
Physics 125a – Problem Set 5 – Due Nov 12, 2007

Version 3 – Nov 11, 2007

This problem set focuses on one-dimensional problems, Shankar Chapter 5 and Lecture Notes
Section 5. Finally, some real quantum mechanics!
v. 2: Provide result for transmission as a function of wavevector in (5b). More specificity on how
to do plot.
v. 3: In (5b), had mistakenly written k1 and k2 as if the well were at −V0 and the potential was
zero elsewhere, instead of what is given, where the well is at 0 and the potential is V0 elsewhere.
This changes Equations 8-14.

1. Find 〈(∆X)2〉 and 〈(∆P )2〉 for the eigenstates of the one-dimensional particle in a box. It is
possible to do the calculation for all the odd or even modes at once. Hint: use a derivative
to pull down factors of x, and also remember the normalization condition for the states.

2. Expanding boxes:

(a) Shankar 5.2.1: A particle is in the ground state of a perfect box of length L. Suddenly,
the box expands (symmetrically) to twice its size, leaving the wavefunction (initially)
undisturbed. Show that the probability of finding the particle in the ground state of the
new box is

(
8

3 π

)2. (The key point in this problem is that the wavefunction is initially
undisturbed. So, what is the initial state for the wavefunction in the new box?)

(b) Shankar 5.2.4: Consider a particle of mass m in the state |n 〉 of a perfect box of length L
(i.e., the state with E = ~2 π2 n2

2 m L2 ). Find the force F = −∂E
∂L encountered when the walls

are slowly pushed in, assuming the particle remains in the state |n 〉 of the box as its
size changes. Consider a classical particle of energy En in the box. Find its velocity, the
frequency of collision on a given wall, the momentum transfer per collision, and hence
the average force. Compare it to −∂E

∂L computed above. Can you think of a criterion in
the quantum mechanical case for “how slow is slow enough” for the rate at which the
box walls are pushed in?

3. Shankar 5.2.2:

(a) Show that for any normalized state |ψ 〉, it holds that 〈ψ |H |ψ 〉 ≥ E0 where E0 is the
lowest-energy eigenvalue. (Hint: expand |ψ 〉 in the eigenbasis of H.)

(b) Prove the following theorem: Every attractive potential in one dimension has at least
one bound state. Hint: Since V is attractive, if we define V (±∞) = 0, it follows that
V (x) = −|V (x)| for all x. To show that there exists a bound state with E < 0, consider

ψα(x) =
( α

2π

)1/4
e−

α x2

4 (1)

(Note that our α is defined slightly differently than in Shankar for consistency with how
we write Gaussian wavefunctions in the Lecture Notes.) Calculate E(α) = 〈ψα |H |ψα 〉
for H = − ~2

2 m
d2

dx2 − |V (x)|. Show that E(α) can be made negative by a suitable choice
of α. The desired result follows from the application of the theorem proved above.
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4. Bound states and scattering for a delta-function potential well.

(a) Consider a potential of the form V (x) = −aV0 δ(x). Show that it admits a bound state
of energy E = −m a2 V 2

0
2 ~2 . Are there any other bound states?

(b) Calculate the free states and reflection and transmission probabilities as functions of
energy using the probability current.

Hint: Solve the eigenvalue-eigenvector equation for the Hamiltonian outside the potential,
requiring the appropriate asymptotic behavior and continuity at x = 0. Determine the
change in the first derivative by calculating∫ +ε

−ε
dx

d2

dx2
ψE,x(x) (2)

(for ε→ 0) using the eigenvalue-eigenvector equation.

5. Bound states and scattering for a finite square well. Consider a square well potential,

V (x) =
{

0 |x| ≤ a
V0 |x| > a

(3)

where V0 > 0.

(a) Bound states: Since when V0 → ∞, we have a box, let us guess what the lowering of
the walls does to the states. First of all, all the bound states will have E ≤ V0. Second,
the wave functions of the low-lying levels will look like those of the particle in a box,
with the obvious difference that ψ(x) will not vanish at the walls but instead spill out
with an exponential tail. The eigenfunctions will still be even, odd, even, etc.
Show that the even solutions have energies that satisfy the transcendental equation

k tan (k a) = κ (4)

while the odd ones will have energies that satisfy

k cot (k a) = −κ (5)

where k and i κ are the real and complex wavenumbers inside and outside the well,
respectively. Note that k and κ are related by

k2 + κ2 =
2mV0

~2
(6)

Verify that as V0 tends to ∞, we regain the levels of the particle in a box. The two
transcendental equations 4 and 5 must be solved graphically (or numerically). In the
(α = k a, β = κ a) plane, imagine a circle that obeys Equation 6. The bound states are
then given by the intersections of the curve α tanα = β or α cotα = −β with the circle.
(Remember α and β are positive.) Show that there is always one even solution and
that there is no odd solution unless V0 ≥ ~2 π2

2 m L2 . What is E when V0 just meets this
requirement? Note that the general result from Problem 3 holds.
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(b) Free states: Now, consider free states associated with this potential. Find the eigen-
functions as a function of the energy E of the state for E > V0. Use the probability
current to show that transmission probabilities for right-going states incident on the well
from the left side obey

T =
4 k2

1 k
2
2

4 k2
1 k

2
2 + (k2

1 − k2
2)2 sin2(2 k2a)

(7)

=
4 (E − V0)E

4 (E − V0)E + V 2
0 sin2(2 k2a)

(8)

=
Ẽ

(
Ẽ − 1

)
Ẽ

(
Ẽ − 1

)
+ 1

4 sin2
(
2 ã

√
Ẽ

) (9)

where

k2
1 = 2m (E − V0)/~2 is the wavenumber for |x| > a (10)

k2
2 =

2mE

~2
is the wavenumber for |x| ≤ a (11)

Ẽ =
E

V0
(12)

ã =
a
√
V0√

~2/2m
(13)

Plot the transmission probability as a function of Ẽ, making sure that you set the energy
range to see the interesting structure in the transmission curve. Try two drastically
different values of the parameter

γ =
2mV0/~2

1/(2 a)2
= (2 ã)2 = (2 a)2

(
k2

2 − k2
1

)
(14)

which characterizes the change in wavenumber relative to the width of the well, say
γ = 1 and γ = 106. What is the cause of the transmission resonances?
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