quasistatic the
system is. We have mentioned before that, if a/c � 1/ω is not satisfied, then our
quasistatic approximation is invalid. This calculation corroborates that point: if the
oscillation period becomes comparable to the light travel time so the system is no
longer quasistatic, then the displacement current will approach the real current in
magnitude and our prior calculation of ~B ignoring the displacement current will be a
bad approximation.

The ratio of the displacement current to the true current scales as ω2, so one must go
to high frequency to notice it. Quantitatively, if we ask how high in frequency one
must go to obtain Id/I = 0.01 if we take a = 2 mm as the dimension of the coaxial
conductor, we obtain

ν =
ω

2π
=

1

2π

c

a

√
Id

I
=

1

2π

3 × 1011 mm/s

2 mm

√
0.01 ≈ 2 GHz (7.124)

GHz oscillators were not available in Faraday’s time, so the fact that he did not
observe the effects of the displacement current is not surprising.
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Maxwell’s Equations in Vacuum

Putting it all together, we obtain Maxwell’s Equations:

~∇ · ~E =
ρ

εo

~∇ · ~B = 0 ~∇× ~E = −∂
~B

∂t
~∇× ~B = µo

~J + εo µo
∂ ~E

∂t

(7.125)

These, combined with the force law and continuity:

~F = q
(
~E + ~v × ~B

)
~∇ · ~J = −∂ρ

∂t
(7.126)

summarize classical electrodynamics in vacuum. (The above explains why the ~v × ~B
term is not needed explicitly in the differential version of Faraday’s Law: it is a
consequence of the force law, not of Faraday’s Law.) We may rewrite the first set of
equations in a way that emphasizes better the source terms:

~∇ · ~E =
ρ

εo

~∇ · ~B = 0 ~∇× ~E +
∂ ~B

∂t
= 0 ~∇× ~B − εo µo

∂ ~E

∂t
= µo

~J

(7.127)
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Maxwell’s Equations in Matter

Just as we found it convenient to rewrite the individual equations of electrostatics and
magnetostatics using only the free charges and currents, it makes sense to do the
same for Maxwell’s Equations. The new twists we must take into account are the
time-dependence of ~P and ~M. (We have already considered time dependence of ρ, ~J,
~E , and ~B for quasistatic situations, corresponding to all length scales in the system
small compared to c/ν.)

How to treat ~P is motivated by the expression

ρb = −~∇ · ~P (7.128)

If ~P is time-varying, we expect there to be a current ~Jp associated with the resulting

changes in ρb. In fact, the above expression suggests a good definition of ~Jp :

~Jp =
∂ ~P

∂t
⇐⇒ ~∇ · ~Jp = −~∇ · ∂

~P

∂t
= − ∂

∂t
~∇ · ~P = −∂ρb

∂t
(7.129)

That is, the definition on the left naturally gives the continuity relation between ~Jp

and ρb one would like.
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Intuitively, think of ~Jp as follows. Suppose one has a cylinder of polarizable material of

length dz and cross-sectional area da and with polarization vector ~P = P ẑ. The
definition ρb = −~∇ · ~P implies that there is a bound surface charge
Q = σ da = n̂ · ~P da = ±P da at each end. If, for example, we allow ~P to vary
sinusoidally, ~P = ~P0 sin ωt, which corresponds to the surface charge obeying
Q(t) = P0 da sinωt, then the current is

Ip = ~Jp · n̂ da = P0 daω cosωt =
dQ

dt
(7.130)

as would be necessary to transfer charge back and forth between the two ends of the
cylinder to yield the corresponding time-dependent surface charge. This current is,
literally, the motion of the charges that make up the dipoles as they flip back and
forth sinuisodally.

Do we have to worry about time dependence of ~M? Recall that ~M yields a bound
current density

~Jb = ~∇× ~M (7.131)

Time dependence of ~M yields time dependence of ~Jb, which produces time
dependence of ~B and ~H. These time dependences are now fully accounted for by
Maxwell’s Equations.
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Let’s use all this to rewrite Maxwell’s Equations in terms of free charges and currents.
The charge and current densities have the following parts:

ρ = ρf + ρb = ρf − ~∇ · ~P ~J = ~Jf + ~Jb + ~Jp = ~Jf + ~∇× ~M +
∂ ~P

∂t
(7.132)

Using Gauss’s law, εo ~∇ · ~E = ρf − ~∇ · ~P, and the definition of the displacement field,
~D = εo

~E + ~P, we obtain

~∇ · ~D = ρf (7.133)

Ampere’s Law with the displacement current term is

~∇× ~B = µo

(
~Jf + ~∇× ~M +

∂ ~P

∂t

)
+ εo µo

∂ ~E

∂t
(7.134)

We use ~B = µo

(
~H + ~M

)
as well as ~D = εo

~E + ~P to obtain

~∇× ~H = ~Jf +
∂ ~D

∂t
(7.135)

Now it is clear why the last term is called the displacement current — it is the
apparent current due to the time variation of the displacement vector ~D!
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Faraday’s Law and ~∇ · ~B = 0 are not affected since they do not depend on the free
and bound currents. Thus, Maxwell’s Equations in matter are (again, putting all the
fields on the left sides and the sources on the right):

~∇ · ~D = ρf
~∇ · ~B = 0 (7.136)

~∇× ~E +
∂ ~B

∂t
= 0 ~∇× ~H − ∂ ~D

∂t
= ~Jf (7.137)

Note: the vacuum Maxwell’s Equations (Equations 7.125 and 7.127) remain valid, but
the above are more practically useful. Similarly, Equations 7.126, the Lorentz Force
Law and the continuity equation, remain valid but it is more practically useful to have
a version of the continuity equation involving only free currents (note that
~∇ · ~Jb = ~∇ · ~∇× ~M = 0 by mathematical identity):

~F = q
(
~E + ~v × ~B

)
~∇ · ~Jf = −∂ρf

∂t
(7.138)

These equations must be supplemented by specific constitutive relations between ~E
and ~D and between ~B and ~H to completely specify the behavior (and, of course,
boundary conditions must be provided). For linear media, these relations are:

linear media: ~P = χeεo
~E ~M = χm

~H ~D = ε ~E ~B = µ ~H (7.139)
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Boundary Conditions for Maxwell’s Equations

For both Maxwell’s Equations in vacuum and in matter, we need to review how the
fields change between regions that may be separated by surface charge and current
densities and which may have different polarization and magnetization.

We recall from our prior calculations of this type that the discontinuity in the normal
component of a field is determined by its divergence and the discontinuity in the
tangential component by its curl. We also recall charge and current densities can
become δ-function singular on a boundary but fields cannot. Thus:

I An integral of charge density over a volume containing a boundary reduces, as
the height of the volume normal to the boundary is shrunk to zero, to the
surface charge density integrated over the intersection of the volume with the
boundary. The volume component of the charge density yields zero contribution.

I An integral of a current density through an area reduces, as the width of the
area normal to the boundary shrinks to zero, to the surface current density
passing through the area. The area component of the current density yields zero
contribution.

Section 7.6.5 Boundary Conditions for Maxwell’s Equations Page 533



Section 7.6 Electrodynamics: Maxwell’s Equations

Fields themselves never have singularities like this, so any integral of a field vanishes
as the volume or area is shrunk to zero. Hence, the addition of the displacement
current does not modify the boundary conditions we have calculated in the past! For
Maxwell’s Equations in matter, ~Jp has been introduced but it also cannot have

δ-function singularity because it is based on ~P, which we have defined to be a volume
density of dipoles, and so its contribution to ∂ ~D/∂t is consistent with the above.

Individual electric or magnetic dipoles, or a line or sheet of them, which could in
principle yield δ-function contributions to ~P or ~M and thus to ~D or ~H, cannot be
handled using our macroscopic picture of polarizable and magnetizable materials
because the fields are δ-function like on the dipoles only (e.g., Griffiths Problems 3.48
and 5.61) and our macroscopic picture assumes that it is valid to average over
infinitesimally small volumes. They affect how the field changes at a boundary over an
infinitesimally small area, and so we should not even consider their effect. If we want
to consider their impact on the fields in such regions, they would need to be treated as
free charges and currents and would again not affect the above statements about
fields.
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Motivation and Analogy: Conservation of Charge

Back when we first discussed the Lorentz Force, we discussed conservation of charge
and the continuity equation:

~∇ · ~J(~r) = −∂ρ(~r)

∂t
(8.1)

This is an interesting equation because it enforces local conservation of charge: not
only is there no creation or destruction of charge over the whole universe, there is also
no creation or destruction of charge at a given point. Charge cannot jump from one
place to another without a current flowing to move that charge.

In electrodynamics, we want to ask the same question for energy and momentum
because we want to understand whether the fields we have constructed have true
physical meaning or are just mathematical constructs. Determining whether they carry
energy and momentum is one way to answer that question, and such a consideration
leads to the question of conservation of these quantities.

We will do all this in vacuum. It of course applies to polarizable and magnetizable
materials, too, since our study of them is just a rewriting of our vacuum equations in a
more convenient form.
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Poynting’s Theorem: Conservation of Energy

We have shown that the work required to set up distributions of charge or current is

We =
εo

2

∫
dτ |~E |2 Wm =

1

2µo

∫
dτ |~B|2 (8.2)

Recall that this is the work needed to move new charge in from infinity due to the
repulsion from the charge already there or the work that needs to be done to raise a
current from zero to its final value against a back emf (induced electric field). It is thus
natural to expect that the total energy density in the electric and magnetic fields is

ufield =
1

2

(
εo |~E |2 +

1

µo
|~B|2

)
(8.3)

We will show this is valid by considering the exchange of energy between the fields
and charges/currents. We use the term electromagnetic field to reflect the fact that
the fields influence each other and their energies are on the same footing.
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Given a single particle of charge q acted on by the electromagnetic field, the work
done on it as it moves by d ~̀ is

dW = ~F · d ~̀= q
(
~E + ~v × ~B

)
dt = q ~E · ~v dt (8.4)

Now, if we consider a continuous distribution of charge and current, we may replace
q = ρ dτ and ρ ~v = ~J, giving that the power is (as we saw from Ohm’s Law)

dW

dt
=

∫
dτ ~E · ~J (8.5)

Let’s manipulate the integrand using Ampere’s Law:

~E · ~J =
1

µo

~E ·
(
~∇× ~B

)
− εo

~E · ∂
~E

∂t
(8.6)

One subtlety here: we started off talking about ~J being acted upon by an
electromagnetic field, and now it seems like we are treating ~J as the source of that
field. It is not the sole source of the field because, now with the displacement current
term combined with Faraday’s Law, there can be electric and magnetic fields that are
sourced by each other’s time variation rather than by physical currents. The above
substitution is nevertheless valid because the second term subtracts off the
displacement current term that is due to changing fields rather than physical current:
one should not be able to do work on the displacement current!
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Another subtlety is the issue of whether ~J can create fields that do work on itself.
This is entirely possible, as we saw in the example of the time-varying current in the
coaxial conductor: a time-varying current generated a time-varying magnetic field that
generated a time-varying electric field aligned with the original current. If there were
no battery driving the current, then the work being done by the field on the current
should reduce the energy in the current in exactly the way that would be needed to
conserve energy. Of course, if a battery is involved, then it can supply energy and we
do not expect the energy of the currents and fields alone to be conserved.
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Returning to our expression for ~E · ~J, we can use the product rule
~∇ · (~a× ~b) = ~a · (~∇× ~b)− ~b · (~∇× ~a) to rewrite it and then use Faraday’s Law:

~E · ~J =
1

µo

~B ·
(
~∇× ~E

)
− 1

µo

~∇ ·
(
~E × ~B

)
− εo

~E · ∂
~E

∂t
(8.7)

= − 1

µo

~B · ∂
~B

∂t
− εo

~E · ∂
~E

∂t
− 1

µo

~∇ ·
(
~E × ~B

)
(8.8)

= − ∂

∂t

1

2

(
εo |~E |2 +

1

µo
|~B|2

)
− 1

µo

~∇ ·
(
~E × ~B

)
(8.9)

Incorporating the above and applying the divergence theorem to the last term, we thus
obtain Poynting’s Theorem:

dW

dt
= −

[
d

dt

∫
V

dτ
1

2

(
εo |~E |2 +

1

µo
|~B|2

)
+

∮
S(V)

da n̂ · ~S
]

(8.10)

with the Poynting vector defined to be ~S =
1

µo

(
~E × ~B

)
(8.11)

Poynting’s Theorem says that the work per unit time done on the charges and
currents in a volume V by electromagnetic forces is equal to negative of the sum of
the change per unit time of the energy in the fields and the energy flowing outward
through the surface of V. ~S has units of energy per unit time per unit area and is
considered the energy flux density.
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Another useful form is given by putting the field energy density term on the left side:

dW

dt
+

d

dt

∫
V

dτ
1

2

(
εo |~E |2 +

1

µo
|~B|2

)
= − 1

µo

∮
S(V)

da n̂ · ~S (8.12)

d

dt
(Emech + Efield ) = −

∮
S(V)

da n̂ · ~S (8.13)

The rate of change of the total energy in the volume is given by the flux of the
Poynting vector through the boundary of the volume — this much more explicitly puts
mechanical and field energy on the same footing and shows that both can be
transported by the Poynting flux.

Note that this allays our fears about a current doing work on itself: while it may do
so, energy remains conserved as long as one takes into account the field energy.
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We may write both versions in a local form by recognizing that the volume being
integrated over is arbitrary. If we define umech(~r) to be the density of mechanical
energy (W =

∫
V dτ umech) as a function of position and

ufield =
1

2

(
εo |~E(~r)|2 +

1

µo
|~B(~r)|2

)
(8.14)

to be the energy density of the electromagnetic field, then our two versions of
Poynting’s theorem yield the local relations (after converting the surface integral of ~S
back to a volume integral using the divergence theorem):

∂umech(~r)

∂t
= −∂ufield (~r)

∂t
− ~∇ · ~S(~r) ⇐⇒ ∂

∂t
[umech(~r) + ufield (~r)] = −~∇ · ~S(~r)

(8.15)

This is the kind of local conservation theorem we wanted, relating the rate of change
of a density (here the energy density) to the divergence of a current density (here the
Poynting vector).

When there is no change in mechanical energy — e.g., in empty space — then we can
specialize the above to obtain the continuity equation for the energy of the
electromagnetic field:

umech = 0 :
dEfield

dt
= −

∮
S(V)

da n̂ · ~S ⇐⇒ ~∇ · ~S(~r) = −∂ufield (~r)

∂t
(8.16)
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Example 8.1: Power Transported Down a Coaxial Cable (Griffiths Problem 8.1)

Consider a coaxial cable with central conductor of diameter a and outer conductor of
radius b and zero thickness. A static current flows along +ẑ on the central conductor
and back along −ẑ on the outer shell. We used a similar geometry in a previous
example, but with a time-varying current in that case. The inner conductor is held at
voltage V and the outer conductor at V = 0 (ground) at one end of the cylinder, and
there is a resistive sheet of sheet conductivity σ� (definition to be provided) capping
the other end.

Because the inner conductor is assumed to have infinite conductivity, there can be no
electric field inside and thus all the current must flow on the surface (consequence of

Ohm’s Law: ~J = 0 because ~E = 0). The calculation of the magnetic field is thus the
same as the prior example in the same geometry with time-varying current. The
magnetic field between the conductors is

~B(s) =
µo I

2π s
φ̂ (8.17)

where I is the current due to V (value to be determined). In the prior example, we did
not explicitly have a voltage on the inner conductor (effectively, the conductivity of
the sheet at the end was infinite).
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Here, since we have such a voltage, there is a line charge density on the inner
conductor and a radial electric field. You are no doubt familiar with the Gauss’ Law
calculation of this configuration, which yields

~E(s) =
λ

2π εo s
ŝ (8.18)

Let’s find λ by matching to the applied voltage. The potential and field are

V (s) ∝ ln s V = V (a)− V (b) =
λ

2π εo
ln

b

a
=⇒ ~E(s) =

V

s ln b
a

ŝ (8.19)

The Poynting vector is

~S =
1

µo

~E × ~B =
IV

2π s2 ln b
a

ẑ (8.20)

The energy and energy current are between the conductors, not in them! The power
flowing down the cable is found by integrating the Poynting vector over the
cross-sectional area where the fields are:

P =

∫
S

da n̂ · ~S(s) =

∫ b

a
s ds

∫ 2π

0
dφ

IV

2π s2 ln b
a

=
IV

ln b
a

∫ b

a

ds

s
= IV (8.21)
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Let’s calculate the power dissipated in the resistive sheet at the end. The sheet does
not disturb the potential because the sheet continues to satisfy Laplace’s equation
with the same boundary conditions in s: V (a) = V , V (b) = 0. Therefore, our electric
field above is valid in the conducting sheet, and the surface current density and total
current are

~K(s) = σ� ~E(s) =
σ� V

s ln b
a

ŝ (8.22)

where σ� is the conductivity per square, which can be thought of as σ� = limt→0 σ/t
where σ is the usual conductivity and t is the thickness of the sheet. The total current
is

I =

∫ 2π

0
s dφK(s) = 2π s K(s) =

2π σ� V

ln b
a

(8.23)
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We do not need it, but it is interesting to note that the resistance is

R =
V

I
=

ln b
a

2π σ�
(8.24)

The power dissipated in the resistor is

P =

∫
S

da ~K(s) · ~E(s) =

∫ b

a
s ds

∫ 2π

0
dφσ�

(
V

s ln b
a

)2

(8.25)

= 2π σ�

(
V

ln b
a

)2 ∫ b

a

ds

s
=

2π σ�V 2

ln b
a

= IV = I2R =
V 2

R
(8.26)

as expected since this is the power coming down the central conductor and it cannot
go beyond the resistive sheet since the fields go to zero out there (no current or
charge density beyond the sheet).
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The Maxwell Stress Tensor: Conservation of Linear Momentum
(Skip)

We showed in the previous section that fields carry energy and that one must account
for that energy in order for conservation of energy to hold. The natural next question
to ask is whether the electromagnetic fields carry momentum. The matter and fields
are related by the fields exerting forces on the matter, so let’s use these forces to
connect the momentum of the matter and fields. The Lorentz Force Law is

d ~Pmech

dt
= ~F = q

(
~E + ~v × ~B

)
(8.27)

Integrating this over a charge and current density gives

d ~Pmech

dt
=

∫
V

dτ
(
ρ ~E + ~J × ~B

)
(8.28)

Using Maxwell’s Equations, we can write this purely in terms of the fields:

d ~Pmech

dt
=

∫
V

dτ

(
εo

[
~∇ · ~E

]
~E +

[
1

µo

~∇× ~B − εo
∂ ~E

∂t

]
× ~B

)
(8.29)

We recall the same subtleties as for energy: ρ and ~J now being taken as source of
fields, and the last term subtracts off the displacement current since the magnetic field
exerts no force on it.
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After a remarkable amount of manipulation that we will not reproduce here—see
Griffiths §8.2.2 or Jackson §6.8—one arrives at

d ~Pmech

dt
=

∫
V

dτ

[
~∇ · T − εo µo

∂ ~S

∂t

]
(8.30)

where T is the Maxwell Stress Tensor

T (~r) =
3∑

i,j=1

Tij (~r) r̂i r̂j Tij (~r) = εo

[
Ei Ej −

1

2
δij E 2

]
+

1

µo

[
Bi Bj −

1

2
δij B2

]
(8.31)

(we do not show the fields’ dependence on position for brevity) and where the vector
dot products and divergence of T are given by

~a · T =
3∑

i=1

ai Tij r̂j T · ~a =
3∑

j=1

r̂i Tij aj
~∇ · T =

3∑
i=1

r̂j
∂

∂ri

Tij (8.32)

Note that Tij is symmetric in its indices. We are not terribly concerned in this course
with the transformation properties of scalars, vectors, and tensors under coordinate
system rotations, so we will not comment further on what a tensor is. Recall we
encountered the quadrupole moment tensor earlier.
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Using the divergence theorem on the first term and moving the time derivative in the
second term outside the integral, we obtain

d ~Pmech

dt
=

∮
S(V)

da n̂(~r) · T (~r)− εo µo
d

dt

∫
V

dτ ~S(~r) (8.33)

This equation states that the rate of change of the mechanical momentum in a
volume V is equal to the integral over the surface of the volume of the stress tensor’s
flux through that surface minus the rate of change of the volume integral of the
Poynting vector.

Let us consider a situation in which the second term vanishes and we are left with the
flux of T over the surface. This justifies the naming of T : it gives the force per unit
area due to the electromagnetic fields, or the stress. Tij is the force per unit area
acting in the ith direction on an area element who normal is in the jth direction. The
diagonal elements are pressures and the off-diagonal forces are shears. More generally,
the force per unit area in the n̂1 direction on an area element whose normal is in the
n̂2 direction (not necessarily parallel or perpendicular to n̂1), or vice versa, is

F (~r , n̂1, n̂2)

A
= n̂1 · T (~r) · n̂2 (8.34)
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We may abstract out mechanical momentum and force densities ~pmech(~r) and ~f (~r);
i.e., per unit volume expressions:

~pmech(~r) ≡ ρm(~r)~v(~r) ~f (~r) ≡ ~∇ · T (~r)− εo µo
∂ ~S(~r)

∂t
(8.35)

where ρm(~r) is the mass density
~v(~r) is the velocity field of the mass density

We may conclude that these quantities are related locally because of the arbitrariness
of the volume over which we are integrating:

∫
V

dτ
∂~pmech

∂t
=

d

dt

∫
V

dτ ~pmech =
d ~Pmech

dt
=

∫
V

dτ ~f (8.36)

=⇒ ∂~pmech(~r)

∂t
= ~f (~r) = ~∇ · T (~r)− εo µo

∂ ~S(~r)

∂t
(8.37)

This is the kind of conservation law we wanted to get to, a local one that relates the
rate of change of the local momentum density to the divergence of the local stress
tensor and the rate of change of the Poynting vector. It can also be viewed as a local
force law, the generalization of Newton’s Second Law.
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As we did with the energy, and motivated by the appearance of a time derivative on
the right side, we may rewrite the above as

d

dt

(
~Pmech + εo µo

∫
V

dτ ~S

)
=

∮
S(V)

da n̂ · T (8.38)

We are thus motivated to define the linear momentum density and linear momentum
of the electromagnetic field as

~pfield (~r) ≡ ~g(~r) ≡ εo µo
~S(~r) = εo

~E(~r)× ~B(~r) ~Pfield =

∫
V

dτ ~g (8.39)
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With that definition, we obtain

d

dt

(
~Pmech + ~Pfield

)
=

∮
S(V)

da n̂ · T ⇐⇒ ∂

∂t
[~pmech(~r) + ~g(~r)] = ~∇ · T (~r)

(8.40)

We thus see that the rate of change of the total (mechanical + field) linear
momentum in a volume is given by the integral of the stress tensor over the surface, or
that the rate of change of the total momentum density at a point is given by the
divergence of the stress tensor at that point. The stress tensor is thus seen to be the
momentum current density in the same way that ~J is the electric current density and
~S is the energy current density (up to a sign): all satisfy local continuity equations.

The second equation can also be considered a generalized force law, where now we
consider the rate of change of the momentum of both the particles and the fields, with
~∇ · T being the “force” that acts on both.

When there is no change in mechanical momentum—e.g., in empty space—we obtain
the continuity equation for the linear momentum of the electromagnetic field:

~pmech = 0 :
d ~Pfield

dt
=

∮
S(V)

da n̂ · T ⇐⇒ ~∇ · T (~r) =
∂~g(~r)

∂t
(8.41)
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It is interesting to note that both ~S and T play two roles:

I ~S is the power per unit area transported by the electromagnetic field, while
~g = εo µo

~S is the linear momentum per unit volume stored in the field. This
intimate connection between energy and momentum for the electromagnetic
field reflects the photon’s masslessness in quantum field theory.

I Similarly, T plays two roles; both as a force per unit area (the stress) applied by
the electromagnetic field as well as the momentum current density carried by
the electromagnetic field (with a minus sign; units of momentum per unit area
per unit time). This makes sense: for the electromagnetic field to exert a force,
it must provide momentum.

Note this issue of the sign. If we wanted T to have a continuity equation like current
and energy, where the rate of change of the conserved quantity is equal to the
negative of the divergence of the current (loss of conserved quantity corresponds to
outflow of current), we would have had to define T with the opposite sign. But the
sign given ensures that T can be used to calculate forces without a sign flip. This
makes sense: T pointing into a volume should have a positive surface integral so that
it indicates it is adding momentum to the volume. The only way out of this choice
would be if we wanted to flip the sign and interpret T as the force that the

mechanical system exerts on the field (and then the continuity equation would behave
the way we want), but that would be nonintuitive since we generally want to calculate
the forces the field exerts on the mechanical system.
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Example 8.2: Magnetic Force Between Two Spinning Charged Hemispheres
(Griffiths Problem 8.3)

Given two hemispherical shells of radius R and uniform surface charge density σ
spinning at angular frequency ω about the z axis, what is the magnetic force between
the north and south hemispheres? (Griffiths Example 8.2 calculates the electrostatic
force for a similar situation.)

We have calculated the magnetic field for a similar configuration when we calculated
the field of the uniformly magnetized sphere, which was

~B(r ≤ R) =
2

3
µo M ẑ (8.42)

~B(r ≥ R) =
µo

4π

3 ( ~m · r̂)r̂ − ~m

r3
with ~m =

4

3
π R3M ẑ (8.43)

The surface current was ~K = φ̂M sin θ. In the new problem, the surface current is
~K = φ̂ σ ω R sin θ, so we just need to replace M with σ ω R, giving

~B(r ≤ R) =
2

3
µo σ ω R ẑ (8.44)

~B(r ≥ R) =
µo

4π

3 ( ~m · r̂)r̂ − ~m

r3
with ~m =

4

3
π R4σ ω ẑ (8.45)
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To calculate the force, we would nominally expect to calculate the flux of the stress
tensor over the hemisphere (the plane at z = 0 for r < R and the hemispherical shell
r = R at z > 0). However, the derivation implies that any volume containing the
matter on which we would like to calculate the force suffices for the calculation. So
let’s do the calculation more easily by setting the surface to be the z = 0 plane. The
force will only be in the z direction by symmetry, so we need only the T3i components.
Moreover, because the plane we want to do the calculation for has a surface normal
only in the z direction, we can restrict to the T33 component:

T33 =
1

2µo
B2

z =⇒ T33(r < R, z = 0) =
2

9
µo σ

2ω2 R2 (8.46)

T33(r > R, z = 0) =
µo σ2 ω2 R8

18 r6
(8.47)

We can do the area integral easily (n̂ = −ẑ because we want the force on the upper
half space and −ẑ is the outward surface normal):

Fz = −
∫ 2π

0
dφ

[∫ R

0
r dr T33(r < R, z = 0) +

∫ ∞
R

r dr T33(r > R, z = 0)

]
(8.48)

= −2π

[
R2

2

2

9
µo σ

2ω2 R2 +
µo σ2 ω2 R8

72 R4

]
= −π

4
µo σ

2 R4 ω2 (8.49)
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Conservation of Angular Momentum (Skip)

One can go back and write analogues of everything we did for linear momentum for
the case of angular momentum. The key point is that the manipulations that led us to
Equation 8.30 did not rely on any transformations of integrals; we just needed to
manipulate the integrand. Those manipulations remain valid, but now with a ~r × in
front inside the integral. That is, we start with

d~Lmech

dt
= ~N = ~r × ~F = ~r × q

(
~E + ~v × ~B

)
(8.50)

Again, we integrate over the charge and current density to obtain

d~Lmech

dt
=

∫
V

dτ ~r ×
(
ρ ~E + ~J × ~B

)
(8.51)

Then we perform the same manipulations of the expression in parentheses as before,
obtaining

d~Lmech

dt
=

∫
V

dτ

[
~r ×

(
~∇ · T

)
− εo µo

∂

∂t

(
~r × ~S

)]
(8.52)
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Let’s manipulate the expression ~r ×
(
~∇ · T

)
: we would obviously like to turn it into a

pure divergence. Using Equation 8.32,

~r ×
(
~∇ · T (~r)

)
= ~r ×

3∑
i,j=1

r̂j
∂Tij

∂ri

=
3∑

i,j,k=1

r̂k × r̂j rk
∂Tij

∂ri

(8.53)

=
3∑

i,j,k=1

r̂k × r̂j

(
∂

∂ri

rk Tij

)
−

3∑
i,j,k=1

r̂k × r̂j Tij
∂ rk

∂ri

(8.54)

=
3∑

i,j,k=1

∂

∂ri

(
rk r̂k × Tij r̂j

)
−

3∑
i,j,k=1

r̂k × r̂j Tij δik (8.55)

= −
3∑

i,j,k=1

∂

∂ri

(
Tij r̂j × rk r̂k

)
−

3∑
i,j,k=1

r̂k × r̂j Tkj (8.56)

= ~∇ ·
(
−T (~r)× ~r

)
= ~∇ ·M(~r) with M(~r) = −T (~r)× ~r

(8.57)

(we did not show the explicit ~r dependence for the intermediate steps for brevity)
where the second term in the penultimate line vanishes because it is the product of
quantities that are antisymmetric in j and k (r̂k × r̂j ) and symmetric in j and k (Tkj ).
M is the analogue of the stress tensor, but now for torque, which we will call the
torque tensor. We reordered ~r and T to obtain −T × ~r rather than ~r × T so the
coordinate index of the divergence matches up with the first coordinate index of M.
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Explicitly (undoing the reordering of T and ~r so we get ~r×, not ×~r , below, and not

showing explicitly the position dependence for brevity):

M = −T × ~r = −
3∑

i,j,k=1

Tij r̂i r̂j × rk r̂k = −
3∑

i,j,k,m=1

r̂i r̂m εmjk Tij rk (8.58)

=
3∑

i,j,k,m=1

r̂m r̂i rk εmkj

(
εo

[
Ej Ei −

1

2
δji E 2

]
+

1

µo

[
Bj Bi −

1

2
δji B2

])
(8.59)

= εo

[
~r × ~E

]
~E +

1

µo

[
~r × ~B

]
~B − 1

2

3∑
i,k,m=1

r̂m r̂i rk εmki

[
εo E 2 +

1

µo
B2

]
(8.60)

= εo

[
~r × ~E

]
~E +

1

µo

[
~r × ~B

]
~B +

1

2

[
εo E 2 +

1

µo
B2

] 0 z −y
−z 0 x

y −x 0


(8.61)

Aside: In Ph106a, one shows that angular momentum is more rigorously written as an
antisymmetric second-rank (pseudo)tensor, but, because such an object has only 3
independent quantities, it can be reduced to a (pseudo)vector (first-rank tensor) using

cross-product notation. That applies here to both ~Lmech and to ~r × ~S . By
extrapolation, M may be written as an a completely antisymmetric third-rank

(pseudo)tensor. Since we do not use any of the transformation properties of these
objects under rotations in this course, there is no need to use these higher-rank
objects and so we stick with the less sophisticated vector notation for cross products.
But this concept will return when we consider the relativistic generalization of M
because the reduction to a second-rank tensor is only possible in three dimensions.
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With our expression in terms of the divergence of M, we may write the analogue of
Equation 8.30 for torque:

d~Lmech

dt
=

∫
V

dτ

[
~∇ ·M− εo µo

∂

∂t

(
~r × ~S

)]
(8.62)

Using the divergence theorem, we may rewrite as we did the force equation

d~Lmech

dt
=

∮
S(V)

da n̂(~r) · M(~r)− εo µo
d

dt

∫
V

dτ ~r × ~S(~r) (8.63)

We thus have a relation between the rate of change of mechanical angular momentum
and the flux of the torque tensor M into/out of the volume and the rate of the
change of integral of the funny quantity containing the Poynting vector.
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Let’s turn this into a differential version. We need to define the mechanical
momentum density and the torque density:

~̀
mech(~r) ≡ ~r × ~pmech(~r) = ~r × ρm(~r)~v(~r) ~ntorque (~r) ≡ ~∇ ·M(~r)− εo µo

∂

∂t

(
~r × ~S(~r)

)
(8.64)

Then we have∫
V

dτ
∂~̀mech

∂t
=

d

dt

∫
V

dτ ~̀mech =
d~Lmech

dt
=

∫
V

dτ ~ntorque (8.65)

=⇒ ∂~̀mech(~r)

∂t
= ~ntorque (~r) = ~∇ ·M(~r)− εo µo

∂

∂t

(
~r × ~S(~r)

)
(8.66)

We thus obtain a local conservation law that relates the rate of change of the local
angular momentum density to the divergence of the local torque tensor and the rate of
change of the rate of the change of the funny quantity containing the Poynting vector.
It can also be viewed as a local torque version of Newton’s Second Law.
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As before, it is natural to define a field angular momentum density and move it to the
left side of the above equations:

~̀
field (~r) = ~r × ~g(~r) = εo µo ~r × ~S(~r) = εo ~r × (~E(~r)× ~B(~r)) ~Lfield =

∫
V

dτ ~̀field

(8.67)
With that definition, we obtain

d

dt

(
~Lmech + ~Lfield

)
=

∮
S(V)

da n̂ · M ⇐⇒ ∂

∂t

(
~̀

mech(~r) + ~̀
field (~r)

)
= ~∇ ·M(~r)

(8.68)

Again, we obtain an integral conservation equation relating the rate of change of the
total angular momentum in a volume to the integral of the torque tensor over the
surface and a local conservation equation relating the rate of change of the total
angular momentum density to the divergence of a current density, here now the
angular momentum current density (which has units of angular momentum per unit
area per unit time). The second equation is a generalized local “torque” equation.

Note the choice of sign for M follows the same convention as for the stress tensor: it
gives a continuity equation with a sign flip but is the correct sign for torque. Be aware
that this sign convention is the opposite of Jackson’s (his Problem 6.9).

Note that field angular momentum is not the same as photon spin or circular
polarization; we will come back to this later when we discuss polarization of EM waves.
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Introduction and Study Guidelines

Maxwell’s Equations have in them the seeds of self-propagating disturbances in the
electromagnetic field: though time-varying charges and currents must generate the
waves, they can propagate on their own once initiated. So, in this section, we will
develop the theory of such waves propagating in either free space or linear dielectric
media, without any free charges. Later on, we will discuss radiation, the process by
which time-varying charges and currents generate electromagnetic waves.

We deviate from Griffiths’ ordering of topics because you have seen the wave equation
three times before, in Ph1c, Ph2/12a, and Ph106a, so we do not need to reintroduce
it from scratch. Let’s just launch into it and bring the formalism of waves in as we go.

Page 564



Section 9.2 Electromagnetic Waves: Electromagnetic Waves in Vacuum

Electromagnetic Waves in Vacuum

From Maxwell’s Equations to the Wave Equation

As noted earlier, we will consider Maxwell’s Equations in free space with no sources:

~∇ · ~E = 0 ~∇ · ~B = 0 ~∇× ~E +
∂ ~B

∂t
= 0 ~∇× ~B − εo µo

∂ ~E

∂t
= 0 (9.1)

These equations couple ~E and ~B, so let’s try to find uncoupled equations by
eliminating ~B from the ~∇× ~E equation and ~E from the ~∇× ~B equation by taking the
curl again and using one of our standard vector identities:

~∇×
(
~∇× ~E

)
= ~∇×

(
−∂

~B

∂t

)
~∇×

(
~∇× ~B

)
= εo µo ~∇×

(
−∂

~E

∂t

)
~∇
(
~∇ · ~E

)
−∇2 ~E = −εo µo

∂

∂t
~∇× ~B ~∇(~∇ · ~B)−∇2 ~B = −εo µo

∂

∂t
~∇× ~E

∇2 ~E = εo µo
∂2 ~E

∂t2
∇2 ~B = εo µo

∂2 ~B

∂t2

where ~∇ · ~E = 0 because there is no charge density. These are copies of the wave
equation.
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Specifically, these are component-by-component versions of the equation

∇2f (~r , t) =
1

v2

∂2

∂t2
f (~r , t) (9.2)

One can see by substitution that any function of the form

f (~r , t) = g(w) with w = ~k · ~r − ω t (9.3)

satisfies the wave equation. To prove this, we first need to calculate the derivatives:

∇2f (~r , t) =
3∑

i=1

∂2f

∂r2
i

=
3∑

i=1

∂

∂ri

dg

dw

∂w

∂ri

=
3∑

i=1

∂

∂ri

dg

dw
ki (9.4)

=
3∑

i=1

ki
d2g

dw2

∂w

∂ri

=
3∑

i=1

k2
i

d2g

dw2
= |~k|2 d2g

dw2
(9.5)

∂2

∂t2
f (~r , t) =

∂

∂t

dg

dw

∂w

∂t
=

∂

∂t

dg

dw
(−ω) = −ω d2g

dw2

∂w

∂t
= ω2 d2g

dw2
(9.6)

The wave equation is satisfied by the assumed form if

|~k|2 =
ω2

v2
(9.7)
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The above condition says we can rewrite the argument, eliminating either ω or |~k|, as

w = ±~k · ~r − |~k| v t =
ω

v

(
±k̂ · ~r − v t

)
(9.8)

where we have chosen ω and v to be always nonnegative while ~k is allowed to take on
any sign and direction. We can see that surfaces of constant w are given by

δw = 0 =⇒ ω
(
±k̂ · δ~r − v δt

)
= 0 =⇒ ±k̂ · δ~r

δt
= v (9.9)

That is, the surfaces of constant w propagate in space along the direction ±k̂ at
speed v . This implies that the “shape function” g(w) propagates at this speed.
Returning to our electromagnetic wave equations, we thus see that these waves in the
electric and magnetic fields propagate at speed v = 1/

√
εo µo which is now, by

definition, the speed of light, denoted by c.

The interpretation of ω and k = |~k| are not clear yet, and in fact they are no longer
strictly necessary (the factor ω/v = k could be absorbed into g(w) now that we know
ω and k are not independent), but they will become so below when we consider
sinusoidal waves.
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General Properties of Solutions to the EM Wave Equations

We can use Maxwell’s Equations to derive some general properties about
electromagnetic waves. Many of these connect to the fact that ~E and ~B are vector
quantities. We will begin by assuming the waves are sinusoidal solutions of the most
general form allowed so far

~E(~r , t) = ~E0 cos
(
~kE · ~r − ωE t + δE

)
(9.10)

~B(~r , t) = ~B0 cos
(
~kB · ~r − ωB t + δB

)
(9.11)

where we have allowed different ω, propagation directions k̂, and phase shifts δ
because nothing has restricted that freedom yet. (The sign freedom on ~k has been

absorbed into k̂.) We have assumed sinusoidal solutions because they form a complete
basis for solution of the wave equation, so any solution can be decomposed in terms of
them.

This sinusoidal assumption now enables an interpretation of ω and k. The time
dependence at a given point in space has angular frequency ω, frequency ν = ω/2π,
and period T = 1/ν. The quantity k is the propagation constant, and the spatial
dependence implies a wavelength λ = 2π/k = v/ν. When we consider more general
solutions that are the sums of sinusoids, these interpretations fail again because the
sum does not correspond to single ω and k values.
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With the sinusoidal assumption, we can demonstrate the following:

I Transversality
We can rewrite the divergence equations:

0 = ~∇ · ~E =
d ~E

dw
· ~∇w = −ωE

c
k̂E · ~E0 sin

(
~kE · ~r − ωE t + δE

)
(9.12)

0 = ~∇ · ~B =
d ~B

dw
· ~∇w = −ωB

c
k̂B · ~B0 sin

(
~kB · ~r − ωB t + δB

)
(9.13)

For the above equations to hold at all points in space, it is necessary for ~E0 and
~B0 to be perpendicular to their respective propagation directions. EM waves are
thus transverse waves: the field disturbance is in the direction perpendicular to
propagation.

It is somewhat remarkable that the same equations that relate fields to charges
(and, in particular, imply there are no magnetic point charges) also show that,
in the absence of charges, the fields are transverse. This turns out to be a very
profound fact. You may recall from Ph106b PS1, when we considered a
Coulomb law in which the potential included an exponential decay. In this case,
~∇ · ~E 6= 0 even when charges are not present. The non-vanishing of ~∇ · ~E would
permit a longitudinal component to the wave. In quantum field theory, a
non-vanishing transverse component implies the particle corresponding to the
field has mass and the static potential for the field is short range with decay
length λ ∝ 1/M.
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I Orthogonality and Equality of ~k, ω, and δ
Let’s write the curl equations. First, we take the necessary derivatives:

~∇× ~E =
3∑

i,j,k=1

εijk r̂i
∂Ek

∂rj

=
3∑

i,j,k=1

εijk r̂i
dEk

dw

∂w

∂rj

=
3∑

i,j,k=1

εijk r̂i
dEk

dw
kE ,j = ~kE ×

d ~E

dw
=
ωE

c
k̂E ×

d ~E

dw

= −ωE

c
k̂E × ~E0 sin

(
~kE · ~r − ωE t + δE

)
(9.14)

∂ ~E

∂t
=

d ~E

dw

∂w

∂t
= −ωE

d ~E

dw
= ωE

~E0 sin
(
~kE · ~r − ωE t + δE

)
(9.15)

~B has similar derivatives. Plugging the above into Faraday’s Law and Ampere’s
Law:

−ωE

c
k̂E × ~E0 sin

(
~kE · ~r − ωE t + δE

)
= −ωB

~B0 sin
(
~kB · ~r − ωB t + δB

)
(9.16)

ωB

c
k̂B × ~B0 sin

(
~kB · ~r − ωB t + δB

)
= −ωE

c2
~E0 sin

(
~kE · ~r − ωE t + δE

)
(9.17)
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We can conclude two things from these equations:

I In order for the equality to hold at all points in space and at all times, the
arguments of the sin functions on the two sides must be the same,
~kE = ~kB , ωE = ωB , and δE = δB

I ~k, ~E0, and ~B0 form a mutually orthogonal set of vectors

In the end, we therefore have the following relation between ~E and ~B:

~E(~r , t) = ~E0 cos
(
~k · ~r − ω t + δ

)
(9.18)

~B(~r , t) = ~B0 cos
(
~k · ~r − ω t + δ

)
(9.19)

~B0 =
1

c
k̂ × ~E0 ⇐⇒ ~E0 = −c k̂ × ~B0 (9.20)
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One note on the behavior of independent polarizations. Given a propagation direction
k̂, we can pick two directions, n̂1 and n̂2, to form a basis for ~E . A natural choice is to
require n̂1 × n̂2 = k̂, which also implies k̂ × n̂1 = n̂2. Then ~E0 = E1 n̂1 + E2 n̂2 and
~B0 = B1 n̂1 + B2 n̂2. E1 and E2 are the two possible polarizations of the electric field.
(Of course, we can pick any n̂1 we want; once n̂1 has been picked, then the

polarization directions are set.) The curl of ~E relation then implies

B2 = ~B0 · n̂2 =
1

c
~E0 · n̂1 =

E1

c
B1 = ~B0 · n̂1 = − 1

c
~E0 · n̂2 = −E2

c
(9.21)

We thus see that, aside from picking consistent k̂, n̂1, and n̂2, there is no connection
between the (E1,B2) pair and the (E2,B1) pair. The waves in the two complementary
polarizations can have different ω and thus different k. They are two completely
independent waves. There is no fixed relationship between the waves in the two
polarizations, and they can get out of phase with each other as they propagate if they
have different ω.

If we consider two waves that have the same ω, then the two waves propagate
together — their relative phase does not change with time or position. But there
remains no condition connecting E1 and E2, or B1 and B2, so there is no requirement
that the complementary polarizations have matching amplitude or phase (δ). We will
see later that this independence of the two polarization amplitudes and phases can be
used to generate a diverse set of possible polarizations: linear, circular, and elliptical.
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Rewriting EM Waves using the Auxiliary Field

It is interesting to note at this point that ~B is not the most natural field quantity to
work with: it is smaller than ~E by a factor c, which is large. If we instead use
~H = ~B/µo , then we obtain

~H0 =
1

Z0
k̂ × ~E0 Z0 =

√
µo

εo
(9.22)

The quantity Z0 ≈ 377 Ω is known as the impedance of free space and has units of
resistance (impedance). We see that ~H is now only a factor of 377 smaller than ~E .

We also recall that ~H has units of surface current density. This foreshadows the way ~H
will be related to the surface currents that the electric field drives in
polarizable/magnetizable media and in conductors.
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Energy and Momentum in Electromagnetic Waves

The energy density in an electromagnetic wave, now using |~B| = |~E |/c = |~E |√εo µo , is

u =
1

2

(
εo E 2 +

1

µo
B2

)
=

1

2

(
εo E 2 +

εo µo

µo
E 2

)
= εo E 2 (9.23)

The energy flux per unit area is the Poynting vector:

~S =
1

µo

~E × ~B =
E 2

c µo
k̂ = c εo E 2 k̂ = c u k̂ (9.24)

Thus, we see that the energy transported by the electromagnetic wave travels at the
speed of light, just as the wave does. The momentum density vector is

~g = εo µo
~S =

u

c
k̂ =

εo E 2

c
k̂ (9.25)

Note that the energy flux and momentum density differ by a factor of c2, not just c
(as we would expect for a relation between energy and momentum) because one is a
flux (energy/area/time) and the other is a density (momentum/volume); the difference
in spatial and temporal units introduces another factor of velocity between the two.
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We can also write down the stress tensor. First, consider the special case k̂ = k ẑ so
n̂1 = x̂ and n̂2 = ŷ . Consider a wave polarized along x̂ . Then the fields are

~E = E x̂ ~B = B ŷ =
E

c
ŷ =
√
µo εo E ŷ (9.26)

The stress tensor is

T11 = εo

(
E 2 − 1

2
E 2

)
+

1

µo

(
−1

2
B2

)
= 0 (9.27)

T22 = εo

(
−1

2
E 2

)
+

1

µo

(
B2 − 1

2
B2

)
= 0 (9.28)

T33 = εo

(
−1

2
E 2

)
+

1

µo

(
−1

2
B2

)
= −u (9.29)

T12 = T13 = T23 = 0 (9.30)

=⇒ T = −u ẑ ẑ (9.31)

The stress tensor for the complementary polarization is the same.
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It is reasonable to extrapolate from the above that the generic stress tensor (now
making the time dependence explicit) is

T = − k̂ k̂ εo E 2
0 cos2

(
~k · ~r − ω t + δ

)
(9.32)

One explanation of the reason for the negative sign is that T is the negative of the
momentum current density.

From the stress tensor, we can calculate the radiation pressure, the force per unit area
that would be applied to an object that absorbs the electromagnetic wave. Recall that
n̂1 · T · n̂2 gives the force acting in the n̂1 direction on a surface element whose normal

is in the n̂2 direction. Since T ∝ −k̂ k̂, the force is only nonzero (and positive) in the

k̂ direction on an area element whose outward normal is in the −k̂ direction. (Recall
how, in our example of using the stress tensor to calculate the force between the two
spinning charged hemispheres, the surface normal was in the −ẑ direction for
calculating the force on the hemisphere in the upper half-space.) The radiation

pressure in the k̂ direction is then

Pressure = k̂ · T · −k̂ = E 2
0 cos2

(
~k · ~r − ω t + δ

)
= u (9.33)

We will see later that, if the wave is not absorbed but reflected, the wave maintains its
amplitude |~E | but its k̂ reverses sign, implying that the momentum transfer and thus
the pressure are increased by a factor of 2.
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It is not particularly useful to write down the angular momentum density and the
angular momentum tensor for a plane wave. They are position dependent, reflecting
the fact that, if a charged particle absorbs energy and momentum from a plane wave
at some nonzero distance from the origin, it acquires a linear momentum ~p and thus
an angular momentum ~r × ~p. The latter carries no information beyond that of the
former. Only if the wave has a nontrivial dependence of ~E and ~B on position — for
example, ~E × ~B ∝ φ̂ — is the angular momentum of the wave interesting. Such waves
are beyond the scope of our current discussion of plane waves.
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Time Averaging for Plane Waves

For sinusoidally oscillating plane waves, it is standard to take time averages of
quantities. Obviously, the fields themselves time-average to zero. But energy and
momentum do not:

〈u(~r0)〉=
〈
εo E 2

0 cos2
(
~k · ~r0 − ω t + δ

)〉
=

1

2
εo E 2

0 (9.34)〈
~S(~r0)

〉
=

1

2
c εo E 2

0 k̂ 〈~g(~r0)〉= 1

2

εo E 2
0

c
k̂

〈
T (~r0)

〉
= −1

2
εo E 2

0 k̂ k̂ (9.35)

The average power per unit area transported by the wave is the intensity

I =
〈
|~S |
〉

=
1

2
c εo E 2

0 (9.36)

Note that the magnitude refers to the vector magnitude. Starting with the next slide,
when we consider complex notation for fields, we will always define ~S in such a way as
to be real, so the magnitude will continue to refer to vector magnitude even for
complex fields.
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Complex Notation for Plane Waves

For the sake of convenience in manipulation, we will from now on use complex
notation for plane waves,

~E(~r , t) = n̂R
[

Ẽ0 e i(~k·~r−ω t)
]

~B(~r , t) =
k̂ × n̂

c
R
[

Ẽ0 e i(~k·~r−ω t)
]

(9.37)

Ẽ0 = E0 e iδ (9.38)

where Ẽ0 is now a complex number into which we have absorbed the phase factor e iδ

and R means “take the real part.” We will not carry along tildes on the vectors ~E and
~E0 because it would be too cumbersome for the notation. It will be clear from context
whether we mean the complex or real fields.

To calculate quadratic quantities like u, ~S , ~g , and T with full space- and
time-dependence requires that one first take the real part and then apply the
previously provided formulae for these quadratic quantities.
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Fortunately, if one is only interested in time averages, there is a simple extension to
the prescription for time averages involving complex conjugation and multiplication by
a factor of 1/2:

〈u(~r0)〉= 1

4

(
εo
~E∗ · ~E +

1

µo

~B∗ · ~B
)

pw vac
=

1

2
εo E 2

0 (9.39)〈
~S(~r0)

〉
= c2 〈~g(~r0)〉= 1

2µo
R
(
~E∗ × ~B

)
pw vac

=
1

2
c εo E 2

0 k̂ (9.40)〈(
T
)

ij
(~r0)

〉
=

1

2

[
εo

(
R
[
E∗i Ej

]
− 1

2
δij
~E∗ · ~E

)
+

1

µo

(
R
[
B∗i Bj

]
− 1

2
δij
~B∗ · ~B

)]
(9.41)

= −1

2
εo E 2

0 k̂ · r̂i k̂ · r̂j (9.42)

where the first expression for each quantity is always valid (even later for conductors

when ~E and ~B can be out of phase) while the final evaluation is only valid for the

plane waves in vacuum we have been considering (indicated by the
pw vac

= notation).
The factors of 1/2 in front come from time-averaging. Note that there may be spatial
dependence remaining in the result if the wave amplitude has a dependence on
position outside of the sinusoidal wave-propagation factor (not possible for plane EM
waves, but it will happen for radiation). It is not necessary to take the real part for u
and certain pieces of T because they are manifestly real.
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Types of Polarization

So far, we have only discussed linear polarization, wherein the direction of ~E at a
particular point in space stays constant over time (aside from sign flips). However, by
combining two orthogonal linear polarizations with appropriate complex coefficients,
one can obtain more “complex” behavior.

The simplest extension is to consider what happens when you add two orthogonal
polarizations of the same amplitude but with a possible phase shift:

~E(~r , t) =
Ẽ0√

2

(
n̂1 + n̂2 e iδ

)
e i(~k·~r−ω t) (9.43)

If δ = 0 or δ = π, then one just obtains a linear polarization in the direction
(n̂1 ± n̂2) /

√
2.
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But, if δ = ±π/2, then the wave polarized along n̂2 is π/2 out of phase with the wave
polarized along n̂1: when the n̂1 mode has zero amplitude, the n̂2 mode has maximum
amplitude and vice versa. If we take the real part, it is clear what is going on:

R
[
~E(~r , t)

]
=

E0√
2

[
n̂1 cos

(
~k · ~r − ω t + δ0

)
+ n̂2 cos

(
~k · ~r − ω t + δ0 ±

π

2

)]
(9.44)

=
E0√

2

[
n̂1 cos

(
~k · ~r − ω t + δ0

)
∓ n̂2 sin

(
~k · ~r − ω t + δ0

)]
(9.45)

The polarization vector maintains an amplitude E0/
√

2 but it sweeps around in a circle
with period T = 2π/ω: this is circular polarization. To understand which direction

the polarization vector rotates, let’s look into the wave (toward −k̂) while sitting at a
fixed point in space (fixed ~r). The time-varying component of the arguments of the
sinusoids is −ω t, and thus, as time evolves positively, the arguments of the sinusoids
evolve negatively. For δ = +π/2, the sign on the second term is negative, the rotation
is counterclockwise, and the wave is called left circularly polarized. Conversely,
δ = −π/2 yields clockwise rotation and is called right circularly polarized. One also
speaks in terms of helicity, in which case one considers the rotation of the polarization
relative to the direction of motion using the right-hand rule. The left circularly
polarized wave has positive helicity because the polarization vector rotates around +k̂
according to the right-hand rule (thumb along +k̂). The right circularly polarized
wave has negative helicity because it obeys the left-hand rule.
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The next possibility is to allow unequal coefficients:

~E(~r , t) = Ẽ0

(
α n̂1 + β n̂2 e iδ

)
e i(~k·~r−ω t) α2 + β2 = 1 (9.46)

When δ = 0 or δ = π, we again obtain linear polarization, but now making an angle
θ = tan−1(±β/α) with the n̂1 axis (sign is the same as sign of e iδ = ±1).

If we now consider δ = ±π/2 and α 6= β, we obtain an elliptically polarized wave: at a
fixed point, the polarization vector sweeps out an ellipse whose semimajor and
semiminor axes are along n̂1 and n̂2. If δ is an arbitrary value, then the semimajor and
semiminor axes are rotated from the n̂1–n̂2 system by an angle related to δ. We also
obtain an elliptically polarized wave if we consider δ 6= 0, ±π/2, or π but α = β,

It turns out that elliptically polarized waves are easier to analyze if they are rewritten
in terms of the two helicities (or circular polarizations). That is, if we take as our
polarization basis and field decomposition

n̂± =
1√
2

(
n̂1 ± e i π/2 n̂2

)
~E(~r , t) =

(
Ẽ+ n̂+ + Ẽ− n̂−

)
e i(~k·~r−ω t) (9.47)

then the parameters of the ellipse traced out by the polarization vector are:

r e i θ =
Ẽ−

Ẽ+

semiminor axis

semimajor axis
=

∣∣∣∣1− r

1 + r

∣∣∣∣ angle wrt n̂1 =
θ

2
(9.48)

where the angle is measured looking into the wave (i.e., looking in the −k̂ direction).
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It is interesting to note that a circularly polarized plane wave is, in terms of angular
momentum, no different from a linearly polarized plane wave according to the
definition of the angular momentum density, Equation 8.67:

~̀
field = εo ~r ×

(
~E × ~B

)
=
εo E 2

0

c
~r × k̂ (9.49)

One can see that the angular momentum has to do with the relative orientation of the
propagation direction and the position vector, not with the nature of the polarization.
This reflects the fact that, in quantum mechanics, the helicity of the wave becomes
the intrinsic spin angular momentum of the photon, while the quantity calculated
above is the orbital angular momentum of the photon and has to do with the spatial
distribution of the EM wave, in much the same way that orbital angular momentum in
quantum mechanics is determined by the spatial distribution of the wavefunction and
is unassociated with the particle’s spin.
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Electromagnetic Waves in Perfectly Nonconducting, Linear,
Isotropic Matter

Propagation in Linear, Isotropic Media

Maxwell’s Equations in matter in the absence of free charges and currents are

~∇ · ~D = 0 ~∇ · ~B = 0 ~∇× ~E +
∂ ~B

∂t
= 0 ~∇× ~H − ∂ ~D

∂t
= 0 (9.50)

As noted earlier, we need relations between ~D and ~E and between ~H and ~B to make
use of these. If we assume linear, isotropic media (ε and µ scalars, not tensors)

~D = ε ~E ~B = µ ~H (9.51)

then the equations reduce to

~∇ · ~E = 0 ~∇ · ~B = 0 ~∇× ~E +
∂ ~B

∂t
= 0 ~∇× ~B − ε µ ∂

~E

∂t
= 0 (9.52)

These are the same as our equations in vacuum, leading to the same kinds of waves,
but with the modification

v =
1
√
ε µ

=
c

n
with n =

√
ε µ

εo µo
= index of refraction (9.53)
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This mathematical transformation reflects a remarkable fact: the complicated
polarization and magnetization of the medium occurring as the wave passes through it
do nothing except change its speed and, we shall see, affect the wave amplitude. This
is a consequence of the linearity of the medium we assume.

Most materials in which waves can propagate (as we will see, this means materials

that do not have high conductivities) have µ ≈ µo , so n ≈
√
ε/εo =

√
εr . Since εr > 1

in general (there are very few paraelectric materials that enhance the field rather than
act to decrease it), light generally goes more slowly in dielectrics. Though, creation of
metamaterials in which the effective index of refraction is less than unity (over a
limited frequency range via use of resonant structures) is an area of active research!

The relation between ~B and ~E , Equation 9.20, is modified in the obvious manner:

~B(~r , t) =
1

v
k̂ × ~E(~r , t) (9.54)

As we did for free space, we also have that ~H and ~E are related by an impedance,
Z =

√
µ/ε, which we now call the wave impedance. With it, we have

~H(~r , t) =
~B(~r , t)

µ
=

1

Z
k̂ × ~E(~r , t) (9.55)

Recall that ~H carries units of surface current density.
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Energy density, the Poynting vector, the momentum vector, and the stress tensor take
on unsurprising forms given the above modification:

u =
1

2

(
εE 2 +

1

µ
B2

)
= εE 2 ~S =

1

µ
~E∗ × ~B = v εE 2 k̂ = v u k̂ (9.56)

~g = ε µ ~S =
εE 2

v
k̂ =

u

v
k̂ T = −εE 2 k̂ k̂ = −u k̂ k̂ (9.57)

The time averages for a sinusoidal wave of (real) amplitude E0 are (now including
intensity):

〈u〉= 1

2
εE 2

0

〈
~S
〉

=
1

2µ

〈
~E∗ × ~B

〉
=

1

2
v εE 2

0 k̂ = v 〈u〉 k̂ (9.58)

I =
〈
|~S |
〉

=
1

2
v εE 2

0 = v 〈u〉 (9.59)

〈~g〉= ε µ
〈
~S
〉

=
1

2

εE 2
0

v
k̂ =
〈u〉
v

k̂
〈
T
〉

= −1

2
εE 2

0 k̂ k̂ = −〈u〉 k̂ k̂ (9.60)

Since v > c is possible, we cannot so easily interpret the above equations as implying
that energy propagates at speed v . You know from Ph2/12 that energy in a wave
propagates with the group velocity vg = dω/dk and so it becomes important to know
v(ω). We will build an approximate physical model for v(ω) in §??.
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Boundary Conditions

Recalling our boundary conditions for linear media (Equations 2.61, 4.23, ??, ??) and
applying our assumption of no free currents, we have (n̂ = normal from 1 to 2, ŝ =
any tangential vector at interface):

n̂ · ε1
~E1 = n̂ · ε2

~E2 n̂ · ~B1 = n̂ · ~B2 ŝ · ~E1 = ŝ · ~E2 ŝ ·
~B1

µ1
= ŝ ·

~B2

µ2
(9.61)

We will apply these to calculate the reflection and refraction of EM waves at the
interface between different linear media. We will write the magnetic field boundary
condition in terms of ~H because it makes them look like the electric field boundary
conditions, which will be convenient during our discussion of reflection and refraction:

n̂ · µ1
~H1 = n̂ · µ2

~H2 ŝ · ~H1 = ŝ · ~H2 (9.62)
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Reflection and Refraction: General Considerations

We will skip past the case of normal incidence, which you studied in Ph1c, but we will
consider it as a special case of our generic results.

Assume we have a wave with propagation vector ~ki propagating in medium 1 and
incident on an interface with medium 2, with normal n̂ pointing from 1 into 2. We
expect there to be reflected and transmitted waves. We write these all as

~Ei (~r , t) = ~E0,i e i(~ki ·~r−ωt) ~Hi (~r , t) =
1

Z1
k̂i × ~Ei (9.63)

~Er (~r , t) = ~E0,r e i(~kr ·~r−ωt) ~Hr (~r , t) =
1

Z1
k̂r × ~Er (9.64)

~Et (~r , t) = ~E0,t e i(~kt ·~r−ωt) ~Ht (~r , t) =
1

Z2
k̂t × ~Et (9.65)

We use ~H instead of ~B because the boundary conditions are more easily written in
terms of ~H. We have already applied the condition that the frequencies of the three
waves are identical. This is necessary for any boundary conditions connecting them to
be applicable at all time. Then

ki v1 = kr v1 = kt v2 = ω =⇒ kr = ki kt =
v1

v2
ki =

n2

n1
ki (9.66)

Since k = 2π/λ, this implies the wavelength differs by n2/n1 in the two media!
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Now, consider the kinds of matching conditions we will write down. They must always
hold over all ~r in the interface. In particular, if we take the interface to be the z = 0
plane, with n̂ = ẑ, then the matching conditions that must hold at all x and y are of
the form

( ) e i(~ki ·(xx̂+yŷ)−ωt) + ( ) e i(~kr ·(xx̂+yŷ)−ωt) = ( ) e i(~kt ·(xx̂+yŷ)−ωt) (9.67)

In order for these to hold at arbitrary x and y , it must be that

x̂ · ~ki = x̂ · ~kr = x̂ · ~kt (9.68)

ŷ · ~ki = ŷ · ~kr = ŷ · ~kt (9.69)

Electromagnetic Waves in Perfect Matter (cont.)

Now, let’s apply our electromagnetic boundary conditions to figure out how the
amplitudes and energies are related. We may drop all the exponential factors because
we have established that they are identical at the interface. We need to define two
new vectors:

bu =
�ki × bn
|�ki × bn|

=
�kr × bn
|�kr × bn|

=
�kt × bn
|�kt × bn|

bw = bn × bu (1.58)

It doesn’t matter which bk we use to define bu because we argued earlier that all of them
have the same projection in the plane of the interface, which is the piece that matters
for the above cross product. bu is also normal to all the �k, so it is perpendicular to the
plane in which the propagation vectors lie. bw is then the obvious third direction and it
defines the plane that the �k live in. Thus, our boundary conditions can be written as

bn · �1
“
�E0,i + �E0,r

”
= bn · �2 �E0,r

»
bu
bw

–
·

“
�E0,i + �E0,r

”
=

»
bu
bw

–
· �E0,t (1.59)

bn ·
“
�B0,i + �B0,r

”
= bn · �B0,r

»
bu
bw

–
· 1

µ1

“
�B0,i + �B0,r

”
=

»
bu
bw

–
· 1

µ2

�B0,t

(1.60)

where the stacking of bu and bw is just meant to indicate that those equations apply
with either bu on both sides or bw on both sides.
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Electromagnetic Waves in Perfect Matter (cont.)

Now, let’s apply our electromagnetic boundary conditions to figure out how the
amplitudes and energies are related. We may drop all the exponential factors because
we have established that they are identical at the interface. We need to define two
new vectors:

bu =
�ki × bn
|�ki × bn|

=
�kr × bn
|�kr × bn|

=
�kt × bn
|�kt × bn|

bw = bn × bu (1.58)

It doesn’t matter which bk we use to define bu because we argued earlier that all of them
have the same projection in the plane of the interface, which is the piece that matters
for the above cross product. bu is also normal to all the �k, so it is perpendicular to the
plane in which the propagation vectors lie. bw is then the obvious third direction and it
defines the plane that the �k live in. Thus, our boundary conditions can be written as

bn · �1
“
�E0,i + �E0,r

”
= bn · �2 �E0,r

»
bu
bw

–
·

“
�E0,i + �E0,r

”
=
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bw

–
· �E0,t (1.59)

bn ·
“
�B0,i + �B0,r

”
= bn · �B0,r

»
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bw

–
· 1

µ1

“
�B0,i + �B0,r

”
=

»
bu
bw
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· 1

µ2

�B0,t

(1.60)

where the stacking of bu and bw is just meant to indicate that those equations apply
with either bu on both sides or bw on both sides.
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Electromagnetic Waves in Perfect Matter (cont.)

Each propagation vector makes an angle with the interface normal. We label them θi ,
θr , and θt . The projection of a given wavevector parallel to the normal is therefore
|�k| cos θi while the projection perpendicular to the normal — i.e., in the plane of the

interface — is |�k| sin θi . Since we have argued that these projections into the plane of
the interface are equal, we thus have

ki sin θi = kr sin θr = kt sin θt (1.55)

Now, using our relations kr = ki and kt = n2
n1

ki , we may conclude:

law of reflection: θi = θr (1.56)

law of refraction (Snell’s Law): n1 sin θi = n2 sin θt (1.57)

Note that none of these results depending on knowing anything about Maxwell’s
Equations or boundary conditions: these are generic properties of any waves, which is
why they hold for sound waves, phonons, etc.
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Electromagnetic Waves in Perfect Matter (cont.)

Now, let’s apply our electromagnetic boundary conditions to figure out how the
amplitudes and energies are related. We may drop all the exponential factors because
we have established that they are identical at the interface. We need to define two
new vectors:

bu =
�ki × bn
|�ki × bn|

=
�kr × bn
|�kr × bn|

=
�kt × bn
|�kt × bn|

bw = bn × bu (1.58)

It doesn’t matter which bk we use to define bu because we argued earlier that all of them
have the same projection in the plane of the interface, which is the piece that matters
for the above cross product. bu is also normal to all the �k, so it is perpendicular to the
plane in which the propagation vectors lie. bw is then the obvious third direction and it
defines the plane that the �k live in. Thus, our boundary conditions can be written as

bn · �1
“
�E0,i + �E0,r

”
= bn · �2 �E0,r

»
bu
bw

–
·

“
�E0,i + �E0,r

”
=

»
bu
bw

–
· �E0,t (1.59)

bn ·
“
�B0,i + �B0,r

”
= bn · �B0,r

»
bu
bw

–
· 1

µ1

“
�B0,i + �B0,r

”
=

»
bu
bw

–
· 1

µ2

�B0,t

(1.60)

where the stacking of bu and bw is just meant to indicate that those equations apply
with either bu on both sides or bw on both sides.
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Electromagnetic Waves in Perfect Matter (cont.)

Now, let’s apply our electromagnetic boundary conditions to figure out how the
amplitudes and energies are related. We may drop all the exponential factors because
we have established that they are identical at the interface. We need to define two
new vectors:

bu =
�ki × bn
|�ki × bn|

=
�kr × bn
|�kr × bn|

=
�kt × bn
|�kt × bn|

bw = bn × bu (1.58)

It doesn’t matter which bk we use to define bu because we argued earlier that all of them
have the same projection in the plane of the interface, which is the piece that matters
for the above cross product. bu is also normal to all the �k, so it is perpendicular to the
plane in which the propagation vectors lie. bw is then the obvious third direction and it
defines the plane that the �k live in. Thus, our boundary conditions can be written as

bn · �1
“
�E0,i + �E0,r

”
= bn · �2 �E0,r

»
bu
bw

–
·

“
�E0,i + �E0,r

”
=

»
bu
bw

–
· �E0,t (1.59)

bn ·
“
�B0,i + �B0,r

”
= bn · �B0,r

»
bu
bw

–
· 1

µ1

“
�B0,i + �B0,r

”
=

»
bu
bw

–
· 1

µ2

�B0,t

(1.60)

where the stacking of bu and bw is just meant to indicate that those equations apply
with either bu on both sides or bw on both sides.
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Electromagnetic Waves in Perfect Matter (cont.)

Each propagation vector makes an angle with the interface normal. We label them θi ,
θr , and θt . The projection of a given wavevector parallel to the normal is therefore
|�k| cos θi while the projection perpendicular to the normal — i.e., in the plane of the

interface — is |�k| sin θi . Since we have argued that these projections into the plane of
the interface are equal, we thus have

ki sin θi = kr sin θr = kt sin θt (1.55)

Now, using our relations kr = ki and kt = n2
n1

ki , we may conclude:

law of reflection: θi = θr (1.56)

law of refraction (Snell’s Law): n1 sin θi = n2 sin θt (1.57)

Note that none of these results depending on knowing anything about Maxwell’s
Equations or boundary conditions: these are generic properties of any waves, which is
why they hold for sound waves, phonons, etc.
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Electromagnetic Waves in Perfect Matter (cont.)

Each propagation vector makes an angle with the interface normal. We label them θi ,
θr , and θt . The projection of a given wavevector parallel to the normal is therefore
|�k| cos θi while the projection perpendicular to the normal — i.e., in the plane of the

interface — is |�k| sin θi . Since we have argued that these projections into the plane of
the interface are equal, we thus have

ki sin θi = kr sin θr = kt sin θt (1.55)

Now, using our relations kr = ki and kt = n2
n1

ki , we may conclude:

law of reflection: θi = θr (1.56)

law of refraction (Snell’s Law): n1 sin θi = n2 sin θt (1.57)

Note that none of these results depending on knowing anything about Maxwell’s
Equations or boundary conditions: these are generic properties of any waves, which is
why they hold for sound waves, phonons, etc.
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�ki

These conditions imply that if you project all three propagation vectors into the plane
of the interface (whose normal is n̂), then their projections in that plane are equal.
Furthermore, there is a plane formed by this common xy projection of the propagation
vectors and the normal n̂ (which is normal to the projection plane), and all three
vectors lie in this plane.
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Section 9.3 Electromagnetic Waves: Electromagnetic Waves in Perfectly Nonconducting, Linear, Isotropic Matter

Each propagation vector makes an angle with the interface normal, n̂. We label them
θi , θr , and θt . The projection of a given wavevector parallel to the normal is therefore
|~k| cos θ while the projection perpendicular to the normal (in the plane of the

interface) is |~k| sin θ. Since we have argued that these projections into the plane of the
interface are equal, we thus have

ki sin θi = kr sin θr = kt sin θt (9.70)

Now, using our relations kr = ki and kt = n2
n1

ki , we may conclude:

law of reflection: θi = θr (9.71)

law of refraction (Snell’s Law): n1 sin θi = n2 sin θt (9.72)

Snell’s Law tells us that the light ray bends toward the normal if n2 > n1, and it bends
away from the normal if n2 < n1.

Total internal reflection occurs when n2 < n1 and sin θi > n2/n1: in this case,
sin θt > 1 and there is no solution for kt . This happens because, when n2 < n1, then
the magnitude kt < ki , so then the projection ki sin θi can be (but doesn’t have to be,
depending on the value of sin θi ) too large for kt to match. We will study this case in
more detail in a homework problem.

Note that none of these results depending on knowing anything about Maxwell’s
Equations or boundary conditions: these are generic properties of any waves, which is
why they hold for sound waves, phonons, etc. They result only from matching time
and space dependences at the boundary.
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Section 9.3 Electromagnetic Waves: Electromagnetic Waves in Perfectly Nonconducting, Linear, Isotropic Matter

Reflected and Transmitted Field Relations

Now, let’s apply our electromagnetic boundary conditions to figure out how the
amplitudes and energies are related. We may drop all the exponential factors because
we have established that they are identical at the interface. We need to define two
new unit vectors:

û ∝ n̂ × k̂i = n̂ × k̂r = n̂ × k̂t

ŵ = û × n̂ (9.73)

Electromagnetic Waves in Perfect Matter (cont.)

Now, let’s apply our electromagnetic boundary conditions to figure out how the
amplitudes and energies are related. We may drop all the exponential factors because
we have established that they are identical at the interface. We need to define two
new vectors:

bu =
�ki × bn
|�ki × bn|

=
�kr × bn
|�kr × bn|

=
�kt × bn
|�kt × bn|

bw = bn × bu (1.58)

It doesn’t matter which bk we use to define bu because we argued earlier that all of them
have the same projection in the plane of the interface, which is the piece that matters
for the above cross product. bu is also normal to all the �k, so it is perpendicular to the
plane in which the propagation vectors lie. bw is then the obvious third direction and it
defines the plane that the �k live in. Thus, our boundary conditions can be written as

bn · �1
“
�E0,i + �E0,r

”
= bn · �2 �E0,r

»
bu
bw

–
·

“
�E0,i + �E0,r

”
=

»
bu
bw

–
· �E0,t (1.59)

bn ·
“
�B0,i + �B0,r

”
= bn · �B0,r

»
bu
bw

–
· 1

µ1

“
�B0,i + �B0,r

”
=

»
bu
bw

–
· 1

µ2

�B0,t

(1.60)

where the stacking of bu and bw is just meant to indicate that those equations apply
with either bu on both sides or bw on both sides.
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Electromagnetic Waves in Perfect Matter (cont.)

Now, let’s apply our electromagnetic boundary conditions to figure out how the
amplitudes and energies are related. We may drop all the exponential factors because
we have established that they are identical at the interface. We need to define two
new vectors:

bu =
�ki × bn
|�ki × bn|

=
�kr × bn
|�kr × bn|

=
�kt × bn
|�kt × bn|

bw = bn × bu (1.58)

It doesn’t matter which bk we use to define bu because we argued earlier that all of them
have the same projection in the plane of the interface, which is the piece that matters
for the above cross product. bu is also normal to all the �k, so it is perpendicular to the
plane in which the propagation vectors lie. bw is then the obvious third direction and it
defines the plane that the �k live in. Thus, our boundary conditions can be written as

bn · �1
“
�E0,i + �E0,r

”
= bn · �2 �E0,r

»
bu
bw

–
·

“
�E0,i + �E0,r

”
=

»
bu
bw

–
· �E0,t (1.59)

bn ·
“
�B0,i + �B0,r

”
= bn · �B0,r

»
bu
bw

–
· 1

µ1

“
�B0,i + �B0,r

”
=

»
bu
bw

–
· 1

µ2

�B0,t

(1.60)

where the stacking of bu and bw is just meant to indicate that those equations apply
with either bu on both sides or bw on both sides.
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Electromagnetic Waves in Perfect Matter (cont.)

Now, let’s apply our electromagnetic boundary conditions to figure out how the
amplitudes and energies are related. We may drop all the exponential factors because
we have established that they are identical at the interface. We need to define two
new vectors:

bu =
�ki × bn
|�ki × bn|

=
�kr × bn
|�kr × bn|

=
�kt × bn
|�kt × bn|

bw = bn × bu (1.58)

It doesn’t matter which bk we use to define bu because we argued earlier that all of them
have the same projection in the plane of the interface, which is the piece that matters
for the above cross product. bu is also normal to all the �k, so it is perpendicular to the
plane in which the propagation vectors lie. bw is then the obvious third direction and it
defines the plane that the �k live in. Thus, our boundary conditions can be written as

bn · �1
“
�E0,i + �E0,r

”
= bn · �2 �E0,r

»
bu
bw

–
·

“
�E0,i + �E0,r

”
=

»
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bw

–
· �E0,t (1.59)
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�B0,i + �B0,r
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= bn · �B0,r
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µ1
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�B0,i + �B0,r
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=
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µ2

�B0,t

(1.60)

where the stacking of bu and bw is just meant to indicate that those equations apply
with either bu on both sides or bw on both sides.
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Electromagnetic Waves in Perfect Matter (cont.)

Now, let’s apply our electromagnetic boundary conditions to figure out how the
amplitudes and energies are related. We may drop all the exponential factors because
we have established that they are identical at the interface. We need to define two
new vectors:

bu =
�ki × bn
|�ki × bn|

=
�kr × bn
|�kr × bn|

=
�kt × bn
|�kt × bn|

bw = bn × bu (1.58)

It doesn’t matter which bk we use to define bu because we argued earlier that all of them
have the same projection in the plane of the interface, which is the piece that matters
for the above cross product. bu is also normal to all the �k, so it is perpendicular to the
plane in which the propagation vectors lie. bw is then the obvious third direction and it
defines the plane that the �k live in. Thus, our boundary conditions can be written as

bn · �1
“
�E0,i + �E0,r

”
= bn · �2 �E0,r

»
bu
bw

–
·

“
�E0,i + �E0,r

”
=

»
bu
bw

–
· �E0,t (1.59)

bn ·
“
�B0,i + �B0,r

”
= bn · �B0,r

»
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· 1

µ1

“
�B0,i + �B0,r

”
=

»
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µ2

�B0,t

(1.60)

where the stacking of bu and bw is just meant to indicate that those equations apply
with either bu on both sides or bw on both sides.
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Electromagnetic Waves in Perfect Matter (cont.)

Each propagation vector makes an angle with the interface normal. We label them θi ,
θr , and θt . The projection of a given wavevector parallel to the normal is therefore
|�k| cos θi while the projection perpendicular to the normal — i.e., in the plane of the

interface — is |�k| sin θi . Since we have argued that these projections into the plane of
the interface are equal, we thus have

ki sin θi = kr sin θr = kt sin θt (1.55)

Now, using our relations kr = ki and kt = n2
n1

ki , we may conclude:

law of reflection: θi = θr (1.56)

law of refraction (Snell’s Law): n1 sin θi = n2 sin θt (1.57)

Note that none of these results depending on knowing anything about Maxwell’s
Equations or boundary conditions: these are generic properties of any waves, which is
why they hold for sound waves, phonons, etc.
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It doesn’t matter which k̂ we use to define û because we argued earlier that all of
them lie in the same plane with n̂, so the direction normal to the plane containing
them and n̂ is independent of which one is used. (The equality of the three
cross-products follows from Equations 9.68 and 9.69.) Clearly, then, û is perpendicular
to this plane in which n̂ and the propagation vectors lie. ŵ is then the obvious third
direction, and it and n̂ define the plane that the k̂ live in.

Section 9.3.4 Reflected and Transmitted Field Relations Page 594
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With these definitions, our boundary conditions can be written as

n̂ · ε1

(
~E0,i + ~E0,r

)
= n̂ · ε2

~E0,t

[
û
ŵ

]
·
(
~E0,i + ~E0,r

)
=

[
û
ŵ

]
· ~E0,t (9.74)

n̂ · µ1

(
~H0,i + ~H0,r

)
= n̂ · µ2

~H0,t

[
û
ŵ

]
·
(
~H0,i + ~H0,r

)
=

[
û
ŵ

]
· ~H0,t (9.75)

where the stacking of û and ŵ is just meant to indicate that those equations apply
with either û on both sides or ŵ on both sides.

Now, we must consider two cases for the polarization of the incoming wave: in
(parallel to) the plane of incidence or perpendicular to the plane of incidence, also
termed transverse magnetic (TM) and transverse electric (TE) for obvious reasons:

in (parallel to) the
plane of incidence

or transverse magnetic (TM)

~E0,i · û = 0 ~H0,i ·
[

n̂
ŵ

]
= 0 (9.76)

perpendicular to the
plane of incidence

or transverse electric (TE)

~E0,i ·
[

n̂
ŵ

]
= 0 ~H0,i · û = 0 (9.77)
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In (parallel to) the plane of incidence (TM):

When ~E0,i is in the plane of incidence, we can decompose it into pieces along ŵ and
along n̂. There is freedom on the sign convention, and we choose

~E0,i = Ẽ0,i (ŵ cos θi − n̂ sin θi ) (9.78)

We pick the conventions for ~E0,r and ~E0,t so that all three electric field vectors align

for normal incidence. (The ~H orientations are then defined by this choice and the

direction of the corresponding k̂ vectors.) With these choices, we then have

(remember, ~H = k̂ × ~E/Z):

~E0,r = Ẽ0,r (ŵ cos θr + n̂ sin θr ) (9.79)

~E0,t = Ẽ0,t (ŵ cos θt − n̂ sin θt ) (9.80)

~H0,i =
Ẽ0,i

Z1
û (9.81)

~H0,r = − Ẽ0,r

Z1
û (9.82)

~H0,t =
Ẽ0,t

Z2
û (9.83)

Electromagnetic Waves in Perfect Matter (cont.)

Now, let’s apply our electromagnetic boundary conditions to figure out how the
amplitudes and energies are related. We may drop all the exponential factors because
we have established that they are identical at the interface. We need to define two
new vectors:

bu =
�ki × bn
|�ki × bn|

=
�kr × bn
|�kr × bn|

=
�kt × bn
|�kt × bn|

bw = bn × bu (1.58)

It doesn’t matter which bk we use to define bu because we argued earlier that all of them
have the same projection in the plane of the interface, which is the piece that matters
for the above cross product. bu is also normal to all the �k, so it is perpendicular to the
plane in which the propagation vectors lie. bw is then the obvious third direction and it
defines the plane that the �k live in. Thus, our boundary conditions can be written as

bn · �1
“
�E0,i + �E0,r

”
= bn · �2 �E0,r

»
bu
bw

–
·

“
�E0,i + �E0,r

”
=

»
bu
bw

–
· �E0,t (1.59)

bn ·
“
�B0,i + �B0,r

”
= bn · �B0,r

»
bu
bw

–
· 1

µ1

“
�B0,i + �B0,r

”
=

»
bu
bw

–
· 1

µ2

�B0,t

(1.60)

where the stacking of bu and bw is just meant to indicate that those equations apply
with either bu on both sides or bw on both sides.
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Electromagnetic Waves in Perfect Matter (cont.)

Now, let’s apply our electromagnetic boundary conditions to figure out how the
amplitudes and energies are related. We may drop all the exponential factors because
we have established that they are identical at the interface. We need to define two
new vectors:

bu =
�ki × bn
|�ki × bn|

=
�kr × bn
|�kr × bn|

=
�kt × bn
|�kt × bn|

bw = bn × bu (1.58)

It doesn’t matter which bk we use to define bu because we argued earlier that all of them
have the same projection in the plane of the interface, which is the piece that matters
for the above cross product. bu is also normal to all the �k, so it is perpendicular to the
plane in which the propagation vectors lie. bw is then the obvious third direction and it
defines the plane that the �k live in. Thus, our boundary conditions can be written as

bn · �1
“
�E0,i + �E0,r

”
= bn · �2 �E0,r

»
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= bn · �B0,r

»
bu
bw

–
· 1
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(1.60)

where the stacking of bu and bw is just meant to indicate that those equations apply
with either bu on both sides or bw on both sides.
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Electromagnetic Waves in Perfect Matter (cont.)

Each propagation vector makes an angle with the interface normal. We label them θi ,
θr , and θt . The projection of a given wavevector parallel to the normal is therefore
|�k| cos θi while the projection perpendicular to the normal — i.e., in the plane of the

interface — is |�k| sin θi . Since we have argued that these projections into the plane of
the interface are equal, we thus have

ki sin θi = kr sin θr = kt sin θt (1.55)

Now, using our relations kr = ki and kt = n2
n1

ki , we may conclude:

law of reflection: θi = θr (1.56)

law of refraction (Snell’s Law): n1 sin θi = n2 sin θt (1.57)

Note that none of these results depending on knowing anything about Maxwell’s
Equations or boundary conditions: these are generic properties of any waves, which is
why they hold for sound waves, phonons, etc.
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Electromagnetic Waves in Perfect Matter (cont.)

With these definitions, our boundary conditions can be written as

bn · �1
“
�E0,i + �E0,r

”
= bn · �2 �E0,r

»
bu
bw

–
·

“
�E0,i + �E0,r

”
=

»
bu
bw

–
· �E0,t (1.61)

bn ·
“
�B0,i + �B0,r

”
= bn · �B0,r

»
bu
bw

–
· 1

µ1

“
�B0,i + �B0,r

”
=

»
bu
bw

–
· 1

µ2

�B0,t

(1.62)

where the stacking of bu and bw is just meant to indicate that those equations apply
with either bu on both sides or bw on both sides.

Now, we must consider two cases for the polarization of the incoming wave: in the
plane of incidence or normal to the plane of incidence:

in the
plane of incidence

�E0,i · bu = 0 (1.63)

perpendicular to the
plane of incidence

�E0,i ·
»

bn
bw

–
= 0 (1.64)
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Electromagnetic Waves in Perfect Matter (cont.)

With these definitions, our boundary conditions can be written as
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(1.62)

where the stacking of bu and bw is just meant to indicate that those equations apply
with either bu on both sides or bw on both sides.

Now, we must consider two cases for the polarization of the incoming wave: in the
plane of incidence or normal to the plane of incidence:

in the
plane of incidence

�E0,i · bu = 0 (1.63)

perpendicular to the
plane of incidence

�E0,i ·
»

bn
bw

–
= 0 (1.64)
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Electromagnetic Waves in Perfect Matter (cont.)

With these definitions, our boundary conditions can be written as
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(1.62)

where the stacking of bu and bw is just meant to indicate that those equations apply
with either bu on both sides or bw on both sides.

Now, we must consider two cases for the polarization of the incoming wave: in the
plane of incidence or normal to the plane of incidence:

in the
plane of incidence

�E0,i · bu = 0 (1.63)

perpendicular to the
plane of incidence

�E0,i ·
»

bn
bw

–
= 0 (1.64)
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Electromagnetic Waves in Perfect Matter (cont.)

Now, let’s apply our electromagnetic boundary conditions to figure out how the
amplitudes and energies are related. We may drop all the exponential factors because
we have established that they are identical at the interface. We need to define two
new vectors:

bu =
�ki × bn
|�ki × bn|

=
�kr × bn
|�kr × bn|

=
�kt × bn
|�kt × bn|

bw = bn × bu (1.58)

It doesn’t matter which bk we use to define bu because we argued earlier that all of them
have the same projection in the plane of the interface, which is the piece that matters
for the above cross product. bu is also normal to all the �k, so it is perpendicular to the
plane in which the propagation vectors lie. bw is then the obvious third direction and it
defines the plane that the �k live in. Thus, our boundary conditions can be written as

bn · �1
“
�E0,i + �E0,r

”
= bn · �2 �E0,r

»
bu
bw

–
·

“
�E0,i + �E0,r

”
=

»
bu
bw

–
· �E0,t (1.59)

bn ·
“
�B0,i + �B0,r

”
= bn · �B0,r

»
bu
bw

–
· 1

µ1

“
�B0,i + �B0,r

”
=

»
bu
bw

–
· 1

µ2

�B0,t

(1.60)

where the stacking of bu and bw is just meant to indicate that those equations apply
with either bu on both sides or bw on both sides.
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Electromagnetic Waves in Perfect Matter (cont.)

Now, let’s apply our electromagnetic boundary conditions to figure out how the
amplitudes and energies are related. We may drop all the exponential factors because
we have established that they are identical at the interface. We need to define two
new vectors:

bu =
�ki × bn
|�ki × bn|

=
�kr × bn
|�kr × bn|

=
�kt × bn
|�kt × bn|

bw = bn × bu (1.58)

It doesn’t matter which bk we use to define bu because we argued earlier that all of them
have the same projection in the plane of the interface, which is the piece that matters
for the above cross product. bu is also normal to all the �k, so it is perpendicular to the
plane in which the propagation vectors lie. bw is then the obvious third direction and it
defines the plane that the �k live in. Thus, our boundary conditions can be written as

bn · �1
“
�E0,i + �E0,r

”
= bn · �2 �E0,r

»
bu
bw

–
·

“
�E0,i + �E0,r

”
=

»
bu
bw

–
· �E0,t (1.59)

bn ·
“
�B0,i + �B0,r

”
= bn · �B0,r

»
bu
bw

–
· 1

µ1

“
�B0,i + �B0,r

”
=

»
bu
bw

–
· 1

µ2

�B0,t

(1.60)

where the stacking of bu and bw is just meant to indicate that those equations apply
with either bu on both sides or bw on both sides.
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Electromagnetic Waves in Perfect Matter (cont.)

Each propagation vector makes an angle with the interface normal. We label them θi ,
θr , and θt . The projection of a given wavevector parallel to the normal is therefore
|�k| cos θi while the projection perpendicular to the normal — i.e., in the plane of the

interface — is |�k| sin θi . Since we have argued that these projections into the plane of
the interface are equal, we thus have

ki sin θi = kr sin θr = kt sin θt (1.55)

Now, using our relations kr = ki and kt = n2
n1

ki , we may conclude:

law of reflection: θi = θr (1.56)

law of refraction (Snell’s Law): n1 sin θi = n2 sin θt (1.57)

Note that none of these results depending on knowing anything about Maxwell’s
Equations or boundary conditions: these are generic properties of any waves, which is
why they hold for sound waves, phonons, etc.
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Electromagnetic Waves in Perfect Matter (cont.)

Each propagation vector makes an angle with the interface normal. We label them θi ,
θr , and θt . The projection of a given wavevector parallel to the normal is therefore
|�k| cos θi while the projection perpendicular to the normal — i.e., in the plane of the

interface — is |�k| sin θi . Since we have argued that these projections into the plane of
the interface are equal, we thus have

ki sin θi = kr sin θr = kt sin θt (1.55)

Now, using our relations kr = ki and kt = n2
n1

ki , we may conclude:

law of reflection: θi = θr (1.56)

law of refraction (Snell’s Law): n1 sin θi = n2 sin θt (1.57)

Note that none of these results depending on knowing anything about Maxwell’s
Equations or boundary conditions: these are generic properties of any waves, which is
why they hold for sound waves, phonons, etc.
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So, restricting to the boundary conditions with information, we obtain

n̂ : ε1

(
−Ẽ0,i sin θi + Ẽ0,r sin θr

)
= −ε2Ẽ0,t sin θt (9.84)

ŵ : Ẽ0,i cos θi + Ẽ0,r cos θr = Ẽ0,t cos θt (9.85)

û :
1

Z1

(
Ẽ0,i − Ẽ0,r

)
=

1

Z2
Ẽ0,t (9.86)

Since the incident wave amplitude must be allowed to be arbitrary, we expect to only
be able to determine the ratios Ẽr,0/Ẽi,0 and Ẽt,0/Ẽi,0. Only two of the above
equations can therefore be independent. (One can easily see that the n̂ and û
equations are equivalent via Snell’s Law.) Picking the last two because they are
easiest to work with, we obtain Fresnel’s Equations in (parallel to) the plane of
incidence (for TM waves):

α =
cos θt

cos θi
β =

Z1

Z2
(9.87)

Ẽ0,r

Ẽ0,i

=

(
α− β
α+ β

)
Ẽ0,t

Ẽ0,i

=

(
2

α+ β

) Fresnel’s
Equations
in (parallel to)
the plane of
incidence (TM)

(9.88)
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Perpendicular to the plane of incidence (TE):

When ~E0,i is perpendicular to the plane of incidence, it must be parallel to û because

û defines the normal to that plane (again, up to a sign choice.) Now ~H0,i is in the
plane of incidence. We have

~E0,i = Ẽ0,i û (9.89)

We again pick the convention so that all three electric field vectors align for normal
incidence. With these choices, we then have (again, ~H = k̂ × ~E/Z):

~E0,r = Ẽ0,r û (9.90)

~E0,t = Ẽ0,t û (9.91)

~H0,i =
Ẽ0,i

Z1
(−ŵ cos θi + n̂ sin θi ) (9.92)

~H0,r =
Ẽ0,r

Z1
(ŵ cos θr + n̂ sin θr ) (9.93)

~H0,t =
Ẽ0,t

Z2
(−ŵ cos θt + n̂ sin θt ) (9.94)

Electromagnetic Waves in Perfect Matter (cont.)

Now, let’s apply our electromagnetic boundary conditions to figure out how the
amplitudes and energies are related. We may drop all the exponential factors because
we have established that they are identical at the interface. We need to define two
new vectors:

bu =
�ki × bn
|�ki × bn|

=
�kr × bn
|�kr × bn|

=
�kt × bn
|�kt × bn|

bw = bn × bu (1.58)

It doesn’t matter which bk we use to define bu because we argued earlier that all of them
have the same projection in the plane of the interface, which is the piece that matters
for the above cross product. bu is also normal to all the �k, so it is perpendicular to the
plane in which the propagation vectors lie. bw is then the obvious third direction and it
defines the plane that the �k live in. Thus, our boundary conditions can be written as

bn · �1
“
�E0,i + �E0,r

”
= bn · �2 �E0,r

»
bu
bw

–
·

“
�E0,i + �E0,r

”
=

»
bu
bw

–
· �E0,t (1.59)

bn ·
“
�B0,i + �B0,r

”
= bn · �B0,r

»
bu
bw

–
· 1

µ1

“
�B0,i + �B0,r

”
=

»
bu
bw

–
· 1

µ2

�B0,t

(1.60)

where the stacking of bu and bw is just meant to indicate that those equations apply
with either bu on both sides or bw on both sides.
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Electromagnetic Waves in Perfect Matter (cont.)

Now, let’s apply our electromagnetic boundary conditions to figure out how the
amplitudes and energies are related. We may drop all the exponential factors because
we have established that they are identical at the interface. We need to define two
new vectors:

bu =
�ki × bn
|�ki × bn|

=
�kr × bn
|�kr × bn|

=
�kt × bn
|�kt × bn|

bw = bn × bu (1.58)

It doesn’t matter which bk we use to define bu because we argued earlier that all of them
have the same projection in the plane of the interface, which is the piece that matters
for the above cross product. bu is also normal to all the �k, so it is perpendicular to the
plane in which the propagation vectors lie. bw is then the obvious third direction and it
defines the plane that the �k live in. Thus, our boundary conditions can be written as

bn · �1
“
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“
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· �E0,t (1.59)
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�B0,i + �B0,r
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= bn · �B0,r
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· 1
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“
�B0,i + �B0,r
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=
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(1.60)

where the stacking of bu and bw is just meant to indicate that those equations apply
with either bu on both sides or bw on both sides.
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Electromagnetic Waves in Perfect Matter (cont.)

Each propagation vector makes an angle with the interface normal. We label them θi ,
θr , and θt . The projection of a given wavevector parallel to the normal is therefore
|�k| cos θi while the projection perpendicular to the normal — i.e., in the plane of the

interface — is |�k| sin θi . Since we have argued that these projections into the plane of
the interface are equal, we thus have

ki sin θi = kr sin θr = kt sin θt (1.55)

Now, using our relations kr = ki and kt = n2
n1

ki , we may conclude:

law of reflection: θi = θr (1.56)

law of refraction (Snell’s Law): n1 sin θi = n2 sin θt (1.57)

Note that none of these results depending on knowing anything about Maxwell’s
Equations or boundary conditions: these are generic properties of any waves, which is
why they hold for sound waves, phonons, etc.
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Electromagnetic Waves in Perfect Matter (cont.)

Now, let’s apply our electromagnetic boundary conditions to figure out how the
amplitudes and energies are related. We may drop all the exponential factors because
we have established that they are identical at the interface. We need to define two
new vectors:

bu =
�ki × bn
|�ki × bn|

=
�kr × bn
|�kr × bn|

=
�kt × bn
|�kt × bn|

bw = bn × bu (1.58)

It doesn’t matter which bk we use to define bu because we argued earlier that all of them
have the same projection in the plane of the interface, which is the piece that matters
for the above cross product. bu is also normal to all the �k, so it is perpendicular to the
plane in which the propagation vectors lie. bw is then the obvious third direction and it
defines the plane that the �k live in. Thus, our boundary conditions can be written as
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(1.60)

where the stacking of bu and bw is just meant to indicate that those equations apply
with either bu on both sides or bw on both sides.
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Electromagnetic Waves in Perfect Matter (cont.)

Now, let’s apply our electromagnetic boundary conditions to figure out how the
amplitudes and energies are related. We may drop all the exponential factors because
we have established that they are identical at the interface. We need to define two
new vectors:

bu =
�ki × bn
|�ki × bn|

=
�kr × bn
|�kr × bn|

=
�kt × bn
|�kt × bn|

bw = bn × bu (1.58)

It doesn’t matter which bk we use to define bu because we argued earlier that all of them
have the same projection in the plane of the interface, which is the piece that matters
for the above cross product. bu is also normal to all the �k, so it is perpendicular to the
plane in which the propagation vectors lie. bw is then the obvious third direction and it
defines the plane that the �k live in. Thus, our boundary conditions can be written as

bn · �1
“
�E0,i + �E0,r

”
= bn · �2 �E0,r

»
bu
bw

–
·

“
�E0,i + �E0,r
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=

»
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–
· �E0,t (1.59)

bn ·
“
�B0,i + �B0,r

”
= bn · �B0,r

»
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bw

–
· 1

µ1

“
�B0,i + �B0,r

”
=

»
bu
bw

–
· 1

µ2
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where the stacking of bu and bw is just meant to indicate that those equations apply
with either bu on both sides or bw on both sides.
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Electromagnetic Waves in Perfect Matter (cont.)

Each propagation vector makes an angle with the interface normal. We label them θi ,
θr , and θt . The projection of a given wavevector parallel to the normal is therefore
|�k| cos θi while the projection perpendicular to the normal — i.e., in the plane of the

interface — is |�k| sin θi . Since we have argued that these projections into the plane of
the interface are equal, we thus have

ki sin θi = kr sin θr = kt sin θt (1.55)

Now, using our relations kr = ki and kt = n2
n1

ki , we may conclude:

law of reflection: θi = θr (1.56)

law of refraction (Snell’s Law): n1 sin θi = n2 sin θt (1.57)

Note that none of these results depending on knowing anything about Maxwell’s
Equations or boundary conditions: these are generic properties of any waves, which is
why they hold for sound waves, phonons, etc.
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Electromagnetic Waves in Perfect Matter (cont.)

Each propagation vector makes an angle with the interface normal. We label them θi ,
θr , and θt . The projection of a given wavevector parallel to the normal is therefore
|�k| cos θi while the projection perpendicular to the normal — i.e., in the plane of the

interface — is |�k| sin θi . Since we have argued that these projections into the plane of
the interface are equal, we thus have

ki sin θi = kr sin θr = kt sin θt (1.55)

Now, using our relations kr = ki and kt = n2
n1

ki , we may conclude:

law of reflection: θi = θr (1.56)

law of refraction (Snell’s Law): n1 sin θi = n2 sin θt (1.57)

Note that none of these results depending on knowing anything about Maxwell’s
Equations or boundary conditions: these are generic properties of any waves, which is
why they hold for sound waves, phonons, etc.
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Electromagnetic Waves in Perfect Matter (cont.)

With these definitions, our boundary conditions can be written as

bn · �1
“
�E0,i + �E0,r

”
= bn · �2 �E0,r

»
bu
bw

–
·

“
�E0,i + �E0,r

”
=

»
bu
bw

–
· �E0,t (1.61)

bn ·
“
�B0,i + �B0,r

”
= bn · �B0,r

»
bu
bw

–
· 1

µ1

“
�B0,i + �B0,r

”
=

»
bu
bw

–
· 1

µ2

�B0,t

(1.62)

where the stacking of bu and bw is just meant to indicate that those equations apply
with either bu on both sides or bw on both sides.

Now, we must consider two cases for the polarization of the incoming wave: in the
plane of incidence or normal to the plane of incidence:

in the
plane of incidence

�E0,i · bu = 0 (1.63)

perpendicular to the
plane of incidence

�E0,i ·
»

bn
bw

–
= 0 (1.64)

Section 1.2 Electromagnetic Waves: Electromagnetic Waves in Perfect Matter Page 28

Electromagnetic Waves in Perfect Matter (cont.)

With these definitions, our boundary conditions can be written as
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where the stacking of bu and bw is just meant to indicate that those equations apply
with either bu on both sides or bw on both sides.

Now, we must consider two cases for the polarization of the incoming wave: in the
plane of incidence or normal to the plane of incidence:

in the
plane of incidence

�E0,i · bu = 0 (1.63)

perpendicular to the
plane of incidence
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= 0 (1.64)
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Electromagnetic Waves in Perfect Matter (cont.)

With these definitions, our boundary conditions can be written as
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where the stacking of bu and bw is just meant to indicate that those equations apply
with either bu on both sides or bw on both sides.

Now, we must consider two cases for the polarization of the incoming wave: in the
plane of incidence or normal to the plane of incidence:

in the
plane of incidence

�E0,i · bu = 0 (1.63)

perpendicular to the
plane of incidence
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Restricting to the boundary conditions with information, we obtain

n̂ :
µ1

Z1

(
Ẽ0,i sin θi + Ẽ0,r sin θr

)
=
µ2

Z2
Ẽ0,t sin θt (9.95)

ŵ :
1

Z1

(
Ẽ0,i cos θi − Ẽ0,r cos θr

)
=

1

Z2
Ẽ0,t cos θt (9.96)

û : Ẽ0,i + Ẽ0,r = Ẽ0,t (9.97)

Again, we only need two of the equations, so we use the latter two because the n̂
equation can be reduced to the û equation via Snell’s Law. We solve to obtain
Fresnel’s Equations perpendicular to the plane of incidence (TE):

Ẽ0,r

Ẽ0,i

=

(
1− αβ
1 + αβ

)
Ẽ0,t

Ẽ0,i

=

(
2

1 + αβ

) Fresnel’s
Equations
perpendicular
to the plane of
incidence (TE)

(9.98)

with α and β as defined earlier.
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Reflected and Transmitted Energy

The energy flux (intensity) at a particular point is

Ij =
〈
|~Sj |
〉

=
1

2
εj vj E 2

j cos θj =
1

2

c

Zj
E 2

j cos θj (9.99)

We can calculate from this the reflected and transmitted energy or power ratios:

R =
Ir

Ii
=

(
Ẽ0,r

Ẽ0,i

)2

=

(
α− β
α+ β

)2

parallel (TM) (9.100)

=

(
1− αβ
1 + αβ

)2

perpendicular (TE) (9.101)

T =
It

Ii
=

Z1

Z2

(
Ẽ0,t

Ẽ0,i

)2
cos θt

cos θi
= αβ

(
2

α+ β

)2

parallel (TM) (9.102)

= αβ

(
2

1 + αβ

)2

perpendicular (TE) (9.103)

By calculating R+ T explicitly, one can see that R+ T = 1 always in both cases.
Notice the αβ prefactor for T .

Section 9.3.5 Reflected and Transmitted Energy Page 600



Section 9.3 Electromagnetic Waves: Electromagnetic Waves in Perfectly Nonconducting, Linear, Isotropic Matter

Normal Incidence

Let’s summarize the results for normal incidence, θi = θr = θt = 0, for which things
simplify substantially: α = 1 and thus the TM and TE cases are equivalent, yielding:

Ẽ0,r

Ẽ0,i

=
1− β
1 + β

=
1− Z1

Z2

1 + Z1
Z2

R =

(
1− β
1 + β

)2

=

1− Z1
Z2

1 + Z1
Z2

2

(9.104)

Ẽ0,t

Ẽ0,i

=
2

1 + β
=

2

1 + Z1
Z2

T = β

(
2

1 + β

)2

=
Z1

Z2

 2

1 + Z1
Z2

2

(9.105)

We will see that we get similar equations for transmission lines and waveguides. The
concept of “impedance matching” becomes apparent: when the wave impedances of
the two media match, then R = 0.

For the special but frequently encountered case µ1 = µ2 = µ0, β = Z1/Z2 reduces to
n2/n1 = v1/v2 and we recover the results for a wave on a string from Ph2/12:

Ẽ0,r

Ẽ0,i

=
n1 − n2

n1 + n2
=

v2 − v1

v2 + v1
R =

(
n2 − n1

n2 + n1

)2

=

(
v2 − v1

v2 + v1

)2

(9.106)

Ẽ0,t

Ẽ0,i

=
2 n1

n1 + n2
=

2 v2

v2 + v1
T =

n2

n1

(
2 n1

n1 + n2

)2

=
v1

v2

(
2 v2

v2 + v1

)2

(9.107)
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Typical Behavior

We first show the simplest case µ1/µ2 = 1, which implies n2/n1 = (Z2/Z1)−1 = β.

Notice how, for
the n2/n1 < 1
case, the
transmitted field
amplitude exceeds
unity but the
transmitted power
T does not and, in
particular, how the
transmitted field
amplitude appears
to diverge but the
transmitted energy
vanishes at
θTIR =

sin−1 n2/n1.
These behaviors
are simultaneously
possible because
of the αβ
pre-factor in T .
For both cases of
n2/n1, notice also
the nonmonotonic
behavior in R and
T near the
Brewster Angle

n2/n1 = 1.4, µ2/µ1 = 1.0, β = 1.4
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(θB , to be defined later) for the parallel incidence case: this behavior occurs because the reflected field, while
monotonic, passes through zero, requiring the squared quantity R to be positive, zero, and then positive again.
Note also that the transmitted field does not pass through unity magnitude even though T does. Both this
behavior, and T ’s non-monoticity, occur because of the α prefactor, which starts at 1 at normal incidence and
then grows with θi .
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Now we allow µ2/µ1 6= 1. In general, β = Z1/Z2 = (n2/n1) / (µ2/µ1), so we first take a value for n2/n1 > 1
and consider different cases for µ2/µ1 such that all three cases for β − 1 are explored, and then we do the same
for n2/n1 < 1. In the β = 1.0 case (µ2/µ1 = n2/n1), we have impedance matching and thus unity transmission
at normal incidence, but the deviation of µ2/µ1 from unity results in nontrivial behavior away from normal

incidence (α 6= 1). Notice how θTM
B = θTE

B = 0 for β = 1.0 and how the TE and TM behavior in energy are
identical (though not in field). There is no θTIR because n2/n1 > 1.

n2/n1 = 1.4, µ2/µ1 = 1.4, β = 1.0
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We now consider values of µ2/µ1 that change the sign of β − 1 for the chosen value of n2/n1. θTE
B appears for

β = Z1/Z2 < 1 and θTM
B for β > 1. Again, we have no θTIR because n2/n1 > 1.

n2/n1 = 1.4, µ2/µ1 = 1.7, β = 0.8
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In this case, we hold the sign of β − 1 fixed but allow the sign of µ2/µ1 − 1 to change. We see it is not µ2/µ1
that matters but rather it is β = Z1/Z2.

n2/n1 = 1.4, µ2/µ1 = 1.2, β = 1.2
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We now take n2/n1 < 1, which yields a θTIR for these and the remaining cases. Here, we again consider the

β = 1 special case, for which we again see θTM
B = θTE

B = 0.

n2/n1 = 0.7, µ2/µ1 = 0.7, β = 1.0
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We now change the sign of µ2/µ1 − 1 to change the sign of β − 1, yielding θTM
B for β < 1 and θTE

B for β > 1.

n2/n1 = 0.7, µ2/µ1 = 1.7, β = 0.4
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Here we again see how β is more important than µ2/µ1: we change the sign of µ2/µ1 − 1 while holding the sign
of β − 1 fixed and we see the behavior is qualitatively unchanged.

n2/n1 = 0.7, µ2/µ1 = 1.2, β = 0.6
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Understanding the Signs and Magnitudes of the Transmitted and Reflected
Fields

I Sign of transmitted wave
To understand the sign of the transmitted wave, we just need to notice that α
and β are always positive numbers. α is always positive because θi and θr are
restricted to the first quadrant. Therefore, all the quantities in the expressions
for Ẽ0,t are positive, and thus the transmitted wave always has the same sign
electric field as the incident wave.

Since k̂i · n̂ and k̂t · n̂ have the same sign and ~H ∝ k̂ × ~E , we may also conclude
that the sign of the magnetic field of the transmitted wave is unchanged.
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I Sign of electric field of reflected wave (general case) and Brewster’s Angle
The sign of the reflected wave depends on the sizes of α and β. What general
statements can we make?

We know that, for a given pair of media, either sin θt/ sin θi < 1 or
sin θt/ sin θi > 1 is true for all angles because this ratio is set by Snell’s Law,
sin θt/ sin θi = n1/n2. Since sin and cos are monotonic over the first quadrant,
we can conclude that α = cos θt/ cos θi is also either smaller than or greater
than 1 for all angles, with the case being determined by n1/n2:

n1

n2
> 1 ⇐⇒ sin θt

sin θi
> 1 ⇐⇒ cos θt

cos θi
< 1 ⇐⇒ α < 1 (9.108)

n1

n2
< 1 ⇐⇒ sin θt

sin θi
< 1 ⇐⇒ cos θt

cos θi
> 1 ⇐⇒ α > 1 (9.109)

However, β = Z1/Z2 = (n2/n1)/(µ2/µ1), so the size of n2/n1 relative to unity
does not completely determine the size of β relative to unity. No generic
statement can be made about the relative size of α, β, and 1/β.

Section 9.3.8 Understanding the Signs and Magnitudes of the Transmitted and Reflected Fields Page 610



Section 9.3 Electromagnetic Waves: Electromagnetic Waves in Perfectly Nonconducting, Linear, Isotropic Matter

That said, we can make conditional statements that depend on whether we are
considering the parallel (TM) or perpendicular (TE) incidence cases and
whether β is smaller or larger than unity. We break this up into two steps: what
is the sign of the reflection at normal incidence, and whether that sign changes
as the angle of incidence changes:

I Sign of reflected wave at normal incidence, θi = θt = 0 (parallel (TM)
and perpendicular (TE) incidence degenerate at this angle)
The sign of the denominator of the expression for the reflected amplitude
is always positive, and α = 1 because θi = θt = 0 at normal incidence, so
the sign of the reflection at normal incidence is set by the sign of the
numerator 1− β, which is set by the ratio of the wave impedances:

if β =
n2/n1

µ2/µ1
=

Z1

Z2
> 1 =⇒ sign

(
Ẽ0,r

Ẽ0,i

)
θi =0

< 0 (9.110)

if β =
n2/n1

µ2/µ1
=

Z1

Z2
< 1 =⇒ sign

(
Ẽ0,r

Ẽ0,i

)
θi =0

> 0 (9.111)

I Does the sign of the reflected wave change with angle of incidence?
We can answer this question by determining whether there is an angle at
which zero reflection occurs. If so, the sign of the reflected wave will
change from its sign at normal incidence to the opposite sign. Whether
there is such an angle depends on the relative sizes of α and β. We will
call this angle Brewster’s Angle, though that nomenclature generally only
applies for the case µ1 = µ2 = µo , which we will consider shortly.
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I Parallel incidence (TM)
The condition for zero reflection is α = β. If we square this
requirement, use a trigonometric identity, and use Snell’s law, we
find

1− n2
1

n2
2

sin2 θB

1− sin2 θB

= β2 ⇐⇒ sin2 θB =
β2 − 1

β2 − n2
1

n2
2

(9.112)

It is clear that the condition is driven by β = Z1/Z2, the ratio of the
wave impedances, and n1/n2, the ratio of the indices of refraction.
We have to consider multiple cases to determine when there is a
solution for θB , which can only happen if the above expression takes
on a value between 0 (numerator and denominator have same sign)
and 1 (numerator smaller in magnitude than denominator):

if β =
n2/n1

µ2/µ1
=

Z1

Z2
> 1 =⇒ need

n2

n1
> 1,

n2

n1
>
µ2

µ1
(9.113)

if β =
n2/n1

µ2/µ1
=

Z1

Z2
< 1 =⇒ need

n2

n1
< 1,

n2

n1
<
µ2

µ1
(9.114)
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I Perpendicular incidence (TE)
The condition for zero reflection is α = 1/β. Repeating the same
process to find a solution, we have

1− n2
1

n2
2

sin2 θB

1− sin2 θB

=
1

β2
⇐⇒ sin2 θB =

1
β2 − 1

1
β2 −

n2
1

n2
2

(9.115)

This is basically just the converse of the TM case, so the same set
of requirements for a solution for θB implies

if β =
n2/n1

µ2/µ1
=

Z1

Z2
> 1 =⇒ need

n2

n1
< 1,

n2

n1
>
µ2

µ1
(9.116)

if β =
n2/n1

µ2/µ1
=

Z1

Z2
< 1 =⇒ need

n2

n1
> 1,

n2

n1
<
µ2

µ1
(9.117)

Note how the pairing of the two n2/n1 conditions changes between the
TM and TE cases. The above behavior was seen in the plots prior to this
section.
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I Sign of electric field of reflected wave, and Brewster’s Angle, for µ1 = µ2

This case is typical for everyday experience; there are few light-transmitting yet
also µ 6= µ0 materials. We can be much more specific in this case because now
β = Z1/Z2 = n2/n1 and there is a clear relationship between α and β, which we
may now rewrite as

n1

n2
> 1 ⇐⇒ β =

n2

n1
< 1 and α =

cos θt

cos θi
< 1 (9.118)

n1

n2
< 1 ⇐⇒ β =

n2

n1
> 1 and α =

cos θt

cos θi
> 1 (9.119)

Considering the two cases separately:

I Parallel incidence (TM), µ1 = µ2

Since α and β are both either < 1 or > 1, it is possible for α = β to be
true and therefore the sign may depend on the angle. At θi = θt = 0, we
have α = 1 identically, so the sign of the reflected wave is 1− β, which is
positive if β < 1 and negative if β > 1. This sets the polarity of the
reflected wave for small θi .

To understand the polarity of the reflected wave for larger θi 6= 0, we then
have to ask whether it is possible for the polarity of α− β to change as α
varies with θi , which would happen if there is a zero in α− β.
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To solve for this angle where α = β (Brewster’s Angle again, θB ), we can
square the ratio of cosines so it can be written in terms of sines, then use
Snell’s Law to obtain:

1− n2
1

n2
2

sin2 θB

1− sin2 θB

=
n2

2

n2
1

⇐⇒ sin2 θB =
n2

2

n2
1 + n2

2

(9.120)

⇐⇒ tan θB =
n2

n1
= β =

Z1

Z2

Brewster’s
Angle for
µ1 = µ2

(9.121)

Note that 0 < θB < π/4 for n2 < n1 and π/4 < θB < π/2 for n2 > n1.
Therefore, we may summarize this case as (using 1− β = (n1 − n2)/n1):

sign of reflected wave for parallel incidence (TM) and µ1 = µ2 :

0 < θi < θB : sign

(
Ẽ0,r

Ẽ0,i

)
= −sign

(
n2

n1
− 1

)
(9.122)

θB < θi < θmax : sign

(
Ẽ0,r

Ẽ0,i

)
= sign

(
n2

n1
− 1

)
(9.123)

θmax = sin−1

(
min

(
1,

n2

n1

))
(9.124)
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I Perpendicular incidence (TE), µ1 = µ2

The perpendicular incidence case is easier to analyze. At normal
incidence, α = 1 again and the formulae become identical to the parallel
incidence case, giving us the same behavior: the reflected wave is positive
if β < 1 and negative if β > 1. This common behavior must hold, as the
parallel and perpendicular cases are degenerate for normal incidence.

To see if there is an angle at which the sign of the reflected wave can flip,
we need to know if there is an angle at which the reflected wave vanishes.
It is easy to see there is not: for 1− αβ to vanish, we require α = 1/β.
For the case µ1 = µ2, we thus require α = n1/n2. But we saw above that,
when 1/β = n1/n2 > 1 we have α < 1 and when 1/β = n1/n2 < 1 we
have α > 1. Thus, there is never a zero in the reflected wave, and the
sign can never flip.

Therefore, we may summarize this case as:

sign of reflected wave for perpendicular incidence (TE) and µ1 = µ2 :

0 < θi < θmax : sign

(
Ẽ0,r

Ẽ0,i

)
= −sign

(
n2

n1
− 1

)
(9.125)

θmax = sin−1

(
min

(
1,

n2

n1

))
(9.126)
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I Practical Implications of Brewster’s Angle
Because the reflected amplitude for parallel incidence goes through a zero
at θB , it is small for angles near θB . For the everyday materials water
(n = 1.33) and glass (n ≈ 1.5), this angle is 53◦ and 56◦, which is a
typical viewing angle. This explains why polarized sunglasses reduce glare:
by blocking the reflected polarization that is perpendicular to the plane of
incidence (TE), they block the only component of the reflected wave that
has appreciable amplitude. They are designed to pass the parallel
component because it has no reflection near Brewster’s angle. Be sure to
get the orientation right: if the interface is a horizontal surface, then that
plane is actually parallel to the surface for light coming from above, so
the plane of parallel incidence is vertical for the viewer.
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I Relation between sign of reflected wave and possibility of total internal reflection
Both sets of equations imply that total internal reflection occurs only if n2 < n1,
which also implies that the sign of the reflected wave at normal incidence is
equal to the sign of the incident wave. Thus, the two conditions are equivalent:

no sign flip at normal incidence ⇐⇒ total internal reflection possible

I Sign of magnetic field of reflected wave
For any of these cases, we can obtain the sign of the magnetic field of the
reflected wave by applying the rule ~H ∝ k̂ × ~E to the reflected wave. From this,
and from the sign flip of k̂r · n̂ relative to k̂i · n̂, we can conclude that the
magnetic field of the reflected wave has the opposite behavior as the electric
field in both the parallel and perpendicular cases: if the electric field receives a
sign flip, the magnetic field does not, and vice versa.
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