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Course Logistics

I The course webpage is

http://www.astro.caltech.edu/˜golwala/ph125ab/

Much of the material will be linked from the course Moodle page, which you
can access from the above page or directly via

https://courses.caltech.edu

A password for the Ph125a page will be provided in class; you can also obtain it
from your classmates, the TAs, or myself. All course logistics and assignments
will be announced via the Moodle page. You will find a listing of the course
syllabus, problem sets, and solutions there. There is also a weekly homework
survey. It would be very beneficial (to me and you) if you could fill out the
survey regularly. Especially important is the “News Forum”, via which I will
make course announcements that I believe you will receive automatically via
email once you have logged in to the course page. This is the first time Moodle
is in widespread use at Caltech, and the first time I am using it, so please bear
with me as I figure it out.

Comments on the course (or the Moodle page) via the Moodle website are
welcome and encouraged. Unfortunately, such comments are not anonymous, so
please use campus mail to one of my mailboxes if anonymity is desired.

I Text: Shankar, lecture notes. Many other nice texts are available, choose a
different one if you don’t like Shankar. See the course reserve list.

I Syllabus: Detailed syllabus on web. Stay on top of it!
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Course Logistics (cont.)

I Problem sets: one per week, 4-6 problems. Posted via web site. Due date:
Tuesday, 4 pm. Problem sets will be much easier to complete in a reasonable
amount of time if you stay on top of lectures and clarify any confusion on
material before you begin the problem set. Solutions posted on web shortly after
set is due, graded sets handed back by end of following week. Keep a copy of
your problem sets if you want to check your work against the solutions promptly
(waiting 1.5 weeks is a bad idea...).

I Grading: 1/3 problem sets (weekly), 1/3 midterm, 1/3 final. (No problem set
during week that midterm is due.)

I Exams: each will be 4 hours, 4-6 problems, take home, 1 week lead time.
Should only take 2 hours.

I Class attendance: not mandatory. If you don’t find it useful, then don’t come.
The lecture notes will be posted online promptly. But please make the decision
based on a careful evaluation of whether you find lecture useful, not on your
sleep schedule or time pressure from other classes. And, most importantly, do
not think that, just because all the course material is available online, you can
catch up the night before the problem set or exam is due and do well. If you
don’t attend class, be disciplined about doing the reading and following the
lecture notes.

I Office hours: I will hold an evening office hour the night before problem sets are
due. I strongly prefer Monday night 7-9 pm. There will be a TA office hour also.

I TAs will be primarily responsible for solution sets and grading. They will rotate
through the TA office hour.
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Course Material

In this course, you will learn to attack basic quantum mechanical problems
from scratch and arrive at full solutions that can be tested by experiment. You
will see much material that is familiar to you from Ph2/12, but we will cover
that material more deeply and with a more formal foundation that will provide
you the tools to attack new problems, whether in other courses or in research.
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Course Material (cont.)

Prerequisites

Physics:

I Quantum mechanics: None required, in principle. While most students taking
this course will have had a course in quantum mechanics before at the level of
Ph 2/12, we develop all concepts from scratch and do not require that you
recall results from a previous course. However, because we take a formal,
systematic approach, basic familiarity with quantum mechanics at the level of
Ph 2/12 will be helpful in motivating various parts of the course — essentially,
in seeing where we are going. If you have never had a QM course before at the
level of Ph 2/12, you will have to judge for yourself whether you are ready for
this course or not.

I Classical mechanics: Nothing more than Ph1a-level classical mechanics is
required. Where we need more sophisticated concepts, we will provide the
necessary background material. Knowledge of Hamiltonian mechanics will help
in motivating some of the concepts we deal with, but is not necessary and will
not be assumed.
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Course Material (cont.)

Mathematics:

I Multivariate differential and integral calculus in cartesian and non-cartesian
(cylindrical and spherical) coordinate systems at the level of Ph1abc.

I Vectors and vector operations at the level of Ph1abc.

I Methods for solving first- and second-order linear ordinary differential equations
at the level of Ph1abc (exponentials and simple harmonic oscillators).

I We will use separation of variables to solve first- and second-order linear partial
differential equations, but we will not assume you already know how.

I Linear algebra: We do not assume any prior knowledge of linear algebra aside
from matrix multiplication and systems of linear equations (essentially,
high-school algebra) along with glancing familiarity with concepts like
orthogonal and symmetric matrices. We will develop the necessary more
sophisticated concepts here. However, you must quickly become adept in linear
algebra because it is the language of quantum mechanics. Linear algebra must
become second nature to you.

I Key point: Mathematics is the language of physics. You must be competent in
above basic mathematical physics in order to understand the material in this
course. Intuition is important, but few can succeed in physics without learning
to formalize that intuition into mathematical concepts and calculate with it.
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Course Material (cont.)

Topics to be covered:

I Mathematical foundations for QM.

I Fundamental postulates of QM: our framework for how we discuss states,
physical observables, and interpret quantum states.

I Simple one-dimension problems — building your intuition with
piecewise-constant potentials.

I Harmonic Oscillator — the archetypal QM problem.

I Commutations and uncertainty relations — how the noncommutativity of the
operators for physical observables results in minimum uncertainties when
performing noncommuting measurements.

I Multiparticle systems: Fock product spaces, treatment of systems of identical
particles (symmetry/antisymmetry of states).

I Approximate methods for problems without exact solutions: WKB
approximation, variational method.

I Classical rotations in three spatial dimensions; tensors.

I Symmetries: esp. how symmetries of the Hamiltonian determine conserved
observables.

I Coordinate angular momentum. How to use the angular momentum observables
to classify 3D states.
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Course Material (cont.)

I Formalism for spin angular momentum.

I Addition of angular momentum: how to decompose a product of two different
angular momenta into a set of single system angular momenta.

I Time-independent perturbation theory: How to approach problems in which the
Hamiltonian contains small noncommuting terms.

I Hydrogen atom, including perturbations.

I Connections to classical mechanics: classical limits, symmetries, Hamiltonian
formalism, Hamilton-Jacobi equation.
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Summary

1 The state of a particle is represented by a vector in a Hilbert space.

2 The fundamental state variables x and p of classical mechanics are
replaced by Hermitian operators X and P whose matrix elements
are well specified in a Hilbert space basis consisting of position
eigenstates (states with perfectly defined position x). Any derived
dynamical variables ω(x , p) are replaced by operators Ω defined by
the above correspondence.

3 Measurement of any classical variable ω(x , p) for a quantum state
yields only the eigenvalues of the corresponding operator Ω, with
the probability of obtaining the eigenvalue ω given by the squared
norm of the projection of the state onto the eigenstate
corresponding to ω.

4 The state vector evolves according to the Schrödinger equation.
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Postulate 1: Representation of Particle States

The state of a particle is represented by a vector |ψ(t) 〉 in a Hilbert space.

What do we mean by this?

We shall define Hilbert space and vectors therein rigorously later; it suffices to say for
now that a vector in a Hilbert space is a far more complicated thing than the two
numbers x and p that would define the classical state of a particle; the vector is an
infinite set of numbers.

The only useful immediate inference we can draw from this statement on its own,
based on the definition of Hilbert space and vector, is that states can be combined
linearly. This is interesting, as there is no classical analogue to linear combination of
states; for example, if a classical particle only has access to classical state 1 with phase
space coordinates (x1, p1) and classical state 2 with (x2, p2), the particle can only be
in one or the other; there is no way to “combine” the two states. Another way of
saying this is that quantum mechanics provides for “superposition” of states in a way
that classical mechanics does not. But, while interesting, it is not clear what this
means or what the experimental implications might be.
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Postulate 1: Representation of Particle States (cont.)

The state of a particle is represented by a vector |ψ(t) 〉 in a Hilbert space.

We will see below that Postulates 1 and 3 give rise to the interpretation of the state
vector as an object that gives the probability of measuring a particular value for a
particular classical observable, depending on what Hilbert space basis the vector is
written in terms of. Typically, |ψ 〉 is written in terms of the position basis (a set of
Hilbert space vectors with well-defined particle position), in which case |ψ 〉 will give
the probability of finding the particle at a given position.
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Postulate 2: Correspondence for Classical Variables

The independent variables x and p that describe completely the state of a
particle in classical mechanics are represented by Hermitian operators X and P
in the Hilbert space of states, with X and P having the following matrix
elements when using the position basis for the Hilbert space:

〈x |X |x ′ 〉 = xδ
`
x − x ′

´
〈x |P |x ′ 〉 = −i ~ d

dx
δ

`
x − x ′

´
(2.1)

We know x and p completely define the classical state of a particle because Newton’s
Second Law is a second-order differential equation: once x and its first derivative (via
p) are specified at an instant in time, all higher-order derivatives are specified.
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Postulate 2: Correspondence for Classical Variables (cont.)

The independent variables x and p that describe completely the state of a
particle in classical mechanics are represented by Hermitian operators X and P
in the Hilbert space of states, with X and P having the following matrix
elements when using the position basis for the Hilbert space:

〈x |X |x ′ 〉 = xδ
`
x − x ′

´
〈x |P|x ′ 〉 = −i ~ d

dx
δ

`
x − x ′

´
(2.2)

That is: Pick a basis for the Hilbert space of states that consists of position
eigenstates, states that have definite, perfectly defined position. These of course may
not be eigenstates of the Hamiltonian and thus may not have definite energy, but we
don’t care; we don’t know about the Hamiltonian yet or the intepretation of its
eigenstates. Then, everywhere we see in classical mechanics the position variable x ,
we replace it with the operator X whose matrix elements are defined as above for any
pair of position basis states. This statement is almost a tautology: pick position basis
states; then define the X operator such that the position basis states {|x 〉} are
orthogonal eigenstates of the X operator with eigenvalues {xδ(0)}.a

a
We will define and discuss in detail δ functions later.
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Postulate 2: Correspondence for Classical Variables (cont.)

The independent variables x and p that describe completely the state of a
particle in classical mechanics are represented by Hermitian operators X and P
in the Hilbert space of states, with X and P having the following matrix
elements when using the position basis for the Hilbert space:

〈x |X |x ′ 〉 = xδ
`
x − x ′

´
〈x |P|x ′ 〉 = −i ~ d

dx
δ

`
x − x ′

´
(2.3)

Why operators? Why are the operators fully specified by matrix elements? Why
Hermitian?

We posit that classical variables are replaced by operators because, given the Hilbert
space of particle states, the only way to extract real numbers corresponding to
classical variables is to assume that there are operators that map from the Hilbert
space to itself; such operators are completely specified by their matrix elements
between pairs of states in the Hilbert space, and those matrix elements provide the
necessary numbers. Why the operators must be Hermitian will be seen in Postulate 3.

Why can we not posit a simpler correspondence, that the operators X and P simply
map from the Hilbert space to the real numbers? Because such a framework would
just be classical mechanics, for we would be able to assign a specific value of x and p
to each state |ψ 〉 via x = X |ψ 〉 and p = P |ψ 〉.
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Postulate 2: Correspondence for Classical Variables (cont.)

Any arbitrary classical dynamical variable ω(x , p) has a corresponding
Hermitian operator

Ω(X ,P) = ω(x → X , p → P) (2.4)

where we simply replace x and p in ω with X and P to obtain Ω(X ,P).

This is a fairly obvious extension of the first part of this postulate. It is predicated on
the fact that any classical variable ω must be a function of x and p because x and p
completely define the classical particle state. Since we have above specified a
correspondence rule for x and p, this statement carries that rule through to all
classical variables.a

a
We shall consider later the complication that arises when ω includes products of x and p; because X and P

are non-commuting operators, some thought must be put into how to order X and P in the correspondence.
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Postulate 3: Results of Measurements of Classical Variables

Let {|ω 〉} denote the set of eigenstates of the Hermitian operator with
eigenvalues ω. If a particle is in an arbitrary state |ψ 〉, then measurement of
the variable corresponding to the operator Ω will yield only the eigenvalues {ω}
of Ω. The measurement will yield the particular value ω for that variable with
relative probability P(ω) = |〈ω |ψ 〉|2 and the system will change from state |ψ 〉
to state |ω 〉 as a result of the measurement being made.

This postulate puts physical meaning to postulates 1 and 2. Those postulates say how
we define the particle state and what we replace our classical variables with. This
postulate tells us how those operators extract information from the states.

This postulate hinges on the mathematical statement that any valid physical variable
operator Ω has eigenstates with eigenvalues. This is just a mathematical result of the
assumptions that the states live in a Hilbert space and that the operators Ω must be
Hermitian.

At a conceptual level, the postulate means that measurement of a physical quantity is
the action of the corresponding operator on the state.
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Postulate 3: Results of Measurements of Classical Variables (cont.)

Let {|ω 〉} denote the set of eigenstates of the Hermitian operator with
eigenvalues ω. If a particle is in an arbitrary state |ψ 〉, then measurement of
the variable corresponding to the operator Ω will yield only the eigenvalues {ω}
of Ω. The measurement will yield the particular value ω for that variable with
relative probability P(ω) = |〈ω |ψ 〉|2 and the system will change from state |ψ 〉
to state |ω 〉 as a result of the measurement being made.

But let’s break the statement down carefully:

1 The eigenvalues of Ω are the only values the measured quantity may take on.

2 The measurement outcome is fundamentally probabilistic, and the relative
probabilitya of a particular allowed outcome ω is given by finding the projection
of |ψ 〉 onto the corresponding eigenstate |ω 〉. This of course implies that, if
|ψ 〉 is an eigenstate of Ω, then the measurement will always yield the
corresponding eigenvalue.

3 The measurement process itself changes the state of the particle to the
eigenstate |ω 〉 corresponding to the measurement outcome ω.

a
By relative probability, we simply mean that the ratio of the probabilities of two outcomes is given by

P(ω1)/P(ω2) = |〈ω1 |ψ 〉|2 / |〈ω2 |ψ 〉|2. The absolute probability of a particular outcome requires a
normalizing factor that sums over all possible measurement outcomes, to be discussed later.
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Postulate 3: Results of Measurements of Classical Variables (cont.)

Let {|ω 〉} denote the set of eigenstates of the Hermitian operator with
eigenvalues ω. If a particle is in an arbitrary state |ψ 〉, then measurement of
the variable corresponding to the operator Ω will yield only the eigenvalues {ω}
of Ω. The measurement will yield the particular value ω for that variable with
relative probability P(ω) = |〈ω |ψ 〉|2 and the system will change from state |ψ 〉
to state |ω 〉 as a result of the measurement being made.

The above points are far more than mathematics: they make assumptions about the
relationship between physical measurements and the mathematical concepts of
eigenstates and eigenvectors.

One could have assumed something simpler: that the measurement outcome is not
probabilistic, but is rather the weighted mean of the eigenvalues with |〈ω |ψ 〉|2
providing the weighting factors; and that the act of measurement does not change
|ψ 〉. But this would be very similar to classical mechanics.

The assumptions we have chosen to make are the physical content of quantum
mechanics and are what distinguish it from classical mechanics.
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Postulate 4: Time Evolution of States

The time evolution of the state vector |ψ(t) 〉 is governed by the Schrödinger
equation

i ~ d

dt
|ψ(t) 〉 = H |ψ(t) 〉 (2.5)

where H(X ,P) is the operator obtained from the classical Hamiltonian H(x , p)
via the correspondence x → X and p → P.

This statement requires little motivation at a general level: clearly, there must be
some time evolution of |ψ 〉 in order for there to be any interesting physics.

There is of course the technical question: why this particular form? One can, to some
extent, derive the Schrödinger Equation in various ways, but those methods rely on
assumptions, too.a Those assumptions may be more intellectually satisfying than
simply postulating the Schrödinger Equation, but they provide no definite proof
because they simply rely on different assumptions. Experiment provides the ultimate
proof that this form is valid.

a
We shall discuss some of these derivations later when we connect quantum mechanics to classical mechanics

at a technical level.
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Prologue

We require a fair amount of mathematical machinery to discuss quantum mechanics:

I We must define the space that particle states live in.

I We must define what we mean by the operators that act on those states and
give us physical observable quantities.

I We must explore the properties of these operators, primarily those properties
that relate to Postulate 3, which says that an operator’s eigenvalues are the only
physically observable values for the associated physical variable.

I We must understand how states are normalized because of the important
relation between the state vector and the relative probabilities of obtaining the
spectrum of observable values for a given operator.

I We must also explore the operator analogues of symmetry transformations in
classical mechanics; while these do not correspond to physical observables
directly, we will see that they are generated by physical observables.
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Prologue (cont.)

Why so much math? Well, in classical mechanics, we just deal with real numbers and
functions of real numbers. You have been working with these objects for many years,
have grown accustomed to them, and have good intuition for them. Being Caltech
undergrads, calculus is a second language to you. So, in classical mechanics, you could
largely rely on your existing mathematical base, with the addition of a few specific
ideas like the calculus of variations, symmetry transformations, and tensors.

In QM, our postulates immediately introduce new mathematical concepts that, while
having some relation to the 3D real vector space you are familiar with, are significant
generalizations thereof. If we taught Hilbert spaces and operators from kindergarten,
this would all be second nature to you. But we don’t, so you now have to learn all of
this math very quickly in order to begin to do QM.
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Linear Vector Spaces: Definitions

Let us first discuss the idea of a linear vector space. A linear vector space VV is a set
of objects (called vectors, denoted by |v 〉) and another associated set of objects called
scalars (collectively known as a field), along with the following set of rules:

I The vectors have an addition operation (vector addition), +, that is closed,
meaning that, for any |v 〉 and |w 〉 there exists a |u 〉 in the vector space such
that |u 〉 = |v 〉+ |w 〉.
We may also write the sum as |v + w 〉.
In defining the set of vectors that make up the vector space, one must also
specify how addition works at an algorithmic level: when you add a particular
|v 〉 and |w 〉, how do you know what |u 〉 is?

I Vector addition is associative: (|v 〉+ |w 〉) + |u 〉 = |v 〉+ (|w 〉+ |u 〉) for all
|u 〉, |v 〉, and |w 〉.

I Vector addition is commutative: |v 〉+ |w 〉 = |w 〉+ |v 〉 for any |v 〉 and |w 〉.
I There is a unique vector additive zero or null or identity vector |0 〉:
|v 〉+ |0 〉 = |v 〉 for any |v 〉.

I Every vector has a unique vector additive inverse vector: for every |v 〉 there
exists a unique vector −|v 〉 in the vector space such that |v 〉+ (−|v 〉) = |0 〉.

Section 3.2 Mathematical Preliminaries: Linear Vector Spaces Page 32



Linear Vector Spaces: Definitions (cont.)

I The scalars have an addition operation (scalar addition), +, that is closed, so
that a + b belongs to the scalar field if a and b do. The addition table must be
specified.

I Scalar addition is associative: a + (b + c) = (a + b) + c for any a, b, and c.

I Scalar addition is commutative: a + b = b + a for any a, b.

I A unique scalar additive identity 0 exists: a + 0 = a for any a.

I For any a, a unique scalar additive inverse −a exists with a + (−a) = 0.

I The scalars have a multiplication operation (scalar multiplication) that is closed
so that the product a b belongs to the scalar field if a and b do. The
multiplication table must be specified.

I Scalar multiplication is associative, a (b c) = (a b) c.

I Scalar multiplication is commutative, a b = b a.

I A unique scalar multiplication identity 1 exists: 1 a = a for all a.

I For any a 6= 0, a unique scalar multiplicative inverse a−1 exists with a a−1 = 1.

I Scalar multiplication is distributive over scalar addition: a (b + c) = a b + a c.
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Linear Vector Spaces: Definitions (cont.)

I There is a multiplication operation between vectors and scalars (scalar-vector
multiplication) that is closed: For any vector |v 〉 and any scalar α, the quantity
α|v 〉 is a member of the vector space.

We may also write the product as |αv 〉.
Again, one must specify how this multiplication works at an algorithmic level.

I Scalar-vector multiplication is distributive in the obvious way over addition in
the vector space: α (|v 〉+ |w 〉) = α|v 〉+ α|w 〉

I Scalar-vector multiplication is distributive in the obvious way over addition in
the field: (α+ β) |v 〉 = α|v 〉+ β|v 〉

I Scalar-vector multiplication is associative in the obvious way over multiplication
in the field: α (β|v 〉) = (αβ) |v 〉

Any vector of the form

|u 〉 = α|v 〉+ β|w 〉

is called a linear combination and belongs in the space according to the above rules.
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Linear Vector Spaces: Definitions (cont.)

Shankar makes fewer assumptions than we do here and states that many of the
properties of the scalar field we have assumed can in fact be derived. We choose to
assume them because: a) the above assumptions are the standard mathematical
definition of a field; and b) if one does not assume the above properties, one has to
make some assumptions about how non-trivial the field arithmetic rules are in order to
derive them. It’s easier, and less prone to criticism by mathematicians, if we do as
above rather than as Shankar.
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Linear Vector Spaces: Definitions (cont.)

There are a few items that one needs to prove, though:

I The scalar addition identity 0 is consistent with the vector addition identity:
0|v 〉 = |0 〉
Proof: 0|v 〉+ α|v 〉 = (0 + α) |v 〉 = α|v 〉. Since |0 〉+ α|v 〉 = α|v 〉 already,
and the identity element is unique, it holds that 0|v 〉 = |0 〉.

I Scalar-vector multiplication against the vector addition identity yields the
obvious result α|0 〉 = |0 〉
Proof: α|0 〉+ α|v 〉 = α (|0 〉+ |v 〉) = α|v 〉. Since |0 〉+ α|v 〉 = α|v 〉 already,
and the identity element is unique, it holds that α|0 〉 = |0 〉.

I The scalar multiplicative identity is the identity for scalar-vector multiplication
also: 1|v 〉 = |v 〉
Proof: α|v 〉 = (1α) |v 〉 = 1 (α|v 〉); α is arbitrary, so it holds for any |v 〉 that
|v 〉 = 1|v 〉

I Vector additive inverses are consistent with scalar additive inverses:
(−1) |v 〉 = −|v 〉
Proof: (−1) |v 〉+ |v 〉 = (−1 + 1) |v 〉 = 0|v 〉 = |0 〉. Since inverses are unique,
it holds that (−1) |v 〉 = −|v 〉.
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Linear Vector Spaces: Examples

Example 3.1: Real vectors in N spatial dimensions, also known as RN

You are used to seeing real vectors in 3, and perhaps N, spatial dimensions, defined by
the ordered triple

|v 〉 ↔

24 v1

v2

v3

35
where the {vj} are all real numbers (the reason for using ↔ instead of = will become
clear in Example 3.4). The vector addition and scalar-vector multiplication algorithms
are

|v 〉+ |w 〉 ↔

24 v1

v2

v3

35+

24 w1

w2

w3

35 =

24 v1 + w1

v2 + w2

v3 + w3

35
α|v 〉 ↔ α

24 v1

v2

v3

35 =

24 α v1

α v2

α v3

35
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Linear Vector Spaces: Examples (cont.)

Scalar addition and multiplication are just standard addition and multiplication of real
numbers. All these operations are closed — i.e., give back elements of the vector
space — simply because addition and multiplication of real numbers is closed and
because none of the operations change the “triplet” nature of the objects. Extension
to N spatial dimensions is obvious. You should carry this example in your head as an
intuitive representation of a linear vector space.
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Linear Vector Spaces: Examples (cont.)

Example 3.2: Complex vectors in N spatial dimensions, also known as CN

Making our first stab at abstraction beyond your experience, let’s consider complex
vectors in N spatial dimensions. This consists of all ordered N-tuples

|v 〉 ↔

264 z1

...
zn

375
where the {zj} are complex numbers, along with the same vector addition and
scalar-vector multiplication rules as in the previous example. The space is closed by a
logic similar to that used in the real vector space example.

This example is no more complicated than the real vector space RN . However, your
intuition starts to break down because you will no doubt find it hard to visualize even
the N = 2 example. You can try to imagine it to be something like real 2D space, but
now you must allow multiplication by complex coefficients. The next obvious thing is
to imagine it to be like real 4D space, but that’s impossible to visualize. Moreover, it
is misleading because it gives the impression that the space is 4-dimensional, but it
really is only two-dimensional. Here is where you must start relying on the math and
having only intuitive, not literal, pictures in your head.
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Linear Vector Spaces: Examples (cont.)

Example 3.3: A spin-1/2 particle affixed to the origin

An interesting application of CN , and one that presents our first example of the
somewhat confusing mathematics of quantum mechanics, is spin-1/2 particles such as
the electron. As you no doubt learned in prior classes, such particles can be in a state
of spin “up” along some spatial direction (say the z axis), spin “down” along that axis,
or some linear combination of the two. (Later in the course, we will be rigorous by
what we mean about that, but your intuition will suffice for now.) If we fix the particle
at the origin so its only degree of freedom is the orientation of its spin axis, then the
vector space of states of such particles consists of complex vectors with N = 2:

|ψ 〉 ↔
»

z1

z2

–
A particle is in a pure spin-up state if z2 = 0 and in a pure spin-down state if z1 = 0.
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Linear Vector Spaces: Examples (cont.)

There are many weirdnesses here:

I The particle state can be a linear combination of these two states:

|ψ 〉 ↔ z1

»
1
0

–
+ z2

»
0
1

–
The state is neither perfectly= spin up or perfectly spin down. We will
frequently write this state as

|ψ 〉 = z1〈↑ |+ z2〈↓ | with 〈↑ | ↔
»

1
0

–
and 〈↓ | ↔

»
0
1

–
I The particle lives in R3, a real vector space of N = 3 dimensions, in that we

measure the orientation of its spin axis relative to the axes of that vector space.
But the vector space of its quantum mechanical states is C2, the complex vector
space of N = 2 dimensions. The space of QM states is distinct from the space
the particle “lives” in!
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Linear Vector Spaces: Examples (cont.)

Example 3.4: The set of all complex-valued functions on a set of discrete points
i L

n+1
, i = 1, . . . , n, in the interval (0, L)

You are well aware of the idea of a complex function f (x) on an interval (0, L). Here,
let’s consider a simpler thing, a function an a set of equally spaced, discrete points.
The vector |f 〉 corresponding to a particular function is then just

|f 〉 ↔

264 f (x1)
...

f (xN)

375 with xj = j
L

N + 1

You are used to taking linear combinations of functions,

h(x) = α f (x) + β g(x)

We can do the same thing with these vector objects:

|h 〉 = α |f 〉+ β |g 〉 ↔ α

264 f (x1)
...

f (xN)

375+ β

264 g(x1)
...

g(xN)

375 =

264 α f (x1) + β g(x1)
...

α f (xn) + β g(xN)

375
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Linear Vector Spaces: Examples (cont.)

It is hopefully obvious that this is just a more complicated way of writing CN : the
space is just the set of N-tuples of complex numbers, and, since we can define any
function of the {xj} that we want, we can obtain any member of CN that we want.

This example lets us introduce the concept of a representation. Given a set of objects
and a set of rules for their arithmetic — such as the vector space CN — a
representation is a way of writing the objects down on paper and expressing the rules.
One way of writing down CN is simply as the set of all N-tuples of complex numbers.
Another way is as the set of all linear combinations of xa for a = 1, . . . ,N on these
discrete points. To give a specific example in C3:24 (1/4) L

(1/2) L
(3/4) L

35↔ |u 〉 ↔ x

24 (1/16) L
(1/4) L
(9/16) L

35↔ |v 〉 ↔ x2

24 (1/64) L
(1/8) L

(27/64) L

35↔ |w 〉 ↔ x3

The vector space elements are |u 〉, |v 〉, and |w 〉. In the column-matrix
representation, they are represented by the column matrices. In the functional
representation, they are represented by the given functions. We use ↔ to indicate
“represented by” to distinguish it from “equality”.

The alert reader will note that the representation in terms of functions is not
one-to-one — it is easy to make two functions match up at 3 points but be different
elsewhere. We will not worry about this issue now, it will matter later.
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Linear Vector Spaces: Examples (cont.)

An aspect of the concept of representation that is confusing is that we usually need to
write down a representation to initially define a space. Here, to define CN , we needed
to provide the representation in terms of complex N-tuples. But the space CN is more
general than this representation, as indicated by the fact that one can write CN in
terms of the function representation. The space takes on an existence beyond the
representation by which it was defined.

In addition to introducing the concept of a representation, this example will become
useful as a lead-in to quantum mechanics. You can think of these vectors as the QM
wavefunction (something we will define later) for a particle that lives only on these
discrete sites {xj}. We will eventually take the limit as the spacing ∆ = L

N+1
vanishes

and N becomes infinite, leaving the length of the interval fixed at L but letting the
function now take on a value at any position in the interval [0, L]. This will provide
the wavefunction for a particle confined in a box of length L.

Finally, one must again be careful not to confuse the space that the particle lives in
with the space of its quantum mechanical states. In this case, the former is set of n
points on a 1-dimensional line in R1, while the latter is CN . When we take the limit
∆→ 0, the particle will then live in the interval [0, L] in R1, but its space of states will
become infinite-dimensional!

Section 3.2 Mathematical Preliminaries: Linear Vector Spaces Page 44



Linear Vector Spaces: Examples (cont.)

Example 3.5: The set of real, antisymmetric N × N square matrices with the
real numbers as the field.

Antisymmetric matrices satisfy AT = −A where T indicates matrix transposition. For
N = 3, these matrices are of the form

A =

24 0 a12 a13

−a12 0 a23

−a13 −a23 0

35
The vector addition operation is standard matrix addition, element-by-element
addition. The scalar arithmetic rules are just addition and multiplication on the real
numbers. The scalar-multiplication operation is multiplication of all elements of the
matrix by the scalar.
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Linear Vector Spaces: Examples (cont.)

It is easy to see that this set satisfies all the vector space rules:

I The sum of two antisymmetric matrices is clearly antisymmetric.

I Addition of matrices is commutative and associative because the
element-by-element addition operation is.

I The null vector is the matrix with all zeros.

I The additive inverse is obtained by taking the additive inverse of each element.

I Multiplication of a real, antisymmetric matrix by a real number yields a real,
antisymmetric matrix.

I Scalar-vector multiplication is distributive because the a scalar multiplies every
element of the matrix one-by-one.

I Scalar-vector multiplication is associative for the same reason.

Note that standard matrix multiplication is not included as one of the arithmetic
operations here! You can check that the space is not closed under that operation.
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Linear Vector Spaces: Examples (cont.)

This example provides a more subtle version of the concept of a representation. There
are two aspects to discuss here. First, the example shows that one need not write a
vector space in terms of simple column matrices. Here, we use N × N square matrices
instead. The key is whether the objects satisfy the linear vector space rules, not the
form in which the objects are written. Second, one can see that this vector space is a
representation of RN(N−1)/2: any element has N(N − 1)/2 real numbers that define it,
and the arithmetic rules for matrix addition and scalar multiplication and addition are
consistent with the corresponding rules for column-matrix addition and scalar
multiplication and addition.

Clearly, one must learn to generalize, to think abstractly beyond a representation of
these mathematical objects to the objects themselves. The representation is just what
you write down to do calculations, but the rules for the objects are more generic than
the representation.

Section 3.2 Mathematical Preliminaries: Linear Vector Spaces Page 47



Linear Vector Spaces: Linear Independence and Bases

What is the minimal set of vectors needed to construct all the remaining
vectors in a vector space? This question brings us to the concepts of linear
independence and of a basis for the vector space.

A set of vectors
˘
|vj 〉

¯
is linearly independent if no one of them can be written in

terms of the others. Mathematically: there is no solution to the equation

nX
j=1

αj |vj 〉 = |0 〉 (3.1)

except αj = 0 for all j . The rationale for this definition is straightforward: suppose
there were such a set of {αj}, and suppose without loss of generality that α1 6= 0.
Then we can rewrite the above as

|v1 〉 =
1

α1

nX
j=2

αj |vj 〉 (3.2)

thereby rewriting |v1 〉 in terms of the others.

A vector space is defined to have dimension n if the maximal set of linearly
independent vectors (excluding |0 〉) that can be found has n members.
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Linear Vector Spaces: Linear Independence and Bases (cont.)

We next state two important expansion theorems (The proofs are straightforward, you
can look them up in Shankar).

I Given a set of n linearly independent vectors {|vj 〉} in a n-dimensional vector
space, any other vector |v 〉 in the vector space can be expanded in terms of
them:

|v 〉 =
X

j

αj |vj 〉 (3.3)

I The above expansion is unique.

Because of the above expansion theorems, any such set of n linearly independent
vectors is called a basis for the vector space and is said to span the vector space. The
coefficients {αj} for a particular vector |v 〉 are called the components of |v 〉.
Equation 3.3 is termed the (linear) expansion of |v 〉 in terms of the basis {|vj 〉}. The
vector space is said to be the space spanned by the basis.

Note that, by definition, the concept of linear independence and the linear expansion
are representation-independent — both concepts are defined in terms of the vectors
and the field elements, not in terms of representations. As usual, you must usually
pick a representation to explicitly test for linear independence or to calculate
expansion coefficients, but the result must be representation-independent because the
definitions are.

Section 3.2 Mathematical Preliminaries: Linear Vector Spaces Page 49



Linear Vector Spaces: Linear Independence and Bases (cont.)

Example 3.6: The real and complex vectors on N spatial dimensions

The obvious basis for both of these spaces is

|1 〉 ↔

2666664
1
0
...
0
0

3777775 |2 〉 ↔

2666664
0
1
...
0
0

3777775 · · · |N 〉 ↔

2666664
0
0
...
0
1

3777775
Other bases are possible, though. For example

|1 ′ 〉 ↔

2666664
1
1
...
0
0

3777775 |2 ′ 〉 ↔

2666664
1
−1

...
0
0

3777775 · · · |(N − 1) ′ 〉 ↔

2666664
0
0
...
1
1

3777775 |N ′ 〉 ↔

2666664
0
0
...
1
−1

3777775
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Linear Vector Spaces: Linear Independence and Bases (cont.)

One can prove linear independence by writing down Equation 3.1, giving N equations
in the N unknowns {αj} and solving. The first basis just yields the N equations
αj = 0 for each j , which implies linear independence. Try the second basis for yourself.

In addition, one can show that RN and CN are N-dimensional by trying to create a
(N + 1)-dimensional basis. We add to the set an arbitrary vector

|v 〉 ↔

264 v1

...
vN

375
where the {vj} are real for RN and complex for CN , and set up Equation 3.1 again. If
we use the first basis {|j 〉}, one obtains the solution αj = vj , indicating that any |v 〉
is not linearly independent of the existing set. Since there are N elements of the
existing set, the space is N-dimensional.

Note that this proves that CN , as defined, with a complex field, is N-dimensional, not
2N-dimensional. If one restricts the field for CN to real numbers, then one requires a
set of N purely real basis elements and N purely imaginary basis elements, yielding a
2N-dimensional space. But that is a different space than the one we defined; with a
complex field, CN is without a doubt N-dimensional.
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Linear Vector Spaces: Linear Independence and Bases (cont.)

Example 3.7: Spin-1/2 particle at the origin

We saw in Example 3.3 that this space is just C2. Here, though, it is useful to get into
the physics of different bases. We already stated (without explanation) that the usual
orthonormal basis for this space corresponds to spin up and spin down relative to the
physical z axis:

|↑z 〉 ↔
»

1
0

–
|↓z 〉 ↔

»
0
1

–
Two other reasonable bases are

|↑x 〉 ↔
1
√

2

»
1
1

–
|↓x 〉 ↔

1
√

2

»
1
−1

–
|↑y 〉 ↔

1
√

2

»
1
i

–
|↓y 〉 ↔

1
√

2

»
1
−i

–

where i =
√
−1 here.
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Linear Vector Spaces: Linear Independence and Bases (cont.)

As the notation suggests, |↑x 〉 and |↓x 〉 correspond, respectively, to a particle in a spin
up or spin down state relative to the physical x axis, and, similarly, |↑y 〉 and |↓y 〉 are
the same for the physical y axis. We shall see how these different bases arise as
eigenvectors of, respectively, the z, x , and y axis spin operators Sz , Sx , and Sy . One
can immediately see that, if a particle is in a state of definite spin relative to one axis,
it cannot be in a state of definite spin with respect to another — e.g.,
|↑x 〉 = (|↑z 〉+ |↓z 〉)/

√
2. This inability to specify spin along multiple axes

simultaneously reflects the fact that the corresponding spin operators do not commute,
a defining property of quantum mechanics. Much more on this later; certainly, rest
assured that this mathematical discussion has significant physical implications.

Following the linear expansion formulae, we can expand the elements of any basis in
terms of any other basis; e.g.:

|↑y 〉 =
1
√

2
[|↑z 〉+ i |↓z 〉] |↓y 〉 =

1
√

2
[|↑z 〉 − i |↓z 〉]

|↑z 〉 =
1
√

2
[|↑y 〉+ |↓y 〉] |↓z 〉 =

−i
√

2
[|↑y 〉 − |↓y 〉]
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Linear Vector Spaces: Linear Independence and Bases (cont.)

Example 3.8: The set of all complex-valued functions on a set of discrete points
i L

n+1
, i = 1, . . . , n, in the interval (0, L), as in Example 3.4

As we have discussed, this space is the same as CN . The first basis given in the
previous example for CN is fine and has the advantage of being physically interpreted
as having the particle localized at one of the N discrete points: |i 〉 corresponds to the
particle being at xj = j L/(N + 1). But another basis is the one corresponding to the
power law functions xa, a = 1, . . . ,N. For N = 3, the representations are

x ↔ |1 〉 ↔

24 (1/4) L
(1/2) L
(3/4) L

35 x2 ↔ |2 〉 ↔

24 (1/16) L
(1/4) L
(9/16) L

35 x3 ↔ |3 〉 ↔

24 (1/64) L
(1/8) L

(27/64) L

35
If one writes down Equation 3.1, one can show that the only solution is, again, αj = 0
for all i . Let’s write the three equations as a matrix equation:24 1/4 1/16 1/64

1/2 1/4 1/8
3/4 9/16 27/64

3524 α1

α2

α3

35 =

24 0
0
0

35
Recall your linear algebra here: the solution for the {αj} is only nontrivial if the
determinant of the matrix vanishes. It does not, so αj = 0 for all i .
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Linear Vector Spaces: Linear Independence and Bases (cont.)

Example 3.9: The set of real, antisymmetric N × N matrices (with the real
numbers as the field) as in Example 3.5.

This space is a vector space of dimension N(N − 1)/2 with one possible basis set just
being the real, antisymmetric matrices with two nonzero elements each; for example,
for N = 3, we have

|1 〉 ↔

24 0 0 1
0 0 0
−1 0 0

35 |2 〉 ↔

24 0 1 0
−1 0 0

0 0 0

35 |3 〉 ↔

24 0 0 0
0 0 1
0 −1 0

35
As with RN and CN , there are many other possible bases. One alternative is

|1 ′ 〉 ↔

24 0 1 0
−1 0 1

0 −1 0

35 |2 ′ 〉 ↔

24 0 1 1
−1 0 0
−1 0 0

35 |3 ′ 〉 ↔

24 0 0 1
0 0 1
−1 −1 0

35
One can check that both sets are linearly independent.
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Inner Product Spaces: Definitions

Now, let us introduce the idea of an inner product, which lets us discuss
normalization and orthogonality of vectors.

An inner product is a function that obtains a single complex number from a pair of
vectors |v 〉 and |w 〉, is denoted by 〈v |w 〉, and has the following properties:

I positive definiteness: 〈v |v 〉 ≥ 0 with 〈v |v 〉 = 0 only if |v 〉 = |0 〉; i.e., the inner
product of any vector with itself is positive unless the vector is the null vector.

I transpose property: 〈v |w 〉 = 〈w |v 〉∗, or changing the order results in complex
conjugation.

I linearity: 〈u |αv + βw 〉 = α〈u |v 〉+ β〈u |w 〉

This definition is specific to the case of vector spaces for which the field is the real or
complex numbers. Technical problems arise when considering more general fields, and
we will only use vector spaces with real or complex fields, so this restriction is not
problematic.
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Inner Product Spaces: Definitions (cont.)

Some notes:

I It is not necessary to assume 〈v |v 〉 is real; the transpose property implies it.

I The above also implies antilinearity, 〈αv + βw |u 〉 = α∗〈v |u 〉+ β∗〈w |u 〉
I Inner products are representation-independent — the above definitions refer

only to the vectors and say nothing about representations. Therefore, if one has
two representations of a linear vector space and one wants them to become
representations of the same inner product space, the inner product must be
defined consistently between the two representations.
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Inner Product Spaces: Definitions (cont.)

Now, for some statements of the obvious:

An inner product space is a vector space for which an inner product function is defined.

The length or norm or normalization of a vector |v 〉 is simply
p
〈v |v 〉, which we write

as |v |. A vector is normalized if its norm is 1; such a vector is termed a unit vector.
Note that a unit vector can be along any direction; for example, in R3, you usually
think of the unit vectors as being only the vectors of norm 1 along the x , y , and z
axes; but, according to our definition, one can have a unit vector along any direction.

The inner product 〈v |w 〉 is sometimes called the projection of |w 〉 onto |v 〉 or vice
versa. This derives from the fact that, for R3, the inner product reduces to

〈v |w 〉 = |v | |w | cos θvw

where θvw is the angle between the two vectors. In more abstract spaces, it may not
be possible to define an angle, but we keep in our minds the intuitive picture from R3.
In general, the two vectors must be normalized in order for this projection to be a
meaningful number: when you calculate the projection of a normalized vector onto
another normalized vector, the projection is a number whose magnitude is less than or
equal to 1 and tells what (quadrature) fraction of |w 〉 lies along |v 〉 and vice versa.
We will discuss projection operators shortly, which make use of this definition. Note
that the term “projection” is not always used in a rigorous fashion, so the context of
any discussion of projections is important.
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Inner Product Spaces: Definitions (cont.)

Two vectors are orthogonal or perpendicular if their inner product vanishes. This is
equivalent to saying that their projections onto each other vanish.

A set of vectors is orthonormal if they are mutually orthogonal and are each
normalized; i.e., 〈vi |vj 〉 = δij where δij is the Kronecker delta symbol, taking on value
1 if i = j and 0 otherwise. We will frequently use the symbol |i 〉 for a member of a set
of orthonormalized vectors simply to make the orthonormality easy to remember.
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Inner Product Spaces: Definitions (cont.)

Calculating Inner Products

As usual, the above definitions do not tell us algorithmically how to calculate the inner
product in any given vector space. The simplest way to do this is to provide the inner
products for all pairs of vectors in a particular basis, consistent with the rules defining
an inner product space, and to assume linearity and antilinearity. Since all other
vectors can be expanded in terms of the basis vectors, the assumptions of linearity and
antilinearity make it straightforward to calculate the inner product of any two vectors.

That is, if {|j 〉} is a basis (not necessarily orthonormal), and |v 〉 =
Pn

j=1 vj |j 〉 and

|w 〉 =
Pn

j=1 wj |j 〉, then

〈v |w 〉 =

*
NX

j=1

vj (j)

˛̨̨̨
˛̨ NX

k=1

wk (k)

+

where (j) and (k) are the |j 〉 and |k 〉 vectors. Using linearity and antilinearity,

〈v |w 〉 =
NX

j=1

v∗j

*
j

˛̨̨̨
˛

NX
k=1

wk (k)

+
=

NX
j=1

NX
k=1

v∗j wk 〈j |k 〉 =
NX

j,k=1

v∗j wk 〈j |k 〉 (3.4)

Once we know all the 〈j |k 〉 inner products, we can calculate the inner product of any
two vectors.
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Inner Product Spaces: Definitions (cont.)

Of course, if the basis is orthonormal, this reduces to

〈v |w 〉 =
X
jk

v∗j wkδjk =
X

j

v∗j wj (3.5)

and, for an inner product space defined such that component values can only be real
numbers, such as R3 space, we just have the standard dot product. (Note that we
drop the full details of the indexing of j and k when it is clear from context.)

With the assumptions that the basis elements satisfy the inner product space rules and
of linearity and antilinearity, the transpose property follows trivially. Positive
definiteness follows nontrivially from these assumptions for the generic case, trivially
for an orthonormal basis.

Note also that there is no issue of representations here — the inner products 〈j |k 〉
must be defined in a representation-independent way, and the expansion coefficients
are representation-independent, so the inner product of any two vectors remains
representation-independent as we said it must.
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Inner Product Spaces: Examples

Example 3.10: RN and CN

The inner product for RN is the dot product you are familiar with, which happens
because the basis in terms of which we first define RN is an orthonormal one. The
same statement holds for CN , too, with the complex conjugation of the first member’s
expansion coefficients. So, explicitly, given two vectors (in RN or CN)

|v 〉 ↔

26664
v1

v2

...
vN

37775 |w 〉 ↔

26664
w1

w2

...
wN

37775
(note the use of arrows instead of equality signs to indicate representation!) their
inner product is

〈v |w 〉 =
X

j

v∗j wj

(Note the equality sign for the inner product, in contrast to the arrows relating the
vectors to their representations — again, inner products are
representation-independent.) Because the basis is orthonormal, the entire space is
guaranteed to satisfy the inner product rules and the spaces are inner product spaces.
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Inner Product Spaces: Examples (cont.)

Example 3.11: Spin-1/2 particle at the origin

The three bases we gave earlier,

|↑x 〉 ↔
1
√

2

»
1
1

–
|↓x 〉 ↔

1
√

2

»
1
−1

–
|↑y 〉 ↔

1
√

2

»
1
i

–
|↓y 〉 ↔

1
√

2

»
1
−i

–
|↑z 〉 ↔

»
1
0

–
|↓z 〉 ↔

»
0
1

–

are each clearly orthonormal by the algorithm for calculating the C2 inner product; e.g.,

〈↑y | ↑y 〉 = [1 · 1 + (−i) · i ] /2 = 1 〈↑y | ↓y 〉 = [1 · 1 + (−i) · (−i)] /2 = 0

(Note the complex conjugation of the first element of the inner product!) Hence,
according to our earlier argument, the space is an inner product space.
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Inner Product Spaces: Examples (cont.)

It is physically interesting to explore the inner products between members of different
bases. Some of them are

〈↑x | ↑z 〉 =
1
√

2
〈↑x | ↓z 〉 =

1
√

2
〈↓y | ↑x 〉 =

1 + i

2
〈↓y | ↓x 〉 =

1− i

2

The nonzero values of the various cross-basis inner products again hint at how definite
spin along one direction does not correspond to definite spin along others; e.g., |↑x 〉
has a nonzero projection onto both |↑z 〉 and |↓z 〉.

Section 3.3 Mathematical Preliminaries: Inner Product Spaces Page 65



Inner Product Spaces: Examples (cont.)

Example 3.12: The set of all complex-valued functions on a set of discrete
points i L

n+1
, i = 1, . . . , n, in the interval (0, L), as in Example 3.4

We know that this is just a different representation of CN , but writing out the inner
product in terms of functions will be an important lead-in to inner products of QM
states on the interval [0, L]. Our representation here is

|f 〉 ↔

264 f (x1)
...

f (xN)

375 with xj = j
L

N + 1
≡ j ∆

We use the same orthonormal basis as we do for our usual representation of CN ,

|1 〉 ↔

26664
1
0
...
0

37775 |2 〉 ↔

26664
0
1
...
0

37775 · · · |N 〉 ↔

26664
0
0
...
1

37775
so that 〈j |k 〉 = δjk .
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Inner Product Spaces: Examples (cont.)

The inner product of two arbitrary vectors in the space is then

〈f |g 〉 =
X

j

f ∗(xj ) g(xj ) (3.6)

That is, one multiplies the conjugate of the first function against the second function
point-by-point over the interval and sums. The norm of a given vector is

〈f |f 〉 =
X

j

f ∗(xj ) f (xj ) =
X

j

|f (xj )|2 (3.7)

We shall see later how these go over to integrals in the limit ∆→ 0.
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Inner Product Spaces: Examples (cont.)

Example 3.13: The set of real, antisymmetric N × N matrices (with the real
numbers as the field) with conjugation, element-by-element multiplication, and
summing as the inner product (c.f., Example 3.5).

Explicitly, the inner product of two elements |A 〉 and |B 〉 is

〈A |B 〉 =
X
jk

A∗jkBjk (3.8)

where jk indicates the element in the jth row and kth column. We include the
complex conjugation for the sake of generality, though in this specific example it is
irrelevant. Does this inner product satisfy the desired properties?

I Positive definiteness: yes, because the inner product squares away any negative
signs, resulting in a positive sum unless all elements vanish.

I Transpose: yes, because the matrix elements are real and real multiplication is
commutative.

I Linearity: yes, because the expression is linear in Bkl .
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Inner Product Spaces: Examples (cont.)

This inner product makes this space a representation of RN(N−1)/2 as an inner product
space. Let’s write down normalized versions of the bases we considered previously:

|1 〉 ↔
1
√

2

24 0 0 1
0 0 0
−1 0 0

35 |2 〉 ↔
1
√

2

24 0 1 0
−1 0 0

0 0 0

35 |3 〉 ↔
1
√

2

24 0 0 0
0 0 1
0 −1 0

35
|1 ′ 〉 ↔

1

2

24 0 1 0
−1 0 1

0 −1 0

35 |2 ′ 〉 ↔
1

2

24 0 1 1
−1 0 0
−1 0 0

35 |3 ′ 〉 ↔
1

2

24 0 0 1
0 0 1
−1 −1 0

35
It is fairly obvious that the first basis is an orthogonal basis. By direct calculation, you
can quickly see that the second basis is not orthogonal.

As a digression, we note that the inner product can also be written as

〈A |B 〉 =
X
jk

A∗jkBjk =
X
jk

AT∗
kj Bjk = Tr(A†B)

where M†jk = M∗kj and Tr(M) =
X

j

Mjj for any matrix M

Here, we begin to see where matrix multiplication can become useful in this vector
space. But note that it only becomes useful as a way to calculate the inner product.
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Inner Product Spaces: Dual Spaces, Dirac Notation, and Adjoints

Dual Spaces and Dirac Notation

We have seen examples of representing vectors |v 〉 as column matrices for RN and
CN . This kind of column matrix representation is valid for any linear vector space
because the space of column matrices, with standard column-matrix addition and
scalar-column-matrix multiplication and scalar addition and multiplication, is itself a
linear vector space. Essentially, column matrices are just a bookkeeping tool for
keeping track of the coefficients of the basis elements.
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Inner Product Spaces: Dual Spaces, Dirac Notation, and Adjoints
(cont.)

When we begin to consider inner product spaces, we are naturally led to the question
of how the inner product works in this column-matrix representation. We immediately
see

〈v |w 〉 =
NX

j,k=1

v∗j wk 〈j |k 〉

=
ˆ

v∗1 · · · v∗N
˜ 264 〈1 |1 〉 · · · 〈1 |N 〉

...
. . .

...
〈N |1 〉 · · · 〈N |N 〉

375
264 w1

...
wN

375 (3.9)

That is, there is an obvious matrix representation of the inner product operation.
When the basis is orthonormal, the above simplifies to

〈v |w 〉 =
NX

j=1

v∗j wj =
ˆ

v∗1 · · · v∗N
˜ 264 w1

...
wN

375 (3.10)
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Inner Product Spaces: Dual Spaces, Dirac Notation, and Adjoints
(cont.)

Purely for calculational and notational convenience, the above equation for the
orthonormal basis case leads us to define, for any vector space V, a partner space,
called the dual space V∗, via a row-matrix representation. That is, for a vector |v 〉 in
V with its standard column-matrix representation

|v 〉 ↔

26664
v1

v2

...
vn

37775 (3.11)

we define a dual vector 〈v | in the dual space V∗ by its row-matrix representation

〈v | ↔
ˆ

v∗1 v∗2 · · · v∗n
˜

(3.12)

A key point is that the dual space V∗ is not identical to the vector space V and is not
a vector space because the rules for scalar-vector multiplication are different: since
there is a complex conjugation in the definition of the row-matrix representation,
〈α v | = 〈v |α∗ holds. (The placement of the α∗ makes no difference to the meaning
of the expression; we place the α∗ after 〈v | for reasons to be discussed soon.)
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Inner Product Spaces: Dual Spaces, Dirac Notation, and Adjoints
(cont.)

(Though V∗ is not a vector space, we might consider simply defining a dual vector
space to be a set that satisfies all the vector space rules except for the complex
conjugation during scalar-vector multiplication. It would be a distinct, but similar,
mathematical object.)

Those with strong mathematical backgrounds may not recognize the above definition.
The standard definition of the dual space V∗ is the set of all linear functions from V to
its scalar field; i.e., all functions on V that, given an element |v 〉 of V, return a
member α of the scalar field associated with V. These functions are also called linear
functionals, linear forms, one-forms, or covectors. We shall see below why this
definition is equivalent to ours for the cases we will consider. If you are not already
aware of this more standard definition of dual space, you may safely ignore this point!
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Inner Product Spaces: Dual Spaces, Dirac Notation, and Adjoints
(cont.)

With the definition of the dual space, and assuming we have the expansions
|v 〉 =

PN
j=1 vj |j 〉 and |w 〉 =

PN
j=1 wj |j 〉 in terms of an orthonormal basis for V, we

may now see that the inner product 〈v |w 〉 can be written as the matrix product of
the row-matrix representation of the dual vector 〈v | and the column-matrix
representation of the vector |w 〉:

〈v |w 〉 =
X

j

v∗j wj =
ˆ

v∗1 v∗2 · · · v∗n
˜
26664

w1

w2

...
wn

37775 = 〈v ||w 〉 (3.13)

Again, remember that the representations of 〈v | and |w 〉 in terms of matrices are how
our initial definitions of them are made, and are convenient for calculational purposes,
but the representations are just that, representations; they are not the same thing as
〈v | and |w 〉, the latter have a more abstract existence.
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Inner Product Spaces: Dual Spaces, Dirac Notation, and Adjoints
(cont.)

The above now explains our comment about the dual space being the space of linear
functionals: there is a one-to-one correspondence between the 〈v | dual vectors and
the linear functionals 〈v | 〉 that accept a vector |w 〉 and returns a number α by
taking the inner product. In fact, one can show that any linear functional mapping
from V to the field can be decomposed in terms of inner-product operations 〈v | 〉.
Mathematicians use the linear functional definition because it is more generic and
connects to other concepts; for example, one-forms more easily generalize to vector
spaces with curvature, which we will most definitely not discuss in this course, and are
connected to the differential curl operator. The most likely place you will encounter
such objects are in a course in general relativity. I’ll bet, though that, like me, most of
you can live without appreciating this subtlety the first time through...

It is standard practice to denote the vector |v 〉 belonging to V as a ket and the dual
vector 〈v | belonging to V∗ as a bra. These definitions are termed Dirac notation.
Depending on the circumstances, we will use the dual space, the Dirac notation, or
both naming schemes.
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Inner Product Spaces: Dual Spaces, Dirac Notation, and Adjoints
(cont.)

We note that the basis vectors and their corresponding dual vectors satisfy

|j 〉 ↔

2666666666664

0
...
0
1
0
...
0

3777777777775
〈j | ↔

ˆ
0 · · · 0 1 0 · · · 0

˜
(3.14)

where each is matrix is nonzero only in its jth element. The above lets us write

|v 〉 =
X

j

vj |j 〉 =
X

j

〈j |v 〉|j 〉 〈v | =
X

j

〈j |v∗j =
X

j

〈j |〈v |j 〉 (3.15)

where vj = 〈j |v 〉 and v∗j = 〈v |j 〉 simply follow from the expansion of |v 〉 in terms of

{|j 〉}.
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Inner Product Spaces: Dual Spaces, Dirac Notation, and Adjoints
(cont.)

Example 3.14: Spin-1/2 particle at the origin

Let’s list the matrix representations of some vectors and their dual vectors (kets and
bras) for the sake of being explicit:

|↑x 〉 ↔
1
√

2

»
1
1

–
〈↑x | ↔

1
√

2

ˆ
1 1

˜
|↓x 〉 ↔

1
√

2

»
1
−1

–
〈↓x | ↔

1
√

2

ˆ
1 −1

˜
|↑y 〉 ↔

1
√

2

»
1
i

–
〈↑y | ↔

1
√

2

ˆ
1 −i

˜
|↓y 〉 ↔

1
√

2

»
1
−i

–
〈↓y | ↔

1
√

2

ˆ
1 i

˜
|↑z 〉 ↔

»
1
0

–
〈↑z | ↔

ˆ
1 0

˜
|↓z 〉 ↔

»
0
1

–
〈↓z | ↔

ˆ
0 1

˜
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Inner Product Spaces: Dual Spaces, Dirac Notation, and Adjoints
(cont.)

We can check the same inner products we did before, this time evaluating the inner
products using the matrix representation (Equation 3.13) rather than
representation-free sum over products of coefficients (Equation 3.5):

〈↑y ||↑y 〉 =
1
√

2

ˆ
1 −i

˜ 1
√

2

»
1
i

–
=

1

2
(1 + 1) = 1 = 〈↑y | ↑y 〉

〈↓y ||↑y 〉 =
1
√

2

ˆ
1 i

˜ 1
√

2

»
1
i

–
=

1

2
(1− 1) = 0 = 〈↓y | ↑y 〉

〈↓y ||↑x 〉 =
1
√

2

ˆ
1 i

˜ 1
√

2

»
1
1

–
=

1

2
(1 + i) = 〈↓y | ↑x 〉

Section 3.3 Mathematical Preliminaries: Inner Product Spaces Page 78



Inner Product Spaces: Dual Spaces, Dirac Notation, and Adjoints
(cont.)

We can now derive the linear expansions we wrote in Example 3.7: we use
Equation 3.15 along with evaluation of the inner products using the matrix
representation; e.g.,

|↓z 〉 =
X

j

〈j | ↓z 〉|j 〉 = 〈↑y | ↓z 〉|↑y 〉+ 〈↓y | ↓z 〉|↓y 〉

=

„
1
√

2

ˆ
1 −i

˜ » 0
1

–«
|↑y 〉+

„
1
√

2

ˆ
1 i

˜ » 0
1

–«
|↓y 〉

=
−i
√

2
[|↑y 〉 − |↓y 〉]

This is a good example of a situation in which one has to avoid getting confused
about what should be written out in matrix representation and what should not. The
inner products 〈↑y | ↓z 〉 and 〈↓y | ↓z 〉 are written as matrix products. We could
replace |↑y 〉 and |↓y 〉 by their matrix representations also. But keep in mind two
things: 1) if you replace the vectors on the right side of the equation by column
matrix representation, you must do the same on the left side, too: vectors and their
representations are not the same thing; 2) the matrices making up the inner product
do not act on the column matrix representation of the vectors by matrix
multiplication, as indicated by the parentheses in the expression; the scalar result of
the inner product multiplies the column matrices for the vectors.
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Inner Product Spaces: Dual Spaces, Dirac Notation, and Adjoints
(cont.)

Example 3.15: The set of real, antisymmetric N × N matrices, as in
Example 3.5.

This is a particularly interesting example because you have to confront the many
representations a particular inner product space can have. Let’s consider the
orthonormal basis we wrote down for the N = 3 case in Example 3.9:

|1 〉 ↔
1
√

2

24 0 0 1
0 0 0
−1 0 0

35 |2 〉 ↔
1
√

2

24 0 1 0
−1 0 0

0 0 0

35 |3 〉 ↔
1
√

2

24 0 0 0
0 0 1
0 −1 0

35
Now, let’s construct two new elements of the space via linear combinations; you will
recognize these as the |1 ′ 〉 and |2 ′ 〉 normalized but non-orthogonal elements we
previously constructed:

|1 ′ 〉 =
1
√

2
(|2 〉+ |3 〉)↔

1

2

24 0 1 0
−1 0 1

0 −1 0

35
|2 ′ 〉 =

1
√

2
(|1 〉+ |2 〉)↔

1

2

24 0 1 1
−1 0 0
−1 0 0

35
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Inner Product Spaces: Dual Spaces, Dirac Notation, and Adjoints
(cont.)

Let’s consider three ways of taking the inner product 〈1 ′ |2 ′ 〉. The first is the obvious
way, using the explicit definition we had for the inner product for this space in terms
of the defining representations:

〈1 ′ |2 ′ 〉 =
3X

j,k=1

(1 ′)jk (2 ′)jk

=
1

4
[0 · 0 + 1 · 1 + 0 · 1 + (−1) · (−1) + 0 · 0 + 1 · 0 + 0 · (−1) + (−1) · 0 + 0 · 0]

=
1

2

This above makes use of the representation we used to define the space, but makes no
use of the generic column- and row-matrix representations we developed for an
arbitrary inner product space with an orthonormal basis.
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Inner Product Spaces: Dual Spaces, Dirac Notation, and Adjoints
(cont.)

Now, let’s use the representation-free sum over coefficients, Equation 3.5, which
makes use of the orthonormality of the basis but not the matrix representation of the
vector and dual vector space:

〈1 ′ |2 ′ 〉 =
3X

j=1

(1 ′)j (2
′)j =

1
√

2
(0 · 1 + 1 · 1 + 1 · 0) =

1

2

Finally, let’s write it out in terms of a matrix product of the matrix representations of
the vector and dual vector spaces:

〈1 ′ |2 ′ 〉 =
1
√

2

ˆ
0 1 1

˜ 1
√

2

24 1
1
0

35 =
1

2

Thus, we see that there are two different matrix representations of this space: the one
we used to define the space, and the one that appears when an orthonormal basis is
used for the space. These are different in that they don’t look the same; but they are
the same in that all the operations we have defined in one representation can be
carried over to the other and vice versa in a consistent fashion. Clearly, though, it can
be confusing to represent the same abstract object |v 〉 in two different ways — as an
N × N real, antisymmetric matrix and as a N(N − 1)/2-element column matrix —
but this a key concept you must become accustomed to.
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Inner Product Spaces: Dual Spaces, Dirac Notation, and Adjoints
(cont.)

Representations as a Tool for Simplification and Unification

Hopefully, the previous two examples have illustrated the value of the matrix
representation of inner product spaces once an orthonormal basis has been established
— once you have established an orthonormal basis and expanded all the elements of
the space in terms of that basis, you know the column-matrix representation of any
element of the inner product space (and the row-matrix representation for its dual
vector) and it is, frequently, arithmetically easier to take inner products using the
matrix representation than to use the defining rule for the inner product in the space.
Essentially, by recognizing the simpler underlying structure present once an
orthonormal basis has been defined, we simplify the operations we must do on the
space.

Another point is that the use of matrix representations allows us to unify different
spaces, to realize that they are the same in spite of the apparent differences in the way
they are defined. Mathematically, this is termed an isomorphism; the spaces are said
to be isomorphic. In particular, any inner product space of dimension N with a real
(complex) field looks like RN (CN) as far as any of the properties of the inner product
space go. Of course, once one introduces additional operations on some spaces, this
isomorphism may not be carried through to those operations. But the idea of
isomorphism and the isomorphism of inner product spaces corresponding to different
physical objects will be a theme we will return to repeatedly in this course.
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Inner Product Spaces: Dual Spaces, Dirac Notation, and Adjoints
(cont.)

Adjoints

We define the process of converting from vector to dual vector (ket to bra) and vice
versa as taking the adjoint. 〈v | is the adjoint of |v 〉 and vice versa. In terms of the
orthonormal basis matrix representation, there is a simple algorithm for this: complex
conjugate and transpose.

From the above definition, the properties of complex numbers, and the definition of
inner product, we can derive rules for taking the adjoint of any combination of bras,
kets, and scalar coefficients:

I scalar coefficients: When one encounters a bra or ket with a scalar coefficient,
the scalar coefficient must be complex conjugated (in addition to taking the
adjoint of the bra or ket); i.e., the adjoint of α|v 〉 is 〈v |α∗ and vice versa.
Again, the placement of α∗ on the right is purely notational.
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Inner Product Spaces: Dual Spaces, Dirac Notation, and Adjoints
(cont.)

I inner products: To determine the adjoint of an inner product 〈v |w 〉, we use the
fact that the inner product is just a complex number and so taking the adjoint
of the inner product just corresponds to complex conjugation. But we know
from the definition of inner product that complex conjugation of an inner
product corresponds to exchanging the positions of the two vectors, so we see
that the adjoint of 〈v |w 〉 is 〈w |v 〉. Thus, when we encounter inner products of
bras and kets, we take the adjoint by simply reversing the order and converting
bras to kets and vice versa, consistent with our rule for bras and kets alone with
the addition of order-reversal. The need for order reversal is why we place scalar
coefficients of bras to their right; the notation is now consistent.

I sums: the adjoint of a sum is just the sum of the adjoints because complex
conjugation and matrix transposition both behave this way.

I products: Suppose one has an arbitrary product of inner products, scalar
coefficents, and a bra or ket. (There can be nothing more complicated because
the result would not be a bra or ket and hence could not be in the vector space
or the dual vector space.) Our rules above simply imply that one should reverse
the order of all the elements and turn all bras into kets and vice versa, even the
ones in inner products. That is, for the ket

|u 〉 = α1 · · ·αk 〈w1 |v 〉 · · · 〈wm |vm 〉|v 〉 (3.16)
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Inner Product Spaces: Dual Spaces, Dirac Notation, and Adjoints
(cont.)

where the {αj}, {|wj 〉}, and {|vj 〉} are arbitrary (the index matchups mean
nothing), we have that the adjoint is

〈u | = 〈v |〈v1 |w1 〉 · · · 〈vm |wm 〉α∗1 · · ·α∗k (3.17)

I vector and dual vector expansions: We may write our vector and dual vector
expansions as

|v 〉 =
X

j

〈j |v 〉|j 〉 =
X

j

|j 〉〈j |v 〉 〈v | =
X

j

〈v |j 〉〈j | (3.18)

where we have simply exchanged the order of the inner product and the bra or
ket; this is fine because the inner product is just a scalar. We see that the above
expansions are fully consistent with our rules for taking adjoints of sums and
products.
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Inner Product Spaces: Theorems

Inner Product Theorems

The definition of inner product immediately gives rise to some useful results. We will
only give the basic idea of the proofs; you can find the details in Shankar.

“Law of Cosines”

|v + w |2 = |v |2 + |w |2 + 2R (〈v |w 〉) (3.19)

where R(z) is the real part of the complex number z. This is proven by simply
expanding out the inner product implied by the left side. The relation is named as it is
because it reduces to the law of cosines when |v 〉 and |w 〉 belong to R3.

The astute reader will see that the sign on the inner product term is different than
what one usually sees in the law of cosines, c2 = a2 + b2 − 2 a b cos γ. This is because
the angle γ is not the angle between ~a and ~b at the origin; it is the supplementary
angle to that angle, hence the sign flip on the cos term. The following diagram this
explicitly.
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Inner Product Spaces: Theorems (cont.)

Diagram to illustrate sign of last term in law of cosines in R2. The law of cosines
conventionally involves the angle γ because that is the angle opposite to the vector
~a + ~b. The inner product of two vectors gives the cosine of the angle between them
when they are placed at the origin, θ. There is a sign flip between the two cosines
because they are supplementary angles (sum to π radians). We want to use the θ angle
instead of the γ angle in the generic form of the law of cosines, hence the sign flip.
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Inner Product Spaces: Theorems (cont.)

Schwarz Inequality

|〈v |w 〉|2 ≤ |v |2|w |2 (3.20)

The Schwarz inequality simply states that the inner product of two vectors can be no
larger than the product of their lengths. More simply, if one divides out the norms of
the vectors, it states that the inner product of two unit vectors can be no greater in
magnitude than 1. When we think about the interpretation of the inner product as the
projection of one vector onto the other, this makes sense; the projection of a unit
vector onto another unit vector can be no larger than 1.

Diagram illustrating Schwarz inequality in
R2 for vectors of unit length. All three
vectors ~a, ~b1, and ~b2 have unit length (as
indicated by the fact that they all end
on the circle). Clearly, the projections

|〈~a |~b1 〉| and |〈~a |~b2 〉| are both less than
1. Note how the sign of the projection
does not affect the result.
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Inner Product Spaces: Theorems (cont.)

The inequality is proven by applying the law of cosines to the vector

|v ′ 〉 = |v 〉 − 〈w |v 〉
|w 〉
|w |2

= |v 〉 − 〈bw |v 〉 |bw 〉 (3.21)

where |bw 〉 = bw/|w | is the unit vector along the |w 〉 direction, and using the positive
definiteness of the norm of |v ′ 〉.

Clearly, |v ′ 〉 is the piece of |v 〉 that is orthogonal to |w 〉. The Schwarz inequality
devolves to an equality if |v 〉 = λ|w 〉 for some λ; i.e., if |v 〉 and |w 〉 are the same up
to a multiplicative constant, indicating they point in the same (or opposite) direction.

Note that the above vector may also be written as

|v ′ 〉 = |v 〉 − |bw 〉〈bw |v 〉 (3.22)

We see the expression |bw 〉〈bw | as we did when writing out bras and kets as sums of
components along the vectors of an orthonormal basis. Such objects we will see are
projection operators because they project out the part of the vector they operate on
along the unit vector comprising the operator.
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Inner Product Spaces: Theorems (cont.)

Triangle Inequality

|v + w | ≤ |v |+ |w | (3.23)

This is a direct result of the law of cosines, arising from the fact that
2R (〈v |w 〉) ≤ 2|〈v |w 〉| ≤ 2|v ||w |. The inequality devolves to an equality only if
|v 〉 = λ|w 〉 with λ real and positive.

Diagram illustrating triangle inequality in R2, where
it expresses the fact that the length of the sum
of two vectors can be no larger than the sum of
their individual lengths, and equality occurs when
the vectors are coaligned. The circle is centered on
the start of ~b and has radius equal to |~b|, so indi-

cates the locus of possible endpoints of ~a + ~b; one
particular example is given for the orientation of ~b
and ~a +~b. The dashed line indicates the maximum
length possibility, with ~a and ~b coaligned so that
|~a + ~b| = |~a|+ |~b|.

Section 3.3 Mathematical Preliminaries: Inner Product Spaces Page 92



Inner Product Spaces: Gram-Schmidt Orthogonalization

Gram-Schmidt Orthogonalization

Given n linearly independent vectors {|vj 〉}, one can construct from them an
orthonormal set of the same size.

The basic idea is to orthogonalize the set by subtracting from the jth vector the
projections of that vector onto the j-1 previous vectors, which have already been
orthogonalized. Dirac notation makes the projection operations more obvious.

We begin by using the first ket from the original set, creating a normalized version:

|1 ′ 〉 = |v1 〉 |1 〉 =
|1 ′ 〉p
〈1 ′ |1 ′ 〉

(3.24)

Then, the second member of the orthogonal and orthonormal sets are

|2 ′ 〉 = |v2 〉 −
|1 ′ 〉〈1 ′ |v2 〉
〈1 ′ |1 ′ 〉

= |v2 〉 − |1 〉〈1 |v2 〉 |2 〉 =
|2 ′ 〉p
〈2 ′ |2 ′ 〉

(3.25)

and so on; the generic formula is

|j ′ 〉 = |vj 〉 −
j−1X
k=1

|k ′ 〉〈k ′ |vk 〉
〈k ′ |k ′ 〉

= |vj 〉 −
j−1X
k=1

|k 〉〈k |vk 〉 |j 〉 =
|j ′ 〉p
〈j ′ |j ′ 〉

(3.26)
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Inner Product Spaces: Gram-Schmidt Orthogonalization (cont.)

Diagram illustrating Gram-Schmidt or-
thogonalization in R2. The first vector
|v1 〉 is simply normalized to obtain |1 〉
but otherwise left unchanged. We sub-
tract off from the second vector |v2 〉 the
projection along |1 〉, leaving |2 ′ 〉. We
then normalize |2 ′ 〉 to obtain |2 〉. |1 〉
and |2 〉 are clearly orthogonal and nor-
malized. (The circle has unity radius.)

One proves this theorem inductively, showing that if the first j-1 vectors have been
orthogonalized, then the jth vector created via the above formula is orthogonal to the
first j-1. The |j 〉 are manifestly normalized.

Gram-Schmidt orthogonalization lets us conclude what we intuitively expect: for an
inner product space of dimension n, we can construct an orthonormal basis for the
space from any other basis. Shankar proves this point rigorously, but it is easy to see
intuitively: the Gram-Schmidt procedure tells us that any linearly independent set of n
vectors yields a mutually orthogonal set of n vectors, and it is fairly obvious that a
mutually orthogonal set of n vectors is linearly independent. If the initial set of LI
vectors matches the dimension of the space, then the new orthonormal set is a basis
for the space.
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Subspaces

Subspaces

It almost goes without saying that a subspace of a linear vector space or inner product
space is a subset of the space that is itself a vector or inner product space. Since the
subset inherits the algebraic operations (and inner product, if one exists) from the
parent space, the only substantive requirement is that the subspace be closed under
the vector addition and scalar-vector multiplication operations. One can show that the
parent space’s null vector must be in any subspace, and hence there is always one
element of overlap between any two subspaces.

Given two subspaces V1 and V2 of a vector space V, the sum or direct sum of the two
subspaces, denoted by V1 ⊕ V2, is the set of all linear combinations of vectors in V1

and V2. Note that, since V1 and V2 are subspaces of some larger vector space V, it is
already known that one may add vectors from V1 and V2 together.

Note that V1 ⊕ V2 is not the same as V1 ∪ V2. V1 ⊕ V2 consists of all linear
combinations of the form

|v 〉 = α1|v1 〉+ α2|v2 〉 (3.27)

where |v1 〉 is in V1 and |v2 〉 is in V2. When both α1 and α2 are nonzero, |v 〉 belongs
to neither V1 nor V2, but lives in the part of V1 ⊕V2 outside V1 and V2. On the other
hand, V1 ∪ V2 consists only of the linear combinations for which at least one of α1

and α2 vanish (i.e., the trivial linear combination in which no combining is done!).
The following diagram may help to illustrate the distinctions.
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Subspaces (cont.)

Diagram illustrating subspaces in R2.
The first subspace V1 consists of all vec-
tors along the x-axis only, indicated by
the red line. The second subspace V2

consists of vectors along the y -axis only,
indicated by the blue line. The union
V1∪V2 consists of all vectors either along
the red line or the blue line. The direct
sum V1 ⊕ V2 consists of all linear com-
binations of vectors along the red line or
the blue line, so covers the entire plane,
indicated by the pink shading. V1⊕V2 is
much bigger than V1, V2, or V1 ∪ V2.

The most trivial subspace an inner product space V can have is the set of all vectors
of the form α|v 〉 where |v 〉 is some element in V: these are just all the vectors along
|v 〉. Given a basis {|vj 〉}, the entire space V is just the direct sum of the subspaces of
this type for each basis element. That is, if we define Vj = {α|vj 〉}, the set of all
scalar multiples of the jth basis element, then

V = V1 ⊕ V2 ⊕ · · · ⊕ VN
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Subspaces (cont.)

Example 3.16: RN and CN

Each of these have a variety of subspaces. Each can be viewed as being the N-element
direct sum of their N = 1 versions (à la what we just said):

RN =

N termsz }| {
R⊕ R · · · ⊕ R CN =

N termsz }| {
C⊕ C · · · ⊕ C

or, perhaps a direct sum of many copies of R2 with one R thrown in if N is odd, or
direct sums of RM of various M, etc., etc.

Example 3.17: The set of all complex-valued functions on a set of discrete
points i L

n+1
, i = 1, . . . , n, in the interval (0, L), as in Example 3.4

The analogue of the above when considering the function representation would be to
select functions that are zero at various points. For example, if N = 4, the functions
that are always zero on x1 and x2 are one subspace, the functions that always vanish
on x3 and x4 are a different subspace, and the full space is the direct sum of these two
subspaces. Each subspace is isomorphic to a function space on two discrete points,
and hence to C2.
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Subspaces (cont.)

Example 3.18: Spin-1/2 particle at the origin

This is just C2 and so the subspaces are fairly boring, but the physical interpretation is
interesting. One can consider the two subspaces {α|↑z 〉} and {α|↓z 〉} where α is any
complex number: these subspaces consist of either spin up or spin down states only.
(Note that, even if you restrict to |α| = 1, there are still an infinity of elements in each
subspace because α is complex.) But one could alternately consider the subspaces
{α|↑x 〉} and {α|↓x 〉} or {α|↑y 〉} and {α|↓y 〉}. One recovers the full space by direct
sum of the two subspaces in each circumstance, but these provide some alternate
subspaces of C2.
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Subspaces (cont.)

Example 3.19: Real antisymmetric, imaginary symmetric, and anti-Hermitian
matrices.

The aforementioned set of real, antisymmetric N × N matrices with a real number
field form a subspace of the set of anti-Hermitian matricesa, also with a real field. The
set of purely imaginary N ×N symmetric matrices with a real field are also a subspace
of the anti-Hermitian matrices. The direct sum of the real antisymmetric matrices and
the purely imaginary symmetric matrices gives the entire space of anti-Hermitian
matrices. Specifically, the three groups are

AR =

24 0 a12 a13

−a12 0 a23

−a13 −a23 0

35 AI =

24 0 i b12 i b13

i b12 0 i b23

i b13 i b23 0

35
AA =

24 0 a12 + i b12 a13 + i b13

−a12 + i b12 0 a23 + i b23

−a13 + i b13 −a23 + i b23 0

35

a
complex matrices A for which (A∗)T = −A where ∗ is element-by-element complex conjugation and T is

matrix transposition.
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Subspaces (cont.)

Let’s check a number of things:

I Real antisymmetric matrices are a subset of anti-Hermitian matrices because
they do not change under complex conjugation and they pick up a sign under
transposition. Similarly, purely imaginary symmetric matrices are a subset
because they pick up a sign under complex conjugation but do not change under
transposition.

I We have already shown that real antisymmetric matrices are closed. Purely
imaginary matrices symmetric matrices are closed under addition and
multiplication by real numbers because neither operation can change the fact
they are purely imaginary or symmetric.

I We have already shown that real antisymmetric matrices are an inner product
space. Purely imaginary symmetric matrices are also an inner product space
because the complex conjugation in the inner-product formula ensures positive
definiteness. The transpose and linearity rules are also satisfied.

I Any sum of a real antisymmetric matrix and a purely imaginary symmetric
matrix is immediately anti-Hermitian because the real part of the sum is
guaranteed to change sign and the imaginary part to keep its sign under
transposition. Any anti-Hermitian matrix can be decomposed in terms of a real
antisymmetric and purely imaginary symmetric matrix simply by breaking it
element-by-element into real and imaginary parts.
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Linear Operators

Prologue

Now that we have defined inner product spaces, we have largely completed the work
of defining the space that the states of a physical system live in. This is not enough,
as physical states are not static. To make measurements and to obtain the dynamics
of the system, we need operators that transform states into other states. According to
postulates 2, 3, and 4, operators tell us how to carry classical mechanics over to
quantum mechanics, how measurements work and how they affect states, and how to
time-evolve states.
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Linear Operators (cont.)

An operator Ω transforms a vector into a (possibly the same) vector,
Ω|v 〉 = |w 〉 and transforms a dual vector into a (also possibly the same) dual
vector, 〈v |Ω = 〈u |.

Note that the action of the operator on 〈v | is not necessarily the bra corresponding to
the operation of the operator on |v 〉; i.e., 〈Ωv | 6= 〈v |Ω in general (though it will be
true in some cases). This is why we stated above 〈v |Ω = 〈u | instead of 〈v |Ω = 〈w |.
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Linear Operators (cont.)

However, it is also true that, once the operation of Ω on vectors has been set, there is
no freedom in the action of Ω on dual vectors. One sees this as follows: suppose

Ω|v1 〉 = |w1 〉 Ω|v2 〉 = |w2 〉 〈v1 |Ω = 〈u1 | 〈v2 |Ω = 〈u2 |

Then we have the 4 independent relations

〈v1 |w1 〉 = 〈v1 |Ω|v1 〉 = 〈u1 |v1 〉 〈v1 |w2 〉 = 〈v1 |Ω|v2 〉 = 〈u1 |v2 〉
〈v2 |w1 〉 = 〈v2 |Ω|v1 〉 = 〈u2 |v1 〉 〈v2 |w2 〉 = 〈v1 |Ω|v1 〉 = 〈u2 |v2 〉

More generally, given N linearly independent vectors in a N-dimensional vector space,
there will be N2 relations of the above type. Specifying the action of Ω on these N
vectors requires 2 N2 numbers (the expansion coefficients of the {|uj 〉} and {|wj 〉}).
The N2 expansion coefficients of the {|wj 〉} were set when the action of Ω on the
vector space was defined. The N2 relations thus determine the N2 expansion
coefficients of the {|uj 〉} from those of the {|wj 〉}. Thus, to determine the action of
Ω on any N-element linearly independent set {〈vj |}, one need only look at Ω’s action
on the corresponding {|vj 〉}. Finally, if the action of Ω on the full set of vectors in the
vector space is specified, then the action of Ω on the full set of dual vectors is
specified by just picking linearly independent sets of the above type for each |v 〉 and
working out the relations.
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Linear Operators (cont.)

We specialize to linear operators, those satisfying typical linearity relations:

Ω (α |v 〉+ β |w 〉) = αΩ|v 〉+ βΩ|w 〉 (〈v |α+ 〈w |β)Ω = α〈v |Ω + β〈w |Ω
(3.28)

Such operators are convenient, of course, because their action is completely specified
by their action on the vector space’s basis vectors, which we shall come to
momentarily. We specialize to linear operators because it is the simplest possible
choice and it has been verified that quantum mechanics using only linear operators
matches experimental predictions.

Our argument about the relation between the action of Ω on vectors and dual vectors
simplifies now: once the action of Ω on an orthonormal basis {|j 〉} has been specified,
then our argument indicates that this specifies its action on the orthonormal basis
{〈j |}. For a linear operator, specifying its action on an orthonormal basis then gives
the action on the entire space by linearity, so the full action of Ω on all vectors and
dual vectors is specified.
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Linear Operators (cont.)

Example 3.20: Identity Operator

That’s an easy one: for any |v 〉, it returns |v 〉:

I |v 〉 = |v 〉

The only thing to point out here is that there is not just one identity operator; there is
an identity operator for each vector space.
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Linear Operators (cont.)

Example 3.21: Projection Operators

Given an inner product space V and a subspace VP , a projection operator is the
operator that maps a vector |v 〉 into its projection onto that subspace. An equivalent
definition is: a projection operator is any operator of the form

P =
X

j

|vj 〉〈vj | (3.29)

where the {|vj 〉} are members of an orthonormal basis (not necessarily all the
members!). That is, each term calculates the inner product of the vector |v 〉 it acts on
with the unit vector |vj 〉, then multiplies the result by |vj 〉 to recover a vector instead
of a number. One can see that the two definitions are equivalent by recognizing that
the subspace VP is just the space spanned by the set {|vj 〉}; alternatively, given the
subspace VP , one should pick the {|vj 〉} to be any orthonormal basis for VP .
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Linear Operators (cont.)

It is important for the vectors to be an orthonormal set in order to really pick out the
piece of |v 〉 in the subspace. To give a trivial counterexample, consider the vector
|v 〉 = v |j 〉, where |j 〉 is an orthonormal basis element, and the projection operator
P = |v 〉〈v |. Clearly, the output vector is always a vector in the subspace Vj spanned
by |j 〉 because |v 〉 is in that subspace. But, let’s act on |v 〉 with P:

P|v 〉 = |v 〉〈v |v 〉 = |v |2|v 〉 = |v |2v |j 〉

Since the original projection operator was not composed of normalized vectors, the
normalization of the result is funny: it is not the projection of |v 〉 onto the Vj

subspace, but rather |v |2 times that projection.
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Linear Operators (cont.)

The above is just a normalization problem. A larger problem arises when one considers
a projection operator composed of two non-orthonormal vectors. For example, in R2,
consider the projection operator

P = |bx 〉〈bx |+ ˛̨̨̨ bx + by
√

2

flfibx + by
√

2

˛̨̨̨
where |bx 〉 and |by 〉 are the x and y unit vectors. The vectors used to construct P are
normalized but not orthogonal. The subspace spanned by the vectors making up the
operator is the entire space, R2, because the two vectors are linearly independent and
the space is already known to be 2-dimensional. Let’s try acting on |by 〉 (using
antilinearity of the bra):

P|by 〉 = |bx 〉〈bx |by 〉+ ˛̨̨̨ bx + by
√

2

fl
1
√

2
(〈bx |by 〉+ 〈by |by 〉) =

1
√

2

˛̨̨̨ bx + by
√

2

fl
Since the subspace spanned by the vectors making up the operator is the space, this
projection operator ought to have returned |by 〉; it did not.
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Linear Operators (cont.)

We can explicitly see that, if the projection operator is composed of an orthonormal
set, it does indeed recover the portion of |v 〉 in the subspace spanned by that set.
Let’s consider an orthonormal basis {|j 〉} of a n-dimensional inner product space, and
let’s consider a projection operator onto the subspace V1···m spanned by the first m of
the basis elements. (We can always reorder the basis elements so the ones that we
want to use are the first m.) That projection operator is

P =
mX

j=1

|j 〉〈j |

Acting on an arbitrary |v 〉 in the space (with expansion
Pn

j=1 vj |j 〉) with P thus gives

P|v 〉 =

0@ mX
j=1

|j 〉〈j |

1A nX
k=1

vk |k 〉
!

=
mX

j=1

nX
k=1

vk |j 〉〈j |k 〉 =
mX

j=1

nX
k=1

vk |j 〉δjk

=
mX

j=1

vj |j 〉

which is, by our original expansion of |v 〉, the piece of |j 〉 in the subspace spanned by
the first m of the {|j 〉}.
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Linear Operators (cont.)

It is frequently useful to rewrite the identity operator in terms of projection operators:

I =
nX

j=1

|j 〉〈j | (3.30)

That this sum is indeed the identity operator can be seen by using the same proof we
just made above but taking m = n. Then the result is24 nX

j=1

|j 〉〈j |

35 |v 〉 =

24 nX
j=1

|j 〉〈j |

35 nX
k=1

vk |k 〉 =
nX

j=1

vj |j 〉 = |v 〉

It follows from the above that a projection operator P that projects onto the subspace
VP is the identity operator IP for VP . When VP = V, one recovers I for the full space
V.

A final note: frequently, we will use the subscript j to denote projection on the
subspace spanned by the single orthonormal basis element |j 〉:

Pj = |j 〉〈j |

Of course, Pj is not specified until you specify a basis, so the meaning of Pj will
always depend on context. But this is standard notation.
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Linear Operators (cont.)

Example 3.22: Derivative Operator on Function Spaces on Discrete Points

Returning to the Example 3.4, let’s create something that looks like taking the
derivative. Let’s use the orthonormal basis {|j 〉} consisting of the functions that are 1
at xj and 0 elsewhere (i.e., just like the standard basis of CN). Then define

DR |j 〉 = −
|j 〉 − |j − 1 〉

∆
for j 6= 1 DR |1 〉 = −

|1 〉 − |N 〉
∆

xj = j
L

N + 1
= j ∆

Then we have

DR |f 〉 = DR

NX
j=1

f (xj )|j 〉 = −
1

∆

24f (x1) (|1 〉 − |N 〉) +
NX

j=2

f (xj ) (|j 〉 − |j − 1 〉)

35
=

24N−1X
j=1

f (xj+1)− f (xj )

∆
|j 〉

35+
f (x1)− f (xN)

∆
|N 〉

The output function looks like the right-going discrete derivative of f (xj )! We looped
around the end at the last point; that would not be necessary in the limit ∆→ 0. You
are well aware from calculus that taking the derivative of continuous functions is a
linear operation, the same holds here.
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Linear Operators (cont.)

Example 3.23: Spin-1/2 Operators

Let’s give our first example of an operator that returns an observable, the spin
projection of spin-1/2 particle states. We simply take as definitions

Sz |↑z 〉 =
~
2
|↑z 〉 Sz |↓z 〉 = −

~
2
|↓z 〉 (3.31)

Sx |↑x 〉 =
~
2
|↑x 〉 Sx |↓x 〉 = −

~
2
|↓x 〉 (3.32)

Sy |↑y 〉 =
~
2
|↑y 〉 Sy |↓y 〉 = −

~
2
|↓y 〉 (3.33)

We have really put the cart before the horse here because we never explained why the
states that we defined as |↑z 〉, |↓z 〉, |↑x 〉, etc. corresponded to physical states with
spin projection along +z, −z, +x , etc. But neglecting that motivational problem,
which we will deal with later, it is clear that the above is a perfectly valid definition of
a set of operators, and they now have some physical meaning: these operators tell us
the spin projection along particular axes of particular states.
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Linear Operators (cont.)

We have only specified the spin operators in terms of the states they leave unchanged
(up to normalization). These states are a complete basis for the space in each case, so
this is sufficient. But let us look at how they change other states. For example, using
the above and some results derived in Example 3.14:

Sy |↓z 〉 = Sy
−i
√

2
(|↑y 〉 − |↓y 〉) = −

i ~
2
√

2
(|↑y 〉+ |↓y 〉) = −

i ~
2
|↑z 〉

That is, Sy converts |↓z 〉 to |↑z 〉, modulo a normalization factor. We will make use of
the “raising” behavior later. For now, it simply serves to show that, having defined the
action of Sy on the |↑y 〉 and |↓y 〉 basis states, we can now calculate the action on any
state, a point that we will state more generally next. The same holds for Sx and Sz .

Example 3.24: Rotation Operators in R3.

Another example, discussed by Shankar, is that of rotation operators in R3. Read this
example.
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Linear Operators (cont.)

Linear Operator Action on Basis Vectors, Matrix Elements, Matrix
Representation of Linear Operators

The main advantage to staying with linear operators is that their action on any vector
is defined purely by their action on a set of basis vectors. Given a set of basis vectors
{|j 〉} and a vector |j 〉 =

P
j vj |j 〉 expanded in terms of them, we may write

Ω|v 〉 = Ω
X

j

vj |j 〉 =
X

j

vjΩ|j 〉 (3.34)

It is useful to break Ω|j 〉 into components by rewriting the expansion using the
identity operator written out using projection operators, I =

P
k |k 〉〈k |:

Ω|v 〉 =
X

j

vjΩ|j 〉 =
X

j

vj

X
k

|k 〉〈k |Ω|j 〉

We define the projection of Ω|j 〉 onto |k 〉 as Ωkj , Ωkj = 〈k |Ω|j 〉. These are just
numbers. The expression can then be rewritten

Ω|v 〉 =
X
jk

Ωkjvj |k 〉 =
X
jk

|k 〉Ωkjvj

thereby giving the components of the result along the various {|k 〉}.
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Linear Operators (cont.)

The above expression looks like matrix multiplication of a n × n matrix against a
single-column n-row matrix:

[Ω|v 〉]k = 〈k |Ω|v 〉 =
X

j

Ωkjvj (3.35)

This makes sense: we were able to represent our vectors via single-column matrices
(kets) and our dual vectors as single-row matrices (bras); it is consistent for operators
to be represented as n× n matrices (where n is the dimensionality of the vector space)
and the kj element (kth row, jth column) is just the projection of the action of Ω on
|j 〉 onto |k 〉. We have thus found the matrix representation of the operator Ω in the
column-matrix representation of the vector space with orthonormal basis {|j 〉}.
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Linear Operators (cont.)

We may of course derive similar relations for the operation of Ω on a bra:

〈v |Ω =
X

j

〈j |Ωv∗j =
X
jk

v∗j 〈j |Ω|k 〉〈k | =
X
jk

v∗j Ωjk 〈k |

or [〈v |Ω]k =
X

j

v∗j Ωjk (3.36)

which again looks like matrix multiplication, this time of a n × n matrix on a
single-row, n-column matrix on its left. Ωjk is the projection of the action of Ω on 〈j |
onto 〈k | (note the transposition of the indices relative to the ket case). The matrix
representation of Ω is thus also consistent with the row-matrix representation of the
dual vector space with orthonormal basis {〈j |}.

We note that the above relation corroborates the statement we made at the start of
our discussion of operators that specifying the action of Ω on a linear basis for V also
full determines its action on a linear basis for V∗. Here, the Ωkj are the N2 numbers
that give the action of Ω on any ket |v 〉, as indicated in Equation 3.35. But these
same N2 numbers appear in Equation 3.36, which expresses the action of Ω on any
bra 〈v |.
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Linear Operators (cont.)

Let us summarize our point about matrix representations of operators: given a linear
operator Ω on a n-dimensional inner product space V with an orthonormal basis {|j 〉}
(and corresponding dual space with orthonormal basis {〈j |}), we may write a n × n
matrix representation of the operator Ω with elements Ωkj given by

Ωkj = 〈k |Ω|j 〉 (3.37)

and the action of this matrix on the column-matrix representation of V and the
row-matrix representation of V∗ is consistent with the operation of Ω on the elements
of V and V∗. Matrix representations of operators will be the tool we use to do much
of quantum mechanics.
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Linear Operators (cont.)

Example 3.25: Projection Operators Revisited

Projection operators have a very simply matrix representation:

(Pj )kl = 〈k |Pj |m 〉 = 〈k |j 〉〈j |m 〉 = δkjδjm (3.38)

That is, Pj is an empty matrix except for a 1 in the jj element. Conveniently, this
extends the consistency of the matrix representation scheme for bras and kets if we
define an outer product between vectors,

|v 〉〈w | =

26664
v1

v2

...
vn

37775 ˆ w∗1 w∗2 · · · w∗n
˜

=

26664
v1w∗1 v1w∗2 · · · v1w∗n
v2w∗1 v2w∗2 · · · v2w∗n

...
. . .

...
vnw∗1 vnw∗2 · · · vnw∗n

37775
(3.39)

or [|v 〉〈w |]km = vkw∗m (3.40)

because, for a projection operator Pj = |j 〉〈j |, we have vk = δkj and wm = δjm as
shown earlier.
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Linear Operators (cont.)

For R3 with the standard x , y , z basis for the column-matrix representation, the
projection operators that project onto the x , y , and z axes are

Px ↔

24 1 0 0
0 0 0
0 0 0

35 Py ↔

24 0 0 0
0 1 0
0 0 0

35 Pz ↔

24 0 0 0
0 0 0
0 0 1

35
The projection operators into various planes are

Pxy ↔

24 1 0 0
0 1 0
0 0 0

35 Pyz ↔

24 0 0 0
0 1 0
0 0 1

35 Pxz ↔

24 1 0 0
0 0 0
0 0 1

35
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Linear Operators (cont.)

We note that one can write a projection operator in a matrix representation
corresponding to a basis that does not match the natural basis of the projection
operator. For example, in the above basis, the operator that projects onto the
subspace defined by the vector (bx + by)/

√
2 is

P bx+by√
2

↔
„
|bx 〉+ |by 〉
√

2

«„
〈bx |+ 〈by |
√

2

«
=

1
√

2

24 1
1
0

35 1
√

2

ˆ
1 1 0

˜

=
1

2

24 1 1 0
1 1 0
0 0 0

35
The key is to use the outer product form, writing the column- and row-matrix
representations of the bras and kets making up the outer product.
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Linear Operators (cont.)

Example 3.26: Derivative Operator on Function Spaces on Discrete Points, as
in Example 3.22

We defined the action of the derivative operator on the space of functions on N
discrete points as follows:

DR |j 〉 =


− (|1 〉 − |N 〉) /∆ j = 1
− (|j 〉 − |j − 1 〉) /∆ j 6= 1

xj = j
L

N + 1
= j ∆

It’s easy to calculate the matrix elements:

(DR)kj = 〈k |DR |j 〉 =

 `
δk,N − δk,1

´
/∆ j = 1`

δk,j−1 − δk,j
´
/∆ j 6= 1

Let’s check that we get the expected result from this matrix representation for N = 4:

DR |f 〉 ↔
1

∆

2664
−1 1 0 0

0 −1 1 0
0 0 −1 1
1 0 0 −1

3775
2664

f (x1)
f (x2)
f (x3)
f (x4)

3775 =

2664
[f (x2)− f (x1)] /∆
[f (x3)− f (x2)] /∆
[f (x4)− f (x3)] /∆
[f (x1)− f (x4)] /∆

3775
You have to be careful about what is meant by δk,j−1. For example, for row 1 of the
matrix, k = 1, we have δk,j−1 = 1 when j − 1 = k = 1, so j = 2 has the nonzero
element.
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Linear Operators (cont.)

Example 3.27: Spin-1/2 Operators

Let’s write out the matrix representations of the Sx , Sy , and Sz operators in the
orthonormal basis {|↑z 〉, |↓z 〉}. We state without derivation that they are

Sz ↔
~
2

»
1 0
0 1

–
Sx ↔

~
2

»
0 1
1 0

–
Sy ↔

~
2

»
0 −i
i 0

–
(3.41)

Checking Sz is easy because we defined it by its action on |↑z 〉 and |↓z 〉, which are the
elements of the orthonormal basis we are using for this matrix representation:

Sz |↑z 〉 ↔
~
2

»
1 0
0 1

– »
1
0

–
=

~
2

»
1
0

–
↔

~
2
|↑z 〉

Sz |↓z 〉 ↔
~
2

»
1 0
0 1

– »
0
1

–
=

~
2

»
0
1

–
↔

~
2
|↓z 〉

which reproduce Equation 3.31.
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Linear Operators (cont.)

We have defined Sx and Sy in terms of their action on |↑x 〉, |↓x 〉 and |↑y 〉, |↓y 〉,
respectively, so one must apply the matrix representations of the operators in this
basis to the matrix representations of those vectors in this basis. The latter were given
in Example 3.14. Let’s try one example here:

Sy |↓y 〉 ↔
~
2

»
0 −i
i 0

–
1
√

2

»
1
−i

–
= −

~
2

»
1
−i

–
↔ −

~
2
|↓y 〉

which matches Equation 3.33.
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Linear Operators

Bilinear Form

With the concept of matrix elements, we show a useful way of writing out operators,
the bilinear form. (This is not explicitly discussed in Shankar.) The idea is to
generalize the way we write projection operators in terms of outer products to write all
operators in a similar fashion. Let {|j 〉} be an orthonormal basis for our space. Then,
inserting the projection version of the identity operator on both sides of an operator
Ω, we have

Ω = I Ω I =
nX

j,k=1

|k 〉〈k |Ω|j 〉〈j | =
nX

j,k=1

|k 〉Ωkj 〈j | =
nX

j,k=1

Ωkj |k 〉〈j | (3.42)

That’s it: the idea is that, once you have specified an orthonormal basis, you can write
any operator as a bilinear expression in the basis kets and bras, with the coefficients
simply being all the matrix elements in that basis. Note that this form depends on your
choice of basis because the {|j 〉} and the {Ωkj} depend on that choice. That said, the
above statement is an absolute equality, not a representation equivalence (i.e., not just
“↔”). But note that this particular form will only be useful if one is working with
expansions of the vectors and dual vectors in terms of these specific {|j 〉} and {〈j |}.
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Linear Operators (cont.)

Matrix Elements of Products of Operators

Using projection operators, it is easy to show that the matrix elements of a product of
two operators is found by simple matrix multiplication of the matrices representing the
two operators:

[ΩΛ]jk = 〈j |ΩΛ|k 〉 = 〈j |Ω
 X

m

|m 〉〈m |
!

Λ|k 〉 =
X
m

〈j |Ω|m 〉〈m |Λ|k 〉

=
X
m

ΩjmΛmk (3.43)

Our matrix representation scheme remains consistent (operator product = standard
matrix product).
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Linear Operators (cont.)

Operator Adjoints

Since operators are completely determined by their actions on vectors, there should be
a way to define the adjoint of an operator that is consistent with our vector adjoint
definition. We in fact make the definition to require consistency: the adjoint Ω† of an
operator Ω yields the adjoint of the vector Ω|v 〉 when it acts on 〈v |:

if |w 〉 = Ω|v 〉 then 〈w | = 〈v |Ω† (3.44)

defines Ω†. Recall our discussion showing that specifying the action of Ω on all
vectors |v 〉 fully determines its action on all dual vectors 〈v |; the converse also holds,
so defining Ω† by its action on dual vectors thereby defines its action on vectors. For
linear operators, we can obtain an algorithmic formula for obtaining Ω† from Ω via
any matrix representation:h

Ω†
i
jk

= 〈j |Ω†|k 〉 = [Ω|j 〉]† |k 〉 =
`
〈k | [Ω|j 〉]

´∗
= (〈k |Ω|j 〉)∗ = Ω∗kj (3.45)

where we reversed the order of the inner product because, at that point, [Ω|j 〉]† is just
a dual vector whose adjoint is [Ω|j 〉] and we know that 〈v |w 〉 = 〈w |v 〉∗. The end
result is that one simply transposes and complex conjugates a matrix representation of
Ω to get the corresponding matrix representation of Ω†.
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Linear Operators (cont.)

Operator Arithmetic with Adjoints

Because taking the adjoint consists of transposing and complex conjugating, the
product rule for adjoint operators is identical to that for transposition:

[ΩΛ]† = Λ†Ω† (3.46)

which one easily proves by acting on an arbitrary vector:

([ΩΛ] |v 〉)† = (Ω [Λ|v 〉])† = (Λ|v 〉)† Ω† =
“
〈v |Λ†

”
Ω† = 〈v |Λ†Ω†

This generalizes our prior rules for dealing with products when taking adjoints of bras
and kets: reverse the order of all the factors in a product and take the adjoint of each
factor independently.

The adjoint of a sum is of course just the sum of the adjoints.
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Linear Operators (cont.)

The above arithmetic rules carry over to the matrix representations of the operators,
so taking the adjoint of a product in matrix representation is straightforward.
Explicitly, the formula is

“
[ΩΛ]†

”
jk

=
h
Λ†Ω†

i
jk

=
nX

m=1

h
Λ†
i
jm

h
Ω†
i
mk

=
nX

m=1

Λ∗mjΩ
∗
km =

nX
m=1

Ω∗kmΛ∗mj (3.47)

The next-to-last expression corresponds to: reverse the order of the matrices, complex
conjugate and transpose each matrix, then matrix multiply them. The last expression
is: complex conjugate each of the two matrices, matrix multiply them, and then
transpose the result.
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Linear Operators

Hermitian and Anti-Hermitian Operators: the Operators of QM

Hermitian and anti-Hermitian operators are defined by the relations

Hermitian: Ω† = Ω anti-Hermitian: Ω† = −Ω (3.48)

Remember that, by definition of operator adjoints, the above are equivalent to

Hermitian: Ω|v 〉 = |w 〉 ⇐⇒ 〈v |Ω = 〈w | (3.49)

anti-Hermitian: Ω|v 〉 = |w 〉 ⇐⇒ 〈v |Ω = −〈w |

The matrix representation versions of the above definitions are

Hermitian: Ω∗jk = Ωkj anti-Hermitian: Ω∗jk = −Ωkj (3.50)

A sum of two Hermitian operators is easily seen to be Hermitian. The product of two
Hermitian operators need not be Hermitian because the two operators have their order
reversed when the adjoint is taken: (ΩΛ)† = Λ†Ω† = ΛΩ 6= ΩΛ in general.

Hermitian and anti-Hermitian operators are obvious analogues of purely real and
purely imaginary numbers. At a qualitative level, it becomes clear why the operator
for a classical physical variable must be Hermitian — we want our physical observables
to be real numbers! We will of course justify this rigorously later.
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Linear Operators (cont.)

Example 3.28: Projection Operators and Hermiticity

Let us show that our standard projection operator definition is Hermitian. Given a set
of orthonormal vectors {|j 〉}, j = 1, . . . ,m that span the subspace VP of a
n-dimensional inner product space that we want to project onto, we have

P =
mX

j=1

|j 〉〈j | ⇐⇒ P† =

0@ mX
j=1

|j 〉〈j |

1A† =
mX

j=1

(|j 〉〈j |)†

What is (|j 〉〈j |)†? We have an expectation that (|j 〉〈j |)† = |j 〉〈j | based on our
definition of adjoint for kets and bras, but we have not explicitly showed that should be
true when the combination of kets and bras is an operator, not a ket or a bra. So, let’s
go back to the definition of an operator adjoint, Equation 3.44. In this case, it requires

if (|j 〉〈j |) |v 〉 = |w 〉 then 〈w | = 〈v | (|j 〉〈j |)†

Let’s just rewrite the first expression:

|j 〉〈j |v 〉 = |w 〉
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Linear Operators (cont.)

Take the adjoint (which we can do since there are no operators involved now):

〈v |j 〉〈j | = 〈w |

This looks like the second half of our adjoint definition statement. That statement
becomes true if

(|j 〉〈j |)† = |j 〉〈j |

which is what we expected, but now we have proven it explicitly. So, then,

P† =
mX

j=1

(|j 〉〈j |)† =
mX

j=1

|j 〉〈j | = P

Projection operators are Hermitian.
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Linear Operators (cont.)

An alternate definition of a projection operator P is that P be Hermitian and that it
satisfy the rather unobvious condition

P2 = P (3.51)

Let us show now that this definition is equivalent to our definition Equation 3.29.

First, we show that Equation 3.29 implies the above. We have already demonstrated
that it implies Hermiticity. Now let us show it implies Equation 3.51. Again, let {|j 〉},
j = 1, . . . ,m be a set of orthonormal vectors that span the subspace VP of a
n-dimensional inner product space V that we want to project onto. Then

P2 =
mX

j=1

|j 〉〈j |
mX

k=1

|k 〉〈k | =
mX

j,k=1

|j 〉〈j |k 〉〈k | =
mX

j,k=1

|j 〉δjk 〈k | =
mX

j=1

|j 〉〈j | = P

as desired.
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Linear Operators (cont.)

Let us show the converse, that the conditions P2 = P and that P is Hermitian imply
our original definition Equation 3.29. The condition P2 = P implies that, for any |v 〉,

P(P|v 〉) = P|v 〉

Let VP be the set of vectors produced by acting with P on all |v 〉 belonging to V. We
can see that this set is a subspace as follows. Suppose |v ′ 〉 and |w ′ 〉 belong to VP .
By definition of VP , there must be (possibly non-unique) vectors |v 〉 and |w 〉 such
that |v ′ 〉 = P|v 〉 and |w ′ 〉 = P|w 〉. Then the linear combination α|v ′ 〉+ β|w ′ 〉
satistfies α|v ′ 〉+ β|w ′ 〉 = αP|v 〉+ βP|w 〉 = P (α|v 〉+ β|w 〉), thereby implying
that the linear combination belongs to the VP also. So VP is closed under all the
necessary operations, so it is a subspace.

Now, for any element |v ′ 〉 in the subspace VP , it holds that P|v ′ 〉 = |v ′ 〉, as follows:
For any such element |v ′ 〉, there is at least one vector |v 〉 such that |v ′ 〉 = P|v 〉.
Since we know P(P|v 〉) = P|v 〉, it therefore holds P|v ′ 〉 = |v ′ 〉.

So, we have that VP is a subspace and P|v 〉 = |v 〉 for any |v 〉 in VP . Let {|j 〉} be an
orthonormal basis for this subspace, j = 1, . . . ,m where m is the dimension of the
subspace. Then it holds that P|j 〉 = |j 〉 for these |j 〉. Therefore, 〈k |P|j 〉 = δkj for
j , k = 1, . . . ,m. This gives us some of the matrix elements of P.
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Linear Operators (cont.)

Extend this orthonormal basis to be an orthonormal basis for the full space,
j = 1, . . . , n where n is the dimension of the full space. We know 〈j |k 〉 = δjk .
Therefore, for j = 1, . . . ,m and k = m + 1, . . . , n, it holds

〈k | (P|j 〉) = |k 〉 (|j 〉) = 〈k |j 〉 = δkj = 0

〈j | (P|k 〉) = 〈j |P|k 〉 =
“
P†|j 〉

”†
|k 〉 = (P|j 〉)† |k 〉 = (|j 〉)† |k 〉 = 〈j |k 〉 = δjk = 0

we used the definition of adjoint operators, bras, and kets and the assumed
Hermiticity of P. δjk vanished in both cases because we had j = 1, . . . ,m and
k = m + 1, . . . , n: j and k are never the same.

The last matrix elements we need are easy. We want to know what 〈k |P|k 〉 is for
k = m + 1, . . . , n. Since P|k 〉 belongs to VP while |k 〉 is orthogonal to the
orthonormal basis for VP , this matrix element always vanishes.
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Linear Operators (cont.)

To summarize,

〈j |P|k 〉 =


δjk for j , k = 1, . . . ,m
0 otherwise

We may then use the bilinear form to write out the explicit form for the projection
operator:

P =
nX

j,k=1

|j 〉〈j |P|k 〉〈k | =
mX

j,k=1

|j 〉δjk 〈k | =
mX

j=1

|j 〉〈j |

which is Equation 3.29, our original definition of the projection operator for the
subspace spanned by the orthonormal set {|j 〉}, j = 1, . . . ,m.

We note that P2 = P does not imply P is its own inverse. Projection operators are in
general noninvertible. Let VP be the subspace of the inner product space V onto
which the projection operator P projects. Consider a vector |v 〉 in the subspace VP⊥
that is orthogonal to VP , meaning that it is orthogonal to all the {|j 〉} comprising P.
Then P|v 〉 = |0 〉. But P|0 〉 = |0 〉 also, so P is not one-to-one, and hence cannot be
invertible. The only case for which this argument fails is for P = I because then the
subspace VP⊥ has |0 〉 as its only element.
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Linear Operators (cont.)

Example 3.29: Spin-1/2 Operators are Hermitian

You can see quite easily that Sx , Sy , and Sz are Hermitian operators by simply taking
the complex conjugate transpose of the matrix representations we have already given.
For example,

S†y ↔=

„»
0 −i
i 0

–«∗T
=

„»
0 i
−i 0

–«T

=

»
0 −i
i 0

–
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Linear Operators (cont.)

Unitary Operators: Operators that do Transformations in QM

Unitary operators are defined by the relation

U† = U−1 (3.52)

By definition of operator adjoints, the above is equivalent to

U|v 〉 = |w 〉 ⇐⇒ 〈v |U−1 = 〈w | (3.53)

We will obtain a definition in terms of matrix representations on the next page.

A product of unitary operators is unitary; one can see this by simply using the product
rules for adjoints and inverses. The appropriately normalized sum of unitary operators
need not be unitary: when one tests whether (U1 + U2)(U1 + U2)†/4 = I , one ends up
with two cross terms that do not give I unless U1 = U2.

Unitary operators are like complex numbers of unit modulus, e iθ. Conjugating such a
number gives its multiplicative inverse, just as taking the adjoint of a unitary operator
gives its operator product inverse. In QM, unitary operators “transform” states —
they time evolve them, spatially rotate them, etc. You can think of them as the
analogue of the e iωt and e ikx factors in electromagnetic wave propagation, though of
course their effect is more complicated than that. They are of complementary
importance to Hermitian operators.
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Linear Operators (cont.)

Inner Products and Unitary Operators

Unitary operators preserve inner products; i.e.,

if |v ′ 〉 = U|v 〉 and |w ′ 〉 = U|w 〉 then 〈w ′ |v ′ 〉 = 〈w |v 〉 (3.54)

The proof is trivial:

〈w ′ |v ′ 〉 = (U|w 〉)† (U|v 〉) = 〈w |U†U|v 〉 = 〈w |v 〉 (3.55)

We thus see that unitary operators are generalizations of rotation and other
orthogonal operators from classical mechanics, which preserve the R3 dot product.

One property of orthogonal matrices that carries over to unitary operators is the
orthonormality of their rows and columns in matrix representation, treating their
columns as kets or rows as bras. Shankar gives two proofs; we give the
matrix-arithmetic version to provide experience with such manipulations:

〈column j |column k 〉 =
X
m

U∗mjUmk =
X
m

h
U†
i
jm

Umk =
h
U†U

i
jk

= δjk (3.56)

The row version is similar. Orthonormality of the columns and rows implies the
operator is unitary.
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Linear Operators (cont.)

Unitary Transformations of Operators

As we noted, unitary operators transform states, such as for time evolution or spatial
translation. One of the most basic questions we ask in QM is: how do the matrix
elements of some operator change under such a transformation. The interest in the
time evolution case is obvious; in other transformations, we are usually interested in
how the transformation of operator matrix elements is related to symmetries of the
problem.

Explicitly, we might ask: how is 〈w |Ω|v 〉 related to 〈w ′ |Ω|v ′ 〉 where |v ′ 〉 = U|v 〉
and |w ′ 〉 = U|w 〉? Of course the specific answer depends on the problem. But it is
generally true that the second expression may be written

〈w ′ |Ω|v ′ 〉 = (U|w 〉)† Ω(U|v 〉) = 〈w |
“
U†ΩU

”
|v 〉 (3.57)

The states are now untransformed; instead, we consider the matrix elements of the
transformed operator, Ω ′ = U†ΩU between the untransformed states.
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Linear Operators (cont.)

This concept has numerous applications. As we shall see next, we frequently would
like to use a basis of eigenstates of some operator H (states |v 〉 for which
H|v 〉 = h|v 〉 where h is a number). We can apply a unitary transformation to get
from our initial basis to such a basis, and the above transformation lets us see how
other operators are represented in the new basis.

Another application is time evolution. The standard picture is the Schrödinger
picture, in which we apply a unitary time evolution operator to the states. In the
alternate Heisenberg picture, we leave the states unchanged and apply the
time-evolution transformation to operators.
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Linear Operators (cont.)

Example 3.30: Particular Unitary Transformations of Spin-1/2 Vectors and
Operators

Let’s consider a particular set of unitary operators our standard C2 matrix
representation of this space:

U = e i α

»
cos θ

2
−e−iφ sin θ

2
e i φ sin θ

2
cos θ

2

–
(3.58)

The four column-row orthonormality conditions leave four degrees of freedom for the
arbitary unitary matrix in this representation. This can be represented as one free
angle θ that is the argument of the cosines and sines combined with three free phase
angles. We have taken one of the phase angles to vanish. Let’s try it out on our
various states:

U(α, θ, φ)|↑z 〉 ↔ e i α

»
cos θ

2
−e−iφ sin θ

2
e i φ sin θ

2
cos θ

2

– »
1
0

–
= e i α

»
cos θ

2
e iφ sin θ

2

–
U(α, θ, φ)|↓z 〉 ↔ e i α

»
cos θ

2
−e−iφ sin θ

2
e i φ sin θ

2
cos θ

2

– »
0
1

–
= e i α

»
e−iφ sin θ

2
cos θ

2

–

Section 3.5 Mathematical Preliminaries: Linear Operators Page 144



Linear Operators (cont.)

In particular, we see that if we take θ = π, then we obtain

U(α, θ = π, φ)|↑z 〉 ↔ e i(α+φ)

»
0
1

–
↔ e i(α+φ)|↓z 〉

U(α, θ = π, φ)|↓z 〉 ↔ e i(α−φ)

»
1
0

–
↔ e i(α−φ)|↑z 〉

This particular unitary operator has rotated the |↑z 〉 and |↓z 〉 basis elements into each
other, up to unity modulus complex factors. With α = 0 and φ = 0, the exchange
would be exact. This is equivalent to a spatial rotation of the physical space
coordinate axes of π radians about any vector in the xy plane.
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Linear Operators (cont.)

What about the action on the other possible bases?

U(α = 0, θ = π, φ = 0)|↑x 〉 ↔
1
√

2

»
1
1

–
=

»
−1

1

–
↔ −|↓x 〉

U(α = 0, θ = π, φ = 0)|↓x 〉 ↔
1
√

2

»
1
−1

–
=

»
1
1

–
↔ |↑x 〉

U(α = 0, θ = π, φ = 0)|↑y 〉 ↔
1
√

2

»
1
i

–
= −i

»
1
i

–
↔ −i |↑y 〉

U(α = 0, θ = π, φ = 0)|↓y 〉 ↔
1
√

2

»
1
−i

–
= i

»
1
−i

–
↔ i |↓y 〉

We see that the physical space rotation is about the y axis, so that the transformation
rotates |↑x 〉 and |↓x 〉 into each other (modulo signs) and keeps |↑y 〉 and |↓y 〉
unchanged (modulo unity modulus factors).
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Linear Operators (cont.)

How about unitary transformation of operators? Again, using α = 0, θ = π, and
φ = 0, let’s apply the unitary transformation to Sx , Sy , and Sz :

U†SzU ↔
»

0 1
−1 0

–
~
2

»
1 0
0 −1

– »
0 −1
1 0

–
=

~
2

»
−1 0

0 1

–
↔ −Sz

U†SxU ↔
»

0 1
−1 0

–
~
2

»
0 1
1 0

– »
0 −1
1 0

–
=

~
2

»
0 −1
−1 0

–
↔ −Sx

U†SyU ↔
»

0 1
−1 0

–
~
2

»
0 −i
i 0

– »
0 −1
1 0

–
=

~
2

»
0 −i
i 0

–
↔ Sy

The sign flips on Sz and Sx make sense, as we saw that the corresponding basis states
were rotated into each other, while the lack of change for Sy makes sense because we
saw the unitary transformation left them unaffected except for prefactors of unity
modulus.

Note that one either transforms the states or transforms the operators, not both —
that’s why the exchange of |↑z 〉 and |↓z 〉 and the sign flip on Sz do not cancel one
another because one does not both of them, one does only one, depending on whether
you want to transform the states or the operators.
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The Eigenvector-Eigenvalue Problem: Formalism

Motivation

An eigenvector of an operator is a vector that is left unchanged by the operator up to
a scalar multiplier, which is called the eigenvalue. The vector |ω 〉 is an eigenvector of
the operator Ω with eigenvalue ω if and only if

Ω|ω 〉 = ω|ω 〉 (3.59)

The key point is that the eigenvector’s direction in the inner product space is left
unchanged by the action of the operator. An operator can have multiple eigenvectors,
and the eigenvectors need not all be different.

One of the postulates of QM is that measurement of any classical variable yields only
the eigenvalues of the corresponding quantum operator, with only the probability of
obtaining any particular value known ahead of time, and that the act of measuring the
physical quantity results in collapse of the state to the eigenstate corresponding to the
measured eigenvalue.

It is therefore not surprising that we must study the problem of eigenvalues and
eigenvalues in inner product spaces.

You have seen material of this type repeatedly, in your discussion of both normal
modes and of quantum mechanics in Ph2/12. As usual, though, we will proceed
methodically to ensure you understand the eigenvalue-eigenvector problem deeply.
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The Eigenvector-Eigenvalue Problem: Formalism (cont.)

Statement of the Problem

Given a linear operator Ω. How do we find its eigenvalues and eigenvectors? We are
asking for solutions to the linear equation (I is the identity operator)

Ω|v 〉 = ω|v 〉 ⇐⇒ (Ω− I ω) |v 〉 = |0 〉 (3.60)

Solution of the Problem

You know from studying linear algebra that the above equation is only true if the
determinant of any matrix representation of the operator on the left side vanishes:

|Ω− I ω| = 0 (3.61)

This equation is termed the characteristic equation for Ω.

Here we begin to get sloppy about the difference between equality = and
representation ↔: a determinant only makes sense for a matrix representation, not for
an operator, but we are using the symbol for the operator in the above equation. We
could dream up some notation to distinguish between the operator and a matrix
representation of it; for example, Ω and [Ω] or Ω and Ω. This will become very tedious
to carry along for the remainder of the course, though, so from here on we will have to
rely on context to distinguish between an operator and its matrix representation.
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The Eigenvector-Eigenvalue Problem: Formalism (cont.)
To properly justify Equation 3.61, one must: 1) prove a general formula for the inverse
of a matrix when a matrix representation is specified; 2) assume that the operator
Ω− I ω is noninvertible so that [Ω− I ω] |v 〉 = |0 〉 does not imply |v 〉 = |0 〉; and 3)
use noninvertiblity and the inversion formula to obtain |Ω− I ω| = 0. See Shankar
Appendix A.1, Equation A.1.7 and Theorem A.1.1.

The formula only can be written explicitly when a matrix representation is specified for
Ω and |v 〉, which is only possible when an orthonormal basis is specified. Let’s assume
this has been given. Then we can write out the determinant. Since we have put no
conditions on Ω, all we can say at this point is that the the resulting equation is a
nth-order polynomial in ω where n is the dimension of the space: the diagonal of
Ω− I ω has one power of ω in each element, and the determinant will include one
term that is the product of all these elements, so there is at least one term in ωn. So,
the eigenvalues will be given by the solution to the polynomial equation

pn(ω) =
nX

m=0

cmω
m = 0 (3.62)

The polynomial pn is called the characteristic polynomial for the operator Ω. The
fundamental theorem of algebra tells us it has n roots, some possibly complex. If the
vector space’s field is complex, then these are valid eigenvalues; if the field were real,
then we say that some of the roots do not exist. Thus, any linear operator in a vector
space whose field is the complex numbers is guaranteed to have as many eigenvalues
as the dimension of the vector space. Since the eigenvalues are independent of the
basis and the matrix representation (Equation 3.60 is basis- and
representation-independent), the characteristic polynomial must also be.
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The Eigenvector-Eigenvalue Problem: Formalism (cont.)

Once we have the eigenvalues, how do we find the eigenvectors?

Easy: for a particular eigenvalue ωj and eigenvector |ωj 〉, we have the equation`
Ω− I ωj

´
|ωj 〉 = |0 〉 (3.63)

Since we explicitly know what the operator is — we know the elements of Ω and we
know ωj — all we need to do is solve for the elements of |ωj 〉. Formally, though,
because the determinant of the matrix on the left vanishes, we are not guaranteed a
unique solution. What we end up with is n − 1 independent linear equations that
determine n − 1 components of |ωj 〉, leaving the overall normalization undetermined.
The normalization of |ωj 〉 is arbitrary since, if |ωj 〉 is an eigenvector, then α|ωj 〉 will
also be an eigenvector for any α.

Of course, if our vector space has a real field, which may result in some of the
eigenvalues not existing in the field, then the corresponding eigenvectors will also not
exist because we would simply not be allowed to write Equation 3.63 for that
eigenvalue.

In some cases, the above procedure will not yield the n eigenvectors in that one will
obtain |ωj 〉 = |0 〉; this happens when there are degenerate (equal) eigenvalues. We
can prove some explicit theorems about the existence of eigenvectors and the nature of
the eigenvalues when the operators are Hermitian or unitary, which we will do below.
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The Eigenvector-Eigenvalue Problem: Formalism (cont.)

Example 3.31: In C3, rotation about the vector (bx + by + bz) /
√

3, which simply
cyclically permutes the three unit vectors.

The matrix representation of this operator, which rotates bx → by , by → bz and bz → bx , is

A↔

24 0 0 1
1 0 0
0 1 0

35
The characteristic equation is

0 = |A− I ω| =

˛̨̨̨
˛̨ −ω 0 1

1 −ω 0
0 1 −ω

˛̨̨̨
˛̨ = −ω3 + 1 = 0

ω1 = 1 ω2 = e 2πi/3 ω3 = e−2πi/3

If we had assumed R3, we would say that two of the eigenvalues and the
corresponding eigenvectors do not exist.

Let us find the eigenvectors for each case by calculating A− I ω for each case and
solving (A− I ω) |v 〉 = |0 〉.
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The Eigenvector-Eigenvalue Problem: Formalism (cont.)

ω1 = 1:

24 −1 0 1
1 −1 0
0 1 −1

3524 v11

v12

v13

35 =

24 0
0
0

35 =⇒
−v11 + v13 = 0

v11 − v12 = 0
v12 − v13 = 0

=⇒ |ω1 〉 ↔ α

24 1
1
1

35
As expected, the normalization is not set because the three equations are not
independent. The conventional choice is to normalize to 1, so in this case α = 1/

√
3.

As one would expect, the vector corresponding to the axis of rotation has eigenvalue 1.
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The Eigenvector-Eigenvalue Problem: Formalism (cont.)

ω2 = e
2πi
3 :

264 −e
2πi
3 0 1

1 −e
2πi
3 0

0 1 −e
2πi
3

375
24 v21

v22

v23

35 =

24 0
0
0

35 =⇒
−e

2πi
3 v21 + v23 = 0

v21 − e
2πi
3 v22 = 0

v22 − e
2πi
3 v23 = 0

=⇒ |ω2 〉 ↔ α

264 1

e−
2πi
3

e
2πi
3

375
Since all the elements are unit modulus, we again may take α = 1/

√
3. Had we

restricted to R3, we would have said this eigenvector did not exist (which makes sense,
given that the eigenvalue would not have been in the scalar field of the vector space).
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The Eigenvector-Eigenvalue Problem: Formalism (cont.)

ω3 = e−
2πi
3 :

264 −e−
2πi
3 0 1

1 −e−
2πi
3 0

0 1 −e−
2πi
3

375
24 v31

v32

v33

35 =

24 0
0
0

35 =⇒
−e−

2πi
3 v31 + v33 = 0

v31 − e−
2πi
3 v32 = 0

v32 − e−
2πi
3 v33 = 0

=⇒ |ω3 〉 ↔ α

264 1

e
2πi
3

e−
2πi
3

375
Again, we may take α = 1/

√
3, and, again, this eigenvector would be said to not exist

if we had restricted to R3.

Section 3.6 Mathematical Preliminaries: The Eigenvector-Eigenvalue Problem Page 155



Lecture 8:
The Eigenvector-Eigenvalue Problem Continued

Date Revised: 2008/10/15
Date Given: 2008/10/15

Page 156



The Eigenvector-Eigenvalue Problem: Formalism

Degeneracy

What happens when two or more eigenvalues are equal? Intuitively, one sees that, if
there were two eigenvectors |ω, 1 〉 and |ω, 2 〉 corresponding to the same eigenvalue ω,
then any linear combination would also be an eigenvector with the same eigenvalue:

if A|ω, 1 〉 = ω|ω, 1 〉 and A|ω, 2 〉 = ω|ω, 2 〉 (3.64)

then A (α|ω, 1 〉+ β|ω, 2 〉) = αω|ω, 1 〉+ β ω|ω, 2 〉 = ω (α|ω, 1 〉+ β|ω, 2 〉)

Hence, one expects that the formalism should be unable to pick between |ω, 1 〉,
|ω, 2 〉, and any linear combination of the two. It in fact does have problems; in
general, rather than there being just one redundant equation when one solves for the
eigenvector, there are nd redundant equations where nd is the number of degenerate
eigenvalues. This is to be expected, as what the problem is saying is that all vectors in
a subspace of dimension nd are eigenvectors, and it’s therefore entirely arbitrary which
nd of those vectors one chooses to be the nominal eigenvectors. Of course, if one
wants to span the subspace, one had better pick linearly independent ones.

We will show below that any pair of eigenvectors corresponding to nondegenerate
eigenvalues are always orthogonal. Motivated by this, the usual procedure is to pick a
convenient set of orthogonal vectors in the degenerate subspace as the eigenvectors.
They are automatically orthogonal to the other, nondegenerate eigenvectors, and
making them orthogonal provides an overall orthogonal (and hence easily
orthonormalizable) basis for the inner product space.
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The Eigenvector-Eigenvalue Problem: Formalism (cont.)

Theorems on Properties of Eigenvalues and Eigenvectors

The eigenvalues of a Hermitian operator are real.

Assume the Hermitian operator Ω has eigenvalue ω with eigenvector |ω 〉,
Ω|ω 〉 = ω|ω 〉. Take the matrix element of Ω between the ket |ω 〉 and bra 〈ω | (also
known as the expectation value of Ω as we shall see later):

〈ω |Ω|ω 〉 = ω〈ω |ω 〉 (3.65)

Also consider the adjoint of the above expression

〈ω |Ω†|ω 〉 = ω∗〈ω |ω 〉 (3.66)

The two expressions must be equal because Ω† = Ω, so we have

(ω − ω∗) 〈ω |ω 〉 = 0 (3.67)

Unless 〈ω |ω 〉 = 0, which can only hold for |ω 〉 = |0 〉, implying a trivial operator Ω,
we find that ω = ω∗; i.e., the eigenvalue ω is real.
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The Eigenvector-Eigenvalue Problem: Formalism (cont.)

Any pair of eigenvectors corresponding to nondegenerate eigenvalues of a
Hermitian operator are orthogonal.

Given two eigenvalues ωj and ωk and corresponding eigenvectors |ωj 〉 and |ωk 〉, we
have

〈ωj |Ω|ωk 〉 = 〈ωj |ωk |ωk 〉 = ωk 〈ωj |ωk 〉 (3.68)

and

〈ωj |Ω|ωk 〉 =
“
Ω†|ωj 〉

”†
|ωk 〉 =

`
Ω|ωj 〉

´† |ωk 〉 =
`
ωj |ωj 〉

´† |ωk 〉 = 〈ωj |ω∗j |ωk 〉
(3.69)

= 〈ωj |ωj |ωk 〉 = ωj 〈ωj |ωk 〉

where we have used that Ω is Hermitian and that its eigenvalue ωj is real. We thus
have `

ωj − ωk

´
〈ωj |ωk 〉 = 0 (3.70)

Because we assumed nondegenerate eigenvalues ωj 6= ωk , we have 〈ωj |ωk 〉 = 0.
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The Eigenvector-Eigenvalue Problem: Formalism (cont.)

For any Hermitian operator acting on an inner product space with a complex
field, there exists an orthonormal basis of its eigenvectors, termed its eigenbasis.

We will first prove this for the case of no degenerate eigenvalues. Our proof is
somewhat different than Shankar’s.

The proof is almost trivial. Any Hermitian operator acting on a n-dimensional inner
product space with a complex field has n eigenvalues because the operator has a n× n
matrix representation, yielding a characteristic polynomial of nth order. As mentioned
before, it is guaranteed to have n complex roots. There are thus n eigenvalues,
nondegenerate by assumption here.

We have shown that, for nondegenerate eigenvalues, the eigenvectors of any pair of
eigenvalues are orthogonal. We are thus assured of a mutually orthogonal set of n
eigenvectors. It is trivial to render these orthonormal by picking their normalization
appropriately (the length of an eigenvector is arbitrary, recall).

Finally, because our orthonormal set is clearly linearly independent, and because it
contains n vectors, it is a valid basis for the n-dimensional inner product space.
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The Eigenvector-Eigenvalue Problem: Formalism (cont.)

When represented in terms of a basis of its eigenvectors, a Hermitian operator’s
matrix representation is diagonal and its diagonal elements are its eigenvalues.

Again, we take a different tack than Shankar. If we write Ω in a matrix representation
in which its eigenvectors are the basis, then its eigenvectors have matrix representation

|ω1 〉 ↔

26664
1
0
...
0

37775 |ω2 〉 ↔

2666664
0
1
0
...
0

3777775 · · · |ωn 〉 ↔

26664
0
...
0
1

37775

The matrix representation of an operator in a particular basis’s matrix representation
is given by the matrix elements of the operator between the basis members according
to Equation 3.37. So, here we have

Ω↔

264 〈ω1 |Ω|ω1 〉 · · · 〈ω1 |Ω|ωn 〉
...

. . .
...

〈ωn |Ω|ω1 〉 · · · 〈ωn |Ω|ωn 〉

375 =

26664
ω1 0 · · · 0
0 ω2 · · · 0
...

...
. . .

...
0 0 · · · ωn

37775 (3.71)

because the basis elements are eigenvectors of Ω and form an orthonormal set; that is,
because Ωjk = 〈ωj |Ω|ωk 〉 = ωk 〈ωj |ωk 〉 = ωkδjk .
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The Eigenvector-Eigenvalue Problem: Formalism (cont.)

Recalling our bilinear form for operators, Equation 3.42, we may also use the condition
Ωjk = ωjδjk on the matrix elements of Ω in its eigenbasis to write the operator in the
form

Ω =
nX

j,k=1

|ωj 〉〈ωj |Ω|ω 〉k〈ωk | =
nX

j,k=1

|ωj 〉ωjδjk 〈ωk | =
nX

j=1

ωj |ωj 〉〈ωj | (3.72)

This makes it explicit that Ω’s matrix representation is diagonal when the basis for the
matrix representation is Ω’s eigenbasis.
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The Eigenvector-Eigenvalue Problem: Formalism (cont.)

Degenerate case:

Even if one has degenerate eigenvalues, the above results still hold – one can still
construct an orthonormal basis of the operator’s eigenvectors, and then one can write
the matrix representation of the operator and it is diagonal. We are not going to be
strictly rigorous about proving this, but we can make a fairly ironclad argument.

Let ω be an eigenvalue that is nd times degenerate. We know that the set of vectors
that are eigenvectors with this eigenvalue form a subspace because the set is closed
under linear combinations, as we noted earlier (the other arithmetic properties of the
subspace are inherited from the parent space.)

Let us assume for the moment that ω is the only degenerate eigenvalue, so that there
are nn = n − nd nondegenerate eigenvalues. This provides nn mutually orthogonal
eigenvectors as shown above. Note also that our eigenvector orthogonality proof also
implies that these nondegenerate eigenvectors are orthogonal to any vector in the ω
subspace because any vector in that subspace is an eigenvector of Ω with eigenvalue
ω, which is a different eigenvalue from any of the nn nondegenerate eigenvalues, and
hence the previously given proof of orthogonality carries through.

We thus have a n-dimensional vector space with a subspace of dimension nn = n− nd .
We make the intuitively obvious claim that the remaining subspace, which is the
degenerate subspace, thus has dimension nd and therefore has at least one linearly
independent basis set with nd elements.
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The Eigenvector-Eigenvalue Problem: Formalism (cont.)

Finally, we invoke Gram-Schmidt orthogonalization to turn that linearly independent
basis into an orthonormal basis. This basis for the degenerate subspace is
automatically orthogonal to the eigenvectors with nondegenerate eigenvalues, so
together they form an orthonormal basis for the entire space.

If there is more than one degenerate eigenvalue, one simply performs the above
procedure for each degenerate subspace independently.
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The Eigenvector-Eigenvalue Problem: Formalism (cont.)

The eigenvalues of a unitary operator are complex numbers of unit modulus.

Consider the norm of an eigenvector |ω 〉 of the unitary operator with eigenvalue ω:

〈ω |ω 〉 = 〈ω |U†U|ω 〉 = 〈ω |ω∗ω|ω 〉 =⇒ (ω∗ω − 1) 〈ω |ω 〉 = 0 (3.73)

For nontrivial |ω 〉, we have ω∗ω = 1, and hence ω must have unit modulus. (This last
step you can prove by writing ω out in terms of real and imaginary components and
solving the equation for its components.)

The eigenvectors of a unitary operator are mutually orthogonal.

Consider a similar construct, this time the inner product of eigenvectors |ωj 〉 and |ωk 〉
of two nondegenerate eigenvalues ωj 6= ωk :

〈ωj |ωk 〉 = 〈ωj |U†U|ωk 〉 = 〈ω |ω∗j ωk |ω 〉 =⇒
“
ω∗j ωk − 1

”
〈ωj |ωk 〉 = 0 (3.74)

For ωj 6= ωk , the quantity ω∗j ωk − 1 cannot vanish unless ωj = ωk , which we assumed

did not hold. Therefore 〈ωj |ωk 〉 = 0 and we have orthogonality.

Of course, we can deal with degenerate subspaces in the same way as we did for
Hermitian operators.
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The Eigenvector-Eigenvalue Problem: Formalism (cont.)

Diagonalization of Hermitian Matrices and Unitary Transformations

Since we have shown that one can always construct an orthonormal basis of the
eigenvectors of a Hermitian matrix, we can write down a unitary operator whose
matrix representation in the original basis {|j 〉} is made up from the components of
those eigenvectors in that basis:

UΩ ↔

264 〈1 |ω1 〉 · · · 〈1 |ωn 〉
...

. . .
...

〈n |ω1 〉 · · · 〈n |ωn 〉

375 (3.75)

That is, we make up each column of the matrix from the expansion coefficients of the
eigenvectors in the original basis {|j 〉}: the first column contains the expansion
coefficients of |ω1 〉 in that basis, the second column contains those of |ω2 〉 and so on.
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The Eigenvector-Eigenvalue Problem: Formalism (cont.)

Let’s check that it satisfies the column-wise and row-wise orthonormality conditions
required of a unitary operator’s matrix representation. First, the column-wise proof:

〈column j |column k 〉 =
nX

m=1

〈m |ωj 〉∗〈m |ωk 〉 =
nX

m=1

〈ωj |m 〉〈m |ωk 〉 = 〈ωj |ωk 〉 = δjk

where we used the fact that the {|j 〉} are an orthonormal basis that span the space
and that the {|ωj 〉} are an orthonormal set. Similarly, for the row-wise condition:

〈row j |row k 〉 =
nX

m=1

〈j |ωm 〉∗〈k |ωm 〉 =
nX

m=1

〈k |ωm 〉〈ωm |j 〉 = 〈k |j 〉 = δkj

where now we use the fact that the {|ωj 〉} are an orthonormal basis that span the
space and that the {|j 〉} are an orthonormal set.
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The Eigenvector-Eigenvalue Problem: Formalism (cont.)

What does this unitary operator do? If we act on the column matrix representation of
one of the basis elements that defines the matrix representation, we find it gets
transformed into one of the eigenvectors; for example, acting on |n 〉:

UΩ|n 〉 ↔

264 〈1 |ω1 〉 · · · 〈1 |ωn 〉
...

. . .
...

〈n |ω1 〉 · · · 〈n |ωn 〉

375
264 0

...
1

375 =

264 〈1 |ωn 〉
...

〈n |ωn 〉

375
↔

nX
j=1

〈j |ωn 〉|j 〉 =
nX

j=1

|j 〉〈j |ωn 〉 = |ωn 〉

where we again used the fact that the {|j 〉} are an orthonormal basis for the space to
collapse the sum over j . Similarly, the reverse transformation from the eigenvectors to

the original basis is performed by U†Ω; we summarize these two statements as

|ωj 〉 = UΩ|j 〉 |j 〉 = U†Ω|ωj 〉 (3.76)
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The Eigenvector-Eigenvalue Problem: Formalism (cont.)

If UΩ rotates the original orthonormal basis {|j 〉} to become the eigenvectors {|ωj 〉},
and U†Ω rotates the eigenvectors {|ωj 〉} to become the original orthonormal basis
{|j 〉}, we are led to the question: how does UΩ act on the operator Ω that gave the
eigenvectors? Consider the following:

〈ωj |Ω|ωk 〉 = 〈ωj |UΩ U†Ω Ω UΩU†Ω|ωk 〉 = 〈j |U†Ω Ω UΩ|k 〉 (3.77)

Since we know 〈ωj |Ω|ωk 〉 = ωjδjk , it must therefore hold that the unitary
transformation

Ω ′ = U†Ω Ω UΩ (3.78)

gives a new operator Ω ′ that is diagonal in the original basis {|j 〉} and has the same
eigenvalues, in the same order, as Ω:

〈ωj |Ω|ωk 〉 = 〈j |Ω ′|k 〉 (3.79)

Section 3.6 Mathematical Preliminaries: The Eigenvector-Eigenvalue Problem Page 169



The Eigenvector-Eigenvalue Problem: Formalism (cont.)

More generally, given an operator Λ and the unitary operator UΩ, we define the
transformed version Λ ′ in the same manner

Λ ′ = U†Ω Λ UΩ (3.80)

Whether or not this transformation gives an operator Λ ′ that is diagonal in the
original basis {|j 〉} like Ω ′ depends on Λ; we will return to this question soon.
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The Eigenvector-Eigenvalue Problem: Formalism (cont.)

We must explain a subtle point about “transformations” versus “arithmetic

operations.” The above discussion gives us a new operator Ω ′ = U†Ω Ω UΩ that is
different from Ω! The original operator Ω is diagonal if one’s matrix representation
uses the {|ωj 〉} as the basis; the new operator is diagonal if one’s matrix
representation uses the original {|j 〉} basis. They are different operators and they
have different eigenvectors.

One thing that is confusing about this is that the operators Ω and Ω ′ have the same
eigenvalues and thus their diagonal forms are the same. One is tempted to think that
they are the same operator. But, because they are diagonal in different matrix
representations, they are most definitely not the same operator. An explicit way to see
this is to write them out in the form given in Equation 3.72

Ω =
nX

j=1

ωj |ωj 〉〈ωj | Ω ′ =
nX

j=1

ωj |j 〉〈j |

The two forms involve outer products of entirely different sets of vectors, so they are
different operators; it is only the coefficients that are the same.
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The Eigenvector-Eigenvalue Problem: Formalism (cont.)

We can see that each operator is diagonal in its own eigenbasis and not diagonal in
the other’s eigenbasis by writing out the relevant matrix elements:

〈ωj |Ω|ωk 〉 = 〈ωj |
"

nX
m=1

ωm|ωm 〉〈ωm |
#
|ωk 〉 = ωjδjk

〈j |Ω|k 〉 = 〈j |
"

nX
m=1

ωm|ωm 〉〈ωm |
#
|k 〉 =

"
nX

m=1

ωm〈j |ωm 〉〈ωm |k 〉
#

〈ωj |Ω ′|ωk 〉 = 〈ωj |
"

nX
m=1

ωm|m 〉〈m |
#
|ωk 〉 =

"
nX

m=1

ωm〈ωj |m 〉〈m |ωk 〉
#

〈j |Ω ′|k 〉 = 〈j |
"

nX
m=1

ωm|m 〉〈m |
#
|k 〉 = ωjδjk

The matrix elements are diagonal for each operator in its own eigenbasis, but are not
necessarily diagonal for each operator in the other operator’s eigenbasis. We also see
we recover Equation 3.77,

〈ωj |Ω|ωk 〉 = ωjδjk = 〈j |Ω ′|k 〉
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The Eigenvector-Eigenvalue Problem: Formalism (cont.)

There is something that muddles all of this. To obtain the representation of an
arbitary operator Λ in the matrix representation corresponding to the eigenbasis of Ω,

{|ωj 〉}, we find we must apply the unitary transformation operation U†ΩΛ U to the
matrix representation of Λ in the original basis {|j 〉} as a purely arithmetic
procedure. At the cost of some notational complexity, we can clarify the similarity and
difference between the unitary transformation as an operator transformation, yielding
a new operator Λ ′, and its use as an arithmetic procedure to obtain a new matrix
representation of the same operator Λ. Let us use the following notation:

Λ = an operator on a vector space, representation-freeˆ
Λ
˜
|j 〉 =

the matrix representation of the operator Λ
in the {|j 〉} matrix representationˆ

Λ
˜
|ωj 〉

=
the matrix representation of the operator Λ
in the {|ωj 〉} matrix representation
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The Eigenvector-Eigenvalue Problem: Formalism (cont.)

Next, note the following relationship between matrix elements in the two different
bases:

〈ωj |Λ|ωk 〉 =
nX

p,q=1

〈ωj |p 〉〈p |Λ|q 〉〈q |ωk 〉 =
nX

p,q=1

h
U†Ω

i
jp
〈p |Λ|q 〉 [UΩ]qk

So, the matrix elements are related by an arithmetic operation that is the same as
the unitary transformation. Using our notation,

ˆ
Λ
˜
|ωj 〉

=
h

U†Ω

i
|j 〉

ˆ
Λ
˜
|j 〉
ˆ

UΩ

˜
|j 〉 (3.81)

But we also have, based on Λ ′ = U†ΩΛUΩ:

ˆ
Λ ′

˜
|j 〉 =

h
U†Ω

i
|j 〉

ˆ
Λ
˜
|j 〉
ˆ

UΩ

˜
|j 〉 (3.82)
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The Eigenvector-Eigenvalue Problem: Formalism (cont.)

We may therefore state ˆ
Λ ′

˜
|j 〉 =

ˆ
Λ
˜
|ωj 〉

(3.83)

which is no doubt incredibly confusing: the matrix representation of the
unitary-transformed operator Λ ′ in the original {|j 〉} basis is the same as the matrix
representation of the untransformed operator Λ in the eigenbasis {|ωj 〉}. Thus, one
has to be very careful to understand from context whether one is staying in the same
basis and transforming the operators or whether one is going to the matrix
representation of the eigenbasis. The matrix representations will look the same! We
usually want to do the latter, but in practice do the former.
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The Eigenvector-Eigenvalue Problem: Formalism (cont.)

Going back to Equation 3.77, let’s consider another possible source of confusion. Is it
completely clear what we mean by UΩ and

ˆ
UΩ

˜
|j 〉? We defined UΩ by its matrix

representation in the {|j 〉} basis, and that is what we mean above by
ˆ

UΩ

˜
|j 〉 and

its adjoint. That’s clear and unambiguous.

But confusion may arise when one asks the obvious follow-on question to: what should
the matrix representation of UΩ in Ω’s eigenbasis,

ˆ
UΩ

˜
|ωj 〉

, be? Should it be the

identity matrix because no transformation is needed if one’s matrix representation is
already in the eigenbasis of Ω? Applying Equation 3.77, we obtain

ˆ
UΩ

˜
|ωj 〉

=
h

U†Ω

i
|j 〉

ˆ
UΩ

˜
|j 〉
ˆ

UΩ

˜
|j 〉 =

ˆ
UΩ

˜
|j 〉

which indicates that UΩ has the same matrix representation in the two bases. Which
is correct: is UΩ’s matrix representation independent of basis, or should UΩ become
the identity matrix in the eigenbasis of Ω?

The confusion arises because we have been a bit ambiguous about what is meant by
UΩ. UΩ is the operator that transforms {|j 〉} into {|ωj 〉}. This depends on both
{|j 〉} and {|ωj 〉}, not just on {|ωj 〉} (and thus not just on Ω). Really, we ought to
label UΩ as U|j 〉→|ωj 〉 because U is defined in terms of {|j 〉} and {|ωj 〉}; it depends

only indirectly on Ω through the fact that Ω determines what the {|ωj 〉} are. If one’s
basis is already the eigenbasis of Ω, then the unitary operator one wants is
U|ωj 〉→|ωj 〉 = I . That is a different operator from U|j 〉→|ωj 〉.
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The Eigenvector-Eigenvalue Problem: Formalism (cont.)

Thus, strictly speaking, the preceding equation that relates the matrix elements of UΩ

in the two bases should be written ash
U|j 〉→|ωj 〉

i
|ωj 〉

=
h

U†|j 〉→|ωj 〉

i
|j 〉

h
U|j 〉→|ωj 〉

i
|j 〉

h
U|j 〉→|ωj 〉

i
|j 〉

=
h

U|j 〉→|ωj 〉
i
|j 〉

(3.84)

The matrix representation of U|j 〉→|ωj 〉 is indeed unchanged by the unitary

transformation. The resolution of the misconception is that this is no longer the
operator one wants: if working in the |ωj 〉 basis, one wants U|ωj 〉→|ωj 〉 = I . The

above form for
h

U|j 〉→|ωj 〉
i
|ωj 〉

is therefore not wrong, it is simply not useful. It

now would rotate the eigenbasis of Ω to some new set of vectors in the space that are
neither the original basis nor the eigenbasis of Ω.

Clearly, there is much opportunity for confusion. We cannot use the above notation in
general because it is too complicated to carry around. We will have to rely on context
to understand which UΩ we are interested in. One saving grace, though, is that, once
we have decided which bases UΩ will transform between, then its matrix
representation is independent of basis choice. Therefore, we will not need to writeˆ

UΩ

˜
|j 〉, we can simply write UΩ.
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The Eigenvector-Eigenvalue Problem: Formalism

If Ω and Λ are two commuting Hermitian operators, there is a basis of common
eigenvectors in whose matrix representation both operators are diagonal.

As usual, first let’s do the nondegenerate case. Assume that Ω has no degenerate
eigenvalues, and that its eigenvalues and eigenvectors are, as usual, {ωj} and {|ωj 〉}.
Then we have

Λ
ˆ
Ω|ωj 〉

˜
= ωjΛ|ωj 〉

Using the fact that Ω and Λ commute, we therefore have

Ω
ˆ
Λ|ωj 〉

˜
= ωjΛ|ωj 〉

So, if |ωj 〉 is an eigenvector of Ω, so is Λ|ωj 〉. Assuming no degeneracies, then Λ|ωj 〉
must be just a multiple of |ωj 〉, Λ|ωj 〉 = λj |ωj 〉, because the eigenvector |ωj 〉 is
specified completely up to a multiplicative constant when the eigenvalues of Ω are
nondegenerate. But the statement Λ|ωj 〉 = λj |ωj 〉 says that |ωj 〉 is an eigenvector of
Λ, too, with eigenvalue λj . Hence, the eigenvectors of Ω, which are orthonormal and
provide a matrix representation in which Ω is diagonal, are also a set of eigenvectors
for Λ and thus provide a basis in which its matrix representation is diagonal, too.

Note that the {λj} may not necessarily form a nondegenerate set. The lack of
degeneracy of Ω prevents this from being a problem.
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The Eigenvector-Eigenvalue Problem: Formalism (cont.)

Degenerate case:

Of course, as usual, one must think more in the degenerate case because, if ωj is a
degenerate eigenvalue, then the fact that |ωj 〉 and Λ|ωj 〉 are both eigenvectors of Ω
with eigenvalue |ωj 〉 does not imply Λ|ωj 〉 = λj |ωj 〉; Λ could map |ωj 〉 somewhere
else in the degenerate subspace of eigenvectors of Ω with eigenvalue ωj . It is
straightforward to deal with this. Let us consider three cases:

I Λ has degenerate eigenvalues but Ω does not.
As we stated above, this has no effect on the proof because it is nondegeneracy
of Ω’s eigenvectors that we relied on.

I Ω has degenerate eigenvalues but Λ does not.
Simply exchange their roles — use Λ’s nondegenerate eigenvectors as the
diagonalizing basis.
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The Eigenvector-Eigenvalue Problem: Formalism (cont.)

I Both Ω and Λ have degenerate eigenvalues, with no correlation between
which ones are degenerate.
Consider a degenerate subspace of Ω. Remember that one has complete
freedom to pick a basis for the subspace — any basis will be orthogonal to all
the other eigenvectors, and the subspace basis can always be made orthonormal
using Gram-Schmidt. If Λ is not degenerate in this subspace, then simply use
Λ’s eigenvectors in the subspace. If Λ is only partially degenerate in the
subspace, then break the subspace into subspaces using Λ’s subspaces. Then
the choice of basis for the residually degenerate subspaces is arbitrary and can
always be made orthonormal.

The same holds if Ω and Λ are equally degenerate in any given degenerate
subspace — just create an orthonormal basis via Gram-Schmidt and it will be a
perfectly good one.

The same holds in reverse, of course — if Λ has a degenerate subspace but Ω is
nondegenerate or partially degenerate there, use Ω to further divide the
subspace or to provide a basis for it.

Shankar has some discussion about the fact that matrices that are block diagonal in a
subspace. It’s not really necessary, as the discussion of block diagonal matrices
assumes that one has already created a basis for the degenerate subspaces of Ω
without consulting Λ. Even if one has, one can always pick a new, less degenerate one
with Λ’s help.
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The Eigenvector-Eigenvalue Problem: A Worked Example

Example 3.32: Shankar’s Normal Mode Example

Shankar’s Example 1.8.6 does a normal mode problem in mechanics to demonstrate
the entire above procedure. We do the same problem but a bit more explicitly so the
various representations and operators involved are made more clear.

The problem consists of two masses coupled to each other by a spring and to fixed
walls on either end. The position of each mass is measured relative to its rest position.
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The Eigenvector-Eigenvalue Problem: A Worked Example (cont.)

Newton’s Second Law for the system gives two coupled ordinary differential equations,
which we may write in matrix form as»

ẍ1

ẍ2

–
+

k

m

»
2 −1
−1 2

– »
x1

x2

–
=

»
0
0

–

One assumes a harmonic solution with time dependence e iωt (of which we will take
the real part in the end), so that»

x1(t)
x2(t)

–
=

»
x1(t = 0)
x2(t = 0)

–
e iωt

This form enables us to evaluate the time derivatives, leaving„»
2 −1
−1 2

–
− λ

«»
x1(0)
x2(0)

–
e iωt =

»
0
0

–
(3.85)

where λ = ω2/(k/m).
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The Eigenvector-Eigenvalue Problem: A Worked Example (cont.)

Let’s translate the above equation into the language of inner product spaces and
operators. The basis we begin with for this space, the one whose matrix
representation we have used implicitly, is

|1 〉 ←−−→
|j 〉

»
1
0

–
|2 〉 ←−−→

|j 〉

»
0
1

–

(We subscript the ↔ with the basis to show which matrix representation is being
used.) We will denote this basis as the coordinate basis for this example because it is
the basis in which the coefficients of the expansion of the state are just the
coordinates of the two masses. An arbitrary vector (state for the system) is

|x 〉 = x1|1 〉+ x2|2 〉 ←−−→
|j 〉

x1

»
1
0

–
+ x2

»
0
1

–
=

»
x1

x2

–
We define an operator Λ by its matrix representation in this basis, the 2 × 2 matrix in
Equation 3.85:

Λ←−−→
|j 〉

»
2 −1
−1 2

–
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The Eigenvector-Eigenvalue Problem: A Worked Example (cont.)

The above equation is then of the form

(Λ− I λ) |x 〉 = |0 〉 (3.86)

where divide out the e iωt factor because it never vanishes. Clearly, this is a
characteristic equation of the form of Equation 3.61.

We proceed with the solution as outlined earlier. We find eigenvalues and eigenvectors:

λ1 = 1 ω1 =

r
k

m
|λ1 〉 ←−−→

|j 〉

1
√

2

»
1
1

–
λ2 = 3 ω2 =

r
3

k

m
|λ2 〉 ←−−→

|j 〉

1
√

2

»
1
−1

–
Since these eigenvectors and eigenvalues solve Equation 3.86, they solve
Equation 3.85 and thus provide the two possible solutions to the problem,

|λ1(t) 〉 = e i ω1t |λ1 〉 |λ2(t) 〉 = e i ω2t |λ2 〉
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The Eigenvector-Eigenvalue Problem: A Worked Example (cont.)

A generic solution is thus of the form (representation-free and coordinate basis
representation versions):

|x(t) 〉 = R
h
c1e

iω1t
i
|λ1 〉+R

h
c2e

iω2t
i
|λ2 〉 (3.87)»

x1(t)
x2(t)

–
= R

»
c1√
2

e iω1t

– »
1
1

–
+R

»
c2√
2

e iω2t

– »
1
−1

–
(3.88)

where R indicates “real part” (and I will indicate “imaginary part”). If we use the
initial position and velocity conditions on the two masses, we find

c1 =
x1(0) + x2(0)

√
2

−
i

ω1

ẋ1(0) + ẋ2(0)√
2

c2 =
x1(0)− x2(0)√

2
−

i

ω2

ẋ1(0)− ẋ2(0)√
2

and thus, the full solution is»
x1(t)
x2(t)

–
=

1

2


[x1(0) + x2(0)] cosω1t +

1

ω1
[ẋ1(0) + ẋ2(0)] sinω1t

ff»
1
1

–
(3.89)

+


[x1(0)− x2(0)] cosω2t +

1

ω2
[ẋ1(0)− ẋ2(0)] sinω2t

ff»
1
−1

–
Correct, but ugly and unilluminating.
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The Eigenvector-Eigenvalue Problem: A Worked Example (cont.)

Let us now make more use of the machinery we have developed in order to obtain the
same solution in a more elegant form that will generalize better to a larger vector
space. In representation-free form, our solution was Equation 3.87, here written a bit
more generically and also writing out the time derivative so we can make use of the
initial conditions:

|x(t) 〉 =
2X

j=1

R
h
cje

iωj t
i
|λj 〉 |ẋ(t) 〉 =

2X
j=1

R
h
i ωjcje

iωj t
i
|λj 〉

Let’s relate the {cj} to the initial conditions in a more generic fashion than we did
above. Take the inner product of both with 〈λj | at t = 0, making use of the fact that
〈λj |x(0) 〉 and 〈λj |ẋ(0) 〉 are real by construction:

〈λj |x(0) 〉 = R[cj ] 〈λj |ẋ(0) 〉 = R[i ωjcj ]⇔ −
1

ωj
〈λj |ẋ(0) 〉 = I[cj ]

So, we may write our solution as

|x(t) 〉 =
2X

j=1

R
»
〈λj |x(0) 〉 −

i

ωj
〈λj |ẋ(0) 〉

–
e iωj t

ff
|λj 〉
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The Eigenvector-Eigenvalue Problem: A Worked Example (cont.)

Let’s reduce this by making use of the fact that both inner products 〈λj |x(0) 〉 and
〈λj |ẋ(0) 〉 are real, followed by rewriting in a suggestive form:

|x(t) 〉 =
2X

j=1

h
〈λj |x(0) 〉 cosωj t + 〈λj |ẋ(0) 〉ω−1

j sinωj t
i
|λj 〉

=

24 2X
j=1

|λj 〉〈λj | cosωj t

35 |x(0) 〉+

24 2X
j=1

|λj 〉〈λj |ω−1
j sinωj t

35 |ẋ(0) 〉

Define some operators:

U(t) =
2X

j=1

|λj 〉〈λj |e iωj t Ω =
2X

j=1

|λj 〉〈λj |ωj

eU(t) = Ω−1U(t) =
2X

j,k=1

|λj 〉〈λj |ω−1
j e iωj t

UR(t) = R[U(t)] =
2X

j=1

|λj 〉〈λj | cosωj t eUI (t) = I[eU(t)] =
2X

j=1

|λj 〉〈λj |ω−1
j sinωj t
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The Eigenvector-Eigenvalue Problem: A Worked Example (cont.)

U(t) is manifestly unitary. Ω is manifestly Hermitian. UR(t) is just the “real part” of
U(t) (where, by real part, we mean we take the real part of its diagonal matrix

representation). eU(t) is almost unitary; it would be if not for the Ω−1 factor. eUI (t) is
its imaginary part. Using these new operators to rewrite, we have

|x(t) 〉 = UR(t)|x(0) 〉+ eUI (t)|ẋ(0) 〉

So, we have a very simple expression for the time evolution of the state from its initial
conditions. This result is complete — this fully specifies the time evolution.

However, we have not quite gotten to an expression that is as explicit as
Equation 3.89 because we have |x(t) 〉, |x(0) 〉, and |ẋ(0) 〉 rather than the matrix
representations of these kets in the coordinate basis. We insert the identity operator
and take the inner product with 〈j |:

〈j |x(t) 〉 =
2X

k=1

〈j |UR(t)|k 〉〈k |x(0) 〉+
2X

k=1

〈j |eUI (t)|k 〉〈k |ẋ(0) 〉

where we inserted the {|k 〉} version to facilitate projecting the initial state onto the
coordinate basis and took the inner product with 〈j | to project the state at t onto the
coordinate basis.
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The Eigenvector-Eigenvalue Problem: A Worked Example (cont.)

Written out in matrix representation, we thus have

ˆ
|x(t) 〉

˜
|j 〉 =

ˆ
UR(t)

˜
|j 〉
ˆ
|x(0) 〉

˜
|j 〉 +

h eUI (t)
i
|j 〉

ˆ
|ẋ(0) 〉

˜
|j 〉 (3.90)»

x1(t)
x2(t)

–
=
ˆ

UR(t)
˜
|j 〉

»
x1(0)
x2(0)

–
+
h eUI (t)

i
|j 〉

»
ẋ1(0)
ẋ2(0)

–
(3.91)

The only thing missing here is that UR(t) and eUI (t) are diagonal in the {|λj 〉} matrix
representation, but not in the {|j 〉} representation. To get between the two, we will
need the unitary operator that transforms the {|j 〉} basis into the {|λj 〉} basis, which
was defined in Equations 3.75 and 3.76:

R|j 〉,|λj 〉 ←−−→|j 〉

»
〈1 |λ1 〉 〈1 |λ2 〉
〈2 |λ1 〉 〈2 |λ2 〉

–
=

1
√

2

»
1 1
1 −1

–

Note that R|j 〉,|λj 〉 = R†|λj 〉,|j 〉
.
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The Eigenvector-Eigenvalue Problem: A Worked Example (cont.)

With the unitary transformation operator in hand, let’s use the arithmetic relation that
lets us obtain the matrix representation in one basis from another, Equation 3.81, to
obtain a more explicit expression:

ˆ
|x(t) 〉

˜
|j 〉 =

h
R†|λj 〉,|j 〉

i
|λj 〉

ˆ
UR(t)

˜
|λj 〉

h
R|λj 〉,|j 〉

i
|λj 〉

ˆ
|x(0) 〉

˜
|j 〉

+
h

R†|λj 〉,|j 〉

i
|λj 〉

h eUI (t)
i
|λj 〉

h
R|λj 〉,|j 〉

i
|λj 〉

ˆ
|ẋ(0) 〉

˜
|j 〉

=
h

R|j 〉,|λj 〉
i
|j 〉

ˆ
UR(t)

˜
|λj 〉

h
R†|j 〉,|λj 〉

i
|j 〉

ˆ
|x(0) 〉

˜
|j 〉

+
h

R|j 〉,|λj 〉
i
|j 〉

h eUI (t)
i
|λj 〉

h
R†|j 〉,|λj 〉

i
|j 〉

ˆ
|ẋ(0) 〉

˜
|j 〉

(3.92)

where we used R|j 〉,|λj 〉 = R†|λj 〉,|j 〉
and the fact that the matrix representations of

R|j 〉,|λj 〉 in the {|j 〉} and the {|λj 〉} bases are the same, Equation 3.84.
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The Eigenvector-Eigenvalue Problem: A Worked Example (cont.)

Writing out more explicitly,»
x1(t)
x2(t)

–
(3.93)

=
1
√

2

»
1 1
1 −1

– »
cosω1t 0

0 cosω2t

–
1
√

2

»
1 1
1 −1

– »
x1(0)
x2(0)

–
+

1
√

2

»
1 1
1 −1

– »
ω−1

1 0

0 ω−1
2

– »
sinω1t 0

0 sinω2t

–
1
√

2

»
1 1
1 −1

– »
ẋ1(0)
ẋ2(0)

–
which, you can check, is identical to Equation 3.89. It may look ugly in comparison,
but it is much clearer about what is happening in obtaining the state at time t from
the initial state. We start with the initial condition column vectors on the right side.
Then we apply a unitary transformation operator to rewrite those initial conditions in
terms of the eigenbasis of Λ. We then apply a diagonal time-evolution operator — this
explicitly separates the time evolution of the two normal modes (eigenvectors). Then,
we apply a unitary transformation to rewrite that final state in terms of the coordinate
basis to get the desired final position of the masses. You can easily imagine how this
can be generalized to an arbitrary number of masses n: all the matrices will grow to n
dimensions, the unitary transformation matrix to go between the two bases will get
more complicated, but the time evolution pieces will remain the same in form.

Section 3.6 Mathematical Preliminaries: The Eigenvector-Eigenvalue Problem Page 192



The Eigenvector-Eigenvalue Problem: A Worked Example (cont.)

The situation actually simplifies in QM. The Schrödinger Equation is a first-order
differential equation in time, so we will only require something like the first term. The
remainder will remain almost exactly the same. The product of the three square
matrices in that term will be called the propagator because it propagates the initial
conditions to a final state.
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Unitary Transformations Revisited

Generic Unitary Transformations

The unitary transformation operator that arose in the eigenvector-eigenvalue problem
transforms from the original orthonormal basis {|j 〉} to the eigenbasis {|ωj 〉}. It was
initially defined by its matrix representation in the {|j 〉} basis, Equation 3.75

UΩ ↔

264 〈1 |ω1 〉 · · · 〈1 |ωn 〉
...

. . .
...

〈n |ω1 〉 · · · 〈n |ωn 〉

375
which we showed was equivalent to the representation-free statement given by
Equation 3.76:

UΩ|j 〉 = |ωj 〉 U†Ω|ωj 〉 = |j 〉

We could have instead simply used the first of the above pair above equations
combined with the requirements of linearity and unitarity.
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Unitary Transformations Revisited (cont.)

There was nothing about the above operator that was specific to the fact that {|ωj 〉}
is an eigenbasis except for its effect on Ω. The definition of UΩ simply required two
orthonormal bases. Given any two orthonormal bases {|j 〉} and {|j ′ 〉}, we can define a
unitary operator in representation-free fashion by the generalization of Equation 3.76,

U|j 〉,|j ′ 〉|j 〉 = |j ′ 〉 U†|j 〉,|j ′ 〉|j
′ 〉 = |j 〉 (3.94)

The subscripts denote the bases that U transforms from and to, in that order. The
matrix elements of U in the two bases are

〈j |U|j 〉,|j ′ 〉|k 〉 = 〈j |
`
U|j 〉,|j ′ 〉|k 〉

´
= 〈j |k ′ 〉 (3.95)

〈j ′ |U|j 〉,|j ′ 〉|k ′ 〉 =
“
U†|j 〉,|j ′ 〉|j

′ 〉
”†
|k ′ 〉 = 〈j |k ′ 〉

That is, the matrix representation of U|j 〉,|j ′ 〉 is the same in the two bases and is the
generalization of Equation 3.75,

U|j 〉,|j ′ 〉 ←−−−→|j 〉 or

|j ′ 〉

264 〈1 |1
′ 〉 · · · 〈1 |n ′ 〉
...

. . .
...

〈n |1 ′ 〉 · · · 〈n |n ′ 〉

375 (3.96)
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Unitary Transformations Revisited (cont.)

As before in Equation 3.80, U|j 〉,|j ′ 〉 transforms operators into new operators:

Λ ′ = U†|j 〉,|j ′ 〉 Λ U|j 〉,|j ′ 〉 (3.97)

It also performs the equivalent of Equation 3.77, the arithmetic operation that
converts the matrix representation of an operator in the {|j 〉} basis to its matrix
representation in the {|j ′ 〉} basis

ˆ
Λ
˜
|j ′ 〉 =

h
U†|j 〉,|j ′ 〉

i
|j 〉

ˆ
Λ
˜
|j 〉
ˆ

U|j 〉,|j ′ 〉
˜
|j 〉 (3.98)

(the proof is identical to the one given leading up to Equation 3.77). And, as before in
Equation 3.83, we have the confusing relationˆ

Λ ′
˜
|j 〉 =

ˆ
Λ
˜
|j ′ 〉 (3.99)

that relates the matrix representation of the transformed operator in the
untransformed basis to the matrix representation of the untransformed operator in the
transformed basis.

Finally, it should be evident from Equation 3.94 that U|j ′ 〉,|j 〉 = U†|j 〉,|j ′ 〉.
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Functions of Operators

Does it make sense to consider functions of operators; e.g., f (Ω) = eΩ where Ω
is an operator?

Yes, it does, as long as we consider functions that can be written in terms of power
series expansions. In such cases, if the power series expansion is

f (x) =
∞X

k=0

ckxk

then we simply make the obvious definition

f (Ω) =
∞X

k=0

ckΩk (3.100)

But, under what conditions does the expansion converge in the same way that the
power series expansion converges?
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Functions of Operators (cont.)

To answer that question, we need to consider only operators that are Hermitian so we
are certain they can be diagonalized. (Of course, the set of operators that can be
diagonalized is larger, but we will only find it necessary in this course to consider
Hermitian operators.) If we consider the operator in its eigenbasis, then it is diagonal.
In that basis, Ωn is given by taking the nth power of the diagonal, element-by-element.
For example,

ˆ
Ω2
˜
ij

=
X

k

ΩikΩkj =
X

k

ωiδikωjδkj = ωiωjδij = ω2
i δij

One can show in a similar way via inductive proof that the above property holds for Ωn.

So, then, the expansion of Ω converges if the expansion converges for each eigenvalue
when considered as a function of a number, not an operator; if it did not converge for
some or all eigenvalues, some elements of the diagonal would be undefined.
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Functions of Operators (cont.)

A typical example is simple exponentiation. In Ω’s eigenbasis, we simply have

eΩ =
∞X

k=0

1

k !
Ωk =

∞X
k=0

1

k !

2666664
ω1 0 · · · 0

0 ω2

...
...

. . .

0 · · · ωn

3777775
k

=

26666664

P∞
k=0

1
k! ω

k
1 0 · · · 0

0
P∞

k=0
1
k! ω

k
2

...

...
. . .

0 · · ·
P∞

k=0
1
k! ω

k
n

37777775

=

2666664
eω1 0 · · · 0

0 eω2

...
...

. . .

0 · · · eωn

3777775
Related examples are sines and cosines and their hyperbolic counterparts.
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Functions of Operators (cont.)

When more than one operator is involved

The above examples went fairly easily because only one operator was involved. As
soon as one starts working with expressions involving multiple operators, things begin
to break down. A very simple example is exponentiation. Let’s consider two
expressions that would be equal if we considered numbers rather than operators:

eαΩ+βΛ =
∞X

k=0

1

k!
(αΩ + βΛ)k

= I + (αΩ + βΛ) +
1

2
(αΩ + βΛ)2 +

∞X
k=3

1

k!
(αΩ + βΛ)k

= I + (αΩ + βΛ) +
1

2

ˆ
α2Ω2 + αβ (ΩΛ + ΛΩ) + β2Λ2

˜
+
∞X

k=3

1

k!
(αΩ + βΛ)k

eαΩeβΛ =

" ∞X
k=0

1

k!
(αΩ)k

#" ∞X
m=0

1

m!
(βΛ)m

#
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Functions of Operators (cont.)

Because the two expressions are equal for numbers, we know that it’s just a matter, in
the first expression, of moving all the Ωs to the left and the Λs to the right. But, if Ω
and Λ do not commute, then that can’t be done and the expressions are simply
unequal in general.

Is this consistent with our statement about moving to the operator’s eigenbasis
to compute functions of operators?

Absolutely. We showed that if two operators commute, then they can be
simultaneously diagonalized. If they can be simultaneously diagonalized, then the
above exponential expressions can be evaluated for the diagonal elements in the
eigenbasis and the two expressions will be equal. Conversely, though we did not show
it, it is certainly true that two operators cannot be simultaneously diagonalized if they
do not commute1. Hence, we would find that if we moved to the eigenbasis of one,
say Ω, to compute its exponential from its diagonal elements, we would still not be
able to commute Ω and Λ because Λ would be nondiagonal in Ω’s eigenbasis.

1
Proof by contradiction: suppose two operators that do not commute could be simultaneously diagonalized.

Then there is a basis in which they are both diagonal. Diagonal matrices always commute. Whether two operators
commute is independent of basis, so the two operators must commute in general. Contradiction.
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Calculus with Operators

How about differentiation?

Consider differentiation of an operator Θ whose elements are functions of a numerical
parameter, λ. (No, we don’t consider differentiation of an operator with respect to
another operator!) The natural approach is to just write the standard definition of
differentiation, replacing the function with the operator:

d

dλ
Θ(λ) = lim

∆λ→0

Θ(λ+ ∆λ)−Θ(λ)

∆λ
(3.101)

Since this operation is linear in the operator, the result is found by simple
element-by-element differentiation of the matrix representing the operator:»

d

dλ
Θ(λ)

–
ij

=
d

dλ
[Θ(λ)]ij =

d

dλ
Θij (λ) (3.102)

where the last two expressions are two different notations for the same thing. It may
not always be possible rewrite this simply in terms of the original operator, but the
algorithm is straightforward.
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Calculus with Operators (cont.)

In some special cases, this simplifies. For example, consider exponentiation of a
constant Hermitian operator with λ as a multiplying parameter, eλΩ. We can
calculate this in two ways: eigenbasis and power series.

I In the eigenbasis:»
d

dλ
eλΩ

–
ij

=
d

dλ

h
eλΩ

i
ij

=
d

dλ
eλωi δij = ωie

λωi δij =
h
ΩeλΩ

i
ij

where we were able to make the last notationally simplifying step only because
of the particular form of the derivative of an exponential. Because this form is
valid element-by-element in the eigenbasis, it therefore holds that

d

dλ
eλΩ = ΩeλΩ

Of course, we could have placed Ω on the right side too since Ω and eλΩ

commute.
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Calculus with Operators (cont.)

I By power series:

d

dλ
eλΩ =

∞X
k=0

d

dλ

»
1

k!
λkΩk

–
=
∞X

k=1

1

(k − 1)!
λk−1Ωk−1

= Ω
∞X

m=0

1

m!
λmΩm = ΩeλΩ

In either case, the process was simple because the dependence on λ was simple; Ω did
not also depend on λ. It will in general be more complicated.
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Calculus with Operators (cont.)

And integration?

Integration is also a linear operation, so, it can always be written as
element-by-element integration as we did with differentiation:»Z λ

λ0

dλ ′Θ(λ ′)

–
ij

=

Z λ

λ0

dλ ′
ˆ
Θ(λ ′)

˜
ij

=

Z λ

λ0

dλ ′Θij (λ
′) (3.103)

where again the last two expressions are notationally equivalent. And, of course, in
simple cases, such as the above exponentiation case, the result comes out cleanly and
simply. Let’s do the power series version:

Z λ

λ0

dλ ′ Ω eλ
′Ω =

∞X
k=0

Z λ

λ0

dλ ′ Ω

»
1

k!

`
λ ′
´k

Ωk

–
=
∞X

k=0

1

(k + 1)!

“
λk+1 − λk+1

0

”
Ωk+1

=
∞X

m=0

1

m!
(λm − λm

0 )Ωm = eλΩ − eλ0Ω
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Calculus with Operators (cont.)

Note that we could only get the nice clean result with a perfect differential – if we had
not put the Ω in front, we would have been missing a factor of Ω in the infinite sum.
If Ω were invertible, we could have inserted a factor of Ω−1Ω = I and obtainedZ λ

λ0

dλ ′ eλ
′Ω = Ω−1

“
eλΩ − eλ0Ω

”
That’s a special case, though.

Shankar summarizes the above examples by saying that, if one only has a single
operator involved, then in general the standard expressions for numbers go through.
We have added the caveat that one has to be sure that no division is necessary. In
general, one must work through the power series expansion to be certain of doing
things correctly.
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Infinite-Dimensional Generalization: Examples

Examples of Infinite-Dimensional Vector Spaces

Before getting into the business of how we generalize our previous work to infinite
dimensions, let’s first think of some examples. Vector spaces utilizing functions are the
easiest way to obtain infinite-dimensional vector spaces. Three examples, seemingly
similar but quite distinct:

I All polynomials on the real line
The way to see the dimensionality of this space is to explicitly construct a basis.
Let’s denote each power of the argument of the polynomial x as a basis vector:

|n 〉 ←→ xn (3.104)

Any polynomial is just a finite linear combination of these basis vectors with real
or complex coefficients (depending on the field we choose). Thus, we are
assured the closure requirement is satisfied. The other arithmetic axioms follow
quickly from the arithmetic properties of real or complex numbers. We thus
have a basis set that is infinite, and hence the space’s dimension is infinite. One
important fine point is that space is infinite in the way that the integers are
infinite – there is a “countably infinite” number of basis vectors.
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Infinite-Dimensional Generalization: Examples (cont.)

I All infinitely differentiable functions on the real line
By infinitely differentiable, we mean that the function can be differentiated as
many times as one wants at any point and never yield nonsense (i.e., infinity). It
is fine for the derivatives of some order and higher to all vanish; such functions
would be polynomials. But the vector space is much larger than the
polynomials. One might be tempted to think that is is not: because of the
differentiability requirement, any function in the set can be written as a
countably infinite sum (

P∞
i=0) of polynomials, and hence one might think it is

only “countably infinite squared”, which is just countably infinite. But consider
that the sinusoids belong to this vector space. The period of the sinusoid can
take on any real number value. These are all linearly independent because no
sinusoids can be written in terms of other sinusoids when one considers the
entire real line. So the number of sinusoids is at least a infinite as the set of real
numbers. In a math class, one would prove that the set of real numbers is much
more infinite than the set of integers.
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Infinite-Dimensional Generalization: Examples (cont.)

I All infinitely differentiable functions on the interval [0, 1]
The distinction between this space and the space of such functions on the entire
real line is that this set is only countably infinite. You know from your study of
Fourier series in Ph2/12 that any reasonably smooth function on an interval can
be represented by a sum of sines and cosines. What is special about restricting
to the interval is that one need only consider sinusoids that fit an integer
number of periods in the interval to represent all functions on this interval. The
sinusoids can be labeled with an integer (the number of periods) and whether
they are sine or cosine. This set of functions is countably infinite and spans the
entire space. Hence, the space is only countably infinite-dimensional.

Note that we have not yet attempted to define an inner product to make these inner
product spaces. That is where much of the subtlety enters.
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Infinite-Dimensional Generalization: From Finite to Infinite
Dimensions

Functions Spaces on a Finite Number of Points Revisited

Recall our many uses of the example of complex-valued functions on n discrete points
in the interval [0, L], Examples 3.4 and 3.22 among them. We considered n points
spaced out by ∆ = L/(n + 1), xj = j ∆ with j = 1, . . . , n. Our vector space is the set
of functions on this discrete set of points,

˘
f ({xj}

¯
. We have a matrix representation

in which each vector is represented by a column matrix consisting of the value of the
function at the n points,

|f 〉 ↔

26664
f (x1)
f (x2)

...
f (xn)

37775 (3.105)
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Infinite-Dimensional Generalization: From Finite to Infinite
Dimensions (cont.)

The corresponding basis is the set of n functions that take on value 1 at the jth point
and zero elsewhere:

|1 〉 ↔

26664
1
0
...
0

37775 |2 〉 ↔

26664
0
1
...
0

37775 · · · |n 〉 ↔

26664
0
0
...
1

37775 (3.106)

Any vector f is simply written as

|f 〉 =
nX

j=1

f (xj )|j 〉 (3.107)

The inner product is just the obvious matrix multiplication, which gives

〈j |k 〉 = δjk (3.108)
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Infinite-Dimensional Generalization: From Finite to Infinite
Dimensions (cont.)

The above form for the inner product immediately tells us we can recover f (xj ) using
the inner product:

〈j |f 〉 =
nX

k=1

f (xk )〈j |k 〉 = f (xj ) (3.109)

This is a particularly important relation, as it shows us how to recover the function
from the abstract vector. Our orthonormality relation also tells us that the inner
product of two arbitrary vectors is

〈f |g 〉 =
nX

j,k=1

f ∗(xj ) g(xk )〈j |k 〉 =
nX

j=1

f ∗(xj ) g(xj ) (3.110)

The norm of a vector is thus

〈f |f 〉 =
nX

j=1

˛̨
f (xj )

˛̨2
(3.111)
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Infinite-Dimensional Generalization: From Finite to Infinite
Dimensions (cont.)

The identity operator may be represented in the standard fashion,

nX
j=1

|j 〉〈j | = I (3.112)

This equality of the sum over all basis elements to the identity operator is also known
as a completeness relation. It will prove important below.
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Infinite-Dimensional Generalization: From Finite to Infinite
Dimensions (cont.)

Now, we want to take the limit of n→∞. We need to redefine the inner product,
though, to prevent it from becoming infinite:

〈f |g 〉 =
nX

j=1

f ∗(xj ) g(xj )∆ (3.113)

Now, as we let n→∞, we recognize that the sum converts to an integral:

lim
n→∞

nX
j=1

f ∗(xi ) g(xi )∆ =

Z L

0
dx f ∗(x) g(x)

Note that the index has not just gone from finite to countably infinite; it is now as
infinite as the real numbers. It makes no sense to talk about j anymore, we must now
label the points on which the function is defined by their position x . For functions on
an arbitrary interval [a, b], we may generalize this to

〈f |g 〉 =

Z b

a
dx f ∗(x) g(x)
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Infinite-Dimensional Generalization: From Finite to Infinite
Dimensions (cont.)

With the transition from the index j to position x , we also must sort out what
happens to our basis kets. Consider their matrix elements. Clearly, we still require
〈x |x ′ 〉 = 0 for x 6= x ′. To figure out what we need for x = x ′, let’s require that our
completeness relation, Equation 3.112, still hold. It now takes the form

lim
n→∞

nX
j=1

∆ |j 〉〈j | =
Z b

a
dx ′ |x ′ 〉〈x ′ | = I (3.114)

(We again use our standard method for converting the finite sum to an integral by
inserting ∆. The change of dummy variable from x to x ′ facilitates the next step.)
Let’s apply this to 〈x | on the left an an arbitary ket |f 〉 on the right:

Z b

a
dx ′〈x |x ′ 〉〈x ′ |f 〉 = 〈x | I |f 〉 = 〈x |f 〉
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Infinite-Dimensional Generalization: From Finite to Infinite
Dimensions (cont.)

We would certainly like to still have 〈x |f 〉 = f (x) as we had in the finite case because
we want to preserve our original finite-case definition, in which the coefficients of the
expansion of the vector in orthonormal basis are the function values. Also, it provides
us a means to relate the abstract vector to the function, which we must be able to do
to define the vector in the first place! This requirement turns the above equation into
a condition on 〈x |x ′ 〉:

Z b

a
dx ′〈x |x ′ 〉 f (x ′) = f (x)

We shall rewrite the above condition using the fact that we have already required that
〈x |x ′ 〉 = 0 for x 6= x ′ (and assuming a < x < b):

f (x) =

Z b

a
dx ′〈x |x ′ 〉f (x ′) =

Z x+ε

x−ε
dx ′〈x |x ′ 〉f (x ′) for any ε > 0

= f (x)

Z x+ε

x−ε
dx ′〈x |x ′ 〉 for any ε > 0

where the last step is possible assuming f (x) is continuous at x .
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Infinite-Dimensional Generalization: From Finite to Infinite
Dimensions (cont.)

Since f (x) was arbitrary, we therefore have a generic requirement on 〈x |x ′ 〉:

1 =

Z x+ε

x−ε
dx ′〈x |x ′ 〉 for any ε > 0 (3.115)

which needs to be coupled with our orthogonality requirement

〈x |x ′ 〉 = 0 for x 6= x ′

We shall designate 〈x |x ′ 〉 by δ(x − x ′) (because its value only depends on the
difference x − x ′) and refer to it as the Dirac delta function. We shall discuss its
properties in detail below, but the above integral definition is really all we need.
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Infinite-Dimensional Generalization: From Finite to Infinite
Dimensions (cont.)
Motivated by the above, let’s rigorously define our continuous x limit, pointing out
how our earlier concepts of matrix representation apply:

I Our space consists of all the functions on the interval [a, b]. |f 〉 designates the
vector space member.

I We take as an orthonormal basis the kets {|x 〉} that are defined by

〈x |x ′ 〉 = δ(x − x ′) ⇐⇒
〈x |x ′ 〉 = 0 for x 6= x ′R x+ε
x−ε dx ′ 〈x |x ′ 〉 = 1 for any ε > 0

(3.116)

The above implicitly defines the inner product for the space, also.

I We define an arbitrary vector |f 〉 by its expansion in the {|x 〉} basis, which is
given by the original function to which |f 〉 corresponds:

f (x)←−−→
|x 〉
|f 〉 =

Z b

a
dx f (x) |x 〉 = lim

n→∞

nX
j=1

∆ f (xj ) |j 〉 (3.117)

(We have snuck in here the definition of an integral with |x 〉 in the integrand,
providing the limit to clarify what this means.) That is, the function f (x)
provides the expansion coefficients of the vector |f 〉 in the {|x 〉} basis.
Equivalently, the function f (x) is the matrix representation of the vector |f 〉
in the infinite-dimensional {|x 〉} orthonormal basis.
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Infinite-Dimensional Generalization: From Finite to Infinite
Dimensions (cont.)

I Our inner product rule 〈x |x ′ 〉 = δ(x − x ′) along with the expansion of |f 〉 in

this basis |f 〉 =
R b
a dx f (x) |x 〉 imply

〈x |f 〉 =

Z b

a
dx ′〈x |x ′ 〉f (x ′) = f (x) (3.118)

I As a result, the inner product between two members of the space is

〈f |g 〉 =

Z b

a
dx

Z b

a
dx ′ f ∗(x)〈x |x ′ 〉 g(x ′)

=

Z b

a
dx

Z b

a
dx ′δ(x − x ′) f ∗(x) g(x ′) =

Z b

a
dx f ∗(x) g(x) (3.119)

I The expansion assumption |f 〉 =
R b
a dx f (x) |x 〉 and the projection result

〈x |f 〉 = f (x) imply

〈x |f 〉 = 〈x |
Z b

a
dx ′f (x ′) |x ′ 〉 = 〈x |

Z b

a
dx ′|x ′ 〉〈x ′ |f 〉 = 〈x |

»Z b

a
dx ′|x ′ 〉〈x ′ |

–
|f 〉

for arbitrary |f 〉 and 〈x |, and thus we have the closure or completeness relationZ b

a
dx |x 〉〈x | = I (3.120)
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Infinite-Dimensional Generalization: From Finite to Infinite
Dimensions (cont.)

I Using the orthonormal basis definition, 〈x |x ′ 〉 = δ(x − x ′), the matrix
representation assumption |f 〉 ←−−→

|x 〉
f (x), and the projection result

f (x) = 〈x |f 〉, we may make a correspondence that defines |x ′ 〉 explicitly:

|x ′ 〉 ←−−→
|x 〉

δ(x − x ′) (3.121)

Hopefully, given all of our discussion of matrix representations, especially of functions
on discrete points, you are conceptually ready for the idea of the function f (x) being
the column-matrix representation in the {|x 〉} basis of the abstract vector |f 〉, with
f (x) defining |f 〉 by this representation. As we discussed in connection to
finite-dimensional inner product spaces and their matrix representations, |f 〉 is not the
same thing as f (x). |f 〉 is an abstract object that belongs to the vector space. f (x) is
the component of |f 〉 along the basis direction |x 〉 and thus also gives the elements of
the column matrix representation of |f 〉 in the {|x 〉} basis. As before, confusion arises
because we have to define |f 〉 in some basis; we defined it in the |x 〉 basis by saying
〈x |f 〉 = f (x). But, as we will see later, there are other bases that we can decompose
|f 〉 in; of particular interest will be the |p 〉 momentum basis, in which case 〈p |f 〉 will
be given by the Fourier transform of f (x) and will tell us the projection of |f 〉 onto a
state of well-defined momentum, rather than position.
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Infinite-Dimensional Generalization: Properties of the Dirac Delta
Function

Getting to know the Dirac Delta Function

What is this thing δ(x − x ′)? Intuitively, it is “something” that vanishes everywhere
except when its argument vanishes, at which point its value must become infinite to
make the integral in Equation 3.115 nonzero.

You should be offended by such an object; to help you accept this function, think of it
as one of the following limits of a reasonable function:

δ(x) = lim
∆→0

 1
∆
|x | < ∆

2
0 |x | ≥ ∆

2

δ(x) = lim
∆→0

1
√
π∆2

exp

„
−

x2

∆2

«
(3.122)

However, any derivation involving delta functions must first and foremost rely only on
properties derivable from the defining integral conditionZ x+ε

x−ε
dx ′δ(x − x ′)f (x ′) = f (x) (3.123)

If the above limits worked in all cases, we would just use them to define the delta
function! In particular, when manipulating delta functions, one must ensure all steps
are justified by the integral definition. The typical mistake is to assume without proof
that the delta function obeys the standard rules for functions, derivatives, or integrals.
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Infinite-Dimensional Generalization: Properties of the Dirac Delta
Function (cont.)

Let’s perform some basic manipulations both to give you some experience with delta
functions as well as to derive some useful results.

Let’s first look at derivatives. Here, we will in general look at the delta function as a
function of two variables, x and x ′:

eδ(x , x ′) = δ(x − x ′)

The fact that we write the argument as x − x ′ implies that the function really
depends only on the difference between the two arguments. But, since we will usually
integrate over one of the two arguments, it is useful to think of it as a function of two
arguments, also.
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Infinite-Dimensional Generalization: Properties of the Dirac Delta
Function (cont.)

The derivative with respect to the delta function’s first argument is obtained by using
the general definition of the derivative and careful manipulation of the integral
condition:Z x+ε

x−ε
dx ′

»
d

dx
δ(x − x ′)

–
f (x ′) =

Z x+ε

x−ε
dx ′

»
lim
α→0

δ(x + α− x ′)− δ(x − x ′)

α

–
f (x ′)

= lim
α→0

1

α

»Z x+ε

x−ε
dx ′δ(x − (x ′ − α)) f (x ′)−

Z x+ε

x−ε
dx ′δ(x − x ′) f (x ′)

–
= lim
α→0

1

α

»Z x+ε

x−ε
dx ′δ(x − x ′) f (x ′ + α)−

Z x+ε

x−ε
dx ′δ(x − x ′) f (x ′)

–
=

Z x+ε

x−ε
dx ′δ(x − x ′) lim

α→0

f (x ′ + α)− f (x ′)

α

=

Z x+ε

x−ε
dx ′δ(x − x ′)

d

dx ′
f (x ′) =

d

dx
f (x)

where we have assumed, since we will take α→ 0 in the end, that |α| � ε so that
there is no worry about x + α moving outside the limits of the integral; thus we may
move the limit inside and outside the integral. In going from the third to the fourth
expression, we did a change of variables in the first integral, replacing x ′ − α by x ′

and thus changing f (x ′) to f (x ′ + α).
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Infinite-Dimensional Generalization: Properties of the Dirac Delta
Function (cont.)

An alternative method is the following:Z x+ε

x−ε
dx ′

»
d

dx
δ(x − x ′)

–
f (x ′) =

d

dx

Z x+ε

x−ε
dx ′δ(x − x ′) f (x ′) =

d

dx
f (x)

(It was ok to pull the derivative outside the integral because the endpoints of the
integral don’t really depend on x ; we just require that x be in the integration interval.)
We will see next that this second method is less generalizable.

In either case, we may write the result concisely in the following form:

d

dx
δ(x − x ′) = δ(x − x ′)

d

dx ′
(3.124)

where d/dx ′ is to act on any functions to its right that depend on x ′ and it is
understood that this form only makes sense when integrated with a function of x ′:Z x+ε

x−ε
dx ′

»
d

dx
δ(x − x ′)

–
f (x ′) =

Z x+ε

x−ε
dx ′δ(x − x ′)

d

dx ′
f (x ′) =

d

dx
f (x) (3.125)

where we treat d
dx

f (x) like any other function when acted on by the delta function.
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Infinite-Dimensional Generalization: Properties of the Dirac Delta
Function

What about the derivative with respect to the second argument, d
dx ′ δ(x − x ′)? Along

the lines of the second proof above, one might think one can figure this out by
integration by parts:Z x+ε

x−ε
dx ′

»
d

dx ′
δ(x − x ′)

–
f (x ′)

=
ˆ
δ(x − x ′) f (x ′)

˜˛̨x+ε

x−ε −
Z x+ε

x−ε
dx ′δ(x − x ′)

d

dx ′
f (x ′) = −

d

dx
f (x)

where the first term from the integration by parts vanished because the delta function
is zero at the endpoints of the interval (or, in the limit that the interval goes to zero,
the values at the two endpoints become equal and infinite and so the term vanishes)
and we simply integrated the second term using the usual properties of the delta
function. However, in the above, we have implicitly assumed

d

dx ′
ˆ
δ(x − x ′)f (x ′)

˜
=

»
d

dx ′
δ(x − x ′)

–
f (x ′) + δ(x − x ′)

d

dx ′
f (x ′)

which is a statement we have never justified.
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Infinite-Dimensional Generalization: Properties of the Dirac Delta
Function (cont.)

Instead, let us calculate this derivative by a less suspect procedure that is more like
our first proof for the derivative with respect to the first argument:Z x+ε

x−ε
dx ′

»
d

dx
δ(x − x ′)

–
f (x ′) =

Z x+ε

x−ε
dx ′

»
lim
α→0

δ(x − (x ′ + α))− δ(x − x ′)

α

–
f (x ′)

The above expression is identical to the third expression in the corresponding proof up
to a minus sign, so we may use the remainder of that proof:Z x+ε

x−ε
dx ′

»
d

dx ′
δ(x − x ′)

–
f (x ′) = −

d

dx
f (x)

Thus, we find

d

dx ′
δ(x − x ′) = −δ(x − x ′)

d

dx ′
= −

d

dx
δ(x − x ′) (3.126)

The change of sign between Equations 3.124 and 3.126 makes sense because of the
sign difference between x and x ′ in the argument of the δ function: it is a matter of
whether one is taking a derivative in the usual “right-going” direction or in the
opposite “left-going” direction.
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Infinite-Dimensional Generalization: Properties of the Dirac Delta
Function (cont.)

One can show by inductive proof that the action of an arbitrary-order derivative of the
delta function is similar:

dn

dxn
δ(x − x ′) = δ(x − x ′)

dn

dx ′n
(3.127)
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Infinite-Dimensional Generalization: The X Operator and the {|x 〉}
Basis

Is there an operator for which the {|x 〉} basis is an eigenbasis?

We have gone about defining the {|x 〉} basis in a rather backwards fashion: Rather
than first defining a Hermitian operator on the inner product space, solving for its
eigenvalues and eigenvectors, and then choosing the eigenbasis of the operator as a
nice basis for our space, we just defined the basis in the finite-dimensional case and
extended it to infinite dimensions. We have made the definition of |x 〉 as explicit as
we can in that we have made the correspondence (Equation 3.121)

|x ′ 〉 ←−−→
|x 〉

δ(x − x ′)

But, is there an operator whose eigenbasis is the {|x 〉} basis?
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Infinite-Dimensional Generalization: The X Operator and the {|x 〉}
Basis (cont.)

Yes: let’s just define an operator X by defining its action on the {|x 〉} basis:

X |x 〉 = x |x 〉 (3.128)

where x is the position along the interval to which |x 〉 corresponds. In the finite N
case, this operator would have been defined by the relation

X |j 〉 = j∆ |j 〉

We have defined the operator X so that its eigenbasis is {|x 〉}. This may be
confusing: x is a function of x , so does it make any sense for x to be an eigenvalue?
While x is a function, it is also just a label for directions in the inner product space,
for members of a basis for the space. So, we are saying that the eigenvalue for the
eigenvector |x 〉 is just related to its label. This is evident from the analogous
definition for the finite N case.

Section 3.10 Mathematical Preliminaries: Infinite-Dimensional Generalization Page 231



Infinite-Dimensional Generalization: The X Operator and the {|x 〉}
Basis (cont.)

Let’s pursue the implications of our definition of X . Based on our definition of
〈x ′ |x 〉, this operator’s matrix elements are

Xxx ′ ≡ 〈x |X |x ′ 〉 = x ′〈x |x ′ 〉 = x ′ δ(x − x ′) = x δ(x − x ′) (3.129)

(We introduce the xx ′ labeling for the matrix elements of an operator between that
states |x 〉 and |x ′ 〉.) What is the action of X on some arbitrary ket |f 〉? Define

|g 〉 = X |f 〉

Let’s expand |g 〉 in our |x 〉 basis:

〈x |g 〉 = 〈x |X |f 〉 =

Z b

a
dx ′〈x |X |x ′ 〉〈x ′ |f 〉 =

Z b

a
dx ′x ′δ(x − x ′) f (x ′) = x f (x)

(3.130)

So, |g 〉 = |x f 〉 or g(x) = x f (x).
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Infinite-Dimensional Generalization: The K Operator and its
Eigenbasis

The Continuous Derivative Operator

We know that taking derivatives converts functions to other functions, so we expect
the action of taking a derivative to be an operator on our vector space of functions.
We also expect we can construct a derivative operator by extending the discrete
derivative operator from Example 3.22, which we do by taking the usual limit of
∆→ 0. Explicitly, let’s consider the projection of DR |f 〉 onto 〈j |:

lim
∆→0
〈j |DR |f 〉 = lim

∆→0

f (xj+1)− f (xj )

∆
= lim

∆→0

f (x + ∆)− f (x)

∆
=

df

dx

We also know that lim∆→0〈j | = 〈x |, so we have (dropping the R subscript because it
is not necessary after the limit is taken):

〈x |D |f 〉 =

fi
x

˛̨̨̨
df

dx

fl
=

df

dx
(3.131)

The above equation defines the action of the derivative operator because it tells us the
projection of D|f 〉 onto every basis element |x 〉 for any vector |f 〉.
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Infinite-Dimensional Generalization: The K Operator and its
Eigenbasis (cont.)

Can we obtain the matrix elements of D in the {|x 〉} basis? Yes, we may infer them
using the above expression. First, let’s begin with our usual trick of inserting an
identity operator in order to get an expression involving the matrix elements of D:

〈x |D |f 〉 =

Z b

a
dx ′〈x |D |x ′ 〉〈x ′ |f 〉 =

Z b

a
dx ′〈x |D |x ′ 〉f (x ′) (3.132)

Next, let’s use Equation 3.131 to replace 〈x |D|f 〉 on the left:

d

dx
f =

Z b

a
dx ′〈x |D |x ′ 〉f (x ′) (3.133)

By comparison to Equation 3.125, we see that 〈x |D |x ′ 〉 has the same behavior ash
d
dx
δ(x − x ′)

i
= δ(x − x ′) d

dx ′ ; i.e.,

Dxx ′ ≡ 〈x |D |x ′ 〉 =

»
d

dx
δ(x − x ′)

–
= δ(x − x ′)

d

dx ′
(3.134)

where, again, we index the matrix elements of the operator by x and x ′ as we did for
the X operator in Equation 3.129.
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Infinite-Dimensional Generalization: The K Operator and its
Eigenbasis (cont.)

It is interesting to see that we could have derived the same expression from the matrix
element of DR between 〈j | and |k 〉 from Example 3.22, which was

〈j |DR |k 〉 = −
〈j |k 〉 − 〈j |k − 1 〉

∆

Letting x = j∆ and x ′ = k∆, we can take the limit of ∆→ 0:

〈x |D|x ′ 〉 = lim
∆→0
〈j |DR |k 〉 = lim

∆→0
−
〈j |k 〉 − 〈j |k − 1 〉

∆
= lim

∆→0
−
〈x |x ′ 〉 − 〈x |x ′ −∆ 〉

∆

= lim
∆→0

δ(x − (x ′ −∆))− δ(x − x ′)

∆
= lim

∆→0

δ((x + ∆)− x ′)− δ(x − x ′)

∆

=
d

dx
δ(x − x ′)

We prefer the first method for proving this, though, because it uses the defining
integral properties of the delta function and requires a bit less guesswork in taking the
limit. For example, relating |x 〉 to |j 〉 is a bit dangerous because there is a units
problem: 〈j |k 〉 = δjk is a manifestly unitless quantity, while 〈x |x ′ 〉 = δ(x − x ′) has
units of length−1 because it gives 1 when integrated over x ′.
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Infinite-Dimensional Generalization: The K Operator and its
Eigenbasis (cont.)

Making the Derivative Operator Hermitian

While we have been able to define the derivative operator D, we will see below that it
is not Hermitian: this means that its eigenvalues need not be real numbers, which of
course we would like so we can obtain an observable from it. We need to fix this.
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Infinite-Dimensional Generalization: The K Operator and its
Eigenbasis (cont.)

Let’s first calculate the matrix elements of D† so we can see how D is not Hermitian.
The rigorous way to do this, where we do not have to make somewhat questionable
manipulations on delta functions, is to work with 〈f |D†|x ′ 〉. (The rationale for using
|x ′ 〉 will become clear.) We know

〈f |D†|x ′ 〉 =
ˆ
〈x ′ |D|f 〉

˜∗
=

»
d

dx ′
f

–∗
Let’s again use the expansion of |f 〉, though:

〈f |D†|x ′ 〉 =

Z x ′+ε

x ′−ε
dx [f (x)]∗〈x |D†|x ′ 〉

Equating the two, we have

Z x ′+ε

x ′−ε
dx 〈x |D†|x ′ 〉 [f (x)]∗ =

»
d

dx ′
f

–∗
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Infinite-Dimensional Generalization: The K Operator and its
Eigenbasis (cont.)

The above expression corresponds directly to Equation 3.124 with a simple exchange
of x and x ′; that’s of course allowed since they are just dummy variables. (Do not let
the presence of [f (x)]∗ and [df /dx ′]∗ confuse you; [f (x)]∗ is just an arbitrary function
and hence the representation of an arbitrary element of the vector space.) So we have

〈x |D†|x ′ 〉 =
d

dx ′
δ(x ′ − x)

Therefore

[D†]xx ′ = 〈x |D†|x ′ 〉 =
d

dx ′
δ(x ′ − x) =

d

dx ′
δ(x − x ′) = −

d

dx
δ(x − x ′)

= −〈x |D|x ′ 〉 = −Dxx ′ (3.135)

where the first step is simply the definition of matrix element (recalling that x and x ′

are just indices now), the second step uses our result for the matrix element of D†, the
third uses the evenness of the delta function, and the fourth uses Equations 3.124
and 3.126 together.

Recall that the {|x 〉} are a basis for the space and the above holds for any x and x ′.
Therefore, all the matrix elements in the {|x 〉} basis of D† and −D are equal; this
implies D† = −D, and thus D is in fact anti-Hermitian instead of Hermitian!
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Infinite-Dimensional Generalization: The K Operator and its
Eigenbasis (cont.)

The obvious solution is to consider a new operator K with

K = −iD (3.136)

(The reason for the negative sign will become apparent later.) The Hermiticity
requirement seems obviously met because the −i provides the necessary sign flip.
However, we must be careful about believing the above arithmetic – recall that these
expressions only hold true when included in an integral. If we consider the expression
〈g |K |f 〉, we see that this caveat becomes apparent. We first note that, if K is
Hermitian, we have

〈g |K |f 〉 = 〈g | [K |f 〉] =
n

[K |f 〉]† |g 〉
o∗

= 〈f |K†|g 〉∗ = 〈f |K |g 〉∗ (3.137)
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Infinite-Dimensional Generalization: The K Operator and its
Eigenbasis (cont.)

Let’s calculate the expressions on the two ends explicitly by going through the matrix
elements in the {|x 〉} basis:

〈g |K |f 〉 =

Z b

a
dx

Z b

a
dx ′〈g |x 〉〈x |K |x ′ 〉〈x ′ |f 〉 (3.138)

=

Z b

a
dx g∗(x)

»
−i

df

dx

–
= −i

Z b

a
dx g∗(x)

»
df

dx

–
〈f |K |g 〉∗ =

»Z b

a
dx

Z b

a
dx ′〈f |x 〉〈x |K |x ′ 〉〈x ′ |g 〉

–∗
(3.139)

=

»Z b

a
dx f ∗(x)

»
−i

dg

dx

––∗
= i

Z b

a
dx

»
dg∗

dx

–
f (x)

These two expressions are equal via integration by parts only if the surface term
vanishes:

−i g∗(x) f (x)|ba (3.140)
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Infinite-Dimensional Generalization: The K Operator and its
Eigenbasis (cont.)

Thus, in order to make K a Hermitian operator, we must restrict our vector space
to contain only functions that meet the condition that the above surface term
vanishes for all members of the space. This restricted space is called the physical
Hilbert space, the qualifier physical included to distinguish it from the mathematical
definition of a Hilbert space.

Shankar gives the example that this condition might be met by functions that vanish
at the endpoints. Another example would be functions that take on equal values at
the two endpoints. Shankar discusses a couple of other cases. It suffices here to say
that conditions are frequently placed on the functions that can belong to the vector
space of states in order to ensure that desired Hermitian operators are Hermitian.
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Infinite-Dimensional Generalization: The K Operator and its
Eigenbasis

Eigenvalues and Eigenvectors of K

We have defined a Hermitian operator, so, assuming our finite-dimensional theorems
continue to hold, we expect eigenvalues and eigenvectors. Let us find them.

Since our description so far of our vector space and operators has been in the {|x 〉}
basis, we need to work through that basis to find the eigenvalues of K . This is the
equivalent of defining a vector space by its representation in terms of one basis (say,
{|j 〉}) and then being given an operator Ω and wanting to find the eigenvalues and
eigenvectors of Ω. One always needs to write down a representation to find
eigenvalues and eigenvectors (there is no way to calculate the determinant,
otherwise!). Since one only has the {jket} basis and its matrix representation at this
point, one must do this in that representation.

Let us denote the eigenvalues and eigenvectors as {k} and {|k 〉}. We of course require

K |k 〉 = k |k 〉 (3.141)
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Infinite-Dimensional Generalization: The K Operator and its
Eigenbasis (cont.)

Let’s look at the matrix element of this ket with the {|x 〉} basis:

〈x |K |k 〉 = k 〈x |k 〉Z b

a
dx ′〈x |K |x ′ 〉〈x ′ |k 〉 = k ψk (x)

−i

Z b

a
dx ′δ(x − x ′)

d

dx ′
ψk (x) = k ψk (x)

−i
d

dx
ψk (x) = k ψk (x) (3.142)

where we have defined ψk (x) = 〈x |k 〉 to be the {|x 〉} basis representation of |k 〉 and
used the known matrix elements of K in the {|x 〉} basis.

Equation 3.142 is a simple differential equation defining ψk (x) = 〈x |k 〉; the solution is

〈x |k 〉 = ψk (x) = Ae ikx (3.143)

where k is a constant and A is the unspecified normalization. The allowed values of k
and the normalization depend now on the integration limits. We consider two cases
(Shankar seems to only consider the second):
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Infinite-Dimensional Generalization: The K Operator and its
Eigenbasis (cont.)

I Finite interval [a, b]
Recall our condition that the coordinate representation f (x) of any vector |f 〉 in
the space be equal at the endpoints in order for K to be Hermitian. Let’s take
L = b − a. The condition on the endpoints means that we may only consider
solutions that satisfy

ψk (a) = ψk (a + L)

Ae i k a = Ae i k ae i k L

k L = 2π j ⇐⇒ k =
2π

L
j for j any integer

Note that we explicitly find that k must be real in order for this condition to be
met; otherwise, one gets a e−I(k)L factor that explicitly violates the condition.
k is discretized, though it has (countably) infinitely many allowed values. The

natural normalization is A =
p

1/L so that 〈k |k 〉 = 1, so we have

〈x |kj 〉 = ψkj
(x) =

r
1

L
e ikj x kj =

2π

L
j j = any integer (3.144)

〈kj |km 〉 = δjm ≡ δkj km

where the restriction to real, discretized k defines the physical Hilbert space.
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Infinite-Dimensional Generalization: The K Operator and its
Eigenbasis (cont.)

I Infinite interval (−∞,∞)
Do we have any condition on k in this case? We must still ensure the surface
term is eliminated in order to make K Hermitian. It is problematic in that its
value is ill-defined: e ikx takes on no single value as |x | → ∞. Shankar offers a
rather dubious method of dealing with this. A slightly better, but still
mathematically unrigorous, solution is to insert a converging factor e−β|x|, do
the calculation, and let β → 0. In that case, the surface term is

e i(k−k ′)x
˛̨̨∞
−∞

=

»
lim
β→0

e−β|x|e−I(k−k ′)xe iR(k−k ′)x
–˛̨̨̨∞
−∞

= lim
β→0

h
e−β|x|e−I(k−k ′)xe iR(k−k ′)x

i˛̨̨̨∞
−∞

= lim
β→0

0 = 0 if I(k − k ′) = 0

(Exchanging the limit in β and the implied limit of the endpoints going to ±∞
is not a mathematically rigorous procedure.) We had to require I(k − k ′) = 0

so that the e−I(k−k ′)x term would not cause the expression to diverge at one of
x = ±∞ as β → 0. This restriction defines the physical Hilbert space in this
case.
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Infinite-Dimensional Generalization: The K Operator and its
Eigenbasis (cont.)

Because normalization to a finite number is no longer sensible, we use the same
normalization condition as was found for the {|x 〉} basis, normalization to a δ
function, 〈k |k ′ 〉 = δ(k − k ′). However, this does not specify A:

〈k |k ′ 〉 =

Z ∞
−∞

dx〈k |x 〉〈x |k ′ 〉 = |A|2
Z ∞
−∞

dx e i(k ′−k)x

If 〈k |k ′ 〉 = δ(k − k ′), then the left side is either infinite or vanishing, which
only tells us the obvious fact that A = 0 is not allowed. No other information
about |A| is provided.

To obtain |A|, we need to take the limit of the finite interval case. Certainly, we
need for our {|k 〉} bases in the two cases to be complete, implying that the sum
over all basis elements should be the identity operator. That is, we expected

IL =
∞X

j=−∞
|kj 〉〈kj | I∞ =

Z ∞
−∞

dk|k 〉〈k |

where L and ∞ indicate the two different spaces. Note that the |kj 〉 and |k 〉 are
different because one is for a finite interval and the other for an infinite interval.
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Infinite-Dimensional Generalization: The K Operator and its
Eigenbasis (cont.)

Taking the inner product with 〈x | and |x ′ 〉, we have

〈x |x ′ 〉 =
∞X

j=−∞
〈x |kj 〉〈kj |x ′ 〉 〈x |x ′ 〉 =

Z ∞
−∞

dk〈x |k 〉〈k |x ′ 〉

δ(x − x ′) =
1

L

∞X
j=−∞

e−ikxe ikx ′ δ(x − x ′) = |A|2
Z ∞
−∞

dk e−ikxe ikx ′

We see that we obtain delta functions in x − x ′ for both expressions. Though
the vectors |kj 〉 and |k 〉 do not live in the same space, a function is just a set of
numbers and we may compare functions at particular values of their arguments.
The only hitch is that x and x ′ must be inside [a, b] for the finite interval case
but may take on any value for the infinite interval case. So, let’s let a→ −∞,
b →∞ so that L→∞. Equating the two sides in this limit, we have

lim
L→∞

1

L

∞X
j=−∞

e ikj (x
′−x) = |A|2

Z ∞
−∞

dk e ik(x ′−x)
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Infinite-Dimensional Generalization: The K Operator and its
Eigenbasis (cont.)

For the interval case, the allowed k values are spaced by ∆k = 2π/L. Let’s
rewrite using ∆k:

1

2π
lim

L→∞

∞X
j=−∞

∆k e ikj (x
′−x) = |A|2

Z ∞
−∞

dk e ik(x ′−x)

The sum on the left side is the same as the integral on the right side when one
takes the limit L→∞ because ∆k → 0 and kj becomes a continuous variable
in that limit. But we see the two sides are equal if and only if |A|2 = 1/2π. The
phase of A is arbitrary, so we choose it to be real. In summary, then, we have

〈x |k 〉 = ψk (x) =

r
1

2π
e ikx k any real number (3.145)

〈k |k ′ 〉 = δ(k − k ′)
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Infinite-Dimensional Generalization: The K Operator and its
Eigenbasis (cont.)

We note two corollaries of our proof of |A| =
p

1/2π:Z ∞
−∞

dx e ikx = 2πδ(k)

Z ∞
−∞

dk e ikx = 2πδ(x) (3.146)
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Infinite-Dimensional Generalization: The K Operator and its
Eigenbasis (cont.)

Expansion of Vector Space Elements in the K Eigenbasis

We required completeness of our {|k 〉} basis in both the finite and infinite interval
cases, so we have

∞X
j=−∞

|kj 〉〈kj | = I

Z ∞
−∞

dk |k 〉〈k | = I

We drop the L and ∞ on I ; it should be clear from context which we are discussing.
With the above, we may expand any ket in terms of the {|k 〉} basis. We have

|f 〉 =
∞X

j=−∞
|kj 〉〈kj |f 〉 |f 〉 =

Z ∞
−∞

dk |k 〉〈k |f 〉
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Infinite-Dimensional Generalization: The K Operator and its
Eigenbasis (cont.)

The immediate question is: what is 〈kj |f 〉 or 〈k |f 〉? This is straightforward to
calculate using what we know about the {|x 〉} basis and about 〈x |k 〉 (the latter is
basically the elements of the unitary matrix that transforms from one basis to the
other):

〈kj |f 〉 =

Z b

a
dx 〈kj |x 〉〈x |f 〉 =

r
1

L

Z b

a
dx e−ikj x f (x)

〈k |f 〉 =

Z ∞
−∞

dx 〈k |x 〉〈x |f 〉 =
1
√

2π

Z ∞
−∞

dx e−ikx f (x)

We thus begin to understand why |f 〉 and f (x) are not quite the same thing. One can
expand |f 〉 in terms of different bases (i.e., write down different matrix
representation): the default basis is the {|x 〉} basis, and the coefficients of the
expansion in this basis are (the matrix representation is) 〈x |f 〉 = f (x); but one can
also expand |f 〉 in the {|k 〉} basis, and the coefficients of that expansion are (the
matrix representation is) 〈k |f 〉.
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Infinite-Dimensional Generalization: The K Operator and its
Eigenbasis (cont.)

We thus will find it necessary to subscript our “functions” to indicate what basis they
assume (what matrix representation they refer to); that is, we write

fx (x) = 〈x |f 〉 fk (k) = 〈k |f 〉 (3.147)

The use of the x or k in both the argument and the subscript may seem redundant,
but it allows us to put anything in the argument without ambiguity arising as to which
representation for |f 〉 we are working with.
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Infinite-Dimensional Generalization: The K Operator and its
Eigenbasis (cont.)

X and K in the K Eigenbasis

We have defined X and K in the X eigenbasis; their matrix elements are

〈x |X |x ′ 〉 = x δ(x − x ′)

〈x |K |x ′ 〉 = −i

»
d

dx
δ(x − x ′)

–
= −i δ(x − x ′)

d

dx ′

where the [ ]’s indicate that the derivative acts only on the δ function.

It is obvious that the matrix elements of K in the K eigenbasis are

〈k |K |k ′ 〉 = k δ(k − k ′) (3.148)
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Infinite-Dimensional Generalization: The K Operator and its
Eigenbasis (cont.)

So, how does X act in the K eigenbasis? Let’s just calculate it by, as usual, inserting
a completeness relation:

〈k |X |k ′ 〉 =
1

2π

Z ∞
−∞

dx

Z ∞
−∞

dx ′〈k |x 〉〈x |X |x ′ 〉〈x ′ |k ′ 〉 (3.149)

=
1

2π

Z ∞
−∞

dx

Z ∞
−∞

dx ′e−ikxx δ(x − x ′)e ik ′x ′

=
1

2π

Z ∞
−∞

dx x e−i(k−k ′)x = i
d

dk

»
1

2π

Z ∞
−∞

dx e−i(k−k ′)x
–

= i
d

dk
δ(k − k ′) = i δ(k − k ′)

d

dk ′

Hence, the action of X on a ket |f 〉 is

〈k |X |f 〉 = i
dfk (k)

dk
or, somewhat misleadingly, X |f 〉 =

˛̨̨̨
i
dfk (k)

dk

fl
(3.150)

(The latter is misleading because we are trying to divorce the kets from their
coordinate (functional) representation in either the {|x 〉} or {|k 〉} basis.)
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Infinite-Dimensional Generalization: The K Operator and its
Eigenbasis (cont.)

Finally, let us calculate the interesting operator [X ,K ]:

〈x |X K |f 〉 =

Z ∞
−∞

dx ′〈x |X |x ′ 〉〈x ′ |K |f 〉 =

Z ∞
−∞

dx ′x δ(x − x ′) (−i)
df

dx ′

= −i x
df

dx

〈x |K X |f 〉 =

Z ∞
−∞

dx ′〈x |K |x ′ 〉〈x ′ |X |f 〉 =

Z ∞
−∞

dx ′(−i) δ(x − x ′)
d

dx ′
x ′ f (x ′)

= −i

Z ∞
−∞

dx ′ δ(x − x ′)

»
f (x ′) + x ′

df (x ′)

dx ′

–
= −i f (x)− i x

df

dx

6= 〈x |X K |f 〉

=⇒ 〈x | [X ,K ] |f 〉 = i f (x) = i 〈x |f 〉 ⇐⇒ [X ,K ] = i I (3.151)
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Summary

Recall the Postulates we briefly discussed in Section 1.2:

1 The state of a particle is represented by a vector in a physical Hilbert space.

2 The fundamental state variables x and p of classical mechanics are replaced by
Hermitian operators X and P whose matrix elements are well specified in a
physical Hilbert space basis consisting of position eigenstates (states with
perfectly defined position x). Any derived dynamical variables ω(x , p) are
replaced by operators Ω defined by the above correspondence.

3 Measurement of any classical variable ω(x , p) for a quantum state yields only
the eigenvalues of the corresponding operator Ω, with the probability of
obtaining the eigenvalue ω given by the squared norm of the projection of the
state onto the eigenstate corresponding to ω.

4 The state vector evolves according to the Schrödinger equation.

We now have the language to interpret what is meant by these postulates. We do that
in this section.

Section 4.1 Postulates Revisited: Summary Page 259



Postulate 1: Representation of Particle States

The state of a particle is represented by a vector |ψ(t) 〉 in a physical Hilbert
space.

We now know what is meant by this statement mathematically, in a generic sense: the
state |ψ(t) 〉 is an element in an inner product space; members of such spaces have
the following important properties:

I They can be added together linearly, with coefficients that are just numbers.

I An inner product is defined that provides for definitions of orthogonality and
normalization.

I There exist orthonormal sets of basis states and all states can be written as
linear combinations of them.

I In terms of any particular basis, the vector corresponding to the state has a
column matrix representation, and the corresponding dual vector in the dual
vector space has a row matrix representation that is the conjugate transpose of
the column matrix representation. When the basis is orthonormal, the inner
product is equivalent to matrix multiplication of the column and row matrices.
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Postulate 1: Representation of Particle States (cont.)

I Operators can act on the states and return new states, and any operator has a
matrix representation for any particular choice of orthonormal basis.

I There are Hermitian operators that have real eigenvalues and a set of
eigenvectors yields as an orthonormal basis.

I There are unitary operators that can be used to rotate from pne orthonormal
basis to another and which themselves have unit-modulus eigenvalues and
orthonormal sets of eigenvectors.

I The space has been restricted so that the K operator is Hermitian.
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Postulate 1: Representation of Particle States (cont.)

Normalization Considerations

One implication of this postulate is that, when we take a linear combination of states,
|χ 〉 = α|ψ 〉+ β|φ 〉, we will in general want to normalize the result; that is, we should
define

|χ 〉 =
α|ψ 〉+ β|φ 〉p
|α|2 + |β|2

so that |χ|2 = 〈χ |χ 〉 = 1 if |ψ|2 = 〈ψ |ψ 〉 = 1 and |φ|2 = 〈φ |φ 〉 = 1 (you can check
this by writing out 〈χ |χ 〉). As we will see, this convention ensures measurement
probabilities will be automatically normalized for |χ 〉.
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Postulate 2: Correspondence for Classical Variables

The independent variables x and p that describe completely the state of a
particle in classical mechanics are represented by Hermitian operators X and P
in the physical Hilbert space of states, with X and P having the following
matrix elements when using the position basis for the physical Hilbert space:

〈x |X |x ′ 〉 = xδ
`
x − x ′

´
〈x |P |x ′ 〉 = −i ~ d

dx
δ

`
x − x ′

´
(4.1)

Any arbitrary classical dynamical variable ω(x , p) has a corresponding
Hermitian operator

Ω(X ,P) = ω(x → X , p → P) (4.2)

where we simply replace x and p in ω with X and P to obtain Ω(X ,P).

Having been through the exercise of constructing the infinite-dimensional
generalization of inner product spaces, we now understand what is meant by the
operators X and P and their matrix elements. Postulate 3 tells us how the above
matrix elements are related to measurements. The extension to arbitrary classical
variables ω(x , p) is also clear, modulo the issue of having to deal with ambiguous
combinations of x and p (i.e., if one has the classical quantity x p, should one use
X P, P X , their sum, or their difference?).
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Postulate 2: Correspondence for Classical Variables (cont.)

One thing that will not be clear yet, and cannot be discussed until you have seen
Hamiltonian mechanics in Ph106a, is why we make the above choice for P. This
choice was a clever guess by the creators of quantum mechanics based on analogy to
classical mechanics. An alternative version of this postulate makes this more clear: it
takes X as defined above but then makes the requirement [X ,P] = i ~. This latter
relation is the quantum mechanical analogue of the classical Poisson bracket
{x , p} = 1. Written this way, the path from classical mechanics to quantum
mechanics is explicit. But that does not amount to a proof. By definition, a postulate
can never be explicitly proven, but it can be motivated and then checked that it gives
physically reasonable and correct results in particular situations.
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Postulate 3: Results of Measurements of Classical Variables

Let {|ω 〉} denote the set of eigenstates of the Hermitian operator with
eigenvalues ω. If a particle is in an arbitrary state |ψ 〉, then measurement of
the variable corresponding to the operator Ω will yield only the eigenvalues {ω}
of Ω. The measurement will yield the particular value ω for that variable with
relative probability P(ω) = |〈ω |ψ 〉|2 and the system will change from state |ψ 〉
to state |ω 〉 as a result of the measurement being made.

Let’s break the statement down carefully:

1 The eigenvalues of Ω are the only values the measured quantity may take on.

2 The measurement outcome is fundamentally probabilistic, and the relative
probability of a particular allowed outcome ω is given by finding the projection
of |ψ 〉 onto the corresponding eigenstate |ω 〉. By relative probability, we simply
mean that the ratio of the probabilities of two outcomes is given by
P(ω1)/P(ω2) = |〈ω1 |ψ 〉|2 / |〈ω2 |ψ 〉|2. The absolute probability of a particular
outcome requires a normalizing factor that sums over all possible measurement
outcomes, to be discussed later. This implies that, if |ψ 〉 is an eigenstate of Ω,
then the measurement will always yield the corresponding eigenvalue.

3 The measurement process itself changes the state of the particle to the
eigenstate |ω 〉 corresponding to the measurement outcome ω. This is the
equivalent of applying the projection operator Pω (but one only knows which Pω
to use after the measurement has been done!) and then renormalizing the state.

Section 4.4 Postulates Revisited: Postulate 3: Results of Measurements of Classical Variables Page 265



Postulate 3: Results of Measurements of Classical Variables (cont.)

Where the math ends and the physics starts

As we noted in Section 1.2, we could have made a more classical interpretation of the
expansion of |ψ 〉 in terms of the eigenvectors {|ω 〉}: that the result of the
measurement would be the weighted sum of the eigenvalues, weighted by the norms of
the expansion coefficients |〈ω |ψ 〉|2 rather than 〈ω |ψ 〉 because the former is
guaranteed to be real while the latter is not. But we do not do that. It is a physical
assumption that the expansion coefficients are to be interpreted as probabilities of the
allowed outcomes, not as weighting factors.

Also, we could have assumed that measurement is not an operation that changes |ψ 〉:
we could have said that |ψ 〉 evolves in some way independent of any measurements
that take place. Even if we had said that the action of a measurement on |ψ 〉 is to act
with the corresponding operator Ω on |ψ 〉, we would not arrive at this postulate. It is
entirely outside of the mathematical structure to assume that a measurement to
which the operator Ω corresponds results in |ψ 〉 collapsing to one of the {|ω 〉} via
application of the appropriate Pω . It is an assumption that yields correct predictions
for experimental results.

Note that there is no way to write the collapse process explicitly as an operator. The
problem is that you only know which Pω to apply after you have obtained the
measured value ω; the act of measurement does not, for example, correspond to the
operator M =

P
j P(ωj )Pωj =

P
j |〈ωj |ψ(t) 〉|2|ωj 〉〈ωj |.
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Postulate 3: Results of Measurements of Classical Variables (cont.)

Degeneracy

In the case of degenerate eigenvalues, the obvious generalization of the above
postulate is to replace P(ω) = |〈ω |ψ 〉|2 with

P(ω) = |Pω |ψ 〉|2 = 〈ψ |Pω Pω |ψ 〉 = 〈ψ |Pω |ψ 〉 (4.3)

where Pω is the projection operator for the ω subspace,

Pω =
X
ωj=ω

|ωj 〉〈ωj | (4.4)

and where we have written out three equivalent expressions using the fact that the
projection operator Pω is Hermitian and satisfies P2

ω = Pω . This expression results in

P(ω) =
X
ωj=ω

|〈ωj |ψ 〉|2 (4.5)

That is, when one has degenerate eigenvalues, the relative probability of obtaining a
degenerate eigenvalue is the sum of the relative probabilities for all the states
corresponding to that eigenvalue.
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Postulate 3: Results of Measurements of Classical Variables (cont.)

In the absence of degeneracy, the above generalization simplifies to our original
postulate because Pω = |ω 〉〈ω |:

|〈ω |ψ 〉|2 = 〈ψ |ω 〉〈ω |ψ 〉 = 〈ψ |Pω |ψ 〉 = 〈ψ |PωPω |ψ 〉 = |Pω |ψ 〉|2 (4.6)

An interesting thing about degeneracy is that states may not completely collapse upon
measurement. The measurement will apply the projection operator from Equation 4.4.
Therefore, if the particle begins in a state that has non-zero expansion coefficients for
more than one of the |ωj 〉, then it will retain those nonzero expansion coefficients for
all |ωj 〉 that correspond to the measured eigenvalue ω. That is,

if |ψ 〉 =
X
ωj=ω

cj |ωj 〉+
X
ωj 6=ω

cj |ωj 〉

then Pω |ψ 〉 =

24 X
ωk=ω

|ωk 〉〈ωk |

3524X
ωj=ω

cj |ωj 〉+
X
ωj 6=ω

cj |ωj 〉

35 =
X
ωj=ω

cj |ωj 〉

The state is collapsed to the subspace Vω , but not to a single eigenstate |ω 〉. One
then has to renormalize the resulting state.
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Postulate 3: Results of Measurements of Classical Variables (cont.)

Normalization of probabilities

Let us consider three cases:

I finite-dimensional case:
For the finite-dimensional case, the assumption that the relative probability of
outcome ω is given by |〈ω |ψ 〉|2, combined with the very reasonable assumption
that there must be some outcome, immediately implies that that absolute
probability of outcome ω is

P(ωj ) =
|〈ωj |ψ 〉|2Pn
j=1 |〈ωj |ψ 〉|2

(4.7)

In fact, for a properly normalized state, the denominator is trivial:

nX
j=1

|〈ωj |ψ 〉|2 =
nX

j=1

〈ψ |ωj 〉〈ωj |ψ 〉 = 〈ψ |ψ 〉 = 1

via the completeness relation I =
Pn

j=1 |ωj 〉〈ωj |.
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Postulate 3: Results of Measurements of Classical Variables (cont.)

I infinite-dimensional, but considering an operator whose eigenvalues are
discretized (though possibly infinite in number)
e.g., the K operator for our example of functions on the interval [a, b]: the
above rule continues to hold exactly. The denominator is guaranteed to remain
finite in spite of the infinite sum because it is the normalization of the state |ψ 〉.

I infinite-dimensional case and considering an operator whose eigenvalues are a
continuum (uncountably infinite)
e.g., the X operator for our example of functions on the interval [a, b]: we must
reinterpet the expansion coefficients as a probability density. That is, the
probability of obtaining from the measurement corresponding to Ω a value
between ω and ω + dω is

P(ω) dω =
|〈ω |ψ 〉|2dωR ω+

ω−
dω |〈ω |ψ 〉|2

(4.8)

where ω− and ω+ are the minimum and maximum allowed values of ω, which
might be ±∞. Equivalently, the probability of obtaining a value in the interval
[ω1, ω2] is

P(ω1 ≤ ω ≤ ω2) =

R ω2
ω1

dω |〈ω |ψ 〉|2R ω+
ω−

dω |〈ω |ψ 〉|2
(4.9)
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Postulate 3: Results of Measurements of Classical Variables (cont.)

What happens when we have states that are delta-function normalized? For our
example Ω = X , and |ψ 〉 = |x0 〉 and eigenstate, we have

Z b

a
dx |〈x |ψ 〉|2 =

Z b

a
dx 〈x0 |x 〉〈x |x0 〉 =

Z b

a
dx δ(x0 − x) δ(x − x0) = δ(0)

which is infinite. Let’s reconsider this expression in the context of Equation 4.9,
moving the normalizing factor to the left side:

»Z b

a
dx |〈x |x0 〉|2

–
P(x1 ≤ x ≤ x2) =

Z x2

x1

dx |〈x |x0 〉|2

δ(0)P(x1 < x < x2) =


δ(0) if x1 ≤ x0 ≤ x2

0 if x0 < x1 or x0 > x2

P(x1 < x < x2) =


1 if x1 ≤ x0 ≤ x2

0 if x0 < x1 or x0 > x2

where we have taken the somewhat unrigorous step of dividing both sides by
δ(0) (both sides could be put under an integral sign with an arbitrary function
to be more rigorous). The point is that, while the normalizing factor is formally
infinite, this is only a problem when one considers the differential expression;
one can obtain reasonable results for the probability in any finite interval, which
is what is experimentally accessible.
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Postulate 3: Results of Measurements of Classical Variables (cont.)

The above analysis works even if x1 → −∞ and x2 → +∞.

One runs into a similar problem with the K eigenstates for the infinite interval,
but again one can obtain sensible results by only considering probabilities
integrated over some finite range.

Moreover, relative probabilities are always well-defined because the infinite
normalizing denominator cancels out. For our example, one still gets infinities,
but they are sensible infinities: if, given a particle in the eigenstate |x0 〉, one
wants to compare the probability of the particle being in the intervals [x1, x2]
and [x3, x4] that do not overlap, clearly it can only be in one or the other, so the
ratio of the two probabilities must either be infinite or zero.

In addition, we can always create states that are reasonably normalized – these
simply will not be eigenstates of X or P.
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Postulate 3: Results of Measurements of Classical Variables (cont.)

Wavefunctions

Given some continuous eigenvalue ω, the quantity 〈ω |ψ 〉 can be considered a function
of the continuous variable ω. It is conventional to call this quantity the wavefunction
and write it as ψ(ω). The most common use of this nomenclature is for
ψ(x) = 〈x |ψ 〉, but it could also be used for ψk (k) = 〈k |ψ 〉 when k is continous. The
use of a notation like ψ(ω) can be confusing because the function ψ is different
depending on which operator the eigenvalues correspond to — e.g., above, ψ(x) and
ψk (k) are in general very different functions — so, the argument of the function,
which is normally a dummy variable, means something. To be clear, we will frequently
use the labeling ψω(ω) = 〈ω |ψ 〉 so that ψx (x) = 〈x |ψ 〉 and ψk (k) = 〈k |ψ 〉. This
makes it clear what basis we are projecting onto and thus what quantity the
“wavefunction” is a function of.

We will refer to ψx (x) = 〈x |ψ 〉 as the position-space or coordinate-space wavefunction
and ψk (k) = 〈k |ψ 〉 as the k-space, or once we have added a ~ to turn K into the
momentum operator P, the momentum-space wavefunction. When the eigenvalue is
discretized, such as k on a finite interval [a, b], we tend not to use the “wavefunction”
language, but this is just semantics and a reluctance to call a quantity that is defined
on discrete points a function. There is no truly fundamental difference between a
“wavefunction” and the set of expansion coefficients of a state in a particular basis.
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Postulate 3: Results of Measurements of Classical Variables (cont.)

Commuting and Non-Commuting Operators

We now also see the physical relevance of whether two operators corresponding to
physical observables commute. Let us first neglect degeneracies. If two Hermitian
operators Ω and Λ commute, then, as we proved in Section 3.6, there is a set of
common eigenstates {|j 〉} that have eigenvalues {ωj} and {λj}. If |ψ 〉 is an eigenstate
|j 〉, then measurements of Ω and Λ will yield the definite values ωj and λj . If |ψ 〉 is
not an eigenstate, then the measurement outcomes will be correlated: if Ω yields ωj ,
then Λ yields λj because the projection operator Pω=ωj is the same as the projection
operator Pλ=λj

. The relative probabilities P(ωj ) and P(λj ) will of course be equal.

If there are degeneracies, then the correspondence may break down because of
incompletely overlapping subspaces. But this is completely consistent with the above
statement; what occurs would just be the result of there being multiple eigenstates
that contribute to a given P(ω).

Our archetypal example of two non-commuting operators is X and P, which we
proved in Section 3.9 (up to a factor of ~) gives [X ,P] = i~. These clearly do not
commute, implying that there are no states that have definite values of both X and P.
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Postulate 3: Results of Measurements of Classical Variables (cont.)

Expectation Values and Uncertainties

Because measurement outcomes are probabilistic, the next most definite quantities to
consider are probability-weighted moments of the measurements. The expectation
value of an operator Ω is simply the probability-weighted mean outcome,

〈Ω〉 =
X

j

P(ωj )ωj or 〈Ω〉 =

Z ω+

ω−

dω P(ω)ω (4.10)

We can write this explicitly in terms of Ω and the state |ψ 〉:

〈Ω〉 =
X

j

|〈ωj |ψ 〉|2ωj =
X

j

〈ψ |ωj 〉〈ωj |ψ 〉ωj =
X

j

〈ψ |Ω|ωj 〉〈ωj |ψ 〉 (4.11)

= 〈ψ |Ω|ψ 〉

where we used completeness to make the last step. A similar derivation holds for the
continuous ω version so that the same result 〈Ω〉 = 〈ψ |Ω|ψ 〉 holds.
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Postulate 3: Results of Measurements of Classical Variables (cont.)

The next moment to consider is the variance of ω, which is conventionally defined as

〈(∆Ω)2〉 =
X

j

P(ωj )
`
ωj − 〈Ω〉

´2
or 〈(∆Ω)2〉 =

Z ω+

ω−

dω P(ω) (ω − 〈Ω〉)2

(4.12)

Let’s pursue this in the discretized case. First, the above expression can be simplified:X
j

P(ωj )
`
ωj − 〈Ω〉

´2
=
X

j

P(ωj )ω
2
j − 2〈Ω〉

X
j

P(ωj )ωj + 〈Ω〉2
X

j

P(ωj )

=

24X
j

P(ωj )ω
2
j

35− 〈Ω〉2
where we used the definition of 〈Ω〉 to reduce the second term and the normalization
of the probability to reduce the third term.
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Postulate 3: Results of Measurements of Classical Variables (cont.)

Let’s write out the first term in terms of Ω and |ψ 〉.X
j

P(ωj )ω
2
j =

X
j

〈ψ |ωj 〉〈ωj |ψ 〉ω2
j =

X
j

〈ψ |Ω|ωj 〉〈ωj |Ω|ψ 〉 = 〈ψ |Ω2|ψ 〉

where we again used completeness. So we have

〈(∆Ω)2〉 = 〈ψ |Ω2|ψ 〉 − 〈Ω〉2 = 〈ψ |
ˆ
Ω2 − 〈Ω〉2

˜
|ψ 〉 = 〈ψ | [Ω− 〈Ω〉]2 |ψ 〉 (4.13)

where we have written three algebraically equivalent forms by using 〈ψ |ψ 〉 = 1 and
the kind of conversion between Ω2 − 〈Ω〉2 and [Ω− 〈Ω〉]2 that we used on the
previous page.
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Postulate 4: Time Evolution of States

The time evolution of the state vector |ψ(t) 〉 is governed by the Schrödinger
equation

i ~ d

dt
|ψ(t) 〉 = H|ψ(t) 〉 (4.14)

where H(X ,P) is the operator obtained from the classical Hamiltonian H(x , p)
via the correspondence x → X and p → P.

For most systems we will consider H, will be the energy of the system and will be
independent of time. We will consider some more complicated cases, and we will
revisit the distinction between H and the energy when we encounter them.

The above equation for the time evolution of |ψ 〉 allows us to write a fairly definite
form for |ψ(t) 〉. There are two versions:
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Postulate 4: Time Evolution of States (cont.)

I Generic operator form
Let us assume there is an operator U(t) (recall this is called the propagator)
such that |ψ(t) 〉 = U(t)|ψ(0) 〉. Then the above equation becomes

i ~
dU(t)

dt
|ψ(0) 〉 = H U(t) |ψ(0) 〉

|ψ(0) 〉 is constant and arbitrary, so we obtain a differential equation for U(t):

i ~
dU(t)

dt
= H U(t) (4.15)

Our discussion of calculus with operators (Section 9) tells us the solution is

U(t) = e−
i
~ H t

Thus, our full solution for the time evolution of the state is

|ψ(t) 〉 = U(t)|ψ(0) 〉 = e−
i
~ H t |ψ(0) 〉 (4.16)

Since we assume H is Hermitian, we are guaranteed the propagator U(t) is
unitary and thus preserves the norm |ψ|2.
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Postulate 4: Time Evolution of States (cont.)

I Eigenbasis form
H is a Hermitian operator, so it has eigenvalues {Ej} (discrete or continuous). If
we consider an eigenstate |Ej 〉, then we have

H |Ej 〉 = Ej |Ej 〉

for all time (assuming time-independent H). Thus, for this state, our differential
equation becomes

i ~
d

dt
|Ej (t) 〉 = H |Ej (t) 〉 = Ej |Ej (t) 〉

Since |Ej (t) 〉 has to remain an eigenvector of H, only its coefficient may
change. The differential equation suggests the solution

|Ej (t) 〉 = e−
i
~ Ej t |Ej (0) 〉; one can check trivially that it satisfies the equation.
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Postulate 4: Time Evolution of States (cont.)

With this in hand, we can calculate the time evolution of any state:

|ψ(t) 〉 =
X

j

|Ej (t) 〉〈Ej (t) |ψ(t) 〉

This does not get us very far yet, but let’s note something useful:

d

dt
〈Ej (t) |ψ(t) 〉 =

»
d

dt
〈Ej (t) |

–
|ψ(t) 〉+ 〈Ej (t) |

»
d

dt
|ψ(t) 〉

–
=

»
d

dt
|Ej (t) 〉

–†
|ψ(t) 〉+ 〈Ej (t) |

»
−

i

~
H |ψ(t) 〉

–
=

»
−

i

~
H |Ej (t) 〉

–†
|ψ(t) 〉 −

i

~
〈Ej (t) |H |ψ(t) 〉

=

»
−

i

~
Ej |Ej (t) 〉

–†
|ψ(t) 〉 −

i

~
ˆ
H |Ej (t) 〉

˜† |ψ(t) 〉

=
i

~
Ej 〈Ej (t) |ψ(t) 〉 −

i

~
ˆ
Ej |Ej (t) 〉

˜† |ψ(t) 〉

=
i

~
Ej 〈Ej (t) |ψ(t) 〉 −

i

~
Ej 〈Ej (t) |ψ(t) 〉 = 0
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Postulate 4: Time Evolution of States (cont.)

We see that the projection of |ψ(t) 〉 onto |Ej (t) 〉 is time-independent. We
could have seen this from the fact that the same unitary operator U(t)
time-evolves both of them and thus their inner-product is time independent, but
we did not want to assume our other proof in doing this proof. With this fact,
we may conclude 〈Ej (t) |ψ(t) 〉 = 〈Ej (0) |ψ(0) 〉 and thus

|ψ(t) 〉 =
X

j

|Ej (t) 〉〈Ej (0) |ψ(0) 〉 =
X

j

e−
i
~ Ej t |Ej (0) 〉〈Ej (0) |ψ(0) 〉 (4.17)

Combining the two forms by noting that |ψ(0) 〉 is arbitrary, or also by using the
bilinear form for U, we have an explicit form for the propagator U(t):

U(t) = e−
i
~ H t =

X
j

e−
i
~ Ej t |Ej (0) 〉〈Ej (0) | =

X
j

e−
i
~ Ej tPEj (0)

(4.18)

where PEj (0)
is the projection operator onto the eigenvector |Ej (0) 〉. The is similar to

the propagator we found for Example 6, though here we do not need to take the real
part, and, because the Schrödinger Equation is first-order, |ψ̇(0) 〉 is not involved.

We will in general drop the (0) in |Ej (0) 〉 and 〈Ej (0) | when H is time-independent as
we have assumed here.
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Postulate 4: Time Evolution of States (cont.)

For a time-dependent Hamiltonian H(t), such a simple form does not hold because
our differential equation for U(t), Equation 4.15, now becomes

i ~
dU(t)

dt
= H(t) U(t)

The solution is no longer U(t) = e−
i
~ H t : if one takes the time derivative, one gets

i ~
dU(t)

dt
=

»
H(t) + t

dH(t)

dt

–
U(t)

Rather, as Shankar shows, the solution becomes

U(t) = T
»
exp

„
−

i

~

Z t

0
dt ′ H(t ′)

«–
= lim

N→∞

N−1Y
j=0

exp

»
−

i

~

„
t

N

«
H

„
j

N
t

«–
(4.19)

where T [ ] denotes the time-ordered integral, the infinite product of time evolution
over infinitesimally small intervals for which the time-independent solution holds.
Since we will not consider time-dependent problems in ph125ab, we will not derive the
above.
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The Free Particle

The Free-Particle Hamiltonian and its Eigenvalues and Eigenvectors

Classical mechanics tells us that the Hamiltonian function for the free particle in one

dimension is H(x , p) = p2

2 m
. Thus, our quantum mechanical Hamiltonian operator is

H =
P2

2 m
(5.1)

Our next step is to find the eigenvalues and eigenvectors of H; as explained in
Section 4.5, once we know the time evolution of the eigenvectors, we can decompose
any initial state in the eigenbasis of H, time evolve each eigenvector, and then
reconstruct the full time-evolved state. This entire procedure is summarized in
Equation 4.18, reproduced here:

|ψ(t) 〉 = U(t)|ψ(0) 〉 U(t) = e−
i
~ H t =

X
i

e−
i
~ Ei t |Ei (0) 〉〈Ei (0) |
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The Free Particle (cont.)

In this case, our work is reduced because we already know what the eigenbasis of H is:

it is the same as the eigenbasis of K because P = ~ K and H = P2

2 m
. We shall relabel

this basis {|p 〉} with the eigenvalue correspondence p = ~ k simply to avoid
confusion; but we emphasize that |p 〉 ∝ |k 〉 if p = ~ k: the two vectors are in the
same direction in the Hilbert space. (Actually, |p 〉 = 1√

~
|k 〉 so that

〈p |p ′ 〉 = δ(p − p ′) is consistent with 〈k |k ′ 〉 = δ(k − k ′): the two delta functions
differ by a factor of ~ due to the properties of the delta function.) Because the
eigenvalues k of K may be any real number, the eigenvalues p of P may be any real
number. The eigenvalues of H are given by acting on these eigenstates with H:

H |p 〉 =
P2

2 m
|p 〉 =

p2

2 m
|p 〉 ≡ E |p 〉 (5.2)

Since p may be any real number, E may be any nonnegative real number. We see that
there is twofold degeneracy: one gets the same E for |+ p 〉 and | − p 〉. To be clear,
we adopt the labeling

|E+ 〉 = |p = +
√

2 m E 〉 |E− 〉 = |p = −
√

2 m E 〉 (5.3)
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The Free Particle (cont.)

The Free-Particle Propagator

With the eigenvalues and eigenvectors of H in hand, we can calculate the propagator:

U(t) =

Z ∞
−∞

dp e−
i
~

p2

2 m
t |p 〉〈p | (5.4)

where |p 〉 and 〈p | we take as shorthand for |p(t = 0) 〉 and 〈p(t = 0) | as explained in
connection with Equation 4.18.

We note as an aside that the above is not the same as

U(t) =

Z ∞
0

dE e−
i
~ E t`|E+ 〉〈E+ |+ |E− 〉〈E− |

´
Even though the kets and bras are in one-to-one correspondence, the integration
element dE is not the same as dp; in fact, because E = p2/2 m, we have
dE = p dp/m. We are certain that the form in terms of p is correct because we have
the completeness relation I =

R∞
−∞ dp |p 〉〈p |. See Shankar Exercise 5.1.1 for more on

this point.
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The Free Particle (cont.)

It is useful to write down the matrix elements of U(t) in the {|x 〉} representation
because that is where we will typically employ it. This is straightforward:

[U(t)]xx ′ = 〈x |U(t) |x ′ 〉 =

Z ∞
−∞

dp e−
i
~

p2

2 m
t〈x |p 〉〈p |x ′ 〉

=
1

2π ~

Z ∞
−∞

dp e−
i
~

p2

2 m
te

i
~ p(x−x ′)

=

r
m

2π ~ i t
e

i
~

m (x−x ′)2
2t (5.5)

The (2π ~)−1 enters from the normalization of the |p 〉 states, which differ from the
normalization of the |k 〉 states by a factor of ~−1/2. Proving the last step is a bit of
nontrivial calculus; one needs to complete the square in the argument of the
exponential so that it becomes a perfect quadratic (the counterterm one puts in is
independent of p and comes outside the integral as the exponential in (x − x ′)2) and

then one uses the general result
R∞
−∞ du e−u2

=
√
π, which holds even if u is complex.

This is discussed in Shankar Appendix A.2. Also, the complex normalization factor
should not be too disturbing; whenever one calculates an observable quantity, one will
take a squared modulus, making such factors into real numbers.
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The Free Particle (cont.)

Interpretation of the Free-Particle Propagator

First of all, we note that our derivation would apply generally for evolution of |ψ(t) 〉
to |ψ(t ′) 〉, even for t ′ < t, with the rewriting of U as

ˆ
U(t ′ − t)

˜
xx ′ =

r
m

2π ~ i (t ′ − t)
e

i
~

(x−x ′)2
2(t ′−t)

Second, we note that we can interpret [U(t)]xx ′ as the {|x 〉}-basis representation of
the state (i.e., what we frequently call the position-basis wavefunction ψx (x , t)) one
gets at time t if one’s initial state is |x ′ 〉, which has {|x 〉}-basis representation
〈x |x ′ 〉 = δ(x − x ′):

ψx (x , t) = 〈x |ψ(t) 〉 = 〈x |U(t)|ψ(0) 〉 = 〈x |U(t)|x ′ 〉 = [U(t)]xx ′

Since we interpret |〈x |ψ 〉|2 as the relative probability of the particle’s position being in
the interval (x , x + dx), it holds that | [U(t)]xx ′ |2dx is the probability that a particle
that is perfectly localized to x ′ at t = 0 will be detected in (x , x + dx) at time t.
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The Free Particle (cont.)

More generally, U tells us how the probability of finding a particle at position x at
time t is determined by the initial wavefunction ψx (x , t = 0) = 〈x |ψ(0) 〉:

ψx (x , t) = 〈x |ψ(t) 〉 = 〈x |U(t)|ψ(0) 〉
Z ∞
−∞

dx ′〈x |U(t)|x ′ 〉〈x ′ |ψ(0) 〉

=

Z ∞
−∞

dx ′〈x |U(t)|x ′ 〉ψx (x , t = 0)

=

Z ∞
−∞

dx ′
r

m

2π ~ i t
e

i
~

m (x−x ′)2
2t ψx (x

′, t = 0) (5.6)

The propagator belongs to a class of functions called Green’s functions that do similar
things: solve some differential equation for a delta-function initial state (or boundary
condition) and thereby, by integrating the Green’s function with the initial state
(boundary condition), one can obtain the full solution at some other time (or position).
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The Free Particle (cont.)

We may obtain a similar, but simpler, expression, in the momentum basis because U is
diagonal there:

[U(t)]pp ′ = 〈p |U(t)|p ′ 〉 = e−
i
~

p2

2 m
t〈p |p ′ 〉 = e−

i
~

p2

2 m
tδ(p − p ′) (5.7)

Thus, we see if a particle is in an initial state |p ′ 〉 of well-defined momentum, the
propagator is trivial: multiply by a complex phase factor. The above is the
momentum-space Green’s function. Applying it to an arbitrary initial state, we have

ψp(p, t) = 〈p |ψ(t) 〉 = 〈p |U(t)|ψ(0) 〉

=

Z ∞
−∞

dp ′〈p |U(t)|p ′ 〉〈p ′ |ψ(0) 〉

=

Z ∞
−∞

dp ′e−
i
~

p2

2 m
tδ(p − p ′)ψp(p, t = 0)

= e−
i
~

p2

2 m
tψp(p, t = 0) (5.8)

The integral goes away because each |p 〉 eigenbasis element evolves independently.
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The Free Particle (cont.)

Finally, let’s write a different version of Equation 5.6 to see how the {|x 〉} and {|p 〉}
representations of the propagator are related:

ψx (x , t) = 〈x |ψ(t) 〉 = 〈x |U(t)|ψ(0) 〉

=

Z ∞
−∞

dp

Z ∞
−∞

dp ′
Z ∞
−∞

dx ′ 〈x |p 〉〈p |U(t)|p ′ 〉〈p ′ |x ′ 〉〈x ′ |ψ(0) 〉

=

Z ∞
−∞

dx ′〈x ′ |ψ(0) 〉
Z ∞
−∞

dp 〈x |p 〉
Z ∞
−∞

dp ′e−
i
~

p2

2 m
tδ(p − p ′)〈p ′ |x ′ 〉

=

Z ∞
−∞

dx ′ 〈x ′ |ψ(0) 〉
Z ∞
−∞

dp 〈x |p 〉e−
i
~

p2

2 m
t〈p |x ′ 〉

=
1

2π ~

Z ∞
−∞

dp

Z ∞
−∞

dx ′ e−
i
~

p2

2 m
te

i
~ p (x−x ′)ψx (x

′, t = 0) (5.9)

which ties Equations 5.4, 5.5, 5.6, 5.7, and 5.8 together.
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The Free Particle

Gaussian Wave Packets

The Gaussian wave packet initial state is one of the few states for which both the
{|x 〉} and {|p 〉} basis representations are simple analytic functions and for which the
time evolution in either representation can be calculated in closed analytic form. It
thus serves as an excellent example to get some intuition about the Schrödinger
equation.

We define the {|x 〉} representation of the initial state to be

ψx (x , t = 0) = 〈x |ψ(0) 〉 =

„
1

2π σ2
x

«1/4

e
i
~ p0 xe

− x2

4 σ2
x (5.10)

The relation between our σx and Shankar’s ∆x is ∆x = σx

√
2. As we shall see, we

choose to write in terms of σx because 〈(∆X )2〉 = σ2
x .
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The Free Particle (cont.)

Before doing the time evolution, let’s better understand the initial state. First, the
symmetry of 〈x |ψ(0) 〉 in x implies 〈X 〉t=0 = 0, as follows:

〈X 〉t=0 = 〈ψ(0) |X |ψ(0) 〉 =

Z ∞
−∞

dx 〈ψ(0) |X |x 〉〈x |ψ(0) 〉

=

Z ∞
−∞

dx 〈ψ(0) |x 〉 x 〈x |ψ(0) 〉

=

Z ∞
−∞

dx x

„
1

2π σ2
x

«1/2

e
− x2

2 σ2
x = 0 (5.11)

because the integrand is odd.

Second, we can calculate the initial variance 〈(∆X )2〉t=0:

〈(∆X )2〉t=0 =

Z ∞
−∞

dx
`
x2 − 〈X 〉2t=0

´„ 1

2π σ2
x

«1/2

e
− x2

2 σ2
x = σ2

x (5.12)

where we have skipped a few steps that are similar to what we did above for 〈X 〉t=0

and we did the final step using the Gaussian integral formulae from Shankar and the
fact that 〈X 〉t=0 = 0.
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The Free Particle (cont.)

We calculate the {|p 〉}-basis representation of |ψ(0) 〉 so that calculation of 〈P〉t=0

and 〈(∆P)2〉t=0 are easy (by contrast, Shankar Example 4.2.4 does this in the {|x 〉}
basis):

ψp(p, t = 0) = 〈p |ψ(0) 〉 =

Z ∞
−∞

dx 〈p |x 〉〈x |ψ(0) 〉

=
1

√
2π ~

Z ∞
−∞

dx e−
i
~ p x

„
1

2π σ2
x

«1/4

e
i
~ p0 xe

− x2

4 σ2
x

=

 
1

2π σ2
p

!1/4

e
− (p−p0)2

4 σ2
p (5.13)

where the 1√
~

comes from the normalization |p 〉 = 1√
~
|k 〉, where σp ≡ ~

2σx
, and the

final step is done by completing the square in the argument of the exponential and

using the usual Gaussian integral
R∞
−∞ du e−u2

=
√
π. With the above form for the

{|p 〉}-space representation of |ψ(0) 〉, the calculation of 〈P〉t=0 and 〈(∆P)2〉t=0 are
calculationally equivalent to what we already did for 〈X 〉t=0 and 〈(∆X )2〉t=0, yielding

〈P〉t=0 = p0 〈(∆P)2〉t=0 = σ2
p (5.14)
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The Free Particle (cont.)

We may now calculate |ψ(t) 〉. Shankar does this only in the {|x 〉} basis, but we do it
in the {|p 〉} basis too to illustrate how simple it is in the eigenbasis of H. The result
is of course

ψp(p, t) = 〈p |ψ(t) 〉 =

 
1

2π σ2
p

!1/4

e
− (p−p0)2

4 σ2
p e−

i
~

p2

2 m
t (5.15)

That is, each {|p 〉} picks up a complex exponential factor for its time evolution. It is
immediately clear that 〈P〉 and 〈(∆P)2〉 are independent of time. Calculationally, this
occurs because P, and (∆P)2 simplify to multiplication by numbers when acting on
|p 〉 states and the time-evolution complex-exponential factor cancels out because the
two expectation values involve 〈ψ | and |ψ 〉. Physically, this occurs because the P
operator commutes with H; later, we shall derive a general result about conservation
of expectation values of operators that commute with the Hamiltonian. Either way
one looks at it, one has

〈P〉t = 〈P〉t=0 = p0 〈(∆P)2〉t = 〈(∆P)2〉t=0 = σ2
p (5.16)
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The Free Particle (cont.)

Let’s also calculate the {|x 〉} representation of |ψ(t) 〉. Here, we can just use our
propagator formula, Equation 5.6, which tells us

ψx (x , t) = 〈x |ψ(t) 〉 =

Z ∞
−∞

dx ′ [U(t)]xx ′ 〈x
′ |ψ(0) 〉

=

Z ∞
−∞

dx ′
r

m

2π ~ i t
e

i
~

m (x−x ′)2
2t

„
1

2π σ2
x

«1/4

e
i
~ p0 x ′e

− (x ′)2

4 σ2
x

=

»q
2π σ2

x

„
1 +

i ~ t

2 m σ2
x

«–−1/2

exp

264− `
x − p0

m
t
´2

4σ2
x

“
1 + i ~ t

2 m σ2
x

”
375

exp

„
i

~
p0 x

«
exp

„
−

i

~
p2

0

2 m
t

«
(5.17)

where we do the integral in the usual fashion, by completing the square and using the
Gaussian definite integral.
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The Free Particle (cont.)

The probability density in the {|x 〉} basis is

P(x) = |〈x |ψ(t) 〉|2

=

"
2π σ2

x

 
1 +

„
~ t

2 m σ2
x

«2
!#−1/2

exp

2664−
`
x − p0

m
t
´2

2σ2
x

„
1 +

“
~ t

2 m σ2
x

”2
«
3775 (5.18)

Because the probability density is symmetric about x = p0
m

t, it is easy to see that

〈X 〉t =
p0

m
t = 〈X 〉t=0 +

p0

m
t (5.19)

i.e., the particle’s effective position moves with speed p0/m, which is what one
expects for a free particle with initial momentum p0 and mass m.
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The Free Particle (cont.)

The variance of the position is given by the denominator of the argument of the
Gaussian exponential (one could verify this by calculation of the necessary integral),

〈(∆X )2〉t = σ2
x

"
1 +

„
~ t

2 m σ2
x

«2
#

= 〈(∆X )2〉t=0

"
1 +

„
~ t

2 m σ2
x

«2
#

(5.20)

The position uncertainty grows with time because of the initial momentum uncertainty
of the particle – one can think of the {|p 〉} modes with p > p0 as propagating faster
than p0/m and those with p < p0 propagating more slowly, so the initial wavefunction
spreads out over time. In the limit of large time (t � 2 m σ2

x/~), the uncertaintyq
〈(∆X )2〉t grows linearly with time. The “large time” condition can be rewritten in a

more intuitive form:

t � t0 = 2m
σ2

x

~
= m

σx

σp
=
σx

σv
(5.21)

where σv = σp/m is the velocity uncertainty derived from the momentum uncertainty.
So, t0 is just the time needed for the state with typical velocity to move the width of
the initial state. We should have expected this kind of condition because σx and ~ are
the only physical quantities in the problem. Such simple formulae can frequently be
used in quantum mechanics to get quick estimates of such physical phenomena; we
shall make such use in the particle in a box problem.
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The Free Particle (cont.)

Position-Momentum Uncertainty Relation

Before leaving the free particle, we note an interesting relationship that appeared
along the way. Recall that, because the position and momentum operators do not
commute, [X ,P] = i ~, no state is an eigenstate of both. If there is no uncertainty in
one quantity because the system is in an eigenstate of it, then the uncertainty in the
other quantity is in fact infinite. For example, a perfect position eigenstate has a
delta-function position-space representation, but it then, by the alternative
representation of the delta function, Equation 3.146, we see that it is a linear
combination of all position eigenstates with equal weight. The momentum uncertainty
will be infinite. Conversely, if a state is a position eigenstate, then its position-space
representation has equal modulus everywhere and thus the position uncertainty will be
infinite.
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The Free Particle (cont.)

When we considered the Gaussian wave packet, which is neither an eigenstate of X
nor of P, we found that the t = 0 position and momentum uncertainties were

〈(∆X )2〉t=0 = σ2
x 〈(∆P)2〉t=0 = σ2

p =
~2

4σ2
x

Hence, at t = 0, we have the uncertainty relationq
〈(∆X )2〉t=0

q
〈(∆P)2〉t=0 =

~
2

We saw that, for t > 0, the position uncertainty grows while the momentum
uncertainty is unchanged, so in general we haveq

〈(∆X )2〉
q
〈(∆P)2〉 ≥

~
2

(5.22)

We will later make a general proof of this uncertainty relationship between
noncommuting observables.
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The Particle in a Box

The Hamiltonian

A “box” consists of a region of vanishing potential energy surrounded by a region of
infinite potential energy:

V (x) = lim
V0→∞


0 |x | ≤ L

2
V0 |x | > L

2

(5.23)

It is necessarily to include the limiting procedure so that we can make mathematical
sense of the infinite value of the potential when we write the Hamiltonian. Classically,
such a potential completely confines a particle to the region |x | ≤ L/2. We shall find a
similar result in quantum mechanics, though we need a bit more care in proving it.

The classical Hamiltonian is

H(x , p) =
p2

2 m
+ V (x) (5.24)
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The Particle in a Box (cont.)

Postulate 2 tells us that the quantum Hamiltonian operator is

H(X ,P) =
P2

2 m
+ V (X ) (5.25)

Next, we want to obtain an eigenvalue-eigenvector equation for H. For the free
particle, when V (X ) was not present, it was obvious we should work in the {|p 〉}
basis because H was diagonal there, and then it was obvious how P acted in that basis
and we could write down the eigenvalues and eigenvectors of H trivially. We cannot
do that here because V (X ) and hence H is not diagonal in the {|p 〉} basis. Moreover,
regardless of basis, we are faced with the problem of how to interpret V (X ). Our
usual power-series interpretation fails because the expansion is simply not defined for
such a function – its value and derivatives all become infinite for |x | ≥ L/2.

Shankar glosses over this issue and jumps to the final differential equation; thereby
ignoring the confusing part of the problem! We belabor it to make sure it is clear how
to get to the differential equation from H and the postulates. The only sensible way
we have to deal with the above is to write down matrix elements of H in the {|x 〉}
basis because our Postulate 2 tells us explicitly what the matrix elements of X are in
this basis. Doing that, we have

〈x |H(X ,P)|x ′ 〉 = 〈x |
P2

2 m
|x ′ 〉+ 〈x |V (X ) |x ′ 〉 (5.26)
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The Particle in a Box (cont.)

Let’s look at each term separately. For the first term, since it is quadratic in P, let’s
insert completeness to get the P’s separated:

〈x |
P2

2 m
|x ′ 〉 =

1

2 m

Z ∞
−∞

dx ′′〈x |P |x ′′ 〉〈x ′′ |P|x ′ 〉

= −
~2

2 m

Z ∞
−∞

dx ′′
»

d

dx
δ(x − x ′′)

– »
d

dx ′′
δ(x ′′ − x ′)

–
= −

~2

2 m

d

dx

Z ∞
−∞

dx ′′δ(x − x ′′)

»
d

dx ′′
δ(x ′′ − x ′)

–
= −

~2

2 m

d

dx

»
d

dx
δ(x − x ′)

–
= −

~2

2 m
δ(x − x ′)

d2

d(x ′)2
(5.27)

where in last step we used Equation 3.127,

dn

dxn
δ(x − x ′) = δ(x − x ′)

dn

dx ′n
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The Particle in a Box (cont.)

For the second term, we can approach it using a limiting procedure. Suppose V (X )
were not so pathological; suppose it has a convergent power series expansion
V (X ) =

P∞
k=0 Vk X k . Then, we would have

〈x |V (X ) |x ′ 〉 =
∞X

k=0

Vk 〈x |X k |x ′ 〉 =
∞X

k=0

Vk

`
x ′
´k 〈x |x ′ 〉

=
∞X

k=0

Vk

`
x ′
´k
δ(x − x ′) = δ(x − x ′) V (x ′)

where we have allowed X to act to the right on |x ′ 〉. This is not a strict application
of Postulate 2; if one wants to be really rigorous about it, one ought to insert
completeness relations like we did for P2. For example, for X 2 we would have

〈x |X 2 |x ′ 〉 =

Z ∞
−∞

dx ′′〈x |X |x ′′ 〉〈x ′′ |X |x ′ 〉 =

Z ∞
−∞

dx ′′ x δ(x − x ′′) x ′′ δ(x ′′ − x ′)

= x2δ(x − x ′) = (x ′)2δ(x − x ′)

For X k , we have to insert k − 1 completeness relations and do k − 1 integrals. The
result will be of the same form.
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The Particle in a Box (cont.)

The key point in the above is that we have figured out how to convert the operator
function V (X ) into a simple numerical function V (x) when V (X ) can be expanded as
a power series. To apply this to our non-analytic V (X ), we could come up with an
analytic approximation that converges to the non-analytic one as we take some limit.
(One could use a sum of tan−1 or tanh functions, for example.) The point is that if
we used the expansion and then took the limit, we would obtain a result identical to
the above. So we write

〈x |V (X ) |x ′ 〉 = δ(x − x ′) V (x ′) (5.28)

With the above results, we have that the matrix elements of H are given by:

〈x |H |x ′ 〉 = δ(x − x ′)

»
−

~2

2 m

d2

d(x ′)2
+ V (x ′)

–
(5.29)
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The Particle in a Box (cont.)

Thus, for an arbitrary state |f 〉, we have that (using completeness as usual)

〈x |H |f 〉 =

Z ∞
−∞

dx ′〈x |H |x ′ 〉〈x ′ |f 〉

=

Z ∞
−∞

dx ′δ(x − x ′)

»
−

~2

2 m

d2

d(x ′)2
+ V (x ′)

–
f (x ′)

=

Z ∞
−∞

dx ′δ(x − x ′)

»
−

~2

2 m

d2f (x ′)

d(x ′)2
+ V (x ′) f (x ′)

–
= −

~2

2 m

d2f (x)

dx2
+ V (x) f (x) (5.30)

Section 5.2 Simple One-Dimensional Problems: The Particle in a Box Page 309



Lecture 16:
The One-Dimensional Particle in a Box Continued

Date Given: 2008/11/05
Date Revised: 2008/11/05

Page 310



The Particle in a Box

The Eigenvalue-Eigenvector Equation

Finally, we get to our eigenvalue-eigenvector equation for H, E |ψE 〉 = H |ψE 〉. This
equation can be written in the following form by applying 〈x |:

〈x |E |ψE 〉 = 〈x |H |ψE 〉 = −
~2

2 m

d2

dx2
ψE ,x (x) + V (x)ψE ,x (x) (5.31)

where |ψE 〉 is the eigenstate of H corresponding to eigenvalue E (we wrote this as
|E 〉 earlier but that would prove confusing here) and ψE ,x (x) = 〈x |ψE 〉 is the
{|x 〉}-basis representation of |ψE 〉. We rewrite:

d2

dx2
ψE ,x (x) +

2 m

~2
[E − V (x)]ψE ,x (x) = 0 (5.32)

This is a second-order linear differential equation with the constant parameter E
undetermined at this point; it will parameterize the solutions. We have thus reduced
our eigenvalue-eigenvector problem to a differential equation. Solving this equation
will give us the {|x 〉}-basis representation of the eigenstates |ψE 〉 and the allowed
eigenvalues E .
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The Particle in a Box (cont.)

That was a lot of work. By contrast, in the free particle case, we had to do no work
because we already had a basis that was the eigenbasis of the Hamiltonian. Here, we
have set up an equation that will give us the {|x 〉}-basis representation of the
eigenstates of H.

Section 5.2 Simple One-Dimensional Problems: The Particle in a Box Page 312



The Particle in a Box (cont.)

Finding the Eigenvectors

Our differential equation is a bit challenging because the V (x) term is piecewise
constant. Since it is straightforward to solve the differential equation for constant V ,
we will solve it separately in the three different regions x < L/2, |x | ≤ L/2, and
x > L/2 (which we will label I, II, and III), and then find conditions to make the
three solutions consistent at the boundaries. We of course also keep V0 finite for now.
So we are searching for the solution to the generic equation

d2

dx2
ψE ,x (x) +

2 m

~2
αψE ,x (x) = 0

where α = E for |x | ≤ L/2 and α = E − V0 for |x | > L/2. Because the coefficient of
the ψE ,x (x) term is constant, the generic solution is an exponential,

ψE ,x (x) = Ae−κ x + B eκ x κ =

r
−

2 m

~2
α

where α may be positive or negative, and thus κ may be real or imaginary, depending
on the value of E and |x |.
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The Particle in a Box (cont.)

Let us consider states with E < V0. (We don’t care about E ≥ V0 states because we
will let V0 →∞ in the end.) For region I, the A term blows up as x → −∞ and must
be discarded to keep the state normalizable; for region III, the B term similarly must
be discarded. We therefore have

ψI
E ,x (x) = BI eκ x ψIII

E ,x (x) = AIII e−κ x

Next, let’s consider our solution in region II. We rewrite

ψII
E ,x (x) = Ae i k x + B e−i k x k =

r
2 m

~2
E (5.33)

because we will see later that we obtain the requirement E ≥ 0 and thus α ≥ 0.
E < 0 solutions are not prevented by writing in the above form (they will simply have
k imaginary), we’ll just find the above form more convenient.
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The Particle in a Box (cont.)

What are the requirements that will join the solutions in regions I, II, and III? Let us
determine whether ψE ,x (x) must be continuous at the boundary by writing the change
in ψE ,x (x) at the boundary in terms of its derivative:

ψE ,x (x)
˛̨ L

2
+ε

L
2
−ε

=

Z L
2
+ε

L
2
−ε

dx
d

dx
ψE ,x (x)

=

Z L
2

L
2
−ε

dx
d

dx
ψII

E ,x (x) +

Z L
2
+ε

L
2

dx
d

dx
ψIII

E ,x (x)

= ε
d

dx
ψII

E ,x

„
L

2
− ε
«

+ ε
d

dx
ψIII

E ,x

„
L

2
+ ε

«
= i k ε

“
AII e i k ( L

2
−ε) − BII e−i k ( L

2
−ε)
”
− κ εAIII e−κ ( L

2
+ε)

where in, evaluating the integrals, we make use of the fact that the width of the
interval will be taken to zero. This lets us take the value of the integrand at one
endpoint and multiply by the width of the interval.
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The Particle in a Box (cont.)

Now we take the limit V0 →∞, which implies κ→∞. This has no effect on the first

term. For the second term, we know e−κ
L
2 → 0 faster than κ→∞ because

exponentials decay faster than any polynomial, so κ e−κ
L
2 → 0 as V0 →∞.

Next we take ε→ 0, which makes the first term vanish because all the quantities in it
are finite.

So we find the ψE ,x must be continuous across the boundary.

Now, because κ→∞ as V0 →∞, we also see that ψIII
E ,x (x) = 0 identically in this

limit. To make ψE ,x (x) continuous, we then have the requirement ψE ,x

“
L
2

”
= 0.

The same condition holds at x = − L
2

by the same argument.

Do we need to find a condition on d
dx
ψE ,x (x) at the boundaries? No. We have a

second order differential equation and now we have two conditions on the solution,
that it must vanish at both boundaries. That is enough initial/boundary data to fully
determine the solutions. And, in fact, we will see that there is no condition on the
derivative at the boundaries.
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The Particle in a Box (cont.)

So, to make ψE ,x (x) vanish at x = ±L/2, we have the following pair of equations that
must be satisfied:

Ae−i k L
2 + B e i k L

2 = 0 (5.34)

Ae i k L
2 + B e−i k L

2 = 0

where we have dropped the II subscripts on A and B because they are no longer
necessary. This is a pair of linear equations that can be written as a matrix equation"

e−i k L
2 e i k L

2

e i k L
2 e−i k L

2

#»
A
B

–
=

»
0
0

–

Section 5.2 Simple One-Dimensional Problems: The Particle in a Box Page 317



The Particle in a Box (cont.)

We require the determinant vanish in order for there to be a nontrivial pair of
coefficients A, B:

e−i k L − e i k L = 0

2 i sin(k L) = 0 (5.35)

which implies

k =
n π

L
n = 0,±1,±2, . . .

Note that k may have no imaginary part if Equation 5.35 is to be satisfied. To see
this, let’s break k into real and imaginary parts, k = kr + i ki , and rewrite the above
equation by moving the second term to the right side:

e−i kr Leki L = e i kr Le−ki L

Now, take the modulus. The factors with kr give 1, but the factors with ki are always
different than 1 and mismatched unless ki = 0.
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The Particle in a Box (cont.)

Now we must find the pairs A, B that satisfy the equation. Because the determinant
of the above matrix vanishes, only one of the two linear equations is independent, so
we write the first one using our newfound constraint on k:

Ae−i n π
2 + B e i n π

2 = 0 =⇒ A = −e i n π B = (−1)n+1B (5.36)

The two complex exponentials are added with a + or − sign depending on whether n
is odd or even.

The final result, then, is that we get a series of sines and cosines as the solutions:

ψE ,x (x) =

r
2

L
sin
“n π x

L

”
n > 0, even (5.37)

ψE ,x (x) =

r
2

L
cos
“n π x

L

”
n > 0, odd

We have dropped the negative values of n because they give the same functions up to
possibly a sign flip, and we drop n = 0 because it gives nonsense for measurement of
particle position (P(x) = 0 for all x).
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The Particle in a Box (cont.)

Note that our solutions automatically satisfy the requirement we have for the K (and
thus P) operator to be Hermitian, that the values at the two endpoints are equal,
because our solutions vanish at the endpoints. The Hermiticity requirement can also
be seen to be the more fundamental reason that k may have no imaginary part: if k
had an imaginary part, the solution would include a real exponential, which is never
the same at −L/2 and L/2.

Since the interval over which the wavefunction is nonzero will always be finite, we
have been able to normalize the states to unity rather than to a delta function; the
norm of a state is explicitly given by

|ψE |2 = 〈ψE |ψE 〉 =
1

L

Z L
2

− L
2

dx 〈ψE |x 〉〈x |ψE 〉 =
1

L

Z L
2

− L
2

dx |ψE ,x (x)|2

Since the integral of sin2 or cos2 over any multiply of a half-wavelength is 1/2, we
thus see that our solutions are properly normalized. Orthogonality is also ensured by
the properties of sines and cosines on this interval: one can check that 〈ψE |ψE ′ 〉 = 0
for E 6= E ′, and hence we have 〈ψE |ψE ′ 〉 = δEE ′ .
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The Particle in a Box (cont.)

The eigenvalues are now found trivially by evaluating our differential equation,
Equation 5.32, in region II (where V (x) is finite and in fact vanishes):

En ψE ,x (x) = −
~2

2 m

d2

dx2
ψE ,x (x) =

~2k2
n

2 m
ψE ,x (x)

=⇒ En =
~2k2

n

2 m
=

~2π2 n2

2 m L2
(5.38)

We see that the restriction to real k ensures that the energies can never be negative or
imaginary. We thus see the requirement of Hermiticity of K return: Hermiticity of K
ensures H is Hermitian, which ensures that the En will be real. The absence of E < 0
solutions does not come from Hermiticity but from physics: E < 0 states would be
simply be physically unreasonable in this potential.
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The Particle in a Box (cont.)

Quantization

We here see our first example of quantization of physical variables – here, the energy.

The quantization was due to the boundary conditions on the state’s {|x 〉}-space
representation. Equation 5.33 for the solution in region II has only two degrees of
freedom: the relative phases of the complex numbers A and B and the value of k.
(The absolute magnitude of A and B would be set by normalization, and the absolute
phase of A is arbitrary.) We found two conditions on this solution, also, based on the
behavior of the state in regions I and II and on the continuity of the derivative at the
boundaries. Two conditions and two degrees of freedom results in both degrees of
freedom being restricted in some way. That results in discretization of k and the
condition on the relative phase of A and B, A = (−1)n+1B.

More fundamentally, the vanishing of the state in regions I and III arose from the fact
that the potential is infinite in regions I and III, preventing the state from extending
out into those regions. It is the inability of the particle to escape to infinity that
results in quantization, as we will discuss more generally later.

In the free-particle case, we have all the trappings of quantum mechanics without the
quantization because of the lack of such boundary conditions.
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The Particle in a Box (cont.)

In the end, then, the thing that makes quantum mechanics “quantum” is not the
postulates, including the fact that a state is a vector in a Hilbert space. Rather, it is
the combination of these facts with the physical restrictions imposed by the
Hamiltonian operator that results in quantization of physical variables, in the
restriction of the eigenvalues to a discrete (if infinite) set.

However, it is important to remember that the other non-classical aspects of quantum
mechanics – the information content in the wavefunction, the probabilistic treatment
of physical observables including the ideas of expectation values and uncertainties –
are certainly important and are present even when there is no explicit quantization.
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The Particle in a Box (cont.)

The Nonzero Ground-State Energy

Why does the ground state have nonzero energy? Classically, we expect that the
lowest energy state of a particle corresponds to no kinetic or potential energy. That
state could easily be realized here, with the particle at rest anywhere in the box.

Quantum mechanically, though, the lowest energy state has E = ~2

2 m
π2

L2 . Why is this?

This result is easily seen to be due to the noncommutativity of position and
momentum. We saw earlier in the case of the free particle that position and
momentum satisfy an uncertainty relation, Equation 5.22q

〈(∆X )2〉
q
〈(∆P)2〉 ≥

~
2

Let us assume that this relation holds in general (we shall prove it later). The upper

limit on the position uncertainty is
q
〈(∆X )2〉 ≤ L/2 because the particle’s

position-space probability distribution is nonzero only for |x | ≤ L/2. Thus, we haveq
〈(∆P)2〉 ≥

~

2
q
〈(∆X )2〉

≥
~
L
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The Particle in a Box (cont.)

Now, the particle energy is related to its momentum by H = P2

2 m
(we neglect V (x)

because it it vanishes everywhere that the wavefunction is nonzero). The same

relation therefore holds for expectation values, 〈H〉 = 〈P2〉
2 m

. Since 〈P〉 = 0 for the
ground state (and any eigenstate), we can thus obtain from our uncertainty relation a
lower limit on 〈H〉:

〈H〉 =
〈P2〉
2 m

≥
1

2 m

~2

2 〈(∆X )2〉
≥

~2

2 m L2

The actual value of the ground-state energy is π2 bigger; had we done this more
carefully by precisely calculating 〈(∆X )2〉, we would have gotten a closer match.

Regardless, we see that the nonzero ground-state energy is just a result of the nonzero
ground-state momentum that arises from the containment of the particle in the

interval
h
− L

2
, L

2

i
. We shall see a similar result in the simple harmonic oscillator, giving

rise to the famous 1
2

~ω zero-point energy. It must be emphasized that this nonzero
ground-state energy is not simply an offset that can be subtracted; it is real energy
(purely kinetic for particle in a box, kinetic and potential for the harmonic oscillator)
that has physical consequences. It affects, for example, the heat capacity of solids –
even at absolute zero, there is vibrational motion of the ions in a crystal lattice.
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The Particle in a Box (cont.)

Particle in a Box Propagator

We can use our generic formula Equation 4.18 to write the propagator that evolves
forward any initial state:

U(t) =
X

n

e−
i
~ Ent |ψEn 〉〈ψEn | =

X
n

exp

»
−

i

~
~2 π2 n2

2 m L2
t

–
|ψn 〉〈ψn | (5.39)

where we use the shorthand |ψn 〉 = |ψEn 〉. In the {|x 〉}-basis representation, we have

[U(t)]xx ′ = 〈x |U(t) |x ′ 〉 =
X

n

exp

»
−

i

~
~2 π2 n2

2 m L2
t

–
〈x |ψn 〉〈ψn |x ′ 〉

=
X

n

exp

»
−

i

~
~2 π2 n2

2 m L2
t

–
ψn,x (x)ψ∗n,x (x

′) (5.40)

where we abbreviate ψn,x (x) ≡ ψEn,x (x) for the position-space wavefunction for the
nth energy level. This propagator cannot be further simplified, but it certainly provides
a clear calculational method for time-evolving any initial state.
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The Particle in a Box

Relation to {|x 〉} and {|p 〉} Basis States

We make the obvious point that our energy eigenstates are not position eigenstates:
position operator eigenstates are independent of the Hamiltonian, and our states are
just not the same as the position operator eigenstates in the {|x 〉}-basis
representation, so they are not the same in any representation.

We can also easily see that, even though the eigenstates of the Hamiltonian have a
definite energy, they do not have a definite momentum. The momentum eigenstates
are not dependent on the form of the Hamiltonian; it is always true that

ψp,x (x) = 〈x |p 〉 =
1

√
2π ~

e
i
~ p x (5.41)

Note that we consider momentum eigenstates for the entire real line because the inner
product space we began with was for functions on the entire real line: while the
wavefunction vanishes outside the box, it is still a well-defined function there. The
position basis matrix representation ψEn,x (x) = 〈x |ψEn 〉 of our eigenstate |ψEn 〉 is
different from the above position-basis matrix representations of the |p 〉 basis
elements in two ways:
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The Particle in a Box (cont.)

I Since the ψEn,x (x) are sines and cosines, we would need to take linear
combinations of states at |p 〉 and | − p 〉 to obtain them.

I More importantly, ψEn,x (x) only equal to ψp,x (x) over the interval
h
− L

2
, L

2

i
,

even though both ψEn,x (x) and ψp,x (x) are defined on the entire real line.

Hence, our energy eigenstates are simply not equal to momentum eigenstates.

These facts are not surprising and arise simply from the fact that the Hamiltonian
makes dynamics happen. In order for {|x 〉} basis states to be eigenstates of the
Hamiltonian, a particle, once placed at a point, must never move from that point or
spread out in position. Not even the free particle Hamiltonian allows that! And, while
the free particle Hamiltonian’s eigenstates are also momentum eigenstates, that clearly
holds because there is no potential to affect the momentum of the particle. Once one
includes any kind of potential, there is a force that can change the particle momentum
and thus eigenstates of the Hamiltonian simply cannot be eigenstates of momentum.
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General Considerations on Bound States and Quantization

Whence Quantization?

We made the point above that the quantization of energies for the particle in a box
arises because of boundary conditions imposed by the potential energy function, not
by the postulates. This argument holds generally for the bound states of any
potential. We present a less detailed version of the argument given in Shankar Section
5.2 on this point.

Bound states are states whose energy E is less than the asymptotic value of the
potential at ±∞. Classically, this is the case where the particle simply does not have
enough energy to escape to ±∞. Quantum mechanically, the wavefunction must fall
off at ±∞.

To make the argument, we need to count up the number of free parameters and see
how they are determined by the boundary conditions. For an arbitrary potential, one
can think of breaking it up into small intervals of size ε. As ε→ 0, the potential can
be treated as piecewise constant. We thus have our exponential solutions in any
interval, with the argument being imaginary or real depending on whether E is greater
than or less than the value of V (x) in the interval. There are four coefficient degrees
of freedom for each of these intervals (the real and imaginary parts of the A and B
coefficients).
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General Considerations on Bound States and Quantization (cont.)

We have matching of both ψx (x) and d
dx
ψx (x) at all the boundaries (the derivative

must now match also because the steps in the potential are finite, as opposed to the
particle-in-a-box case). That imposes four conditions (two equations each with real
and imaginary parts) at each edge of the interval.

Now, let us cascade the conditions from left to right. Suppose the four coefficient
degrees of freedom in the −∞ interval have been set. That gives the four conditions
that the wavefunction in the first finite interval must meet. The four coefficent
degrees of freedom in the first finite interval thus are set. This procedure cascades
through the last finite interval, which sets the four conditions at the last boundary.
This provides enough information to set the four coefficient degrees of freedom in the
+∞ infinite interval. So, once the four coefficient degrees of freedom in the −∞
interval and the energy E are set, the rest of the wavefunction is determined.

Now, let’s consider how these first four coefficient degrees of freedom are set
depending on whether we have a free or bound state.
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General Considerations on Bound States and Quantization (cont.)

For a free state, we are allowed to keep both the e±i k x solutions since there is no
worry about either blowing up at ±∞. That means we have both the A and B
coefficients, and so we really have four degrees of freedom. For free states, we will
always have two energy-degenerate states with the same energy, a right-going state
and a left-going state. One can see this by noting that the energy eigenvalue of the
Schrödinger Equation does not care about the sign of the argument of the imaginary
exponential because two derivatives are taken:

d2

dx2
e±i k x = −k2e±i k x

So, for a free particle, there will always be two independent, energy-degenerate
solutions in the ±∞ regions. Since they are independent, their overall phases are
arbitrary and independent. We make an arbitrary choice for this phase (e.g., take A
and B to be real in the −∞ region) and that sets the phase of the two independent
solutions. The amplitude of A and B in the −∞ region will then be determined by
normalization, as the two states must individually be normalized (to delta functions,
since they do not decay away at ±∞). Once we have set A and B in the −∞ region,
the matching conditions cascade through to fully determine the wavefunction on the
rest of the real line out to +∞. Thus, in the end, we are able to meet all the
conditions on the wavefunction using only the coefficient degrees of freedom. No
quantization is required.
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General Considerations on Bound States and Quantization (cont.)

For a bound state, the wavefunction must become real exponential outside of some |x |
for a given value of E because E is less than V somewhere: recall that the solution in
any region where the potential is piecewise constant is

e±κ x with κ =

r
2 m

~2
(V − E)

So, when V > E , κ is real.

Once we are forced into the real exponential solution, we acquire an additional
condition we did not have in the free-particle case: the wavefunction may not blow up
at ±∞ in order for it to be normalizable. This eliminates two of the four coefficient
degrees of freedom in each infinite interval. Essentially, we get four additional
conditions that we didn’t have in the free particle case, which sets A = 0 in the −∞
region and B = 0 in the +∞ region. In the −∞ interval, this presents no problem:
rather than having two independent solutions, we have a single solution, but we still
pick an arbitrary phase and normalization for the wavefunction in this region as before.
Again, the matching conditions cascade through. However, now in the +∞ region,
instead of having four coefficient degrees of freedom to use to meet the four matching
conditions, we only have the A coefficient degree of freedom because B = 0 is
necessary to prevent the wavefunction from blowing up at +∞. The only way to meet
the four matching conditions is to restrict the freedom in E . Hence, we obtain energy
quantization.
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General Considerations on Bound States and Quantization (cont.)

The final case to consider is when the energy is such that the particle is bound on one
side and free on the other. In such cases, there will be no energy quantization, but
there will also not be independent left- and right-going solutions. The easiest way to
see this is to begin defining the wavefunction on the bound side, which we will take to
be the −∞ side without loss of generality. The argument goes through as above,
resulting in four matching conditions at the left edge of the +∞ interval. Here, we
can satisfy the four matching conditions without quantizing E simply be allowing the
four matching conditions to set A and B in this region. A and B get tied together,
tying the nominally independent e±i k x solution together. So, being bound on one
side removes energy degeneracy but does not result in quantization. Classically, the
way to see this is that, if you start out with a left-going state heading into this
potential, it will encounter the potential barrier at −∞ and be turned around into a
right-going state. Since the eigenstates of the Hamiltonian are time-independent, they
must contain both these behaviors. Thus, the solution is a superposition of left-going
and right-going in the unbound region.

(As an aside, this is also a way to think about the solutions in the bound regions for
which E > V : since the particle is bound and thus bounces off the potential barriers
on the two sides, it can be in neither a pure left-going or right-going state. Thus, our
solution in bound regions is always the sum of the left- and right-going waves.)
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General Considerations on Bound States and Quantization (cont.)

How did this all of this function in our particle in a box case? One can think of it in
terms of keeping V0 finite, considering only the bound state solutions, and then letting
V0 go to infinity. With finite V0, the above generic bound state explanation would
apply, resulting in energy quantization for bound states. Then, letting V0 →∞ would
not change this, but would simply eliminate any free states. We did not do the
problem in this fashion because, by letting V0 →∞ a bit earlier, we could conclude
that the wavefunction vanished in the ±∞ regions. Rather than setting four conditions
at the left side of the box using the wavefunction and its derivative, we instead set two
conditions at each side of the both on the wavefunction alone. This was still four total
conditions on the region II solution, fully specifying it. It would have been a bit more
painful to do it in the generic way because we would have to carry along the
non-vanishing region I and III solutions a bit longer, resulting in more algebra.
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The Continuity Equation for Probability

Analogy to Electromagnetism

Postulate 3 of QM tells us to interpret |〈x |ψ(t) 〉| as the probability P(x , t) that the
position of the particle is in the interval x to x + dx at time t; P(x , t) is a probability
density for finding the particle. This is similar to the idea of a charge density in
electromagnetism, ρ(x). In the case of electromagnetism, we have the following
important results:

I The charge in an infinitesimal interval dx or volume d3x is

dQ(x , t) = ρ(x , t) dx or dQ(~x , t) = ρ(~x , t) d3x

I The total charge in an interval [a, b] or volume V is

Q(t) =

Z b

a
dx ρ(x , t) or Q(t) =

Z
V

d3x ρ(~x , t)

I The total charge over all space is conserved.
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The Continuity Equation for Probability (cont.)

I The electric current density is defined as

j(x , t) = ρ(x , t) v(x , t) or ~j(~x , t) = ρ(~x , t)~v(~x , t)

where v or ~v is the velocity of the charges currently at position x or ~x at time t.
s

I The charge density satisfies the continuity equation

∂ρ(x , t)

∂t
+
∂ j(x , t)

∂x
= 0 or

∂ρ(~x , t)

∂t
+ ~∇ ·~j(x , t) = 0

Note the use of partial derivatives now. If one thinks of the charge density as a
density smoothed over a large number of point charges, those charges are
moving their position is a function of t. By ∂

∂t
, we mean “do not move along

with the charge that moves at velocity v (or ~v), just sit at a point x and watch
the charges flow by and measure the rate of change of the density at the point
x” and by ∂

∂x
, we mean “look at the gradient in x at a fixed point x , again do

not move in x with the charges.”
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The Continuity Equation for Probability (cont.)

I The integral version of the continuity equation is

∂

∂t

Z b

a
dx ρ(x , t) + [j(b, t)− j(a, t)] = 0

or
∂

∂t

Z
V

d3x ρ(~x , t) +

Z
SV

d2x n̂(~x) ·~j(~x , t) = 0

In the one-dimensional case, we initially had an integral over the interval [a, b]

of the perfect differential ∂ j(x,t)
∂x

, which we simply integrated to get the
difference of the values of j(x , t) at the boundaries. In the three-dimensional
case, we used Gauss’s law to convert the volume integral of the divergence of
~j(~x , t) to a surface integral; n̂ is the outward surface normal at ~x . Note that, in
both cases, the boundary is fixed in time.

The continuity equation says that charge must flow from one point to another in a
smooth fashion – no sudden appearance or disappearance of charge is possible. Given
that overall charge is conserved, we then have that the electrical current density must
either vanish at infinity or the total current flux must vanish.
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The Continuity Equation for Probability (cont.)

We can prove total conservation and the continuity equation for quantum-mechanical
probability density, which is

P(x , t) = |〈x |ψ(t) 〉|2 = |ψx (x , t)|2 or P(~x , t) = |〈~x |ψ(t) 〉|2 = |ψx (~x , t)|2 (5.42)

We shall see that the approprate definition for the associated probability current is

j(x , t) = −
i

2

~
m

„
ψ∗x (x , t)

∂

∂x
ψx (x , t)− ψx (x , t)

∂

∂x
ψ∗x (x , t)

«
(5.43)

or ~j(~x , t) = −
i

2

~
m

“
ψ∗x (~x , t)~∇ψx (~x , t)− ψx (~x , t)~∇ψ∗x (~x , t)

”
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The Continuity Equation for Probability (cont.)

First, let us prove that total probability is conserved. This is just a matter of using the
fact that the Schrödinger Equation implies unitary evolution of the state when H is
time-independent:Z

V
d3x P(~x , t) =

Z
V

d3x〈ψ(t) |x 〉〈x |ψ(t) 〉 = 〈ψ(t) |ψ(t) 〉

= 〈ψ(0) |U†(t)U(t)|ψ(0) 〉 = 〈ψ(0) |ψ(0) 〉

Hence, if we take a time derivative of the integrated probability, we get zero: the total
probability is conserved:

d

dt

Z
V

d3x P(~x , t) = 0 (5.44)

.
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The Continuity Equation for Probability (cont.)

Now, let us prove the other important result from E&M, the continuity equation. We
prove this by explicitly taking the time derivative of the probability density using the
Schrödinger Equation. We will prove this for the three-dimensional case; the
restriction of the proof to one dimension will be clear. Note also that we immediately
restrict to the position-space representation ψx (~x , t) = 〈~x |ψ(t) 〉 because we are really
only interested in the probability density and current in this representation. It would
be interesting to discuss the probability current in other representations (momentum,
energy, etc.), but is not relevant here.
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The Continuity Equation for Probability (cont.)

We have

∂P(~x , t)

∂t
= ψ∗x (~x , t)

∂ψx (~x , t)

∂t
+ ψx (~x , t)

∂ψ∗x (~x , t)

∂t

= ψ∗x (~x , t)

»
−

i

~
H(~x , t)ψx (~x , t)

–
+ ψx (~x , t)

»
i

~
H†(~x , t)ψ∗x (~x , t)

–
= −

i

~
ψ∗x (~x , t)

»
−

~2

2 m
~∇2ψx (~x , t) + V (~x , t)ψx (~x , t)

–
+

i

~
ψx (~x , t)

»
−

~2

2 m
~∇2ψ∗x (~x , t) + V (~x , t)ψ∗x (~x , t)

–
=

i ~
2 m

h
ψ∗x (~x , t)~∇2ψx (~x , t)− ψx (~x , t)~∇2ψ∗x (~x , t)

i
where we used the Schrödinger Equation and its conjugate to get from the first line to
the second, wrote out the Hamiltonian in the third line (using the fact that the
potential V (~x , t) must be real for the Hamiltonian to be Hermitian and generalizing

d2/dx2 to ~∇2 for three dimensions), and then canceled the V (~x , t) term to get the
last line.
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The Continuity Equation for Probability (cont.)

Finally, pull one ~∇ to the front of the expression and manipulate a bit:

∂P(~x , t)

∂t
= ~∇ ·

»
i ~
2 m

h
ψ∗x (~x , t)~∇ψx (~x , t)− ψx (~x , t)~∇ψ∗x (~x , t)

i–
−
»

i ~
2 m

h“
~∇ψ∗x (~x , t)

”
·
“
~∇ψx (~x , t)

”
−
“
~∇ψx (~x , t)

”
·
“
~∇ψ∗x (~x , t)

”i–
= −~∇ ·~j(~x , t)

and we have our desired result for the continuity equation:

∂P(~x , t)

∂t
+ ~∇ ·~j(~x , t) = 0 (5.45)
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Scattering from a Step Potential: Basic Solution

In this section, we are going to consider the problem of scattering of a particle from a
step potential of height V0. The complication here is that, physically, we want to start
with incoming particles with well-defined position and momentum, send them into the
barrier to interact, and calculate the outgoing particle state. But such initial and final
states are not eigenstates of the Hamiltonian. So we will first solve for the eigenstates
and then construct a wave-packet initial state, similar to what we did for the free
particle.

We do things in a somewhat different order than Shankar, but the basic ideas are the
same. Shankar begins with wave packets, which can be confusing since he a) has to
fudge some things (e.g., the packet width must be small compared to its initial
distance from the step but large enough that the packet does not spread during the
time it takes to reach the step) and b) considering the wave packet first violates our
normal procedure of writing the Hamiltonian and finding the eigenstates first.
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Scattering from a Step Potential: Basic Solution (cont.)

Setting up the Hamiltonian

We consider a potential

V (x) =


0 x < 0
V0 x ≥ 0

(5.46)

We assume V0 ≥ 0 without lack of generality: if V0 < 0, then one can reverse the
x-axis to make the step orientation the same and adjust the solutions accordingly. The
Hamiltonian is of course

H =
P2

2 m
+ V (X )

As we did for the particle in a box, we assume the existence of an eigenstate of H of
energy E , denoted by |ψE 〉. The eigenvalue equation for H is identical in form to the
one we wrote for the particle in a box except for the specific form of V (x):

−
~2

2 m

d2

dx2
ψE ,x (x) + V (x)ψE ,x (x) = E ψE ,x (x)
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Scattering from a Step Potential: Basic Solution (cont.)

Solving for the Eigenstates, E > V0

The stepwise nature of the potential suggests that we should solve the equation
separately in the two regions: region I, x < 0; and region II, x ≥ 0. In each region,
the potential is constant, leading us to write the usual complex exponential form for
the solution:

ψI
E ,x (x) = Ae i k1 x + B e−i k1 x k1 =

r
2 m

~2
E (5.47)

ψII
E ,x (x) = C e i k2 x + D e−i k2 x k2 =

r
2 m

~2
(E − V0) (5.48)

We restrict k1 ≥ 0 and k2 ≥ 0 because the sign-flip freedom in k1 and k2 is already
allowed by having the two conjugate complex exponentials in each solution.

Since H is Hermitian, we are assured E is real and thus k1 and k2 are pure real or pure
imaginary. Recall, though, that for H to be Hermitian, we need P to be Hermitian.
When we consider functions on the entire real line, P is only Hermitian if the solutions
either vanish or are exponentials with purely imaginary arguments at ±∞. For
E > V0, these conditions are all met without restricting the freedom in any of the
coefficients. We will see that there will be restrictions when E ≤ V0.
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Scattering from a Step Potential: Basic Solution (cont.)

As usual, to connect the solutions in the two regions, we need matching conditions.
We showed even for the infinite well that the wavefunction must be continuous at the
interface. The same result will hold here; the same proof goes through, and is in fact
less subtle because everything stays finite. We can show that, in the case of a finite
step, the first derivative of the wavefunction must also be continuous:

d

dx
ψE ,x (x)

˛̨̨̨ε
−ε

=

Z ε

−ε
dx

d2

dx2
ψE ,x (x)

=
2 m

~2

Z 0

−ε
dx (−E) ψI

E ,x (x) +
2 m

~2

Z ε

0
dx (V0 − E) ψII

E ,x (x)

≈
2 m

~2
ε
h
(−E)ψI

E ,x (−ε) + (V0 − E)ψII
E ,x (ε)

i
where we have used the eigenvalue equation to replace d2

dx2 ψE ,x (x) and then rewritten
the integrals assuming ε is small enough that ψ does not change appreciably over it.
Since we have already shown ψE ,x (x) must be continuous across the boundary, we are
guaranteed the difference in the parentheses will remain finite as ε→ 0. Thus, as we
let ε→ 0, the entire expression is guaranteed to vanish, implying continuity of
d
dx
ψE ,x (x).
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Scattering from a Step Potential: Basic Solution (cont.)

So our conditions for matching the wavefunction and its derivative are:

A + B = C + D i k1 (A− B) = i k2 (C − D) (5.49)

We have four conditions (real and imaginary) and eight total degrees of freedom (real
and imaginary of A, B, C , and D), so we have too much freedom. Recalling our
discussion of the free particle and bound states, the excess freedom is in the fact that
there are right-going and left-going states with the same energy; there is degeneracy
for free states. Initially, one sees this from the fact that k1 and k2 could take on
positive or negative values, though we restricted that freedom above, saying that it was
already provided in the form of the solution. We apply this freedom here by making
the ansatz that, for a given E , there should be two solutions, one that has D = 0 and
one that has A = 0, corresponding to a right-going solution and a left-going solution.
The right-going solution allows for a left-going solution in region I to allow for
reflection at the interface, but no left-going solution in region II; and vice versa for the
left-going solution. For each solution, we are left with four conditions and six degrees
of freedom. The extra two are, as always, normalization and phase. There is no need
for quantization of k1 or k2 because there are enough coefficient degrees of freedom.
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Scattering from a Step Potential: Basic Solution (cont.)

Let’s do the right-going solution explicitly; the left-going solution will be analogous.
To eliminate the normalization and phase degrees of freedom explicitly, we take ratios,
letting b→ = B/A and c→ = C/A. We use → subscripts to indicate “right-going”.
So we have

1 + b→ = c→ k1 (1− b→) = k2c→

k1 (1− b→) = k2 (1 + b→)

b→ =
k1 − k2

k1 + k2
c→ =

2 k1

k1 + k2
(5.50)

The analogy to a wave on a string reaching an interface where the speed of
propagation changes (due to a change in the string density) is clear. The situation is
also similar to electromagnetic wave propagation across a boundary between two
media with different indices of refraction. For the right-going solution, the left-going
wave vanishes if k1 = k2, which corresponds to no step.
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Scattering from a Step Potential: Basic Solution (cont.)

Before worrying about the time evolution, which, as we know, puts a simple
time-dependent complex exponential in front, let’s discuss the interpretation of these
two states and their components. These solutions do not decay at infinity, so
discussing the total probability is nonsense. We can, however, consider the probability
currents that we defined in the previous section. Let us calculate them for the
right-going state (c.c. =complex conjugate):

jI→(x) = −
i

2

~
m

»“
A∗e−i k1 x + B∗e i k1 x

” ∂

∂x

“
Ae i k1 x + B e−i k1 x

”
− c.c

–
= −

i

2

~
m

h “
A∗e−i k1 x + B∗e i k1 x

”
i k1

“
Ae i k1 x − B e−i k1 x

”
−
“
Ae i k1 x + B e−i k1 x

”
i k1

“
−A∗e−i k1 x + B∗e i k1 x

” i
=

1

2

~ k1

m

h
|A|2 − |B|2 + AB∗ e 2 i k1 x + A∗ B e−2 i k1 x

+ |A|2 − |B|2 − AB∗ e 2 i k1 x − A∗ B e−2 i k1 x
i

=
~ k1

m

ˆ
|A|2 − |B|2

˜
= |A|2

~ k1

m

ˆ
1− |b→|2

˜
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Scattering from a Step Potential: Basic Solution (cont.)

The same calculation for region II is much easier because there is only one component
to the wavefunction:

jII→(x) = −
i

2

~
m

»
C∗e−i k2 x ∂

∂x
C e i k2 x − c.c

–
=

~ k2

m
|C |2 = |A|2

~ k2

m
|c→|2

When thinking in terms of probability currents, then, it becomes clear that the current
breaks into three terms (where we now drop x because the currents have shown
themselves to be constant in each region):

j in,I→ = |A|2
~ k1

m
(5.51)

jout,I
→ = −|A|2

~ k1

m
|b→|2 ≡ −R j in→,I R = |b→|2 (5.52)

jout,II
→ = |A|2

~ k2

m
|c→|2 ≡ T j in→,I T = |c→|2

k2

k1
(5.53)
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Scattering from a Step Potential: Basic Solution (cont.)

The definitions of R and T ensure

R + T = |b→|2 +
k2

k1
|c→|2 =

„
k1 − k2

k1 + k2

«2

+
k2

k1

„
2 k1

k1 + k2

«2

= 1 (5.54)

which then implies

j in,I→ + jout,I
→ = jout,II

→ (5.55)

That is, we have conservation of the probability current at the step, as we expect.

The probability currents thus guide us in the interpretation of the states. The A term
yields a right-going current in region I. The C term yields a right-going current in
region II, which is clearly the part of the probability current that gets transmitted to
region II. The B term yields a left-going current in region I, which we interpret as a
reflected current. The interpretation of the B term as reflection is supported by the
fact that R = 1− T , which is consistent with conservation of probability current at
the step.
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Scattering from a Step Potential: Basic Solution (cont.)

Solving for the Eigenstates, 0 < E < V0

How do we solve the problem when 0 < E < V0? (We will consider E < 0 later.)
Here, the allowed form for our solution is now

ψI
E ,x (x) = Ae i k1 x + B e−i k1 x k1 =

r
2 m

~2
E (5.56)

ψII
E ,x (x) = C e−κ2 x + D eκ2 x κ2 =

r
2 m

~2
(V0 − E) (5.57)

The solution for region I is the same as Equation 5.47, while the solution for region II
has changed from a complex exponential in Equation 5.48 to a real exponential. The
exponential constant κ2 is related to the original version k2 by κ2 = i k2. Again, we
restrict k1 ≥ 0 and κ2 ≥ 0 because the sign flip freedom is already in the solution.

Since the solution is real exponential in region II, there is no longer a concept of
right-going or left-going waves in that region. We shall see that we obtain a decaying
evanescent wave in region II and that the probability current there vanishes.
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Scattering from a Step Potential: Basic Solution (cont.)

Before continuing, we must set D = 0 to ensure the state is normalizable and hence
belongs to the Hilbert space; left-going incoming states are thereby eliminated for this
range of E and polarity of potential. One can also view this condition as being
enforced by Hermticity of P, which requires that the wavefunction vanish or behave
like an imaginary exponential at ±∞.

Our matching conditions then become

A + B = C i k1 (A− B) = −κ2C (5.58)

The degrees of freedom now correspond to the E > V0 case after we have picked
either a left-going or right-going solution: there are four constraints and six complex
coefficient degrees of freedom. This loss of degeneracy is because there is no
left-going solution for E < V0 and is consistent with our generic discussion of states
that are unbound on one side. As before, two degrees of freedom go to phase and
normalization, so we have a fully constrained problem without any quantization
requirement on k1 or κ2.
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Scattering from a Step Potential: Basic Solution (cont.)

Again, we set b→ = B/A and c→ = C/A and rewrite the above equations:

1 + b→ = c→ i k1 (1− b→) = −κ2c→

i k1 (1− b→) = −κ2 (1 + b→)

b→ =
i k1 + κ2

i k1 − κ2
= −

(i k1 + κ2)
2

k2
1 + κ2

2

=
k2
1 − κ2

2

k2
1 + κ2

2

−
2 i k1κ2

k2
1 + κ2

2

(5.59)

c→ =
2 k2

1

k2
1 + κ2

2

−
2 i k1κ2

k2
1 + κ2

2

(5.60)

The coefficients are more complicated than in the E > V0 case, but the matching
procedure was the same. Notice that here b→ and c→ can pick up a phase shift,
whereas in the E > V0 case, they were real.
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Scattering from a Step Potential: Basic Solution (cont.)

Let’s calculate the probability currents again. The region I probability current keeps
the same form because, though the formula for b→ = B/A has changed, the form of
the solution is unchanged. On the right side, though, our functional form has changed
and so we have to recalculate. The calculation is trivial though, now that the form on
the right side is a real exponential. For this case, ψII

E ,x (x) and ψII∗
E ,x (x) differ only in

their coefficents, not in the arguments of the exponentials, so

ψII∗
E ,x (x)

d

dx
ψII

E ,x (x) = ψII
E ,x (x)

d

dx
ψII∗

E ,x (x)

(the conjugation of C does not matter because one gets |C |2 in each term). Hence,
the current on the right side vanishes! Moreover, one can easily see that |b→| = 1
because its numerator and denominator are complex conjugates of one another. To
summarize, we have

j in→,I = |A|2
~ k1

m
jout
→,I = −|A|2

~ k1

m
= −j in→,I jout

→,II = 0 (5.61)

R = 1 T = 0 (5.62)
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Scattering from a Step Potential: Basic Solution (cont.)

As one would expect classically for E < V0, the right-going probability current in
region II vanishes — the particle cannot escape to infinity on the right side because it
does not have enough energy — and the reflected probability current is equal to the
incoming probability current. However, there is a finite relative probability of
measuring the particle’s position to be in the barrier (relative to being in any finite
interval in region I)! This is a completely quantum phenomenon that results from the
fact that the particle state is a vector in a Hilbert space, not a definite position and
momentum. If there step barrier were finite in length and dropped back to zero
energy, we would find the probability current would not be zero in that region,
indicating some probability for the incoming particle to tunnel through the barrier to a
free-particle state on the right side. This is a good toy model for α decay in a nucleus.
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Scattering from a Step Potential: Basic Solution

Special Cases: E = V0, E = 0, and E < 0

I E < 0: The solutions must now be real exponential in both regions, and both
the A and D coefficient terms must be eliminated to make the solution
normalizable. The matching conditions now become impossible to meet:

B = C κ1B = −κ2C (5.63)

=⇒ κ1B = −κ2 B (5.64)

Since both κ1 and κ2 are positive numbers, one is left with B = C = 0. The
solution becomes nonexistent, since the Hamiltonian acting on a state whose
{|x 〉}-basis representation vanishes everywhere returns zero, not a negative E .
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Scattering from a Step Potential: Basic Solution (cont.)

I E = 0: Here, one must reconsider the differential equation in region I; it is now

−
~2

2 m

d2

dx2
ψI

E=0,x (x) = 0

This is directly integrable; the general solution is

ψI
E=0,x (x) = A + B x (5.65)

We must exclude the second term because it blows up at −∞. So we just have
a constant in region I. This is ok, as a constant wavefunction is delta-function
normalizable (we included p = 0 in our discussion of the free particle). The
region II solution is the same as the 0 < E < V0 case because that part of the
problem does not care about the value of E as long as E < V0. The matching
conditions become

A = C 0 = −κ2C (5.66)

Since κ2 6= 0, we thus have A = C = 0. This ends up being the same as the
E < 0 case.
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Scattering from a Step Potential: Basic Solution (cont.)

I E = V0: Here, the region II differential equation simplifies as the region I
equation did for E = 0, so we have

ψII
E=V0,x

(x) = C (5.67)

(Again, the linear term must be discarded because it blows up at +∞.) The
solution in region I is the same as for 0 < E < V0 or E > V0. Our matching
conditions become

A + B = C i k1 (A− B) = 0 (5.68)

So we have A = B and C = 2A. This is a rather bizarre state: it is constant in
region II. Note that, because it is constant, the momentum (derivative) there
vanishes. The probability currents are simple and take on the same values that
they do for the 0 < E < V0 case:

j in,I→ = |A|2
~ k1

m
jout,I
→ = −|A|2

~ k1

m
= −j in,I→ jout,II

→ = 0 (5.69)

R = 1 T = 0 (5.70)
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Scattering from a Step Potential: Basic Solution (cont.)

The current vanishes not because the probability density vanishes, but because the
state has no momentum in region II. But there is non-zero probability for finding the
particle there. Here, our attempt to understand time-dependent behavior — incoming
particles, transmission, reflection — using time-independent energy eigenstates breaks
down. The probability currents still tell us something reasonable, but the wavefunction
is not easily interpretable for time-dependent behavior. The right way to handle this is
to construct a wave packet, which we will do next.
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Scattering from a Step Potential: Propagator

Propagator

Now that we have found the eigenstates, we can calculate the unitary propagator
based on Equation 4.18

U(t) =

Z ∞
0

dk e−
i
~ Ek t

h
|ψEk

〉〈ψEk
|+ θ(−kV − k) |ψE−k

〉〈ψE−k
|
i

(5.71)

where |ψEk
〉 is the state whose position representation has wavenumber k1 = k in

region I. By analogy to the free particle case, we integrate over k (with an ~, we
could have used p) instead of E to count states correctly and have the correct
differential in the integral. Also, we have joined the integrals over negative k and over
positive k by integrating only over positive k but summing the positive and negative k
terms. Negative k corresponds to states that are initially left-going (A = 0, D 6= 0);
the θ function is necessary because there are no such states for 0 < E < V0 for

V0 > 0. We define kV =
q

2 m
~2 V0, which is the wavevector of the state with energy

V0. The region II position wavefunction is specified by k also because

k2 =

r
2 m

~2
(Ek − V0) =

r
k2 −

2 m

~2
V0

which picks up the appropriate factor of i when Ek < V0.
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Scattering from a Step Potential: Propagator (cont.)

The {|x 〉}-basis matrix elements of U(t) are given by taking the product with 〈x | on
the left and |x 〉 on the right, giving

[U(t)]xx ′ =

Z ∞
0

dk e−
i
~ Ek t

h
〈x |ψEk

〉〈ψEk
|x ′ 〉+ θ(−kV − k) 〈x |ψE−k

〉〈ψE−k
|x ′ 〉

i
=

Z ∞
0

dk e−
i
~ Ek t

h
ψ∗Ek ,x

(x)ψEk ,x (x
′) + θ(−kV − k)ψ∗E−k ,x

(x)ψE−k ,x (x
′)
i

(5.72)

Can we do the integral in closed form as we did for the free particle? Even for x ≤ 0
and x ′ ≤ 0, where the wavefunctions are free-particle-like, the integral cannot be done
in the same way because of the absence of left-going states for 0 < Ek < V0. For
x > 0 or x ′ > 0, the wavefunctions are either decaying exponentials or have an
argument k2 that is not related to Ek in the usual simple way, so the integral certainly
cannot be done in the same way for them. So we leave the time-evolution operator in
this form.

We note that we have not found the appropriate normalization factors A and D for
our various eigenstates. We shall address this problem later. However, this means that
the explicit form of the propagator’s matrix elements remain undetermined up to a
(possibly k-dependent!) normalizing factor.
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Scattering from a Step Potential: Wave-Packet Example

Wave Packet Example

We have so far discussed eigenstates of the H and have interpreted the probability
currents in such a way as to explain time-dependent behavior. This is a bit iffy. Let’s
do a time-dependent problem in an approximate form to substantiate this
interpretation.

We will consider propagation of a Gaussian wave packet. Recall that such wave packet
is defined in space at t = 0 by

ψx (x , 0) = 〈x |ψ(0) 〉 =

„
1

2π σ2
x

«1/4

e
i
~ p0 (x+a)e

− (x+a)2

4 σ2
x (5.73)

with expectation values at t = 0 of

〈X 〉 = −a 〈(∆X )2〉 = σ2
x 〈P〉 = p0 = ~ k0 〈(∆P)2〉 = σ2

p =
~2

4σ2
x

(5.74)

Recall that our σx is related to Shankar’s ∆x by ∆x = σx

√
2.
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Scattering from a Step Potential: Wave-Packet Example (cont.)

The wave packet is normalized to give unity probability in the initial state. Our idea is
to time-evolve it forward, scattering it off the step potential, and then out to a large
distance from the step. The packet will break into two separate pieces, one that goes
off to +∞ and one that goes off to −∞. We will calculate the probability of
transmission and reflection by calculating the total probability in each component,
separately; this will be valid because they will have negligible overlap if evolved
forward far enough in time.
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Scattering from a Step Potential: Wave-Packet Example (cont.)

We want to have a wave packet that is localized enough that at t = 0 it does not
have significant probability near the step so that we can really speak of the wave
packet being essentially free before and after it interacts with the step. This implies

σx � a ⇐⇒
σx

a
� 1 (5.75)

We want the momentum to be well-defined so that the energy and the time needed to
reach the barrier are well-defined. This requires

σp � p0 ⇐⇒
σp

p0
� 1 (5.76)

Finally, we want the time needed for the wave packet to approach and interact with
the step potential to be small compared to the time over which the wave packet’s
width begins to increase appreciably so that the wave packet can be considered
localized both before and after the interaction. Recall that the spreading time,
Equation 5.21, is t0 = σx

σv
= σx

σp/m
. The approach time is tin = a

p0/m
. So we require

a

p0/m
�

σx

σp/m
⇐⇒

σp

p0
�

σx

a
(5.77)

These three conditions can be satisfied simultaneously.
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Scattering from a Step Potential: Wave-Packet Example (cont.)

Because the momentum is so well defined and the wave packet is much smaller than
the distance to the step (so the potential energy may be safely taken to be zero
everywhere the wavefunction has significant amplitude), the initial energy is well
defined. We can see this as follows:

〈E〉 =
1

2 m
〈P2〉 =

1

2 m

“
〈P〉2 + 〈(∆P)2〉

”
=

1

2 m

`
p2

0 + σ2
p

´
≈

p2
0

2 m
(5.78)

σ2
E = 〈(∆E)2〉 =

„
1

2 m

«2 `
〈P4〉 − 〈P2〉2

´
=

„
1

2 m

«2 „
〈P〉4 + 6〈P〉2〈(∆P)2〉+ 3〈(∆P)2〉2 −

“
〈P〉2 + 〈(∆P)2〉

”2
«

=

„
1

2 m

«2 “
4〈P〉2〈(∆P)2〉+ 2〈(∆P)2〉2

”
=

„
1

2 m

«2 `
4 p2

0 σ
2
p + 2σ4

p

´
σE

E
=
σp

q
4 p2

0 + 2σ2
p

p2
0 + σ2

p

≈ 2
σp

p0
� 1 (5.79)

where we evaluated 〈P4〉 using the method for the Gaussian integral I2n(α) described
in Shankar Appendix A.2, and in the last step we used σp � p0.
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Scattering from a Step Potential: Wave-Packet Example (cont.)

So, we have an initial state that satisfies all the conditions we have placed on it. To
time-evolve it, we use the propagator we calculated above (Equations 5.71 and 5.72).
The first step in applying the propagator is, as always, to take the matrix elements
〈ψEk

|ψ(0) 〉. Let’s first consider the inner product with the initially right-going states,
which we labeled as k > 0. These are the states with A 6= 0, D = 0. We have

〈ψEk
|ψ(0) 〉 =

Z ∞
−∞

dx 〈ψEk
|x 〉〈x |ψ(0) 〉 =

Z ∞
−∞

dx ψ∗Ek ,x
(x)ψx (x , 0)

= A→(k)

Z ∞
−∞

dx
h“

e i k x + b→(k) e−i k x
”
θ(−x) + c→(k) e i k2(k) x θ(x)

i∗
ψx (x , 0)

where k is the wavevector in region I; k2(k) is the wavevector in region II as a function
of k (and of course V0); b→(k) and c→(k) are the coefficients defined earlier as a
function of k1 and k2; since k1 = k and k2 is a function of k for initially right-going
states; we just write these as functions of k. We will leave the normalization
undetermined until the end, writing it as A→(k) to indicate it is the normalization of
the right-going state at k. (We have taken it to be real without loss of generality.)
The θ functions let us write our region I and II solutions together in concise form.
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Scattering from a Step Potential: Wave-Packet Example (cont.)

Now, we may make some simplifications. By construction, the initial wavefunction
ψx (x , 0) is essentially zero in region II (x > 0) where θ(x) 6= 0; so the integral with
the c→ term will vanish. By the same argument, we may drop θ(−x) as superfluous.
Next, let’s rewrite the above as follows:

〈ψEk
|ψ(0) 〉 = A→(k)

Z ∞
−∞

dx e−i k x ψx (x , 0) + A→(k) b∗→(k)

Z ∞
−∞

dx e i k x ψx (x , 0)

where we have extended the integrals to be over the full real line because the vanishing
of ψx (x , 0) in region II ensures the integral obtains no contribution from x > 0. The
two terms are calculating the Fourier transform at k of ψx (x , 0) for positive and
negative k, respectively. (Do not confuse this with the A = 0,D 6= 0 initially left-going
states; we will come to those shortly. This is just a calculational analogy.)
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Scattering from a Step Potential: Wave-Packet Example (cont.)

We know from our discussion of Gaussian wave packets for the free particle that the
Fourier transform of our initial state is

〈k |ψ(0) 〉 =
1
√

2π

Z ∞
−∞

dx e−i k x

„
1

2π σ2
x

«1/4

e i k0 (x+a)e
− (x+a)2

4 σ2
x

=

 
1

2π σ2
k

!1/4

e
− (k−k0)2

4 σ2
k e i k a with σk =

σp

~
=

1

2σx

where we have made the simple change of variables to k = p/~ to match up with the
way we index the states here with k. Since σk/k0 = σp/p0 � 1, it holds that the
Gaussian essentially vanishes for k < 0. Therefore,

〈ψEk
|ψ(0) 〉 ≈

√
2π A→(k)

 
1

2π σ2
k

!1/4

e
− (k−k0)2

4 σ2
k e i k a (5.80)

where the ≈ symbol indicates that this equality holds only for our approximations
σx/a� 1, σp/p0 � 1 and σp/p0 � σx/a.
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Scattering from a Step Potential: Wave-Packet Example (cont.)

If E > V0, we must also calculate the the inner product of the initial state with the
initially left-going states, which we labeled as k < 0. These are the states with A = 0,
D 6= 0. (We don’t need to worry about these if 0 < E ≤ V0 because, recall, they don’t
exist for this range of energies.) We expect these inner products should essentially
vanish because the initial state is almost entirely right-going. We have (skipping a
step since it is identical to what we did before for the inner product with |ψEk

〉)

〈ψE−k
|ψ(0) 〉 =

Z ∞
−∞

dx ψ∗E−k ,x
(x)ψx (x , 0)

= D←(k)

Z ∞
−∞

dx
h“

e−i k2(k) x + c←(k) e i k2(k) x
”
θ(x) + b←(k) e−i k x θ(−x)

i∗
ψx (x , 0)

Note that the role of b and c are exchanged here because the reflected and transmitted
waves correspond to the C and B coefficients for an initially left-going wave (we did
not write out explicit formulae for c←(k) and b←(k) earlier). We can see that all
these terms vanish as follows. The first two terms vanish because the eigenstate
wavefunction is only nonzero for x > 0 (the θ(x) factor), where, by construction, our
initial state essentially vanishes. The third term vanishes because, even though it is
nonzero for x < 0, it is a negative k wave; we argued above that the initial state has
essentially no contribution from k < 0, so we may take that term to give zero also. So
the initial state has no components in the initially left-going states, as we expected.
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Scattering from a Step Potential: Wave-Packet Example (cont.)

Since Equation 5.80 is thus the only term left for the initial state, we know that its
probability density in k must integrate to unity. Therefore, we may conclude
A→(k) ≈ 1/

√
2π. Note the approximation symbol; we will obtain an exact value later

and show how it reduces to this approximate result.

We have our inner products, so now the state at some time t later (for any E > 0) is

〈x |ψ(t) 〉 =

Z ∞
0

dk e−
i
~ Ek t〈x |ψEk

〉〈ψEk
|ψ(0) 〉

≈
Z ∞

0
dk e−

i
~ Ek t 1

√
2π

h “
e i k x + b→(k) e−i k x

”
θ(−x) + c→(k) e i k2(k) x θ(x)

i
×
 

1

2π σ2
k

!1/4

e
− (k−k0)2

4 σ2
k e i k a

For 0 < E ≤ V0, the c→ term goes from a complex exponential to a real exponential
as necessary. Our arguments using the vanishing of the initial state for x > 0 and
k < 0 continue to hold to give us the same Gaussian form for 〈ψEk

|ψ(0) 〉 even when
E < V0.
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Scattering from a Step Potential: Wave-Packet Example (cont.)

We note that b→(k) and c→(k) are slowly varying functions of k compared to the
Gaussian in k that is sharply peaked at k = k0, so we may approximate them as
constant at k = k0 and pull them out of the integral. We also separate the terms:

〈x |ψ(t) 〉 =
θ(−x)
√

2π

Z ∞
0

dk e−
i
~ Ek te i k x

 
1

2π σ2
k

!1/4

e
− (k−k0)2

4 σ2
k e i k a

+
θ(−x) b→(k0)√

2π

Z ∞
0

dk e−
i
~ Ek te−i k x

 
1

2π σ2
k

!1/4

e
− (k−k0)2

4 σ2
k e i k a

+
θ(x) c→(k0)√

2π

Z ∞
0

dk e−
i
~ Ek te i k2(k) x

 
1

2π σ2
k

!1/4

e
− (k−k0)2

4 σ2
k e i k a

Let’s check this form at t = 0. The first term is the positive k part of the Fourier
reverse transform integral. Since the {|k 〉}-basis representation of the original state is
sharply peaked at k0 > 0 with σk/k0 � 1, this positive k part of the integral is
essentially the full integral. The second term is b→(k0) times the negative k part of
the integral. The negative k part of the integral contributes negligibly to the Fourier
transform, so that term can be taken to vanish. The third term is trickier. But we
don’t need to evaluate it directly. Since the first term is essentially the initial state, all
the probability is there and the third term must vanish by simple conservation of
probability.
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Scattering from a Step Potential: Wave-Packet Example (cont.)

Now, let’s evaluate 〈x |ψ(t) 〉. To determine the reflected and transmitted
probabilities, we want to know what happens well after the interaction with the step
potential, t ∼ tout = 2 tin = 2 a

p0/m
.

The first term looks like the positive k part of the free-particle propagator acting on
the initial state. Because the initial state is well-defined in momentum about k0 > 0,
this is a very good approximation to the entire propagator. That propagator would
move the wave packet forward with speed p0/m, which would leave it centered at
−a + p0

m
t at time t; for t ∼ tout , the wave packet would thus be well to positive x .

We showed earlier that the wave packet does not spread very quickly; for t ∼ tout , the
spreading remains negligible compared to its position. So, for such times, this wave
packet would thus have almost vanishing value for x < 0. For later times, the
spreading becomes linear in time; but, because the propagation is linear in time, the
value of the wavefunction at x < 0 remains negligible. So, since this term is multiplied
by θ(−x), the entire term vanishes for t ∼ tout and later.
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Scattering from a Step Potential: Wave-Packet Example (cont.)

To evaluate the second term, let’s change the integration variable from k to k ′ = −k:

2nd term =
θ(−x) b→(k0)√

2π

Z 0

−∞
dk ′ e−

i
~ Ek te i k ′ x

 
1

2π σ2
k

!1/4

e
− (k ′+k0)2

4 σ2
k e−i k ′ a

We now have the negative k part of the integral for the free-particle propagation of a
state centered tightly around momentum −k0 and that started at position x = +a at
t = 0 (i.e., in region II). By the same kind of argument as we used above for the first
term, this is essentially the entire free-particle propagator for an initial state with
position a > 0, mean momentum p0 = −~ k0, and momentum spread
σp = ~σk << p0. The θ(−x) function is now 1 for t ∼ tout because the state will be
at x ∼ −a at that time, so the θ function does nothing. So we have

2nd term =

264 1

2π σ2
x

“
1 + i ~ t

2 m σ2
x

”
375
−1/4

exp

264−
“
x + ~ k0

m
t
”2

4σ2
x

“
1 + i ~ t

2 m σ2
x

”
375 e−i k0 xe−

i
~ Ek0

t

This is just a left-going Gaussian wave packet with mean position x(t) = a− p0
m

t,
mean (and constant) momentum −p0, constant momentum width σp , and a position
width that spreads with time in the same way as for the free particle. That is, this term
looks like a free particle that propagated from x > 0 with no effect from the barrier.
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Scattering from a Step Potential: Wave-Packet Example (cont.)

The third term is much harder to evaluate. We make a generic argument to obtain the
probabilities in the reflected and transmitted waves. The second term is a standard
Gaussian multiplied by b→(k0). The Gaussian will just give unity when the probability
is calculated, so the probability in the reflected part is

R = |b→(k0)|2 (5.81)

By conservation of probability, we know that the probability in the transmitted wave is

T = 1− R (5.82)

We know that |b→(k0)| = 1 for 0 < E < V0 by our direct calculation of b→(k) earlier
(Equations 5.50, 5.59, and 5.60), so we are even assured that R = 1 and T = 0 for
0 < E < V0: the probability at large time is completely reflected by the barrier.
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Scattering from a Step Potential: Normalization of Eigenstates

Normalizing the Step Potential Eigenstates

The attentive reader will notice that we never calculated an exact for form for A→(k),
the normalization of the right-going eigenstates for the step potential. Let’s return to
that calculation and check that the result reduces to A→(k) = 1/

√
2π, the

approximate value we determined above using the wave-packet example.
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Scattering from a Step Potential: Normalization of Eigenstates (cont.)

Let’s first do the calculation for E ≥ V0 in the obvious fashion:

〈ψEk
|ψEk

〉 =

Z ∞
−∞

dx |ψEk ,x (x)|2

= |A→|2
»Z 0

∞
dx
h
1 + |b→|2 + b→

“
e−2 i k x + e2 i k x

”i
+

Z ∞
0

dx |c→|2
–

= |A→|2
»`

1 + |b→|2 + |c→|2
´ 1

2

Z ∞
−∞

dx + b→

Z ∞
−∞

dx e2 i k x

–
= |A→|2

ˆ`
1 + |b→|2 + |c→|2

´
π〈k |k 〉+ 2π〈−k |k 〉

˜
= |A→|2 π

`
1 + |b→|2 + |c→|2

´
〈k |k 〉

In the first step, we make use of the fact that, for Ek > V0, the wavefuncion in region
II has unity modulus. In the second step, we use

R 0
−∞ dx = 1

2

R∞
−∞ dx and change

variables on
R 0
−∞ dx e−2 i k x so that it becomes

R∞
0 dx e2 i k x . In the next step, we

recognize that these integrals are what one gets when one calculates inner products of
{|k 〉} basis elements, and then that 〈−k |k 〉 = 0 by orthogonality.
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Scattering from a Step Potential: Normalization of Eigenstates (cont.)

Next, we need to decide what we want 〈ψEk
|ψEk

〉 to be so we can solve for |A→|2.
Since our eigenstates for Ek ≥ V0 extend to ±∞, they must be delta-function
normalized, so presumably we want 〈ψEk

|ψEk
〉 = δ(0) =∞. And it is true that

〈k |k 〉 = δ(0) =∞. However, having ∞ on both sides of an equation can result in
missing factors because any number times ∞ is ∞. Let’s be a bit more careful.

Since Equation 5.71 used dk as the differential for the integral over all possible states,
we want in general to have 〈ψEk

|ψE ′
k
〉 = δ(k − k ′). This is the same as the

normalization of the {|k 〉} basis, 〈k |k ′ 〉 = δ(k − k ′). We are now assured the
〈ψEk

|ψEk
〉 = 〈k |k 〉 and there is no issue of a missing scale factor between the two.

There would have been had we chosen, for example ~ dk as the measure for the
differential. In any case, we are now free to cancel δ(0) from both sides, leaving:

1 = |A→|2 π
`
1 + |b→|2 + |c→|2

´
We have the freedom to choose A→ to be real, so we may solve the above:

A→(k) =
1
√

2π

„
2

1 + |b→(k)|2 + |c→(k)|2

«1/2

=
1
√

2π

„
1 +

2 k (k − k2)

(k + k2)2

«−1/2

Ek ≥ V0 (5.83)
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Scattering from a Step Potential: Normalization of Eigenstates (cont.)

Now, interestingly, when Ek ≥ V0, the only limit in which the above expression
reduces to A ≈ 1/

√
2π is the limit Ek � V0 because then k2 ≈ k and the second

term vanishes. So, surprisingly, we discover another condition that must be imposed in
order for our wave packet solution to be valid: E � V0 if E > V0. The reason this is
necessary but was not apparent initially is that it is a condition that derives from the
transmitted wave packet in region II. Essentially, in order for our wave packet
approximation to be valid, we should have placed the additional condition that
σk/k2 � σx/a: this ensures that the transmitted wave packet on the right side also
meets our requirements about being well-defined in x , in p, and to not spread too
quickly.

It is amusing to note that, when Ek = V0 and k2 = 0, the above reduces to

A→(k = kV ) =
1
√

2π

„
1 +

2 k (k − 0)

(k + 0)2

«−1/2

=
1

√
3
√

2π
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Scattering from a Step Potential: Normalization of Eigenstates (cont.)

How does this normalization issue work out for Ek < V0? In this case, the
wavefunction in region II is a decaying real exponential and its contribution to the
normalization integral is finite and can thus be ignored compared to the infinite
contribution from region I. So, we have

A→(k) =
1
√

2π

„
2

1 + |b→(k)|2

«1/2

=
1
√

2π

„
2

1 + R

«1/2

=
1
√

2π
0 < Ek < V0 (5.84)

Our approximate solution for A→ is exact when E < V0 and the wave packet is
completely reflected. Note that the condition σp/p0 � 1 implies σE/E � 1 and thus
σE/V0 � 1 in this case: the wave packet energy width must be small compared to the
potential height. This ensures that none of the momentum modes in the wave packet
can be transmitted.
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Theorems on One-Dimensional States

There is no degeneracy in one-dimensional bound states.

The proof is given in Shankar; we repeat it here only for completeness.

Suppose there are two degenerate bound states with the same energy E , |ψE ,1 〉 and
|ψE ,2 〉. By “bound”, we mean that their {|x 〉}-basis representations,

ψE ,1,x (x) = 〈x |ψE ,1 〉 and ψE ,2,x (x) = 〈x |ψE ,2 〉, fall off at ±∞ faster than 1/
p
|x |

so that they can be normalized to unity rather than a delta function. Then they both
are eigenvectors of H with the same eigenvalue E : H |ψE ,1 〉 = E |ψE ,1 〉 and
H |ψE ,2 〉 = E |ψE ,2 〉. The {|x 〉}-basis representation version of these statements is

〈x |H |ψE ,1 〉 = 〈x |E |ψE ,1 〉 〈x |H |ψE ,2 〉 = 〈x |E |ψE ,2 〉

We may write the above as (recall, use the {|x 〉}-basis matrix elements of H and
insert completeness in this basis):

−
~2

2 m

d2

dx2
ψE ,1,x (x) + V (x)ψE ,1,x (x) = E ψE ,1,x (x)

−
~2

2 m

d2

dx2
ψE ,2,x (x) + V (x)ψE ,2,x (x) = E ψE ,2,x (x)
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Theorems on One-Dimensional States (cont.)

Multiply the first equation by ψE ,2,x (x) and the second by ψE ,1,x (x) and difference to
obtain

ψE ,1,x (x)
d2

dx2
ψE ,2,x (x)− ψE ,2,x (x)

d2

dx2
ψE ,1,x (x) = 0

d

dx

„
ψE ,1,x (x)

d

dx
ψE ,2,x (x)− ψE ,2,x (x)

d

dx
ψE ,1,x (x)

«
= 0

ψE ,1,x (x)
d

dx
ψE ,2,x (x)− ψE ,2,x (x)

d

dx
ψE ,1,x (x) = c

where in the last step we simply integrated the total differential. Now, assuming that
ψE ,1,x (x) and ψE ,2,x (x) are bound states, they must vanish as |x | → ∞. Thus, the
left side of the equation vanishes as |x | → ∞; since the right side is constant, c = 0 is
needed.
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Theorems on One-Dimensional States (cont.)

With c = 0, we have

1

ψE ,1,x (x)

d

dx
ψE ,1,x (x) =

1

ψE ,2,x (x)

d

dx
ψE ,2,x (x)

d

dx

ˆ
lnψE ,1,x (x)

˜
=

d

dx

ˆ
lnψE ,2,x (x)

˜
lnψE ,1,x (x) = lnψE ,2,x (x) + d

ψE ,1,x (x) = ed ψE ,2,x

d is a constant, so the two states are the same up to a constant – hence, they are the
same state. In fact, if they had both been unity-normalized, then d = 0 is necessary
and they are identically functions, too.
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Theorems on One-Dimensional States (cont.)

The eigenfunctions of H = P2

2 m
+ V (X ) in one dimension can always be chosen

to be real.

Again, the proof is given in Shankar; we repeat it here only for completeness. We also
try to explain better under what conditions it fails.

By the same arguments as given for the previous theorem, consider the eigenvalue
equation for H and the state ψE with eigenvalue E :

−
~2

2 m

d2

dx2
ψE ,x (x) + V (x)ψE ,x (x) = E ψE ,x (x)

For Hamiltonians of the above form, we can complex conjugate the above equation:

−
~2

2 m

d2

dx2
ψ∗E ,x (x) + V (x)ψ∗E ,x (x) = E ψ∗E ,x (x)

We see that ψ∗E ,x (x) is the {|x 〉}-basis representation of a state that is also an

eigenstate of the same H with the same eigenvalue E .
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Theorems on One-Dimensional States (cont.)

The fact that H stayed the same under complex conjugation is a result of its particular

form; if one had H = P2

2 m
− β P

m
+ V (X ) (i.e., friction included), the differential

equation obtained in the second step would have been a different differential equation,
so one would not be able to say that ψ∗E ,x (x) is also an eigenfunction of H with

eigenvalue E .

We shall see below that, for a bound-state energy E , the fact that, ψE ,x (x) and
ψ∗E ,x (x) are both eigenfunctions of H does not violate the previous no-degeneracy

theorem.

With the above requirement on H, we may define two real linear combinations:

ψE ,x,r (x) =
1

2

“
ψE ,x (x) + ψ∗E ,x (x)

”
ψE ,x,i (x) =

1

2 i

“
ψE ,x (x)− ψ∗E ,x (x)

”
Because they are linear combinations of eigenstates with the same eigenvalue E , these
two states are also eigenstates of H with eigenvalue E . Note that ψE ,x,i (x) is not just
the imaginary part of ψE ,x (x); the extra factor of 1/i makes it real also. Hence, the
theorem is proven – we constructed two real eigenfunctions from the two
eigenfunctions ψE ,x (x) and ψ∗E ,x (x).
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Theorems on One-Dimensional States (cont.)

Now the issue with degeneracy. If E is a free-state energy, then there is no problem
with having two such independent functions; there is no guarantee against degeneracy
for free states.

What happens when E is a bound-state energy? Do we still get two real solutions?
For E a bound-state energy, the no-degeneracy theorem implies ψ∗E ,x (x) = αψE ,x (x).

Moreover, since we know |ψ∗E ,x (x)|2 = |ψE ,x (x)|2, we have |α|2 = 1 and thus

α = e i θ. Therefore, we find

ψE ,x,r (x) =
1

2

“
1 + e i θ

”
ψE ,x (x) ψE ,x,i (x) =

1

2 i

“
1− e i θ

”
ψE ,x (x)

Thus, we get two real functions that are just ψE ,x (x) multiplied by two different
complex numbers; they are the same up to a multiplicative factor and thus not linearly
independent. So the no-degeneracy theorem is not violated. In special cases, in fact,
one or the other vanishes identically: If one starts out with ψE ,x (x) perfectly real, then

e i θ = 1 and ψE ,x,i (x) = 0; if one starts with ψE ,x (x) perfectly imaginary, then

e i θ = −1 and ψE ,x,r (x) = 0. It all holds together.
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Motivation

As you have no doubt heard before, the primary motivation for studying the simple
harmonic oscillator is that, for any system subject to a potential energy V (x) and for

motion around an equilibrium position x0 (where, by definition, d
dx

V (x)
˛̨̨
x0

= 0), the

system acts like a simple harmonic oscillator. Explicitly, the potential energy is

V (x) = V (x0) +
d

dx
V (x)

˛̨̨̨
x0

(x − x0) +
1

2

d2

dx2
V (x)

˛̨̨̨
x0

(x − x0)
2 + · · ·

The first term is an unimportant constant, the second term vanishes at x0 because it
is an equilibrium position, so the third term is the first important term. It is quadratic
in the displacement from x0, just like a simple harmonic oscillator. If the kinetic term

is the usual p2

2 m
, then the Hamiltonian for the system may be approximated as

H(x , p) =
p2

2 m
+

1

2
k x2

where we define k = d2

dx2 V (x)
˛̨̨
x0

and redefine the origin to be at x0. That is, we have

the simple harmonic oscillator.
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Motivation (cont.)

The above argument is equally valid for multiparticle systems; in fact, the SHO
approximation can be even more useful there because of the complication of dealing
with so many particles.

See Shankar and any intermediate mechanics textbook (Marion and Thornton, Hand
and Finch, Goldstein) for more examples.
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Coordinate Basis

{|x 〉}-Basis Hamiltonian and Eigenvalue-Eigenvector Equation

The classical and quantum Hamiltonians are

H(x , p) =
p2

2 m
+

1

2
mω2 x2 =⇒ H(X ,P) =

P2

2 m
+

1

2
mω2 X 2 (6.1)

As usual, we first need to find the eigenstates of the Hamiltonian, H |ψE 〉 = E |ψE 〉.
Also as usual, we insert completeness and take the product on the left with 〈x |
(repeating this completely generic step so that you are reminded of it!):

〈x |H |ψE 〉 = 〈x |E |ψE 〉Z ∞
−∞

dx ′ 〈x |H |x ′ 〉〈x ′ |ψE 〉 = E 〈x |ψE 〉Z ∞
−∞

dx ′ 〈x |
„

P2

2 m
+

1

2
mω2 X 2

«
|x ′ 〉ψE ,x (x

′) = E ψE ,x (x)
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Coordinate Basis (cont.)

We calculated in Equations 5.27 and 5.28 the matrix elements 〈x |P2 |x ′ 〉 and
〈x |V (X ) |x ′ 〉 in a way valid for any one-dimensional problem, so we use those results:

Z ∞
−∞

dx δ(x − x ′)

»
−

~2

2 m

d

d(x ′)2
+

1

2
mω2 (x ′)2

–
ψE ,x (x

′) = E ψE ,x (x)

−
~2

2 m

d

dx2
ψE ,x (x) +

1

2
mω2 x2 ψE ,x (x) = E ψE ,x (x) (6.2)

There are two natural scales, a length b =
q

~
mω

and an energy E0 = ~ω = ~2

m b2 . If

we define y = x
b

and ε = E
E0

, then we may scale out the dimensions:

b2 d

dx2
ψE ,x (x) +

2 m E b2

~2
ψE ,x (x)−

m2ω2 b4

~2

x2

b2
ψE ,x (x) = 0

d2

dy2
ψε(y) +

`
2 ε− y2

´
ψε(y) = 0 (6.3)

The physics is now mostly done and we have a math problem. The other bit of input
from the physics is the boundary condition ψε(y)→ 0 faster than 1/

p
|y | as |y | → ∞

so that the resulting state can be normalized. We know the state should be
normalizable to unity because the potential becomes infinite at large |x | and thus
there can be no free states.
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Coordinate Basis (cont.)

Solving the Differential Equation

We must now find the solutions of Equation ??

d2

dy2
ψε(y) +

`
2 ε− y2

´
ψε(y) = 0

subject to the boundary condition ψε(y)→ 0 faster than 1/
p
|y | as |y | → ∞. ε is a

parameter that gives the energy eigenvalue.

This is a second-order linear differential equation with non-constant, polynomial
coefficients, so you know from your math classes that one has to construct a series
solution. In principle, this is all straightforward. However, we will go through much of
the calculation in detail because this is the first such case we have encountered. Also,
for the sake of your mathematical physics education, it is important to become adept
at doing this kind of thing: just as differentiation and integration are second nature to
you by now, and hopefully you are getting to a similar point on linear algebra, you
need to internalize methods of solving differential equations.

Section 6.2 The One-Dimensional Simple Harmonic Oscillator: Coordinate Basis Page 397



Coordinate Basis (cont.)

Let’s first consider the asymptotic behavior of the equation: this will put the problem
in a cleaner form for the series solution. At large |y |, y2 � ε, so we have

d2

dy2
ψε(y)− y2ψε(y) = 0

(Notice that the equation no longer depends on ε and hence we can drop the ε label
for now.) A solution to this equation, in the same limit |y | → ∞, is

ψ(y) = Ayme±
y2

2

which we can see by direct substitution:

d2

dy2
ψ(y) =

d

dy

„ˆ
m ym−1 + ym (±y)

˜
Ae±

y2

2

«
=
ˆ`

m (m − 1) ym−2 ± (m + 1) ym
´

+
`
m ym−1 ± ym+1

´
(±y)

˜
Ae±

y2

2

=
ˆ
ym+2 ± (2 m + 1) ym + m (m − 1) ym−2

˜
Ae±

y2

2

Section 6.2 The One-Dimensional Simple Harmonic Oscillator: Coordinate Basis Page 398



Coordinate Basis (cont.)

Now take the |y | → ∞ limit:

d2

dy2
ψ(y)

|y|→∞−→ y2 Ayme±
y2

2 = y2ψ(y)

The asymptotic solution works. So, our solution must asymptote to ym e±
y2

2 at large
|y |. To be normalizable, and hence physically allowed, the + solution is disallowed,
leaving only

ψ(y)
|y|→∞

y
m

e−
y2

2 (6.4)
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Coordinate Basis (cont.)

In order to further constrain the form of the solution, let us consider the |y | � ε limit,
in which we can ignore the y2 term, giving

d2

dy2
ψε(y) + 2 εψε(y) = 0

This is a second-order linear differential equation with constant coefficients, so we
know the solution is a sum of harmonic functions:

ψε(y) = α cos
“√

2 ε y
”

+ β sin
“√

2 ε y
”

Notice that the solution depends on ε in this limit. Since we ignored the term of order
y2 in the differential equation in this limit, we only need to consider this solution to
first order in y , which gives

ψε(y)
|y|→0−→ α+ β

√
2 ε y (6.5)

That is, the solution behaves like a polynomial as |y | → 0.
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Coordinate Basis (cont.)

A full solution that would satisfy the above limits is

ψε(y) = uε(y) e−
y2

2 (6.6)

where u(y)
|y|→0−→ α+ β

√
2 ε y and u(y)

|y|→∞−→ ym. (Note that uε(y) now carries the
ε subscript because the Gaussian portion has no dependence on ε by construction.)
Let us plug this into the full differential equation and obtain a differential equation for
u(y):

»
d2

dy2
+
`
2 ε− y2

´–„
uε(y) e−

y2

2

«
= 0»

d2

dy2
uε(y)− 2 y

d

dy
uε(y) +

`
y2 − 1 + 2 ε− y2

´
uε(y)

–
e−

y2

2 = 0

d2

dy2
uε(y)− 2 y

d

dy
uε(y) + (2 ε− 1) uε(y) = 0 (6.7)

Our asymptotic considerations indicate that the solution to this differential equation
behaves like a polynomial both as |y | → 0 and as |y | → ∞. This leads us to try a
series solution of the form uε(y) =

P∞
n=0 Cε,nyn.
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Coordinate Basis (cont.)

Feeding the series solution form into the differential equation yields

∞X
n=0

Cε,n
ˆ
n (n − 1) yn−2 − 2 n yn + (2 ε− 1) yn

˜
= 0

∞X
m=0

Cε,m+2 (m + 2) (m + 1) ym =
∞X
n=0

Cε,n (2 n + 1− 2 ε) yn

where, for the first piece, we relabeled the sum over n to be a sum over m = n − 2;
the m index starts at 0, not −2, because the first two terms of that series vanish
(n (n − 1) = 0 for n = 0, 1), and we moved the second and third pieces to the right
side. Since the functions {yn} are linearly independent (recall, we argued that they
could be used as a basis for a function space on the interval [a, b] because no one of
them can be written as sum of the others), the sums must be equal term-by-term, so

Cε,n+2 = Cε,n
2 n + 1− 2 ε

(n + 2)(n + 1)
(6.8)

The coefficients Cε,0 and Cε,1 are left to be determined by initial conditions.
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Coordinate Basis (cont.)

Now, as is usual in these circumstances, we require that the series terminate at some
point so that the asymptotic behavior is obeyed: as we have it now, the series goes on
forever rather than converging to ym for some m. This also explains why we have
obtained no quantization condition on ε yet: as we explained in Section 5.3,
quantization of the energy arises because of the bound-state condition that the
solution must decay sufficiently quickly at ∞; our solution does not yet satisfy this
condition!

Shankar complicates this issue by following the unterminated solution to its logical

conclusion. That is unnecessary: we know that
P∞

n=0 Cn yn |y|→∞−→ ym is impossible
unless Cn = 0 for n > m by the same linear independence argument as made before.
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Coordinate Basis (cont.)

So, let’s just require termination:

0 = Cε,n+2 = Cε,n
2 n + 1− 2 ε

(n + 2)(n + 1)

0 = 2 n + 1− 2 ε

ε =
2 n + 1

2

We obtain the condition that ε must be an odd half-integer.

The above condition only terminates either the odd or even coefficients, depending on
whether the n set by ε is odd or even. To ensure termination, we must require
Cε,1 = 0 when n is even so that the odd terms all vanish and, conversely, Cε,0 = 0
when n is odd so all the even powers vanish.

To summarize, with ε an odd half-integer of the form ε = 2n+1
2

, uε(y) is a polynomial

of order n = 2 ε−1
2

and containing only the odd or even powers of y depending on
whether n is even or odd, respectively. This solution matches our asymptotic
conditions.
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Coordinate Basis

Explicit Form for the SHO Solutions

Our solutions are of the form

ψEn,x (x) =

 
mω

π ~ 22n (n !)2

!1/4

Hn

„
x

r
mω

~

«
e−

m ω x2

2 ~ En =

„
n +

1

2

«
~ω

(6.9)

where Hn(y) are the Hermite polynomials

H0(y) = 1 H1(y) = 2 y

H2(y) = −2
`
1− 2 y2

´
H3(y) = −12

„
y −

2

3
y3

«
where the choice of the C0 and C1 coefficients in each case is arbitrary but is a
convention (one that allows the given simple form for the normalization). The
normalization can be calculated by some tedious integrations that we will not go
through. The different eigenfunctions are of course orthonormal,
〈ψEn |ψEm 〉 =

R∞
−∞ dx ψ∗En,x

(x)ψEm,x (x) = δnm. The related orthogonality and

normalization of the Hermite polynomials alone is given in Shankar, as well as a
recurrence relation that we will not need.
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Coordinate Basis

Properties of the SHO Solutions

We note some interesting properties of the solutions:

I Parity
The parity operator Π makes the transformation on the wavefunction x → −x ;
formally, Π|x 〉 = | − x 〉. Since this defines the action of Π for an orthonormal
basis, it fully defines Π. We can see Π is Hermitian:

〈x ′ |Π|x 〉 = 〈x ′ | − x 〉 = δ(x ′ + x) = 〈−x ′ |x 〉 =⇒ 〈x ′ |Π = 〈−x ′ |

Hence, it has real eigenvalues and its eigenvectors form a complete basis. The
symmetry of the potential V (x) implies that the Hamiltonian and the parity
operator commute, so the eigenvectors of H must also be eigenvectors of Π.
Since Π is Hermitian and Π2 = I , the allowed eigenvalues of Π are ±1,
corresponding to even and odd functions, respectively. We see this property
reflected in the SHO eigenfunctions. As we explained in deriving them, each
Hermite polynomial contains only even or odd powers of the argument. Hence,
they are either even or odd in their argument. The Gaussian that multiplies
them is even, so the solutions themselves are either even or odd in x . The same
property held or the eigenfunctions of the particle in a box, and in fact is the

reason we chose to have the box over the interval
h
− L

2
, L

2

i
rather than [0, L].
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Coordinate Basis (cont.)

I Number and Positions of Zeroes
The Hermite polynomial Hn is a polynomial of order n, so it must have n zeros.

What is interesting is that these zeroes are contained inside the classical turning

points, x0 = ±
q

2 En
k

, the points where the kinetic energy vanishes and the

potential energy is maximized. The argument is not trivial and goes as follows.

We may calculate the first derivative at any point by by

d

dy
ψε(y

′)

˛̨̨̨∞
y

=

Z ∞
y

dy ′
d2

d(y ′)2
ψε(y

′) =

Z ∞
y

dy ′
`
(y ′)2 − 2 ε

´
ψε(y

′)

Since ψε(y)
|y|→∞−→ 0 in order for ψε(y) to be normalizable, it holds that

d
dy
ψε(y)

|y|→∞−→ 0 also. Thus, one end of the left side vanishes, giving

d

dy
ψε(y) = −

Z ∞
y

dy ′
ˆ
(y ′)2 − 2 ε

˜
ψε(y

′)

Note that the factor in the integrand, (y ′)2 − 2 ε, is positive for
(y ′)2 > y2

0 = 2 ε.
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Coordinate Basis (cont.)

Next, define yn, with ε = n + 1
2
, to be the position of the last zero of ψε(y)

(there is no amibiguity as to what y0 means because we know the n = 0 mode
has no zeros). For y > yn, the sign of ψε(y) is fixed because there are no more
zeros. For specificity, suppose it is positive; we can always apply a −1 to ψε(y)
to make this true without changing the positions of the zeros. The above
equation tells us the first derivative must be negative for y ≥ max(y0, yn)
because the integrand is positive in this region.

Now, suppose yn ≥ y0. Since ψε(y) is positive for the regime y > yn, the
derivative at yn,

d
dy
ψε(yn), must be positive in order for the function to cross

through zero from negative to positive value at yn. But we showed above that
the first derivative is negative for y ≥ max(y0, yn), which, by our assumption
yn ≥ y0, corresponds to y ≥ yn. We have a contradiction.

The contradiction can be resolved by supposing instead y0 > yn. Then, the
integrand can go through zero to negative values for y > yn, making it possible
for the integral to change sign and for d

dy
ψε(yn) to go from its asymptotic

negative value to a positive value at yn.

So we have yn < y0 =
√

2 ε. Putting the units back in, we have

xn < y0

r
~

mω
=

r
~

mω

s
2

„
n +

1

2

«
=

r
2 En

k
= x0
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Coordinate Basis (cont.)

The same argument can be carried through for negative x ; QED.

One last note. The above implies that the wavefunctions are oscillatory only in
the region inside the classical turning points, and decaying outside there. This is
consistent with our generic discussion of bound states and how quantization
arises in Section 5.3. There, by breaking the potential into an infinite number of
infinitesimally wide piecewise constant regions, we saw that solutions ought to
be oscillatory in regions where E > V (x) and decay outside there. The SHO
solutions obey this rule.

I Position and Momentum Uncertainties
Shankar goes through a straightforward demonstration that the state that

saturates the uncertainty principle, with
q
〈(∆X )2〉〈(∆P)2〉 = ~

2
, is the ground

state of the SHO. This is unusual; we found for the particle in a box, that the
energy of the ground state is higher than that implied by the uncertainty
principle.

Shankar also discusses how this implies there is zero-point energy — just as for
the particle in a box, the ground state has nonzero energy — and that this has
measurable physical consequences, such as the fact that the vibrational energy
content of a crystal at absolute zero does not vanish.
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Coordinate Basis (cont.)

I Classical Limit
Shankar also shows by illustration for n = 11 that the higher n modes have
probability disributions peaked at the turning points, corresponding to the
distribution of dwell time one expects for a classical SHO, in which more time is
spent near the turning points than near the origin. The lowest modes do not
satisfy this, but we only expect to recover the classical dwell time in the limit of
high energy, when the discretization of the allowed energies becomes
unnoticeable; i.e., when E � ~ω.
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Coordinate Basis (cont.)

The Propagator

We calculate the propagator by the standard formula, Equation 4.18, and also
calculate its {|x 〉}-basis matrix elements:

U(t) = e−
i
~ H t =

X
n

e−
i
~ Ent |ψEn (0) 〉〈ψEn (0) | =

∞X
n=0

e−i (n+ 1
2 )ω t |ψEn 〉〈ψEn |

[U(t)]xx ′ = 〈x |U(t) |x ′ 〉 =
∞X
n=0

e−i (n+ 1
2 )ω t〈x |ψEn 〉〈ψEn |x

′ 〉

=
∞X
n=0

e−i (n+ 1
2 )ω t

 
mω

π ~ 22n (n !)2

!1/2

Hn(x) e−
m ω x2

2 ~ Hn(x
′) e−

m ω (x ′)2
2 ~

=
“ mω

2π i ~ sinω t

”1/2
exp

"
i

~
mω

`
x2 + (x ′)2

´
cos ω t − 2 x x ′

2 sinω t

#

where the sum is not obvious. Shankar derives it using path integrals, which we will
unfortunately not have time to cover.
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Energy Basis

Motivation

So far, we have found the SHO’s energy eigenvalues and eigenstates in the {|x 〉}
basis. However, because the energies go up linearly with the state index n (i.e., the
energy levels are spaced equally), we are motivated to think of the eigenstate that the
system is in as corresponding to a number of “quanta” of energy ~ω. Rather than
thinking in terms of energy levels, we could think in terms of a “number” operator
multiplying the energy per quantum. How do we get there?

Before continuing, we remind the reader that it is generically true that the
Hamiltonian can be written in the form

H =
X

n

En |ψEn 〉〈ψEn | ≡
X

n

En |En 〉〈En | ≡
X

n

En |n 〉〈n |

The issue at hand is whether this offers any simplification. In general, it does not
because, in general, the En are not equally spaced. In fact, for potentials that have
both bound states and free states, there are two pieces to the sum involved, one for
the discretely spaced bound states and one for the continuum of free states. There is
no natural idea of an energy “quantum” and hence no motivation to think in terms of
a number operator.
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Energy Basis (cont.)

Raising and Lowering Operators

Without real motivation, we define the operator

a =

r
1

2

mω

~
X + i

r
1

2

1

mω ~
P

Its adjoint is

a† =

r
1

2

mω

~
X − i

r
1

2

1

mω ~
P

(After you have seen canonical transformations in Ph106, the motivation will be clear;
we will come back to this later.) One can easily check that they satisfy

h
a, a†

i
= 1 H =

„
a†a +

1

2

«
~ω ⇐⇒ bH =

H

~ω
=

„
a†a +

1

2

«
Both relations arise from [X ,P] = i ~, which holds in any basis.

We call a† and a raising and lowering operators for reasons that will become apparent.
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Energy Basis (cont.)

Basis-Free Eigenstates of the Hamiltonian

We want to find the eigenstates of bH. To date, we have always had to write the
eigenvalue-eigenvector equation for the Hamiltonian in either the position or
momentum basis; usually the former to obtain a differential equation that we can
solve for the {|x 〉}-basis representation of the eigenstates |E 〉. Here, we are going to
try to avoid a basis altogether. Getting used to this idea is not easy.

So, we want to solve

bH |ε 〉 = ε |ε 〉

(The use of the ε symbol is suggestive.) First, we need the following:

[a, bH] =

»
a, a†a +

1

2

–
= a a†a− a†a a =

“
[a, a†] + a†a

”
a− a†a a = a

[a†, bH] =

»
a†, a†a +

1

2

–
= a†a†a− a†a a† = a†a†a− a†

“
[a, a†] + a†a

”
= −a†
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Energy Basis (cont.)

The above lets us show that, if |ε 〉 is an eigenstate of bH with eigenvalue ε, then a and

a† generate from |ε 〉 other eigenstates of bH:

bH a |ε 〉 =
“
[bH, a] + a bH” |ε 〉 = (−a + a ε) |ε 〉 = (ε− 1) a |ε 〉

bH a†|ε 〉 =
“
[bH, a†] + a† bH” |ε 〉 =

“
a† + a†ε

”
|ε 〉 = (ε+ 1) a†|ε 〉

That is

a |ε 〉 = Cε|ε− 1 〉 a†|ε 〉 = Cε+1|ε+ 1 〉

(We use the fact that there is no degeneracy of bound states in one dimension, so
there is one eigenstate with eigenvalue |ε 〉.) The rationale for calling a† and a raising
and lowering operators now becomes clear.
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Energy Basis (cont.)

Left with the above only, we might think that there are states of arbitrarily low energy.
We know from our {|x 〉}-basis solution that this is not true. We can also prove it
more generally given the form of the Hamiltonian. Consider 〈ψ |H |ψ 〉 for an arbitrary
state |ψ 〉:

〈ψ |H |ψ 〉 =
1

2 m
〈ψ |P2|ψ 〉+

1

2
k〈ψ |X 2|ψ 〉 =

1

2 m
|P |ψ 〉|2 +

1

2
k|X |ψ 〉|2 ≥ 0

Therefore, any eigenvalues of H and hence bH must be nonnegative. Notice that the
proof that the kinetic term is nonnegative holds always, but the proof for the potential
term is specific to the SHO potential and is not generally true.

The lower limit tells us there must be a lowest energy state that satisfies

a |ε0 〉 = 0

so that we cannot obtain any lower energy states. (We should properly write |0 〉 on
the right side for the null vector, but, as we shall see, this may become confused with
|0 〉 = |ε0 〉, the ground state ket.) We then have

〈ε0 |a†a |ε0 〉 = 0 =⇒ 〈ε0 |bH |ε0 〉 =
1

2
and 〈ε0 |H |ε0 〉 =

1

2
~ω
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Energy Basis (cont.)

Are we certain there is no parallel chain of states with different energies? Since we
have started from scratch in the energy basis, we must assume we have no prior
knowledge that ε must be an integer.

Yes, we can eliminate the possibility of a parallel chain by calculating the energy of the
lowest energy state. Suppose there were a parallel chain of states, |ε′ 〉, with
eigenvalues ε′. By the same argument as above, we are assured there is a lowest
energy state in the chain, |ε′0 〉 for which a |ε′0 〉 = 0. The dimensionless energy of that

state is then also ε′0 = 1
2

by the same argument as for |ε0 〉. So |ε′0 〉 is degenerate with
|ε0 〉. But we have proven that one-dimensional bound states are nondegenerate, so it
must be that |ε′0 〉 is proportional to |ε0 〉; they are the same state.

So, we have the set of eigenstates of H, connected by the raising and lowering
operators.
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Energy Basis (cont.)

The Inner Product in the Energy Basis

At this point, we only have made use of the following facts:

I X and P, and therefore H, are Hermitian operators on the linear vector space of
states.

I Being Hermitian, we are assured that the eigenstates of H form a basis for the
space.

I Because the potential has no maximum value, we are assured that all states are
bound states and, with the addition of the fact that we are considering a
one-dimensional potential, we are assured they are nondegenerate. (Though we
proved nondegeneracy via the position basis, nondegeneracy is a
non-basis-specific property; moreover, our use of the position basis was not
specific to the SHO.)

I We can define raising and lowering operators a† and a in terms of X and P, and
we find they connect the various eigenstates.
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Energy Basis (cont.)

We have not formally defined the inner product on this space. (The inner product we
have defined for our one-dimensional problems so far relies on the position basis,
which we are trying to avoid.) However, we proved in Section 3.6 that, if there is a
reasonable inner product for the space (recall, Hermiticity does not require the
existence of an inner product, though it is much easier to prove when there is one!),
then the eigenstates of a Hermitian operator are mutually orthogonal. We therefore
take this as part of the definition of the inner product on the space. This leaves the
normalization of the inner product unspecified, so we also assume the eigenstates are
normalized. Since the Cε constants are still undetermined, we still have the necessary
freedom to set the normalizations of the eigenstates individually.

Let us now use that freedom to determine what the constants Cε must be in order to
be consistent with the above normalization choice. We obtain a condition on Cε as
follows, using a |ε 〉 = Cε|ε− 1 〉 from earlier:

1 = 〈ε− 1 |ε− 1 〉 = |Cε|−2〈ε |a†a |ε 〉 = |Cε|−2〈ε |
„bH − 1

2

«
|ε 〉

= |Cε|−2

„
ε−

1

2

«
〈ε |ε 〉 = |Cε|−2

„
ε−

1

2

«
=⇒ |Cε|2 = ε−

1

2
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Energy Basis (cont.)

At this point, life is less confusing if we define the number operator,
N = a† a = bH − 1

2
. It obviously has the same eigenstates as bH and H, with

eigenvalues n = ε− 1
2
. It “counts” the quanta of energy in the oscillator. The above

relation is then

|Cn|2 = n ⇐⇒ Cn = e i φn
√

n

where φn is arbitrary for each n. The simplest convention is φn = 0 for all n, giving

a |n 〉 =
√

n |n − 1 〉 a†|n 〉 =
√

n + 1 |n + 1 〉 〈n |m 〉 = δnm

This defines the inner product for the entire space because the {|n 〉} are a basis. Any
state can now be obtained from the ground state by use of raising operators:

|n 〉 =
1
√

n !

“
a†
”n
|0 〉

Finally, we make the important note that, given the above definition of |n 〉, there is
now a notational degeneracy between the SHO ground state |0 〉 and the null vector
|0 〉. As we did above, we are simply going to use 0 for the null vector because context
will always make it clear whether 0 refers to scalar or a vector.
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Energy Basis (cont.)

Matrix Elements of Various Operators

Here we list some useful matrix elements that we can derive from what we have done
so far:

〈n |a |m 〉 =
√

m 〈n |m − 1 〉 =
√

m δn,m−1

〈n |a†|m 〉 =
√

m + 1 〈n |m + 1 〉 =
√

m + 1 δn,m+1

X =

r
~

2 mω

“
a† + a

”
=⇒ 〈n |X |m 〉 =

r
~

2 mω

“√
m + 1 δn,m+1 +

√
m δn,m−1

”
P = i

r
mω ~

2

“
a† − a

”
=⇒ 〈n |P |m 〉 = i

r
mω ~

2

“√
m + 1 δn,m+1 −

√
m δn,m−1

”
H =

„
N +

1

2

«
~ω =⇒ 〈n |H |m 〉 =

„
n +

1

2

«
~ω δn,m

The marix representations are given in Shankar; they are obvious from the above.
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Energy Basis (cont.)

Shankar makes the point that working in the energy basis, which gives these simple
forms for matrix elements of the fundamental X and P operators, makes matrix
elements of any function of X and P (or of a and a†) easier to calculate than
evaluating integrals using the {|x 〉}-basis representation of the eigenstates. We won’t
try to reproduce the algebra of calculating 〈3 |X 3|2 〉 here.
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Energy Basis – Coordinate Basis Correspondence

From the Energy Basis to the Position Basis

We have made no reference to the {|x 〉} basis in our discussion of the energy basis so
far, so we have no way to compute P(x) = |〈x |n 〉|2, the probability density for finding
a particle in state |n 〉 at position x . There is a clever way to figure it out, though,
using the raising and lowering operators. We begin with a |0 〉 = 0 (0 is the null vector
here!) and take the inner product with 〈x | and insert completeness:

0 = 〈x |a |0 〉 =

Z ∞
−∞

dx ′ 〈x |a |x ′ 〉〈x ′ |0 〉

=

Z ∞
−∞

dx ′ 〈x |
 r

mω

2 ~
X + i

r
1

2 mω ~
P

!
|x ′ 〉ψ0,x (x

′)

=

r
mω

2 ~

Z ∞
−∞

dx ′
„

x δ(x − x ′) +
~

mω

»
d

dx
δ(x − x ′)

–«
ψ0,x (x

′)

=

r
mω

2 ~

Z ∞
−∞

dx ′
„

x δ(x − x ′) +
~

mω
δ(x − x ′)

d

dx ′

«
ψ0,x (x

′)

=

r
mω

2 ~

„
x +

~
mω

d

dx

«
ψ0,x (x)
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Energy Basis – Coordinate Basis Correspondence (cont.)

We thus have a first-order differential equation for ψ0,x (x):

1
√

2

 r
mω

~
x +

r
~

mω

d

dx

!
ψ0,x (x) = 0⇐⇒

1
√

2

„
y +

d

dy

«
ψ0(y) = 0

where, as before, we have switched to a dimensionless position variable, y =
q

mω
~ x .

This is a first order differential equation, easily solved:

dψ0(y)

ψ0(y)
= −y dy

lnψ0(y) + c = −
y2

2

ψ0(y) = Ae−
y2

2

We thus recover the {|x 〉}-basis representation of the ground state!
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Energy Basis – Coordinate Basis Correspondence (cont.)

The appropriate normalization is A = (mω/π ~)1/4. We may then use the raising
operator to obtain the rest of the states:

〈x |n 〉 = 〈x |
`
a†
´n

√
n !
|0 〉

=
1
√

n !

 r
mω

2 ~
X − i

r
1

2 mω ~
P

!n “mω

π ~

”1/4
e−

m ω x2

2 ~

=
1
√

n !

 r
mω

2 ~
x − ~

r
1

2 mω ~
d

dx

!n “mω

π ~

”1/4
e−

m ω x2

2 ~

=

 
mω

π ~ 22n (n !)2

!1/4 „
y −

d

dy

«n

e−
y2

2

where we skipped the usual rigamarole of inserting completeness in the {|x 〉} basis
between the

`
a†
´n

operator and |0 〉; it goes the same way it did for our calculation of
〈x |a |0 〉.
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Energy Basis – Coordinate Basis Correspondence (cont.)

One can see that the above is equivalent to the formula for the {|x 〉}-basis
eigenstates (Equation 6.9) by using recursion relations for the Hermite polynomials.
The two recursion relations given in Shankar (they are derived from the differential
equation Equation 6.7 and the coefficient recursion relation Equation 6.8 for the
Hermite polynomials) are

d

dy
Hn(y) = 2 n Hn−1(y) Hn+1(y) = 2 y Hn(y)− 2 n Hn−1(y)

which can be combined to find

Hn+1(y) = 2 y Hn(y)−
d

dy
Hn(y)

Let’s do the proof of equivalence inductively. First, show it is true for n = 1:

〈x |1 〉 =

 
mω

π ~ 22 (1 !)2

!1/4 „
y −

d

dy

«
e−

y2

2 =

 
mω

π ~ 22 (1 !)2

!1/4

(2y) e−
y2

2

=

 
mω

π ~ 22 (1 !)2

!1/4

H1(y) e−
y2

2 = ψE1,x (y)

as expected.
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Energy Basis – Coordinate Basis Correspondence (cont.)

Next, assume it is true for n and show that it is true for n + 1:

〈x |n + 1 〉 =

 
mω

π ~ 22(n+1) [(n + 1) !]2

!1/4 „
y −

d

dy

«n+1

e−
y2

2

=

„
1

22(n + 1)2

«1/4 „
y −

d

dy

« 
mω

π ~ 22n [n!]2

!1/4 „
y −

d

dy

«n

e−
y2

2

=

„
1

22(n + 1)2

«1/4 „
y −

d

dy

« 
mω

π ~ 22n [n!]2

!1/4

Hn(y)e−
y2

2

=

 
mω

π ~ 22(n+1) [(n + 1) !]2

!1/4 „
2 y Hn(y)−

d

dy
Hn(y)

«
e−

y2

2

=

 
mω

π ~ 22(n+1) [(n + 1) !]2

!1/4

Hn+1(y) e−
y2

2 = ψEn+1,x (y)

We have thus found complete equivalence between the energy-basis eigenstates,
reexpressed in the {|x 〉} basis, and our original {|x 〉}-basis eigenstates.
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Rewriting Postulate 2

We see from the energy-basis study of the SHO that the matrix elements of X and P
in the {|x 〉} basis, which are specified by Postulate 2, were irrelevant. Recall
Postulate 2:

The independent variables x and p that describe completely the state of a
particle in classical mechanics are represented by Hermitian operators X and P
in the Hilbert space of states, with X and P having the following matrix
elements when using the position basis for the Hilbert space:

〈x |X |x ′ 〉 = xδ
`
x − x ′

´
〈x |P |x ′ 〉 = −i ~ d

dx
δ

`
x − x ′

´
Any arbitrary classical dynamical variable ω(x , p) has a corresponding
Hermitian operator

Ω(X ,P) = ω(x → X , p → P)

where we simply replace x and p in ω with X and P to obtain Ω(X ,P).

The part of the above statement that we used was the resulting commutation relation
[X ,P] = i ~ I , along with the unintuitive but otherwise unsurprising definition of a.
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Rewriting Postulate 2 (cont.)

We are thus led to a perhaps more fundamental statement of this postulate:

The independent variables x and p that describe completely the state of a
particle in classical mechanics are represented by Hermitian operators X and P
in the Hilbert space of states; X and P and are defined by the canonical
commutator

[X ,P] = i ~ I

Any arbitrary classical dynamical variable ω(x , p) has a corresponding
Hermitian operator

Ω(X ,P) = ω(x → X , p → P)

where we simply replace x and p in ω with X and P to obtain Ω(X ,P).
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Rewriting Postulate 2 (cont.)

The first obvious question is: how do you figure out what the matrix elements of X
and P are? Our work in the energy basis showed that you do not necessarily need to
know off the bat what these are; they can be inferred from solving for the eigenstates
in the energy basis.

The second obvious question is: is this consistent with our original version of
Postulate 2? Let’s show that this prescription works out in the X basis, meaning that
it returns our original version of Postulate 2. We work in the basis of the eigenstates
of X ; we are guaranteed such a basis exists because X is Hermitian. For obvious
reasons, we denote these basis states by {|x 〉}. In this basis, it by definition holds that

X |x 〉 = x |x 〉

If we normalize {|x 〉} such that 〈x |x ′ 〉 = δ(x − x ′), then we have

〈x |X |x ′ 〉 = x δ(x − x ′)
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Rewriting Postulate 2 (cont.)

We know from Section 3.10 that, if we we choose P = −i ~ D, where D is the
derivative operator, then we obtain

〈x |P|x ′ 〉 = −i ~
d

dx
δ(x − x ′)

and that this leads to Equation 3.151,

[X ,P] = i ~

The question is: is this the only possible valid definition of P? No. Since we are
calculating the commutator with X , we can add to the above definition any operator
that commutes with X . Since the only operators we know about are X and P (every
other operator we have looked at has been derived from them), the only kind of
operator that commutes with X that we know about is an arbitrary function of X ; i.e.,

P = −i ~ D + f (X ) ⇐⇒ 〈x |P|x ′ 〉 = −i ~
d

dx
δ(x − x ′) + f (x) δ(x − x ′)
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Rewriting Postulate 2 (cont.)

It turns out that such a redefinition results in no changes in the observable quantities
and that one can absorb the change by redefinition of the {|x 〉} basis. Specifically, if
we define

g(x) =

Z x

x0

f (x ′) dx ′

then the redefinition

|x 〉 −→ |ex 〉 = e−
i
~ g(x)|x 〉

results in

〈ex |X |ex ′ 〉 = x δ(x − x ′)
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Rewriting Postulate 2 (cont.)

Let’s see how the redefinition affects the matrix elements of P:

〈ex |P|ex ′ 〉
= 〈x |e

i
~ g(x)Pe−

i
~ g(x)|x ′ 〉

= e
i
~ g(x)

Z ∞
−∞

dx ′′〈x |P|x ′′ 〉e−
i
~ g(x)〈x ′′ |x ′ 〉

= e
i
~ g(x)

Z ∞
−∞

dx ′′
»
−i ~

d

dx
δ(x − x ′′) + f (x)δ(x − x ′′)

–
e−

i
~ g(x)δ(x − x ′′)

= e
i
~ g(x)


−i ~

d

dx

h
e−

i
~ g(x)δ(x − x ′′)

i
+ f (x)δ(x − x ′)

ff
= e

i
~ g(x)


−
»

d

dx
g(x)

– h
e−

i
~ g(x)δ(x − x ′′)

i
− i ~e−

i
~ g(x) d

dx
δ(x − x ′′) + f (x)δ(x − x ′)

ff
= −i ~

d

dx
δ(x − x ′)

That is, by redefining the basis, we recover the original matrix elements for X and P.
This is a very interesting freedom that we have not really studied before. This freedom
is explored in Shankar Problem 7.4.9. The above kind of transformation is called a
gauge transformation; you may have seen it in electromagnetism before. The fact that
the physics is unchanged under the above gauge transformation can actually be
interpreted as rendering the electromagnetic field necessary.
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Rewriting Postulate 2 (cont.)

The idea of using canonical commutators to rewrite Postulate 2 is key to connecting it
in a unified manner to classical mechanics and to generalizing the postulates to new
situations involving new observables. For example, we can use it to rewrite Postulate 2
for situations involving multiple degrees of freedom (e.g., x , y , and z) or multiple
particles:

The independent variables {xi} and {pi} that describe completely n degrees of
freedom in classical mechanics are represented by Hermitian operators {Xi} and
{Pi} in the Hilbert space of states. The {Xi} and {Pi} are defined by the
canonical commutators

[Xi ,Pj ] = i ~ δij [Xi ,Xj ] = 0 [Pi ,Pj ] = 0

Any arbitrary classical dynamical variable ω ({xi}, {pi}) has a corresponding
Hermitian operator

Ω ({Xi}, {Pi}) = ω ({xi → Xi}, {pi → Pi})

where we simply replace {xi} and {pi} in ω with {Xi} and {Pi} to obtain
Ω ({Xi}, {Pi}).
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Rewriting Postulate 2 (cont.)

To be utterly clear, the original writing of the N-dimensional version of Postulate 2
would tell us that the first commutator is

〈x1, x2, . . . , xN |[Xi ,Pj ]|x ′1 , x ′2 , . . . , x ′N 〉
= i ~ δij δ(x1 − x ′1 ) δ(x2 − x ′2 ) · · · δ(xN − x ′N)

This is consistent with our new writing as follows:

〈x1, x2, . . . , xN |[Xi ,Pj ]|x ′1 , x ′2 , . . . , x ′N 〉 = 〈x1, x2, . . . , xN |i ~ δij |x ′1 , x ′2 , . . . , x ′N 〉
= i ~ δij δ(x1 − x ′1 ) δ(x2 − x ′2 ) · · · δ(xN − x ′N)

(The other commutators always vanish, so we do not bother to write them out to the
above level of detail.)

To study systems with multipled degrees of freedom or multiple partiles, we also need
to deal with Postulate 1, which constructs the Hilbert space. We will do that later.
But, clearly, we already have an extension of Postulate 2 to such systems.
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Deriving the Uncertainty Relation

Review of Expectation Values and Uncertainty

Recall in Section 4.4, in connection with Postulate 3, we defined the expectation value
and uncertainty for a physical observable Ω because these are the most definite
quantities we can calculate given the probabilistic nature of measurement outcomes in
quantum mechanics. They are

〈Ω〉 = 〈ψ |Ω|ψ 〉 =
X

i

P(ωi )ωi or

Z ω+

ω−

dω P(ω)ω

〈(∆Ω)2〉 = 〈ψ | [Ω− 〈Ω〉]2 |ψ 〉 = 〈ψ |
ˆ
Ω2 − 〈Ω〉2

˜
|ψ 〉 = 〈ψ |Ω2|ψ 〉 − 〈Ω〉2

=
X

i

P(ωi ) (ωi − 〈Ω〉)2 or

Z ω+

ω−

dω P(ω) (ω − 〈Ω〉)2
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Deriving the Uncertainty Relation (cont.)

Derivation of the Uncertainty Relations

When we consider the uncerainties in two variables, we shall see that the product of
their uncertainties has a lower limit that is related to their commutator. This should
not surprise as, as we already know that commuting operators are simultaneously
diagonalizable and hence can simultaneously have vanishing uncertainties. But now we
will generically prove the converse case, in which we consider possibly noncommuting
operators.

Consider the commutator of the operators corresponding to two physical variables and
write it in the following form:

[Ω,Λ] = i Γ

If the commutator vanishes, then Γ is the zero operator, the operator that sends every
state to the null vector. Because Ω and Λ are Hermitian by assumption, Γ is also
Hermitian (which is why the i was introduced).
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Deriving the Uncertainty Relation (cont.)

Now, consider the product of the squares of the uncertainties of the two operators for
an arbitrary state |ψ 〉:

〈(∆Ω)2〉〈(∆Λ)2〉 = 〈ψ |eΩ2|ψ 〉〈ψ |eΛ2|ψ 〉 with eΩ = Ω− 〈Ω〉, eΛ = Λ− 〈Λ〉

=
“eΩ†|ψ 〉”† eΩ|ψ 〉“eΛ†|ψ 〉”† eΛ|ψ 〉

=
“eΩ|ψ 〉”† eΩ|ψ 〉“eΛ|ψ 〉”† eΛ|ψ 〉 bec. eΩ, eΛ are Hermitian

=
˛̨̨eΩ|ψ 〉˛̨̨2 ˛̨̨eΛ|ψ 〉˛̨̨2

≥
˛̨̨̨“eΩ|ψ 〉”† eΛ|ψ 〉˛̨̨̨2 by Schwarz Inequality, Equation 3.20

=
˛̨̨
〈ψ |eΩ eΛ |ψ 〉˛̨̨2

=

˛̨̨̨
〈ψ |


1

2

heΩ eΛ + eΛ eΩi+
1

2

heΩ eΛ− eΛ eΩiff |ψ 〉˛̨̨̨2
=

»
1

2
〈ψ |

heΩ, eΛi
+
|ψ 〉+

1

2
〈ψ |

heΩ, eΛi |ψ 〉˛̨̨̨2
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Deriving the Uncertainty Relation (cont.)

To evaluate the above, we use the facts that the operator
heΩ, eΛi

+
is Hermitian andheΩ, eΛi = [Ω,Λ] = i Γ is anti-Hermitian, and so the expectation values 〈ψ |

heΩ, eΛi
+
|ψ 〉

and 〈ψ |Γ|ψ 〉 are perfectly real. The expression above is then of the form |a + i b|2
where a and b are real, so we know the result is a2 + b2. We thus have

〈(∆Ω)2〉〈(∆Λ)2〉 ≥
1

4

»
〈ψ |

heΩ, eΛi
+
|ψ 〉
–2

+
1

4
[〈ψ |Γ|ψ 〉]2

This is the generic uncertainty relation. It is not that useful yet because the right side
depends on the state |ψ 〉.

When the commutator is the canonical value i Γ = i ~, then the above simplifies to

〈(∆Ω)2〉〈(∆Λ)2〉 ≥
1

4

»
〈ψ |

heΩ, eΛi
+
|ψ 〉
–2

+
~2

4

or

q
〈(∆Ω)2〉

q
〈(∆Λ)2〉 ≥

~
2

where we made the last step because the first term is always nonnegative. This is the
Heisenberg uncertainty relation.
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Deriving the Uncertainty Relation (cont.)

Saturation of the Heisenberg Uncertainty Relation

The first condition is

eΩ|ψ 〉 = c eΛ |ψ 〉
in order that the Schwarz inequality used early in the proof be saturated. Note that
we are not requiring the relation eΩ = c eΛ to hold in general – then the two would
commute and this would all be trivial. We are simply requiring that this hold for the
particular state |ψ 〉 that is going to be a state that saturates the inequality.

The second condition is for the first term in the generic uncertainty relation to vanish:

〈ψ |
heΩ, eΛi

+
|ψ 〉 = 0

This is obvious, as if this term is nonzero, then it ensures that the relation cannot be
an equality.
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Examples

Example 7.1: The Gaussian Wavefunction

We have twice gone through the demonstration that a state with Gaussian {|x 〉}-
basis representation always saturates the Heisenberg uncertainty relation for X and P,
giving q

〈(∆X )2〉
q
〈(∆P)2〉 =

~
2

We studied this for both a wave packet propagating freely and for the simple harmonic
oscillator. In Section 9.3, Shankar shows explicitly that, for any potential, the Gaussian
wavefunction is the only state that renders the inequality an equality by using the first
condition above to obtain a differential equation that determines the wavefunction,

(P − 〈P〉) |ψ 〉 = c (X − 〈X 〉) |ψ 〉„
−i ~

d

dx
− 〈P〉

«
ψ(x) = c (x − 〈X 〉)ψ(x)

where, in going from the first line to the second, we took the product with 〈x | on the
left, inserted completeness in the {|x 〉}, and did the completeness integral. The
second condition from above is used in Shankar’s proof, too. It is worth going through
Shankar’s proof for the sake of the technique.
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Examples (cont.)

Example 7.2: Hydrogen Atom

Shankar goes through in detail a calculation of the ground state energy and radius of
the hydrogen atom. Again, it is worth studying the technique used, in particular the
way in which he approximates the potential term in the Hamiltonian, which is not
trivially written as a function of 〈(∆X )2〉, and then differentiates E with respect to
〈(∆X )2〉 to find the minimum possible energy.
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Examples (cont.)

Example 7.3: Diffraction at a Screen

Consider a particle traveling in the x direction with momentum ~ k incident on a
screen with an aperture extending from y = −a to y = a. The particle’s
position-space wavefunction to the left of the screen is e i k x ; there is no y
dependence. The aperture truncates the wavefunction in y so it vanishes outside the

interval [−a, a]. The y position uncertainty then becomes
q
〈(∆Y )2〉 = a√

3
(you can

check this calculation easily). So the y momentum uncertainty becomes

q
〈(∆Py )2〉 ≥

~
2

1q
〈(∆Y )2〉

=
~
√

3

2 a

Thus, the propagating plane wave, which initially had no y momentum, acquires a rms
y momentum of this size. This causes the wavefunction to spread out in y ; the angular
extent that the image of the particle beam on a far screen will cover is approximately

q
〈(∆θ)2〉 =

q
〈(∆Py )2〉
〈Px 〉

≥
~
√

3
2 a

~ k
=

√
3

2 k a
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Examples (cont.)

Example 7.4: Size of Nuclei

It is experimentally observed that the binding energy of nuclei is in the few
MeV/nucleon range; meaning that nuclei can be caused to break apart by interactions
with photons or other particles having this amount of energy. This information can be
used to determine the approximate size of a nucleus via simple particle-in-a-box type
considerations.

Let α be the typical binding energy per nucleon. Then α is a lower limit on the depth
of the potential well, and thus an upper limit on the energy of each nucleon. We may
get the momentum uncertainty of a single nucleon from the energy via

〈(∆P)2〉
2 mp

= α =⇒ 〈(∆P)2〉 = 2αmp

From this, let’s use the uncertainty principle to determine the position uncertainty

〈(∆X )2〉 =
~2

4

1

〈(∆P)2〉
=

~2

4

1

2α mp
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Examples (cont.)

Numerically, we haveq
〈(∆X )2〉 =

~
2 A
p

2αmp

=
1.0 × 10−34 J s

2 A
p

2α × 106 × 1.6 × 10−19 J × 1.7 × 10−27 kg

=
2.1 × 10−15 m

√
α

where we have converted α to J to do the calculation. For most nuclei,
α ≈ 8 MeV/nucleon, so we get 0.7 fm. Now, this scaling with α should not
necessarily be believed – bigger nuclei have higher binding energies but are also bigger
– but the order of magnitude is correct. In practice, nuclei have radii that follow
r = 1.2 A1/3 fm.
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The Energy-Time Uncertainty Relation

H and i ~ ∂
∂t

as conjugate operators

The Schrödinger Equation tells us

i ~
d

dt
|ψ(t) 〉 = H |ψ(t) 〉

Let’s take the matrix element on the left with 〈x | and insert completeness:

i ~
∂

∂t
ψx (x , t) =

Z ∞
−∞

dx ′〈x |H |x ′ 〉ψx (x
′, t)

(The total time derivative now becomes a partial time derivative because of the
appearance of x having projected onto the {|x 〉} basis.) Notice the striking similarity
to the expression for the P operator acting in the {|x 〉} basis:

−i ~
∂

∂x
ψx (x , t) =

Z ∞
−∞

dx ′〈x |P |x ′ 〉ψx (x
′, t)

where again a partial derivative appears. The variables t and E are mathematically
conjugate to each other in a manner similar to x and p. However, this is not rigorous
in the sense of operators because there is no t operator!
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The Energy-Time Uncertainty Relation (cont.)

We can see the conjugate relationship more rigorously by considering a free-particle
wave packet with

〈X 〉 =
p0

m
t 〈(∆X )2〉t=0 = σ2

x 〈P〉 = p0 〈(∆P)2〉 = σ2
p =

~2

4σ2
x

with σp/p � 1. The wavefunction as a function of position and time is

ψx (x , t) = 〈x |ψ(t) 〉 = 〈x |U(t) |ψ(t = 0) 〉

=

Z ∞
0

dp e−
i
~

p2

2 m
t [〈x |Ep 〉〈Ep |ψ(t = 0) 〉+ 〈x |E−p 〉〈E−p |ψ(t = 0) 〉]

≈
1

√
2π ~

Z ∞
0

dp e−
i
~

p2

2 m
t e

i
~ p xψp(p)

where we have run the integral from −∞ to ∞ because ψp(p) is strongly peaked near
p0 and p0/σp � 1 so that the integrand is very small near the origin and for p < 0.
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The Energy-Time Uncertainty Relation (cont.)

Now, let’s specialize to x = 0: we want to see what the time dependence of the
wavefunction at the origin is. We have

ψx (0, t) ≈
1

√
2π ~

Z ∞
0

dp e−
i
~

p2

2 m
tψp(p)

≈
1

√
2π ~

Z ∞
−∞

dE e−
i
~ E t ψE (E)

where ψE (E) =

r
m

2E
ψp(p) =

m

p
ψp(p)

This looks like a Fourier transform in E ! We are thus led to the idea that E and t
should be conjugate variables in the same way that x and p are, and thus that there
might be an uncertainty relation between them.
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The Energy-Time Uncertainty Relation (cont.)

Let’s now compare the width in E and the width in t at the position x . Recall that we
calculated the width in E for a propagating free-particle Gaussian wave packet in
Section 5.5 and found it to beq

〈(∆E)2〉 ≈ 2 E
σp

p0
=

p2
0

m

σp

p0
=

p0

m
σp

At a given point x , what is the width in t? It is related to the width in x by the
expectation value of the velocity:

q
(∆t)2 =

q
〈(∆X )2〉

v
=
σx (t)

p0/m
≥

σx

p0/m

where we remind the reader that σx (t) ≥ σx because the width in position space of the
free-particle wave packet grows with time. This quantity is essentially the uncertainty
in the time at which the wave packet passes through the point x . Note that we have
not written the width in t as an expectation value because there is no t operator.

Section 7.3 The Heisenberg Uncertainty Relation: The Energy-Time Uncertainty Relation Page 454



The Energy-Time Uncertainty Relation (cont.)

Multiplying the two uncertainties together, we haveq
〈(∆E)2

q
(∆t)2 ≥

p0

m
σp

σx

p0/m
= σp σx =

~
2

Hence, we obtain a time-energy uncertainty relation. Note the very special way we
had to derive this expression – it was hardly generic. But something like this usually
holds in general. For eigenstates, the energy uncertainty vanishes, but the time
uncertainty becomes infinite because the particle must be in that eigenstate for all
time in order for its energy to be truly perfectly defined.
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The Energy-Time Uncertainty Relation (cont.)

Other Examples of the Energy-Time Uncertainty Relation

I Decaying states
We have not yet discussed Hamiltonians that can result in the decay of states –
e.g., decay of an excited atom to the ground state, decay of a particle. But, a
similar uncertainty relation holds for them. The classic example is the energy
width of a short-lived fundamental particle such as the Z boson. Though the Z
has a well-defined mass MZ = 91.2 GeV/c2, it has a mass width of about
Γz = 2.5 GeV/c2. That is, two electrons collided together with total center of
mass energy a bit less or a bit more than MZ can still create a Z at rest. This is
because the Z decays with a lifetime of τ = ~/2 Γz , which, when put into the
right units, is about 10−25 s. One can prove this rigorously by decomposing the
wavefunction of the Z into mass eigenstates and seeing that the wavefunction
has a spread in energy of Γz .
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The Energy-Time Uncertainty Relation (cont.)

I Virtual Particles
In particle physics, energy conservation can be violated on very short timescales
by “virtual processes”. For example, the scattering of two particles via transfer
of an intermediate particle (a photon, a Z , etc.) can be though of as emission
of the mediating particle followed by absorption a time ∆t later. For the short
life of the mediating particle, it need not conserve energy – it can have an
energy that is not tied to its momentum by its rest mass. Momentum must be
conserved at every interaction point, but energy only need be conserved over the
entire process. The extent to which energy can be lost or gained temporarily is
related to the time between scatters. We will see a simple version of this when
we consider second-order perturbation theory later.
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Derivation for Unbound States

Motivation

Consider a particle in one dimension in a region of constant potential energy V
extending from 0 to L. (The generalization to an arbitrary position away from the
origin is straightforward and introduces only a constant multiplicative factor.) We
know that, in this region, the solution to the Schrödinger Equation takes the form

ψ(x) = ψ(x = 0) e±
i
~ p x p =

p
2 m (E − V )

Remember that the form of the potential outside the interval [0, L] only affects the
boundary conditions at 0 and L, which determine the coefficients of the + and −
solutions; the functional form of the solution is independent of the potential elsewhere.
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Derivation for Unbound States (cont.)

Now, let’s try to generalize the plane-wave solution to a potential that depends
continuously on position. Any reasonable such potential may be treated as the limit of
a set of piecewise constant potentials, and our plane-wave solution is strictly valid in
each region. But the parameters p and λ will change from region to region. That is,
we may write the solution in the following piecewise form, where x1, x2, etc., denote
the boundaries and p1, p2, etc. denote the value of p in the region beginning at x1,
x2, etc.:

ψ(x) =

8>>>>><>>>>>:
ψ(x = 0) e±

i
~ p0 x 0 ≤ x < x1

ψ(x = x1) e±
i
~ p1 (x−x1) x1 ≤ x < x2

ψ(x = x2) e±
i
~ p2 (x−x2) x2 ≤ x < x3

...
...

We may write the above solution in the following less cumbersome form

ψ(x) = ψ(x = 0) exp

„
±

i

~

Z x

0
dx ′p(x ′)

«
where p(x) =

p
2 m (E − V (x))

(8.1)

where p(x) is now a piecewise constant function in the same way that V (x) is; p = p0

for 0 ≤ x < x1, p = p1 for x1 ≤ x < x2, etc.
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Derivation for Unbound States (cont.)

Now, let’s take the limit of V (x) becoming continuous. The definition of p(x) is still
valid, but the solution is no longer rigorously correct (try plugging in to the
Schrödinger Equation and you will see this). But we expect the solution to be
approximately correct if V (x) varies slowly enough. What is meant by slowly enough?
The integral in the above form is just the integrated phase accumulated from 0 to x .
The phase shift per unit length is given by the wavelength λ where λ = 2π ~/p.
When the potential is piecewise constant, then λ is piecewise constant. We thus
expect that the above solution is valid if the fractional variation in λ over one λ is
small compared to 1: ˛̨̨̨

1

λ

„
dλ

dx
λ

«˛̨̨̨
� 1 =⇒

˛̨̨̨
dλ

dx

˛̨̨̨
� 1
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Derivation for Unbound States (cont.)

Derivation (for Unbound States)

Let’s prove the above more rigorously. Our expected solution is of the form

ψ(x) = Ae
i
~φ(x)

where φ(x) may be complex to avoid restricting the form of the solution. The
Schrödinger Equation for our problem is

−
~2

2 m

d2

dx2
ψ(x) + V (x)ψ(x) = E ψ(x)

which we may rewrite as »
d2

dx2
+

p2(x)

~2

–
ψ(x) = 0

Now, inserting our expected solution, we have

„
1

~
dφ

dx

«2

−
i

~
d2φ

dx2
−

p2

~2
= 0
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Derivation for Unbound States (cont.)

Now, we would like to apply our approximation. We want to apply our criterion
|dλ/dx | � 1 directly. The instantaneous wavelength of the solution is the distance
over which the phase changes by 2π, which we can calculate from φ(x) via

2π =
1

~
[φ(x + λ)− φ(x)]

2π ~ ≈ λ
dφ

dx

λ(x) ≈
2π ~

dφ
dx

Now, let’s calculate the derivative:

dλ

dx
≈ −

2π ~“
dφ
dx

”2

d2φ

dx2
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Derivation for Unbound States (cont.)

So our condition |dλ/dx | � 1 is˛̨̨̨
˛̨̨ 2π ~“

dφ
dx

”2

d2φ

dx2

˛̨̨̨
˛̨̨� 1 ⇐⇒

˛̨̨̨
1

~
d2φ

dx2

˛̨̨̨
�

1

2π

1

~2

„
dφ

dx

«2

This tells us that the second term in the differential equation is small compared to the
first.

For convenience, let’s define α to be the ratio of the two terms, which is just dλ/dx :

α ≡
1
~

d2φ
dx2

1
2π

1
~2

“
dφ
dx

”2
=

dλ

dx

Our approximation condition is therefore |α| � 1.
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Derivation for Unbound States (cont.)

However, we may not just ignore the second term because the result will then be too
gross an approximation. For the sake of pedagogy, let’s go through it to see that. The
differential equation for φ becomes

„
1

~
dφ

dx

«2

−
p2

~2
= 0 ⇐⇒

dφ

dx
= ±p(x)

Integrating, we obtain

φ(x) =

Z x

dx ′p(x ′)

Our solution implies d2φ/dx2 = ±dp/dx . But our approximation has consisted of
ignoring d2φ/dx2. This implies we should ignore dp/dx , which is equivalent to
ignoring dV /dx = 0. But p will then just be a constant. This is too gross an
approximation, we have completely ignored the spatial dependence of the potential.
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Derivation for Unbound States (cont.)

So, rather than ignoring terms of order α, let us carefully expand φ to first order in α;
our approximation condition requires that |α| � 1, so it is a good parameter to
expand in terms of. That is, let

φ(x) = φ0(x) + αφ1(x)

and, similarly,

d

dx
φ(x) =

d

dx
φ0(x) + α

d

dx
φ1(x)

d2

dx2
φ(x) =

d2

dx2
φ0(x) + α

d2

dx2
φ1(x)

Note that this is not a Taylor expansion in position; α is just a dimensionless
parameter. You can think of it as a Taylor expansion in terms of α where higher order
terms in α give us a better approximation to the exact wavefunction.
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Derivation for Unbound States (cont.)

The condition |α| � 1 actually puts a condition on the expansion coefficients, which
we can see by simply writing the definition of α in terms of the expansions:

α ≡
1
~

d2φ
dx2

1
2π

1
~2

“
dφ
dx

”2
=

1
~

“
d2φ0
dx2 + α d2φ1

dx2

”
1

2π
1

~2

“
dφ0
dx

+ α dφ1
dx

”2
≈

1
~

d2φ0
dx2

1
2π

1
~2

“
dφ0
dx

”2

where, since |α| � 1 is already a requirement, we have dropped all terms of order α or

higher on the right side. This relationship between d2φ0
dx2 and

“
dφ0
dx

”2
will be

important below.

Plug the α expansion formulae into our differential equation:

 
dφ0
dx

+ α dφ1
dx

~

!2

− i

d2φ0
dx2 + α d2φ1

dx2

~
−

p2(x)

~2
= 0

„
1

~
dφ0

dx

«2

+
2α

~2

dφ0

dx

dφ1

dx
−

i

~
d2φ0

dx2
−

p2(x)

~2
= 0

where we have dropped all terms of order α2. Based on our rewriting of α above, we

saw that the third term is already of order α without having to keep the d2φ1
dx2 term;

hence the importance of that rewriting.
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Derivation for Unbound States (cont.)

The above differential equation consists of terms of zeroth order in α and of first
order; that is, we have a polynomial in α. For the equation to be satisfied for arbitrary
α, the coefficient of each power of α must vanish. We thus obtain two equations:

„
1

~
dφ0

dx

«2

−
p2

~2
= 0

2α

~2

dφ0

dx

dφ1

dx
=

i

~
d2φ0

dx2

The first equation is the same one we found when we made the approximation α = 0;
it yields

dφ0

dx
= ±p(x) ⇐⇒ φ0 = ±

Z x

dx ′p(x ′)

We see how our previous solution was indeed too gross an approximation: it consisted
of setting α = 0, neglecting any variation in the potential.
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Derivation for Unbound States (cont.)

The second equation is

2α

~2

dφ0

dx

dφ1

dx
=

i

~
d2φ0

dx2

−
2 i α

~
dφ1

dx
=

d2φ0
dx2

dφ0
dx

Now, here we use our solution for φ0,
dφ0
dx

= ±p(x) (the ± sign cancels out in the
numerator and denominator of the right side):

−
2 i α

~
dφ1

dx
=

dp
dx

p

−
2 i α

~
φ1 + c = ln p

i

~
αφ1 = −

1

2
ln

dφ0

dx
+ C = ln

1
√

p
+ C

Note that we may assume α is constant for the purpose of doing the integral because,
by assumption, any variations in α will be of order α2 and may be ignored.
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Derivation for Unbound States (cont.)

So, we have, to first order in α

φ(x) ≈ φ0(x) + αφ1(x) = ±
Z x

dx ′p(x ′) +
~
i

ln
1p
p(x)

+ C

ψ(x) = Ae
i
~ φ(x) =

Ap
p(x)

exp

„
±

i

~

Z x

dx ′p(x ′)

«

The lower limit of integration is arbitrary and its value just modifies the overall phase
of the wavefunction. So, we see that the solution follows roughly the form that we had
guessed initially, but there is an additional 1√

p
factor out front. The heuristic

explanation of this factor is that it yields P(x) = |ψ(x)|2 = |A|2
p(x)

= |A|2
m v(x)

. The mass

factor is just an overall constant that is unimportant, but the v(x) factor is
position-dependent and simply recalls the classical fact that the dwell time in a small
interval about the point x is inversely proportional to the velocity at that point v(x).
This is similar to the point we made about the higher excited levels in the SHO (see
Section 6.2), where the probability density also becomes inversely proportional to the
particle velocity.

The above result for the wavefunction is called the semiclassical approximation because
of the assumption that the fractional wavelength change per wavelength is slow. It is
also called the Wentzel-Kramers-Brillouin or WKB approximation after its originators.
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Derivation for Unbound States (cont.)

One thing we need to check is the self-consistency of the approximation; that is, does
it turn out that |dλ/dx | � 1 as we required to start with? We just calculate it
directly from the solution. (Note that the p−1/2 factor has no effect on the
wavelength of the solution, just on the normalization.) But this is trivial to check, by
construction. From the final solution, it holds that

λ(x) ≈
2π ~

dφ
dx

dλ

dx
≈

1
~

d2φ
dx2

1
2π ~

“
dφ
dx

”2
= α

So the approximation is self-consistent – if we assume |dλ/dx | � 1 to start with and
then calculate dλ/dx from the solution, we recover |dλ/dx | � 1. This may seem
tautological, but that’s the beauty of doing the expansion in terms of α: the
self-consistency is manifest (obvious) at all points during the calculation, so in the end
it is trivial that self-consistency is assured.
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Derivation for Unbound States (cont.)

Regime of Validity in Terms of Classical Quantities

Moreover, the approximation is not too gross anymore, as we now allow dλ/dx 6= 0,
which implies dV /dx 6= 0. In fact, let’s rewrite our condition on λ in terms of V and
E . We have

V (x) = E −
p2(x)

2 m
= E −

1

2 m

„
dφ0

dx

«2 dV

dx
= −

1

m

dφ0

dx

d2φ0

dx2

α =
1
~

d2φ0
dx2

1
2π

1
~2

“
dφ0
dx

”2
= −

m
~

dV
dx

1
2π

1
~2

“
dφ0
dx

”3
= −

dV
dx

p3(x)
2π ~ m

= −
dV
dx

2π ~
p

2 T

The final expression is essentially the ratio of the work done on the particle by the
potential over a distance λ compared to its kinetic energy; the former is the negative
of the change in kinetic energy over the same distance. So the semiclassical criterion
is simply that the fractional change in kinetic energy over a wavelength be small
compared to unity. ~ comes into the problem by giving the conversion between the
classical momentum and the quantum wavelength. Note that it is not simply a
statement about the potential itself, which is why the semiclassical approximation is
not expected to work for any arbitrary state in a potential; rather, we expect it to
work for excited states in which T is large compared to the work that can be done per
unit wavelength. dV /dx does not change with the kinetic energy, but T gets bigger
and λ gets smaller as T increases.
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Derivation for Unbound States (cont.)

Now that we have the semiclassical requirement in an easier-to-understand form, let’s
discuss under what conditions it is satisfied. First, the condition makes no sense in
regions where E < V (x) because then T is negative and there is no wavelength to
speak of. We will need to modify the solution for these regions, though we shall see
that a reasonable solution can be found. Second, the solution will fail spectacularly
when E ∼ V (x), i.e., near classical turning points. At these points, T → 0, but the
numerator is nonzero (in order for there to be a turning point!), so the approximation
simply fails. This is equivalent to p(x)→ 0, in which case the wavefunction’s
normalizing factor blows up and the dwell time becomes infinite. Both of these
problems affect bound states near and outside the classical turning points. We shall
deal with these problems in the next section.
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Derivation for Unbound States (cont.)

Probability Current

We can calculate the probability current in the WKB approximation and see that it is
sensible:

J = −
i

2

~
m

„
ψ∗(x)

∂

∂x
ψ(x)− ψ(x)

∂

∂x
ψ∗(x)

«
= −

i

2

~
m

„
±2

i

~
p(x)

«
ψ∗(x)ψ(x)

= P(x) v(x)

where P(x) = ψ∗(x)ψ(x) is the probability density and v(x) is the velocity. This
makes sense: the probability current is simply the probability times the speed at which
the particle moves. (Note that the terms involving derivatives of the p−1/2 terms
cancel because they are the same for ψ and ψ∗.) The simple form arises because of
the way p(x) appears in the argument of the complex exponential.
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Derivation for Unbound States (cont.)

Our derivation differs somewhat from Shankar’s, and this deserves some explanation.
The difference lies in how we expand φ(x). First, Shankar says the expansion
parameter should be ~, using the heuristic argument that λ→ 0 as ~→ 0 and that
this is equivalent to the desired limit |dλ/dx | � 1. This is not very rigorous. We have
instead explicitly made use of the criterion |dλ/dx | � 1, which we derived in a
reasonably rigorous manner. Second, Shankar expands in terms of the dimensionful
parameter ~. This is very bad: the statement “~ is small” has no meaning because the
units of ~ are arbitrary. In SI units, yes, ~ seems small, but in units where ~ = 1, ~ is
not small! We have instead expanded in terms of the dimensionless parameter α. The
criterion for α to be small, |α| � 1, ensures mathematical convergence of the power
series expansion in α. And the |α| � 1 criterion follows directly from the requirement
|dλ/dx | � 1. Third, our expansion and derivation are self-consistent by construction,
whereas Shankar had to check this explicitly (Equations 16.2.14 and 16.2.15).

The point about doing the expansion of φ(x) in terms of a dimensionless parameter is
particularly important and holds for all physics: whenever you do an expansion to
make an approximation, your expansion parameter must be dimensionless; otherwise,
you have no idea what is meant by the “smallness” of the parameter and the resulting
validity of the expansion. All physical units are to some extent arbitrary; the only truly
valid criterion for something to be small is for it to be dimensionless and small
compared to unity.
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Derivation for Unbound States (cont.)

Relation of the WKB Approximation to Classical Mechanics

The phase factor in the WKB approximation is

φr (x) =

Z x

dx ′p(x ′)

(The r subscript indicates the real part of φ; recall that the imaginary part of φ gave
the p−1/2 normalization factor.) Let’s consider the corresponding classical problem. In
that limit, p is the classical momentum. Let’s assume there is a classical path, xcl (t),
that solves the Euler-Lagrange equation for the problem. We may do a change of
variables to t, rewriting the above integral as

φr (xcl (t)) =

Z t

dt
dxcl

dt
p(xcl (t))

The meaning of the notation is: if you want to know φr (x), calculate the t this point
x corresponds to along the classical path xcl (t) and evaluate the integral with that t
as the upper limit, using xcl (t) in the integrand. We now recall from classical
mechanics that, for any path (classical or not), it holds that

H =
dx

dt
p − L
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Derivation for Unbound States (cont.)

We may then rewrite

φr (xcl (t)) =

Z t

dt Lcl +

Z t

dt Hcl

where we have put cl subscripts on L and H because we have specified the path xcl (t);
L and H are no longer the generic Lagrangian and Hamiltonian functions, which may
be evaluated for any path, classical or not. Since Hcl is evaluated for the classical path
that corresponds to energy E (recall the definition of p(x)), we know that Hcl takes
on the value E at all times and we may replace it, yielding

φr (xcl (t)) =

Z t

dt Lcl + E t

We thus see that φr (xcl (t)) is essentially the classical action Scl =
R

dt Lcl evaluated
along the classical path with energy E that would arrive at point xcl at time t. The
E t factor becomes irrelevant when incorporated in the wavefunction, as it is just a
time-evolving complex phase factor with no position dependence; it does not affect the
probability density or the momentum. It must be in fact canceled out by a
corresponding term in the action integral in order for the result to have no explicit
time dependence, as is necessary for φr to be a function of xcl only.
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Derivation for Unbound States (cont.)

Thus, the wavefunction is

ψ(x) =
Ap
p(x)

e
i
~φr (x) =

Ap
p(xcl (t))

exp

„
i

~
[Scl (x) + E t]

«

where t should be understood as being related to x through the classical path xcl (t)
and Scl (x) corresponds to evaluating the classical action along the classical path that
passes through x at the time t at which xcl (t) = x . The appearance of the classical
path xcl (t) and action Scl in such prominent roles reflects the semiclassical nature of
the WKB approximation. In deriving the above relation between the WKB
approximation and the classical action, we have scratched the surface of the ties
between classical and quantum mechanics. If we have time later, we will discuss the

path integral formalism, which makes explicit use of the action, using e
i
~ S as a

weighting factor for all paths to define the propagator and the wavefunction. Taking
the classical limit of the path integral formalism results in a differential equation for
Scl that reproduces the Hamilton-Jacobi equation of classical mechanics. We note
that the quantity

R x dx ′p(x ′) is known as Hamilton’s Characteristic Function or the
abbreviated action in classical mechanics.
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Derivation for Bound States

Bound state difficulties and how to deal with them

As we noted above, for bound states, the WKB approximation remains valid in the
classically allowed region far from the turning points, but falls apart near and outside
the classical turning points. This is not too surprising, as these are fundamentally
quantum-mechanical regions.

For the classically unallowed region, E < V (x), our original motivation for the WKB
solution remains true with the complex exponential in p(x) replaced by a real

exponential in κ(x) =
p

2 m (V (x)− E). Moreover, if we replace λ(x) by the
wavefunction decay length modulo 2π, λ(x) = 2π ~/p(x)→ γ(x) = 2π ~/κ(x),
assume a wavefunction of the form e±χ(x), and make the requirement |dγ/dx | � 1,
we find that things carry through in a straightforward way. The result will be that

ψ(x) =
Ap
κ(x)

exp

„
±

1

~

Z x

dx ′κ(x ′)

«

where the sign needs to be chosen depending on whether the region extends to ±∞;
both signs are valid if the classically unallowed region is finite.
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Derivation for Bound States (cont.)

For the region around the classical turning point, we still have a problem because both
|dλ/dx | � 1 and |dγ/dx | � 1 fail to hold: the wavelength and decay constant
become infinite as one approaches such a point, so the approximation fails. One
simply cannot approximate the solution to the Schrödinger Equation here. One must
solve the Schrödinger Equation completely in this region. If the potential varies
smoothly enough, one may be able to approximate it by a linear function, or perhaps a
polynomial, to make this easier. In the worst case, one can solve the Schrödinger
Equation numerically in this small interval. We term this interval the transition region.

Finally, one simply joins the solutions in the various regions. By assumption, the
potential is smoothly varying at the boundaries between the transition region and the
classically allowed and unallowed regions. Therefore, based on similar analyses we did
for one-dimensional problems with finite step potentials, the wavefunction and its
derivative must be continuous. We thus obtain matching conditions that set the
coefficients in the various regions, yielding a complete solution.

One might ask: what is the benefit of WKB if we still need to solve the Schrödinger
Equation explicitly or numerically in the transition region? The reason to still use
WKB is that it gives you a simple form and much better intuition for what the
wavefunction looks like outside the transition regions. Moreover, we can derive a
generic quantization condition without knowing the details of the transition region, as
long as the potential can be approximated as linear there, which we do below.
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Derivation for Bound States (cont.)

Explicit Solution for Linear Potential in Transition Regions, Quantization via
WKB

To obtain a more explicit solution for the WKB wavefunction and the resulting
quantization condition on the energy, we need to explicitly model the transition region
wavefunction. We assume a linear approximation to the potential is sufficient. This is
certainly consistent with the spirit of the semiclassical approximation. But, if the
potential varies wildly in the transition region, one must do the full quantum
mechanics in that region and one may end up with a different matching condition than
we obtain below.

This discussion follows Liboff Section 7.10, which goes into far more detail on WKB
than Shankar does.
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Derivation for Bound States (cont.)

Let us denote the classical turning points as x1 and x2. (Keep in mind that they are
dependent on E .) We assume the following form for the solution in the three regions
of semiclassical validity:

ψI (x) =
Ap
κ(x)

exp

„
1

~

Z x

x1

dx ′κ(x ′)

«
ψIII (x) =

Dp
κ(x)

exp

„
−

1

~

Z x

x2

dx ′κ(x ′)

«
ψII ,L(x) =

Bp
p(x)

sin

„
1

~

Z x

x1

dx ′p(x ′) + δL

«
ψII ,R(x) =

Cp
p(x)

sin

„
1

~

Z x2

x
dx ′p(x ′) + δR

«

The signs for the arguments in regions I and III are chosen to ensure the function
decays properly (recall, κ(x) ≥ 0 everywhere). For the II ,R solution, we shall see that
the choice of the order of integration does not matter and our choice is convenient.
Note that we reference the integrals to x1 even though the WKB wavefunctions are
not themselves valid for x ≈ x1; x1 is simply a convenient reference point.
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Derivation for Bound States (cont.)

We use sines instead of the complex exponential form in the classically allowed region
because we proved a long time ago that we can always find real solutions for bound
states in one dimension. The parameter freedom is preserved by including both
normalization and phase freedom. The two forms of the solution in region II are
needed in order to do the matching at the left and right sides; they must be
consistent, of course, which we shall enforce later. A will be left to be determined by
overall normalization, so we will divide everything through by A and work in terms of
b = B/A, c = C/A, and d = D/A.
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Derivation for Bound States (cont.)

We approximate the potential in the transition regions by

V (x) =


E − (x − x1) F1 x ≈ x1

E + (x − x2) F2 x ≈ x2

We are assured that V (x1) = V (x2) = E because we have chosen x1 and x2 to be the
classical turning points. We know F1 and F2 are positive because E > V (x) for
x1 < x < x2. In the transition regions, the Schrödinger Equation takes the form

d2ψ

dx2
+

2 m F1

~2
(x − x1)ψ = 0

d2ψ

dx2
−

2 m F2

~2
(x − x1)ψ = 0

These equations are of the same form,

d2ψ

dy2
− y ψ = 0 with y =

8><>: −
“

2 m F1
~2

”1/3
(x − x1) x ≈ x1“

2 m F2
~2

”1/3
(x − x2) x ≈ x2

One obtains series solutions to the above differential equation in a manner similar to
the way we obtained the Hermite polynomials. We will not do that derivation here,
but simply quote the results.
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Derivation for Bound States (cont.)

The solutions are termed Airy functions. They are given by

Ai(y) = a f (y)− b g(y) Bi(y) =
√

3 [a f (y) + b g(y)]

a =
1

32/3 Γ
`

2
3

´ ≈ 0.3550 b =
1

31/3 Γ
`

1
3

´ ≈ 0.2588

f (y) = 1 +
1

3!
y3 +

1 · 4
6!

y6 +
1 · 4 · 7

9!
y9 + · · ·

g(y) = y +
2

4!
y4 +

2 · 5
7!

y7 +
2 · 5 · 8

10!
y10 + · · ·

where Γ( ) is the Gamma function.

Section 8.2 Semiclassical Limit: Derivation for Bound States Page 486



Derivation for Bound States (cont.)

We will need the asymptotic forms (|y | � 1) of the above functions. From the power
series expansions and the factorials in the denominator, it should not be surprising
that these asymptotic forms are exponential- or sinusoid-like. They are

Ai(y)
y→+∞−→

1

2
√
π y1/4

exp

„
−

2

3
y3/2

«
Bi(y)

y→+∞−→
1

√
π y1/4

exp

„
2

3
y3/2

«
Ai(y)

y→−∞−→
1

√
π (−y)1/4

sin

„
2

3
(−y)3/2 +

π

4

«
Bi(y)

y→−∞−→
1

√
π (−y)1/4

cos

„
2

3
(−y)3/2 +

π

4

«
Clearly, the exponential behavior in one limit and the oscillatory behavior in the other
is sensible for matching onto the expoential and oscillatory parts of the WKB
wavefunction. In order for the solutions to match onto the decaying exponentials in
regions I and III and the oscillatory solution in region II , we need to use only Ai(y).
(Recall again that y has the opposite sign as x − x1 when defined near x1 and the same
sign as x − x2 when defined near x2.) We will use Bi(y) when we consider tunneling or
scattering off a positive potential, in which case we need to match onto an oscillatory
solution at large distances and a decaying solution inside the potential barrier.
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Derivation for Bound States (cont.)

Let us do the matching near x1. We need to recognize the following

p2(x)
x→x+

1= 2 m
`
E − V (x → x+

1 )
´

= 2m F1 (x − x1) = − (2 m F1 ~)2/3 y

κ2(x)
x→x−1= 2 m

“
V (x → x−1 )− E

”
= (2 m F1 ~)2/3 y

2 m F1 dx = − (2 m F1 ~)2/3 dy

(Recall that y carries the opposite sign of x − x1.) These forms let us explicitly do the
WKB wavefunction argument integrals:

1

~

Z x

x1

dx ′κ(x ′) = −
Z y

0
dy ′

p
y ′ = −

2

3
y3/2 x < x1, y > 0

1

~

Z x

x1

dx ′p(x ′) = −
Z y

0
dy ′

p
−y ′ =

2

3
(−y)3/2 x > x1, y < 0

Recall that we reference the integrals to x1 even though the WKB wavefunctions are
not themselves valid for x ≈ x1; x1 is simply a convenient reference point.
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Derivation for Bound States (cont.)

So the WKB wavefunctions near x1 become, when written in terms of y ,

ψI (y) =
1

y1/4
exp

„
−

2

3
y3/2

«
y > 0 (x < x1)

ψII ,L(y) =
B

(−y)1/4
sin

„
2

3
(−y)3/2 + δL

«
y < 0 (x > x1)

Recall that we already concluded we should only use Ai(y) for x ≈ x1. To match onto
Ai(y), we must take B = 2 and δL = π/4. B = 2 comes from the factor of 1/2 that
appears in the y → +∞ but not in the y → −∞ asymptotic versions of Ai(y). Note
that the 1√

π
factor in the Airy function asymptotic forms cancels away in connecting

ψI (y)to ψII ,L(y), as does the factor of (2 m F1 ~)1/6 that is the constant of

proportionality between
p
κ(x) or

p
p(x) and y1/4.

Repeating the above procedure at x ≈ x2 will yield C = 2D and δR = π/4.
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Derivation for Bound States (cont.)

The remaining constant D is determined by matching the ψII ,L and ψII ,R solutions;
explicitly:

ψII ,L(x) = ψII ,R(x)

2p
p(x)

sin

„
1

~

Z x

x1

dx ′p(x ′) +
π

4

«
=

2Dp
p(x)

sin

„
1

~

Z x2

x
dx ′p(x ′) +

π

4

«

Since D must be a constant, the equality can only hold if

1

~

Z x

x1

dx ′p(x ′) +
π

4
= −

„
1

~

Z x2

x
dx ′p(x ′) +

π

4

«
+ n π

where n is any integer. We obviously inserted the negative sign for the argument of
the sine on the right side so we could combine the two integrals; that is ok to do
because D provides the necessary sign freedom. Also, n can be odd, not just even,
because sin(x + n π) = − sin(x) for n odd and the extra minus sign can again be
absorbed into D.
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Derivation for Bound States (cont.)

Combining the two sides, we obtainZ x2

x1

dx p(x) =
“
n π −

π

2

”
~ =

„
n −

1

2

«
h

2

That is, the integral of p(x) between the classical turning points must be a
half-integral multiple of h/2. This is known as the Bohr-Sommerfeld quantization
condition

The above condition results in quantization of the energies because the only free
parameter in p(x) is E and the above condition puts a constraint on E . We see that
energy quantization arises in the same way we described in Section 5.3: it arises from
the enforcement of matching conditions, and the reduced freedom in the WKB
solution when the state is bound reduces the number of available parameters so that
the matching conditions place a condition on E .
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Derivation for Bound States (cont.)

It is interesting to rewrite the condition in a different manner to connect it to classical
mechanics more explicitly. Classically, the motion is bounded by the turning points.
Moreover, the motion must be periodic because the momentum can only take on two
values for any given position, corresponding to rightgoing and leftgoing; if the motion
were nonperiodic, then p should be allowed to take on an infinite number of values for
any x . We are therefore motivated to turn the integral into a line integral over one
period of the motion, corresponging to an integral from x1 to x2 and back; this gives a
factor of 2 because the return path gives an equal contribution as the outgoing path.
So,we have I

dx p(x) =

„
n +

1

2

«
h

(The sign change on the 1/2 term is absorbed by n).
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Derivation for Bound States (cont.)

This integral is the area enclosed in classical phase space (x − p space) by the classical
path that the particle would follow. In classical mechanics, this is a very special
quantity because it is conserved over time for energy-conserving systems. Moreover,
we saw in connection with the unbound WKB solution that this integral is literally the
classical action along the classical path. So what we have here is the classical action
for one period of the particle’s motion in the potential well! The Bohr-Sommerfeld
quantization condition thus says that the phase-space area enclosed by the orbit, or
equivalently the classical action for one complete period, must be a multiple of h. We
thus have a relation that is similar in spirit to the one that showed us that the complex
argument of an unbound wavefunction is the classical action as a function of position.

Another way of writing the above relation is to convert from momentum to
wavelength, λ(x) = 2π ~/p(x) = h/p(x), which givesI

dx

λ(x)
= n +

1

2

The integral thus integrates up the fractional wavelength accumulated over the orbit.
Thus, the total number of wavelengths in one period of the orbit (from x1 to x2 and
back) must be half-integral.
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Derivation

Motivation

It is not always possible to find an analytic solution to the Schrödinger Equation. One
can always solve the equation numerically, but this is not necessarily the best way to
go; one may not be interested in the detailed eigenfunctions, but rather only in the
energy levels and the qualitative features of the eigenfunctions. And numerical
solutions are usually less intuitively understandable.

Fortunately, one can show that the values of the energy levels are only mildly sensitive
to the deviation of the wavefunction from its true form, and so the expectation value
of the energy for an approximate wavefunction can be a very good estimate of the
corresponding energy eigenvalue. By using an approximate wavefunction that depends
on some small set of parameters and minimizing its energy with respect to the
parameters, one makes such energy estimates. The technique is called the variational
method because of this minimization process.

This technique is most effective when trying to determine ground state energies, so it
serves as a nice complement to the WKB approximation, which works best when one
is interested in relatively highly excited states, ones whose deBroglie wavelength is
short compared to the distance scale on which the wavelength changes.
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Derivation (cont.)

The Hamiltonian’s Eigenstates and Eigenvalues are Stationary Points of the
Energy Functional

For any wavefunction ψ, we may calculate the expectation value of the energy,

E [ψ] =
〈ψ |H |ψ 〉
〈ψ |ψ 〉

=

R
dx ψ∗(x)H ψ(x)R
dx ψ∗(x)ψ(x)

(9.1)

(We will explain below why we need to explicitly include the normalizing
denominator.) We call E a functional of the wavefunction ψ because the above
expression maps a wavefunction ψ to a number E . We aim to show that we can
obtain the energy eigenvalues by requiring that E [ψ] be stationary with respect to ψ.
By this, we mean that, if there is a function ψ such that, for small variations δψ away
from ψ, the corresponding variation δE in E [ψ] vanishes, then ψ is an eigenstate of
the Hamiltonian with energy E [ψ]. This is the same kind of requirement one places on
the classical action in Lagrangian mechanics to yield a differential equation for the
classical path, so we are essentially just doing the calculus of variations with the
E [ψ(x)] functional instead of the S[x(t)] functional.
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Derivation (cont.)

Let’s explicitly insert a variation δψ into our equation for E [ψ] and determine the
resulting δE :

E + δE =

R
dx [ψ(x) + δψ(x)]∗ H [ψ(x) + δψ(x)]R
dx [ψ(x) + δψ(x)]∗ [ψ(x) + δψ(x)]

(9.2)

It is now clear why we had to keep the denominator explicit: since we are varying ψ,
the normalization of ψ will change. We thus must explicitly include the normalization
correction in the denominator to get the correct energy functional. Since having the
variations in the denominator on the right side is hard to deal with, but we may
multiply through by the denominator to obtain

[E + δE ]

»Z
dx [ψ(x) + δψ(x)]∗ [ψ(x) + δψ(x)]

–
(9.3)

=

Z
[ψ(x) + δψ(x)]∗ H [ψ(x) + δψ(x)]

[E + δE ]

»Z
dx ψ∗(x)ψ(x) +

Z
dx δψ∗(x)ψ(x) +

Z
dx ψ∗(x) δψ(x)

–
(9.4)

=

Z
dx ψ∗(x)H ψ(x) +

Z
dx δψ∗(x) H ψ(x) +

Z
dx ψ∗(x)H δψ(x)

where we have kept only terms to first order in δψ.
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Derivation (cont.)

Next, we use the unvaried version of the equation to eliminate the terms that include
no δψ factors, and we set δE = 0 to impose the stationarity condition.

E

»Z
dx δψ∗(x)ψ(x) +

Z
dx ψ∗(x) δψ(x)

–
=

Z
δψ∗(x)H ψ(x) +

Z
ψ∗(x)H δψ(x)

(9.5)Z
dx δψ∗(x) (H − E)ψ(x) +

Z
dx ψ∗(x) (H − E) δψ(x) = 0 (9.6)

Next, we can show that the two terms must vanish independently by considering two
special cases for the variation δψ. Suppose δψ(x) = χ(x) where χ(x) is purely real.
Then we have Z

dx χ(x) (H − E)ψ(x) = −
Z

dx ψ∗(x) (H − E)χ(x) (9.7)

Next, suppose δψ is completely imaginary, so δψ(x) = i χ(x) where χ(x) is again real.
This gives Z

dx χ(x) (H − E)ψ(x) =

Z
dx ψ∗(x) (H − E)χ(x) (9.8)

where we have divided out by i .
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Derivation (cont.)

Since δψ is completely arbitrary, it is necessary for both equations to hold
simultaneously for any real function χ. That is only possible if both terms in the
original equation vanish independently. So we haveZ

dx δψ∗(x) (H − E)ψ(x) = 0 (9.9)Z
dx ψ∗(x) (H − E) δψ(x) = 0 (9.10)

Since δψ is arbitrary in each equation, the integrands must vanish. The first equation
yields

(H − E)ψ(x) = 0 (9.11)

One must use the Hermiticity of H to transform the second equation so that H acts
on ψ and not δψ, which will yield the complex conjugate of the above equation. We
recover the eigenvector-eigenvalue equation for H.
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Derivation (cont.)

Thus, we have proven that, if ψ(x) is an eigenfunction of H, then a small variation
δψ(x) results in no change in E to first order in δψ(x). This proof is interesting in its
own right – we had no reason to expect that the Hamiltonian’s eigenfunctions would
result in an extremum of the energy functional – in much the same way that there is
no reason to expect ahead of time that the classical path that solves Newton’s
equations would correspond to an extremum of the action functional.

We note that the we could have dealt with the normalization of ψ differently. We
could have imposed a normalization requirement via a Lagrange multiplier by
considering instead the alternate functional

E ′[ψ] =

Z
dx ψ∗(x) H ψ(x)− λ

»Z
dx ψ∗(x)ψ(x)− 1

–
(9.12)

and requiring δE ′ = 0 under a variation δψ. The two functionals E [ψ] and E ′[ψ] are
the same when one requires that ψ be normalized, so the requirement δE ′ = 0 is
equivalent to the requirement δE = 0 under that condition. The result would have
been the same had we gone this route.
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Derivation (cont.)

Is the converse of what we have proven true? That is, if ψm is an eigenfunction of H
with eigenvalue Em, does it hold that the energy functional E [ψ] is stationary with
respect to variations away from ψm? The answer is yes, and this is relatively easy to
show. Let us allow for a variation δψ, and let’s expand δψ in terms of the eigenstates:

|δψ 〉 =
X

n

cn |ψn 〉 (9.13)

Now, let’s calculate the energy of the wavefunction with the variation:

E [ψm + δψ] =
(〈ψm |+ 〈δψ |) H (|ψm 〉+ |δψ 〉)
(〈ψm |+ 〈δψ |) (|ψm 〉+ |δψ 〉)

(9.14)

=
Em + Em (〈ψm |δψ 〉+ 〈δψ |ψm 〉)

1 + (〈ψm |δψ 〉+ 〈δψ |ψm 〉)
(9.15)

= Em

„
1 + cm + c∗m
1 + cm + c∗m

«
= Em (9.16)

Hence, δE = E [ψm + δψ]− E [ψm] = 0. So, indeed, if ψm is an eigenstate of H, then
E [ψ] is stationary at ψ = ψm: a variation δψ in ψm results in no variation in E to first
order in δψ.
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Derivation (cont.)

For our purposes, the practical implication of the relationship between ψ being an
eigenstate and the energy functional being stationary with respect to variations in ψ is
that the fractional error in the energy estimate obtained from the trial wavefunction
will be much smaller than that fractional error in the wavefunction itself.
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Derivation (cont.)

Ground State Energy Upper Bounds

It is easy to show that whatever estimate we make for the ground state energy using
this technique, it is always an upper bound. Suppose ψ(x) is our trial wavefunction,
the energy eigenfunctions are {φn(x)} with eigenvalues En. We may expand ψ,
ψ(x) =

P
n cn φn(x). Let us then calculate the energy:

E [ψ] =

P
n |cn|2EnP

n |cn|2
(9.17)

Subtract off the ground state energy E0

E [ψ]− E0 =

P
n |cn|2 (En − E0)P

n |cn|2
(9.18)

Because E0 is the ground state energy, En − E0 > 0 for all n. |cn|2 ≥ 0, so the right
side is nonnegative. Therefore

E [ψ] ≥ E0 (9.19)
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Derivation (cont.)

Excited State Energy Estimates

If one knows the eigenfunctions for n < m and one wants to estimate Em, then one is
assured of an upper bound by requiring that the trial wavefunction be orthogonal to
the φn for n < m. Explicitly, we consider a trial wavefunction ψ and require

〈φn |ψ 〉 = 0 for n < m (9.20)

This condition can be met for any trial wavefunction ψ(x) via Gram-Schmidt
orthogonalization (Section 3.3). We then calculate the energy functional

E [ψ] =

P∞
n=m |cn|2EnP∞

n=0 |cn|2
(9.21)

because the terms with n < m vanish due to cn = 〈φn |ψ 〉 = 0. We then subtract Em:

E [ψ]− Em =

P∞
n=m |cn|2 (En − Em)P∞

n=0 |cn|2
(9.22)

En ≥ Em for n > m, so we are assured the right side is nonnegative, yielding

E [ψ] ≥ Em when 〈φn |ψ 〉 = 0 for n < m (9.23)
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Derivation (cont.)

Of course, the above is somewhat useless because, if one is able to exactly solve the
eigenvector-eigenvalue equation for some n, then one is usually able to solve it for all
n and the above technique is unnecessary. The idea about Gram-Schmidt
orthogonalization is good, though: even if one only has approximations to the
lower-energy state eigenfunctions, one should still construct trial wavefunctions for the
higher states using Gram-Schmidt orthogonalization. One can show, for example, that
the error in estimating Em is related to the mismatch between one’s estimates ψn for
the actual eigenfunctions φn for n < m. In particular, if

δ0 = 1− |〈ψ0 |φ0 〉|2 (9.24)

expresses the fractional deviation of the approximate ground state wavefunction ψ0

from the true one φ0, then one can show that a trial wavefunction ψ1 that has been
constructed using Gram-Schmidt orthogonalization with respect to ψ0 (not φ0!) yields

E [ψ1] ≥ E1 − δ0 (E1 − E0) (9.25)

That is, E [ψ1] is no longer an upper bound on E1, but the amount by which it
underestimates E1 is proportional to δ0. Because δ0 is quadratic in 〈ψ0 |φ0 〉, the
fractional error in estimating E1 is much smaller than the error in estimating the
wavefunction, as long as E1 − E0 is of order E1.
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Applications

How it Works in Practice

How do we construct trial wavefunctions for the purpose of making these variational
estimates of energy eigenvalues? One cannot usually guess the form for the correct
wavefunction exactly. But one usually knows the general features of the wavefunction
one wants. So one constructs a trial wavefunction that depends on some small set of
parameters, calculates the energy functional for the trial wavefunction as a function of
this small set of parameters, and then requires E be stationary with respect to those
parameters – i.e., that all the partial derivatives of E with respect to the parameters
vanish. In effect, we are explicitly applying the stationarity condition to some subset of
all possible wavefunctions under the expectation that we can get a very good
approximation to the energy with a good approximation of the correct wavefunction
thanks to the stationarity of E with respect to variations in ψ.

An important guide is to require that the trial wavefunctions be eigenfunctions of any
other Hermitian operators A that commute with H. These are usually related to
symmetries of the Hamiltonian. For example, a Hamiltonian in which the potential is
an even function of posiition commutes with the parity opertator and hence any
eigenfunctions of H must have definite parity. The generators of continuous symmetry
transformations are also good examples; rotation symmetry, for example, implies that
angular momentum commutes with H. If one makes these requirements on the trial
wavefunctions, one is assured that they are at least members of the same subspace as
the true eigenfunctions.
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Applications (cont.)

Example 9.1: Particle in a Box

A good first example is to do a variational-method estimate for a problem whose exact
solution we already know – the particle in a box. The Hamiltonian guides our choice
of trial wavefunction in two ways. First, we know the trial wavefunction should vanish
at the box edge and outside. If the wavefunction’s derivative is large at any point, the
kinetic energy will be big, so the wavefunction should rise smoothly and slowly away
from zero at the box edges. Second, the Hamiltonian commutes with the parity
operator, so the trial wavefunction should be even or odd. We try an even function
because it can have no zeroes and thus also have the smallest possible derivative and
hence kinetic energy. We try

ψ(x ; c) =

8<:
„“

L
2

”2
− x2

«`
1 + c x2

´
|x | ≤ L

2

0 |x | > L
2

(9.26)

This is the simplest polynomial trial function we can use. Evenness requires that we
only include even powers of x . A simple quadratic could satisfy the requirement of
going to zero at the box edges, but admits no free parameters: it must be“
(L/2)2 − x2

”
(an overall constant multiplier just sets the normalization and cancels

out between the numerator and denominator of the energy functional). So the next
possibility is a polynomial containing x2 and x4, and the above is just one convenient
way to parameterize it (again, neglecting any overall scale factor).
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Applications (cont.)

Calculating the integrals for the energy functional is a somewhat nontrivial algebraic
exercise that can be done correctly in Mathematica, yielding

E [ψ]→ E [c] =
3 ~2

m L2

11
“

L
2

”4
c2 + 14

“
L
2

”2
c + 35“

L
2

”4
c2 + 6

“
L
2

”2
c + 21

(9.27)

We then find the extrema of E(c) with respect to c, dE/dc = 0, yielding

26

„
L

2

«4

c2 + 196

„
L

2

«2

c + 42 = 0 (9.28)

with solutions

c1 = −
0.221075“

L
2

”2
c2 = −

7.31771“
L
2

”2
(9.29)

Section 9.2 Variational Method: Applications Page 509



Applications (cont.)

We may then calculate E for these values, giving

E(c1) = 4.93488
~2

m L2
E(c2) = 51.0652

~2

m L2
(9.30)

The reason that the second solution has so much higher energy is that it has zeros at

x = ±c
−1/2
2 ≈ 0.185 L, hence its derivative and its kinetic energy is much larger than

the c1 state, which has no zeros. The true ground state energy is

En=1 =
~2π2

2 m L2
= 4.93480

~2

m L2
(9.31)

which is shockingly close to E(c1). Plotting the trial function shows that it is a very
good match to the true ground state wavefunction.
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Applications (cont.)

Another interesting fact is that the second solution, using c2, is a decent
approximation to the second excited state, n = 3:

En=3 = 9En=1 = 44.4132
~2

m L2
(9.32)

There is a general theorem on this point, the Hylleraas-Undheim Theorem, which
essentially states that, if the trial wavefunction depends on a set of parameters, the
alternate solutions for the parameters giving non-minimal extrema of E yield estimates
for the energies of the excited states of the system.
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Applications (cont.)

Example 9.2: Other Examples

A few other examples of simple analytically soluble problems that can be approximated
quite well or perfecty by the variational method are:

I The simple harmonic oscillator – a Gaussian trial function will recover the
ground state energy and wavefunction exactly because the ground state
wavefunction is a Gaussian. A Gaussian times a polynomial will cover the
excited states exactly, also, via the Gram-Schmidt orthogonalization procedure.

I Bound state of a δ-function potential well. The trial function should be a
decaying exponential.
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Ehrenfest’s Theorem

Ehrenfest’s Theorem

How do expectation values evolve in time? We expect that, as quantum effects
becomes small, the fractional uncertainty in a physical observable Ω, given byq
〈(∆Ω)2〉/〈Ω〉, for a state |ψ 〉, becomes small and we need only consider the

expectation value 〈Ω〉, not the full state |ψ 〉. So, the evolution of expectation values
should approach classical equations of motion as ~→ 0. To check this, we must first
calculate how expectation values time-evolve, which is easy to do:

d

dt
〈Ω〉 =

„
d

dt
〈ψ |
«

Ω |ψ 〉+ 〈ψ |Ω
„

d

dt
|ψ 〉
«

+ 〈ψ |
„

dΩ

dt

«
|ψ 〉

= −
i

~
[− (〈ψ |H)Ω |ψ 〉+ 〈ψ |Ω(H|ψ 〉)] + 〈ψ |

„
dΩ

dt

«
|ψ 〉

= −
i

~
〈ψ |[Ω,H]|ψ 〉+ 〈ψ |

„
dΩ

dt

«
|ψ 〉

= −
i

~
〈[Ω,H]〉+

fi
dΩ

dt

fl
(10.1)
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Ehrenfest’s Theorem (cont.)

If the observable Ω has no explicit time-dependence, this reduces to

d

dt
〈Ω〉 = −

i

~
〈[Ω,H]〉 (10.2)

Equations 10.1 and 10.2 are known as the Ehrenfest Theorem.
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Ehrenfest’s Theorem (cont.)

Applications of the Ehrenfest Theorem

To make use of it, let’s consider some examples. For Ω = P, we have

d

dt
〈P〉 = −

i

~
〈[P,H]〉

We know P commutes with P2/2 m, so the only interesting term will be [P,V (X )].
We can see what that is via Taylor expansion of V (X ):

[P,V (X )] =

"
P,
∞X
n=0

VnX
n

#
=
∞X
n=0

Vn [P,X n]

=
∞X
n=0

Vn
`
−i ~ n X n−1

´
= −i ~

dV (X )

dX

where [P,X n] = −i ~ n X n−1 can easily be proven via induction and dV (X )
dX

should be
interpreted as “take the derivative of V (x) and replace x with X everywhere.”
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Ehrenfest’s Theorem (cont.)

So we have

d

dt
〈P〉 = −

fi
dV

dX

fl
which is the standard classical result for Newton’s second law in the presence of a
potential V (x). Note that this result holds for arbitrary ~; it only becomes a good
description of the state, though, when 〈(∆X )2〉/〈X 〉2 � 1 and 〈(∆P)2〉/〈P〉2 � 1.

Another classical result is found by setting Ω = X :

d

dt
〈X 〉 = −

i

~

fi
[X ,

P2

2 m
]

fl

By the same kind of calculation as applied above, [X ,P2] = 2 i ~ P, so

d

dt
〈X 〉 =

〈P〉
m

which is the classical relation between velocity and linear momentum.
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Ehrenfest’s Theorem (cont.)

The above two results can be rewritten as

d

dt
〈P〉 = −

fi
dH

dX

fl
d

dt
〈X 〉 =

fi
dH

dP

fl
because, for the first equation, the derivative of the kinetic term in H with respect to
X vanishes, and, for the second equation, the derivative of the potential term with
respect to P vanishes. These we recognize as Hamilton’s equations.
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Correspondences between Classical and Quantum Mechanics

Poisson Brackets and Commutators

Recall in classical mechanics that the Poisson Bracket of two functions f (x , p) and
g(x , p) of the the state variables x and p is

{f , g}q,p =
∂ f

∂x

∂g

∂p
−
∂g

∂x

∂ f

∂p

We have in classical mechanics the generic result for the time evolution of a function
F of the state variables x , p

df

dt
= {f ,H}+

∂ f

∂t

where H(x , p) is the classical Hamiltonian. Notice how similar this is to Ehrenfest’s
Theorem; if one replaces f (x , p) with the expectation value of the analogous quantum
operator F (X ,P) and the Poisson bracket with − i

~ [F ,H], one obtains Ehrenfest’s
Theorem.
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Correspondences between Classical and Quantum Mechanics (cont.)

The above general classical expression for time evolution of a function f (x , p) yields
Hamilton’s equations when applied to f = x and f = p:

dx

dt
= {x ,H} =

∂H
∂p

dp

dt
= {p,H} = −

∂H
∂x

We saw earlier the quantum version of these equations, again with { , } replaced by
− i

~ [ , ].

Now, recall that Postulate 2 can be rewritten to specify [X ,P] rather than the matrix
elements of X and P in the {|x 〉} basis. We showed that the two formulations were
equivalent. But the latter formulation was a postulate, not derivable in any way. The
analogies we’ve drawn between classical and quantum mechanics suggest a
prescription that leads from classical mechanics to [X ,P] = i ~. Specifically, we know
in classical mechanics that {x , p}x,p = 1 (just calculate it). We’ve seen above that, in
many cases, quantum mechanical Ehrenfest relations reduce to the equations of
classical mechanics if we make the correspondence − i

~ [ , ]↔ { , }q,p where q and p
are the variables that define the classical trajectory and that are replaced by the
operators Q and P in quantum mechanics. This correspondence would give, for
example, [X ,P] = i ~. Morover, it provides a mean to convert any classical problem to
a quantum mechanical problem. It’s not a derivation, but it is a prescription for what
the Postulate 2 commutators should be; along with the other postulates, it defines
quantum mechanics completely.
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Correspondences between Classical and Quantum Mechanics (cont.)

The next interesting correspondence is a direct one between the Schrödinger Equation
and the Hamilton-Jacobi equation of classical mechanics (don’t worry if you don’t
know know what the latter is.)

You of course know and love the Schrödinger Equation, which, projected onto the
{|x 〉} basis, is

−
~2

2 m

∂2ψ

∂x2
+ V (x)ψ = i ~

∂ψ

∂t

where V (x) is the classical potential in which the particle moves. We know from the
WKB approximation that a reasonable approximate form for the wavefunction is

ψ(x , t) =
p
ρ(x , t) e

i
~ S(x,t) (10.3)
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Correspondences between Classical and Quantum Mechanics (cont.)

Let’s insert the above form into the Schrödinger Equation:

−
~2

2 m

(
∂2√ρ
∂x2

+
2 i

~
∂
√
ρ

∂x

∂S

∂x
−

1

~2

√
ρ

„
∂S

∂x

«2

+
i

~
√
ρ
∂2S

∂x2

)
e

i
~ S + V (x)

√
ρ e

i
~ S

= i ~

∂
√
ρ

∂t
+

i

~
√
ρ
∂S

∂t

ff
e

i
~ S

The equation contains terms up to second order in ~; neglect all terms containing ~ or
~2. (To do this correctly, one ought to really divide through by S(x) and discard all
terms that have the dimensionless parameter ~/S(x)� 1, but that will yield the same

result.) This leaves (canceling the common
√
ρ e

i
~ S )

1

2 m

„
∂S

∂x

«2

+ V (x) +
∂S

∂t
= 0

This is the Hamilton-Jacobi Equation of classical mechanics. It is equivalent to (in
fact, derived from) Hamilton’s Equations. It is not particularly remarkable that we
obtain a classical equation of motion by taking the classical limit of the Schrödinger
Equation; we’ve done the same thing with the Ehrenfest relations. The remarkable
thing is the role the classical action plays in the quantum-mechanical problem in the
semiclassical limit, as we saw in connection to the WKB approximation.
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Direct Product Spaces

Direct Product Spaces

Suppose we have two Hilbert spaces, V1 and V2, each containing the states
corresponding to a particular degree of freedom (dof); a typical example is that V1

contains the states for particle 1 and V2 for particle 2, where both particles live in a
single spatial dimension. Then we can build a new Hilbert space, V = V1 ⊗ V2, that
contains the state of the two particles considered together. This space is called a
direct product space. Formally, we construct the elements of the space in three steps:

I First, we define elements that are combinations of single states from the two
factor spaces:

|v , w 〉(1)⊗(2) ≡ |v 〉(1) ⊗ |w 〉(2)

where the superscripts on each ket outside the ket bracket indicates which
particle’s Hilbert space it belongs to: the (1) kets belong to V1, the (2) kets to
V2 and the (1)⊗(2) kets to V = V1 ⊗ V2. We emphasize that this definition
cannot be algebraically reduced to something simpler. An example of the above
would be for |v 〉(1) to be a basis element of the position-basis representation for
particle 1, |bx 〉, and for |w 〉(2) to be a basis element of the position-basis
element for particle 2, |ex 〉. The direct product vector
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Direct Product Spaces (cont.)

|bx ,ex 〉(1)⊗(2) = |bx 〉(1) ⊗ |ex 〉(2) is simply the state in which particle 1 is at bx and
particle 2 is at ex ; it can be written in no simpler fashion.

Note that many authors would have written |x1 〉, |x2 〉 and |x1, x2 〉, dropping
the superscripts altogether and relying on context to make it clear which state
refers to particle 1, particle 2, and the combination of the two. There is nothing
wrong with this, but the use of the numbered subscripts makes it seem that the
position value x1 is only available to the first particle and the position value x2

only to the second particle. However, the particles live in the same physical
space, both x1 and x2 are accessible to both, and it would be perfectly
reasonable to have |x2 〉(1), |x1 〉(2), and |x2, x1 〉(1)⊗(2) = |x2 〉(1) ⊗ |x1 〉(2).

I Second, all possible linear combinations operate in the expected manner,
assuming the two factor spaces V1 and V2 have the same field (complex
numbers for what we usually consider):“

α|v 〉(1)
”
⊗
“
β|w 〉(2)

”
= αβ |v ,w 〉(1)⊗(2)“

α1|u1 〉(1) + α2|v1 〉(1)
”
⊗ |w 〉(2) = α1|u1,w 〉(1)⊗(2) + α2|v1,w 〉(1)⊗(2)

|u 〉(1) ⊗
“
β1|v2 〉(2) + β2|w2 〉(2)

”
= β1|u, v2 〉(1)⊗(2) + β2|u,w2 〉(1)⊗(2)
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Direct Product Spaces (cont.)

I Third, the inner product is defined as the obvious extension of the inner product
in each space:

(1)⊗(2)〈v1,w1 |v2,w2 〉(1)⊗(2) ≡
“

(1)〈v1 |v2 〉(1)
”“

(2)〈w1 |w2 〉(2)
”

By including linear combinations and requiring the scalar fields of the two products
spaces be the same, we ensure that the direct product space is a vector space. A
reasonable basis for the product space is simply the set of direct products of the bases
of the individual spaces; that is, suppose {|n 〉(1)} are a basis for the first space and
{|m 〉(2)} are a basis for the second space. Then a basis for the direct product space
consists of all products of the form

|n,m 〉(1)⊗(2) = |n 〉(1) ⊗ |m 〉(2)

where both n and m run over their full range of values. If the two factor spaces have
dimension N and M (with these possibly being infinite), then the direct product space
has dimension N × M.
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Direct Product Spaces (cont.)

By defining the inner product as above, the direct product space inherits all the
necessary inner product properties from the factor spaces, rendering the direct product
space an inner product space.

Finally, the restriction to normalizable states that occurs to render the inner product
space into the physical Hilbert space is inherited via the inherited definition of inner
product. So we are automatically assured that all elements of the direct product space
are normalizable if the factor-spaces are physical Hilbert spaces.

Note that the fact that the direct product space is a physical Hilbert space ensures
that Postulate 1 continues to be satisfied.
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Direct Product Spaces (cont.)

The Null Vector, Inverse Vectors, Invertibility, and Entanglement

The null vector and inverse vectors are a bit tricky in direct product spaces because
there are multiple ways to construct them. First, any direct product in which one
factor is a null vector from either space gives the null vector of the direct product
space:

|0 〉(1) ⊗ |w 〉(2) = |0 〉(1)⊗(2) = |v 〉(1) ⊗ |0 〉(2)

We can see that the two factor forms are equivalent by calculating their norms: in
each case, the norm vanishes because the norm of the direct product is the product of
the norms, and one factor has vanishing norm in either case. The definition of inner
product requires that the null vector be the only vector that has vanishing norm, so we
must take as a definition that all these ways of obtaining |0 〉(1)⊗(2) are equivalent in
order for the direct product space to be an inner product (and hence physical Hilbert)
space.

An implication of this is that the mapping from the two factor spaces to the direct
product space is not one-to-one and hence is noninvertible.
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Direct Product Spaces (cont.)

The same issue arises for inverses. There are multiple pairs in the factor spaces that
map to the inverse of a given member of the direct product space:

−|v ,w 〉(1)⊗(2) = −
“
|v 〉(1) ⊗ |w 〉(2)

”
=
“
−|v 〉(1)

”
⊗ |w 〉(2) = |v 〉(1) ⊗

“
−|w 〉(2)

”
We can see another way in which the mapping from factor space pairs to the direct
product space is noninvertible: in addition to not being one-to-one, it is also not onto.
That is, not every element of the direct product space can be written purely as a
product of elements of the factor spaces. A simple example can be construction from
any two basis elements of the direct product space:

|n1 〉(1) ⊗ |m1 〉(2) + |n2 〉(1) ⊗ |m2 〉(2) 6= |v 〉(1) ⊗ |w 〉(2)

for all |v 〉(1) in V1 and all |w 〉(2) in V2

It is easy to prove this by assuming that the above is true, expanding the |v 〉(1) in
terms of the {|n 〉(1)} and |w 〉(2) in terms of the {|m 〉(2)}, and obtaining a
contradiction. We will do this later.
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Direct Product Spaces (cont.)

States of the above type are called entangled — neither degree of freedom (think
“particle”) is in a particular state in its own space! This is a fundamentally quantum
mechanical phenomenon that arises from the fact that the state of a particle is
represented by vectors in a Hilbert space and that these Hilbert spaces can be direct
producted together in a noninvertible manner. Entanglement, which arises from the
noninvertibility, makes the physics of systems with multiple degrees of freedom more
than just the some of the parts.
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Direct Product Spaces (cont.)

Direct Products vs. Direct Sums

Recall that we defined direct sums early on in the course in connection with the idea
of vector subspaces: a direct sum space V1 ⊕ V2 consists of all linear combinations of
elements of the two spaces V1 and V2. Since it is required that one be able to add
elements of V1 and V2, they must already be subspaces of a larger vector space V:
that is, elements of V1 and of V2 already belong to V and there is already a rule for
how to add them.

A direct product space is quite different. Perhaps the most interesting difference is the
fact that that the direct product space V1 ⊗ V2 requires no prior existence of a vector
space V in which V1 ⊗ V2 is contained. That is, V1 ⊗ V2 is a new vector space that is
in no way reducible in terms of V1 and V2 separately. Of course, V1 ⊗ V2 may look
like a space we have already seen in some cases, but that is not a generic statement.
In general, V1 ⊗ V2 is just a new object.

One specific technical difference between direct sum and direct product spaces is that
the construction of the former is invertible while that of the latter is not. Any element
of V1 ⊕ V2 can be written uniquely as a sum of elements of V1 and V2: just
decompose it in terms of the basis of V1 ⊕ V2 and split up the terms into basis
elements belonging to V1 and to V2. As we explained above, such a decomposition is
not in general possible for elements of a direct product space.

Section 11.1 Multiparticle Systems: Direct Product Spaces Page 533



Direct Product Spaces (cont.)

Pitfalls in Understanding Direct Product Spaces

In the case of taking the direct product of the Hilbert spaces of two particles that live
in the same spatial space, a typical pitfall is the desire to put the particles in the same
Hilbert space. Be wary of this! Except through explicit interactions (which we will
encounter later) of the two particles, the Hilbert space states of the two particles are
totally independent even though, when one projects onto, say, the position basis, both
wavefunctions give the probability of detecting the two particles in the same physical
space and may overlap.

Another possible stumbling block: don’t confuse the Hilbert space dimension with the
dimension of the physical space that the particles live in; we will give examples below.

Section 11.1 Multiparticle Systems: Direct Product Spaces Page 534



Direct Product Spaces (cont.)

Examples of Direct Product Spaces

I As we have indicated above, one can construct a direct product Hilbert space
from multiple single-dof Hilbert spaces. For the free particle, each factor space
has dimension equal to the size of the real numbers, so the product space has
that size squared (which is the same). For the particle in a box or SHO, the
number of single-dof states is countably infinite; the square of that number is
also countably infinite. In both cases, the two particles move about in a single,
shared spatial dimension, and the number of degrees of spatial freedom is two:
the spatial coordinates of the two particles.

I Different spatial degrees of freedom of a single particle can be put together via a
direct product to give the full two- or three-spatial-dimensional state of that
particle.

I One can combine spatial and other degrees of freedom. For a hydrogen atom,
one factor space would consist of the three-spatial-dimensional center-of-mass
position, while the other would consist of the three-spatial-dimensional relative
electron-proton position (described by the radial quantum number n and the
angular momentum quantum numbers l2 and lz , which we will cover in detail
later). Another example would be a rigid rotator, where again one factor space
is the center-of-mass position and the other is the same l2 and lz quantum
numbers (there is no radial quantum number because the body is rigid).

I One can of course combine multiple degrees of freedom for multiple particles.
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Direct Product Spaces

Expansion of Direct Product Space States in Terms of Basis States

Our definition of direct product space states has so far been abstract. Let’s pick a
basis and expand states in terms of that basis so we can get a feel for how direct
products work. These expansions are the foundation for any kind of matrix
representation.

Let’s use {|nj 〉(1)} as the basis for V1 and {|mk 〉(2)} as the basis for V2. Let |v 〉(1)

and |w 〉(2) be vectors in the two spaces. Then we have

|v 〉(1) =
X

j

vj |nj 〉(1) |w 〉(2) =
X

k

wk |mk 〉(2)

|v 〉(1) ⊗ |w 〉(2) =

0@X
j

vj |nj 〉(1)
1A⊗ X

k

wk |mk 〉(2)
!

=
X
j,k

vj wk

“
|nj 〉(1) ⊗ |mk 〉(2)

”
=
X
j,k

vj wk

“
|nj ,mk 〉(1)⊗(2)

”
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Direct Product Spaces (cont.)

However, the above state is not the most generic possible state in the direct product
space; that would be

|u 〉(1)⊗(2) =
X
j,k

ujk |nj ,mk 〉(1)⊗(2) (11.1)

For arbitrary {ujk}, one cannot decompose ujk in the form ujk = vjwk . In particular,
let’s consider the example from earlier:

|u 〉(1)⊗(2) = |n1 〉(1) ⊗ |m1 〉(2) + |n2 〉(1) ⊗ |m2 〉(2)

We have

u11 = 1 u12 = 0 u21 = 0 u22 = 1

Let’s assume an expansion ujk = vjwk . The statement u12 = 0 implies that either
v1 = 0 or w2 = 0. But then one of u11 = v1w1 or u22 = v2w2 must vanish; they do
not. Contradiction.
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Direct Product Spaces (cont.)

Operators on Direct Product Spaces

We have constructed the vectors belonging to the direct product space. How do the
factor-space operators go over to the direct product space?

Recall our definition of operators: an operator Ω is a rule that associates to each state
|v 〉 in a Hilbert space another state |w 〉 = Ω |v 〉. This immediately makes it clear
that, when consider a direct product space V = V1 ⊗ V2, an operator Ω(1) that acts in
V1 simply does not exist in V2. The natural thing to do, then, is to assign it the
action of the identity operator in V2, I (2). This is an assumption: there is no reason
that we must do it this way, though it certainly seems like the most sensible thing to
do. Symbolically, we have

Ω(1)⊗(2) ≡ Ω(1) ⊗ I (2)

or, explicitly,

Ω(1)⊗(2)|v ,w 〉(1)⊗(2) =
“
Ω(1)|v 〉(1)

”
⊗
“
I (2)|w 〉(2)

”
Note that the individual factors in any operator direct product commute to the extent
that it does not matter in what order the factor operators and states are written as
long as the labeling makes it clear which operators act in which space.
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Direct Product Spaces (cont.)

For the sake of brevity, we will suppress the superscripts when it is clear from context
what is going on. For example, in considering two one-dimensional particles, it is
unambiguous to just write X1 and X2. If we consider product states of basis elements
in the position-basis representation, we have

X1|bx 〉(1) = bx |bx 〉(1) X2|ex 〉(2) = ex |ex 〉(2)
X1

“
|bx 〉(1) ⊗ |ex 〉(2)” =

“
X1|bx 〉(1)”⊗ “I |ex 〉(2)” = bx “|bx 〉(1) ⊗ |ex 〉(2)”

X2

“
|bx 〉(1) ⊗ |ex 〉(2)” =

“
I |bx 〉(1)”⊗ “X2 |ex 〉(2)” = ex “|bx 〉(1) ⊗ |ex 〉(2)”

The two I operators are different: they are I (1) (last line) and I (2) (second line), but
the context makes it clear that the I operator in the second line is I (2) and the I
operator in the last line is I (1).
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Direct Product Spaces (cont.)

While this prescription for how to construct direct product space operators was fairly
straightforward, we also need to test that it is consistent with the postulates of
quantum mechanics. The main thing to test is Postulate 2: do the matrix elements
(or commutators) still behave as we want them to. The answer is yes, trivially,
because of the way the inner product factorizes among the factor spaces. Specifically,
let’s calculate the matrix elements of Xj and Pj for a direct product space consisting
of N factors:*

NY
p=1

xp

˛̨̨̨
˛̨XQN

n=1(n)
j

˛̨̨̨
˛̨ NY
q=1

x ′q

+
= 〈xj |X

(j)
j |x

′
j 〉

NY
n 6=j

〈xn |I (n)|x ′n 〉

= xj δ(xj − x ′j )
NY

n 6=j

δ(xn − x ′n ) = xj

NY
n=1

δ(xn − x ′n )

*
NY

p=1

xp

˛̨̨̨
˛̨PQN

n=1(n)
j

˛̨̨̨
˛̨ NY
q=1

x ′q

+
= 〈xj |P

(j)
j |x

′
j 〉

NY
n 6=j

〈xn |I (n)|x ′n 〉

=

„
−i ~

d

dxj
δ(xj − x ′j )

« NY
n 6=j

δ(xn − x ′n )
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Direct Product Spaces (cont.)

Or, if we want to check the commutators we postulated in Section 6.5, we have

*
NY

p=1

xp

˛̨̨̨
˛̨ »XQN

m=1(m)
j ,P

QN
n=1(n)

j

– ˛̨̨̨˛̨ NY
q=1

x ′q

+

= 〈xj |
h
X

(j)
j ,P

(j)
j

i
|x ′j 〉

NY
n 6=j

〈xn |I (n)|x ′n 〉 = i ~ δ(xj − x ′j )
NY

n 6=j

δ(xn − x ′n )

= i ~
NY

n=1

δ(xn − x ′n ) (11.2)
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Direct Product Spaces (cont.)

and, for j 6= k,

*
NY

p=1

xp

˛̨̨̨
˛̨ »XQN

m=1(m)
j ,P

QN
n=1(n)

k

– ˛̨̨̨˛̨ NY
q=1

x ′q

+

=
h
〈xj |X

(j)
j |x

′
j 〉 〈xk |P

(k)
k |x

′
k 〉 − 〈xk |P

(k)
k |x

′
k 〉 〈xj |X

(j)
j |x

′
j 〉
i NY

n 6=j,k

〈xn |I (n)|x ′n 〉 = 0

because the inner products 〈xj |X
(j)
j |x

′
j 〉 and 〈xk |P

(k)
k |x

′
k 〉 commute because they are

just numbers. One could prove

»
X

QN
m=1(m)

j ,X
QN

n=1(n)

k

–
= 0 and»

P
QN

m=1(m)
j ,P

QN
n=1(n)

k

–
= 0 by a similar technique.
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The Hamiltonian and Time-Evolution

Time Evolution

For a direct product space V =
QN

n=1 Vn, there is a direct product space Hamiltonian
operator H that gives the time evolution via the Schrödinger Equation:

i ~
d

dt
|ψ 〉

QN
n=1(n) = H |ψ 〉

QN
n=1(n)

Note that it is in general not possible to write H in a simpler form; in particular, it is

in general not possible to factor H into single-dof operators, H = H
QN

m=1(m), as we
shall see later.
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The Hamiltonian and Time-Evolution (cont.)

As usual, H will have eigenstates that satisfy

H|ψE 〉
QN

n=1(n) = E |ψE 〉
QN

n=1(n)

Because H is the Hamiltonian for the whole system, E is the energy for the whole
system. For these energy eigenstates, the Schrödinger Equation is

i ~
d

dt
|ψE 〉

QN
n=1(n) = E |ψE 〉

QN
n=1(n)

and the time evolving solution is

|ψE (t) 〉
QN

n=1(n) = e−
i
~ E t |ψE 〉

QN
n=1(n)
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The Hamiltonian and Time-Evolution (cont.)

Separable vs. Non-Separable Hamiltonians

A separable Hamiltonian is one that can be written in the form

H
QN

n=1(n) =
NX

n=1

H(n) ⊗
Y
m 6=n

I (m) (11.3)

The eigenvalue-eigenvector equation simplifies to a set of single-dof Schrödinger
equations in this case. We can see this as follows. First, write down the
eigenvalue-eigenvector equation:

E |ψE 〉
QN

q=1(q) = H
QN

n=1(n)|ψE 〉
QN

q=1(q) =
NX

n=1

0@H(n) ⊗
Y
m 6=n

I (m)

1A |ψE 〉
QN

q=1(q)
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The Hamiltonian and Time-Evolution (cont.)

Now, expand the direct product space eigenstate in a basis consisting of direct
products of eigenstates of the individual single-dof Hamiltonians. We are assured that
the latter are valid bases for the individual factor spaces Vn, so we know from our
earlier discussion that the direct products of these basis elements form a basis for the
direct product space. That is, assume there exist states {|ψ

E
(n)
m
〉(n)} in Vn that satisfy

H(n) |ψ
E

(n)
m
〉(n) = E

(n)
m |ψ

E
(n)
m
〉(n)

where m tells us which eigenstate of H(n) we are referring to. The (n) superscript in

E
(n)
m is necessary because Em alone does not tell us which Hamiltonian’s eigenvalues

we are referring to (i.e., which of the H(n) is Em the eigenvalue for?). Then our basis
for the direct product space consists of direct product states of the form

NY
n=1

|ψ
E

(n)
mn

〉(n)

where mn is the index telling one that the basis state uses the mn’th eigenstate of H(n)

(yes, unfortunately, the n subscript in mn is required to be clear as we will see below).
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The Hamiltonian and Time-Evolution (cont.)

For the sake of notational brevity, we will write the above as

NY
n=1

|ψEmn
〉

because the n subscript on mn tells us the same thing as the (n) superscripts do: that
Emn is an eigenvalue and that |ψEmn

〉 is an eigenvector of H(n).

Consider the action of the Hamiltonian on a state of this type:

H
QN

n=1(n) |ψE 〉
QN

q=1(q) =
NX

n=1

0@H(n) ⊗
Y
q 6=n

I (q)

1A NY
k=1

|ψEmk
〉

=
NX

n=1

24“H(n)|ψEmn
〉
”
⊗
Y
q 6=n

“
I (q)|ψEmq

〉
”35

=
NX

n=1

Emn

0@ NY
q=1

|ψEmq
〉

1A =

 
NX

n=1

Emn

!0@ NY
q=1

|ψEmq
〉

1A
≡ Em1···mN |ψE 〉

QN
q=1(q) with Em1···mN = Em1 + Em2 + · · ·+ EmN
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The Hamiltonian and Time-Evolution (cont.)

The time evolution of the eigenstates of the direct product Hamiltonian are therefore

|ψEm1···mN
(t) 〉

QN
n=1(n) = e−

i
~ Em1···mN

t |ψEm1···mN
〉

QN
n=1(n)

= e−
i
~ Em1···mN

t

 
NY

n=1

|ψEmn
〉
!

=

 
NY

n=1

e−
i
~ Emn t |ψEmn

〉
!

One just has the direct product of the time-evolving individual single-dof eigenstates.
Note that this implies that the energies of the individual particles (or individual
degrees of freedom) are independently conserved.

One can already see the opportunity for energy degeneracies in the direct product
space when there is no such degeneracy in the single-dof states because the total
energy is the sum of the individual energies; if the individual degrees of freedom are
similar (e.g., all SHOs), then one will have many combinations of single-dof states
that yield the same energy. This energy degeneracy is critical to statistical mechanics
— the idea that many microstates (sets of individual particle energies) correspond to
the same macrostate (total energy).

Now, the above is of course a fairly boring case because there are no interactions
between the different degrees of freedom. In particular, if H includes a potential term,
the above says that the potential is not just factorizable, but it is a sum of
independent terms in the different degrees of freedom.
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The Hamiltonian and Time-Evolution

Example 11.1: Separable and non-separable combinations of two single-dof
potentials

For a particle in two spatial dimensions, the potential V (x1, x2) in a separable
Hamiltonian must be of the form V (x1) + V (x2); even V (x1, x2) = V1(x1)V2(x2) is
not separable. So, for example, V (x1, x2) = x2

1 + x4
2 is separable, but

V (x1, x2) = x2
1 x4

2 is not, and certainly V (x1, x2) =
q

x2
1 + x4

2 is not.

We can see this fact by writing the potentials in the formally correct way as operators
in the direct product space and seeing whether the operator can be written in
separable form or not. The matrix elements of the potential operator in the direct
product space can always be written as

(1)⊗(2)〈x1, x2 |V (1)⊗(2)|x ′1 , x ′2 〉(1)⊗(2) = V (x1, x2) δ(x1 − x ′1 ) δ(x2 − x ′2 )

where V (x1, x2) are the simple functions (not operators) defined above. It is natural
to define the single-particle potential operators

(1)〈x1 |V (1)|x ′1 〉(1) = V1(x1)δ(x1 − x ′1 ) = x2
1 δ(x1 − x ′1 )

(2)〈x2 |V (2)|x ′2 〉(2) = V2(x2)δ(x2 − x ′2 ) = x4
2 δ(x2 − x ′2 )
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The Hamiltonian and Time-Evolution (cont.)

With those definitions, the first potential can be written

(x2
1 + x2

2 ) δ(x1 − x ′1 ) δ(x2 − x ′2 )

=(1)⊗(2)〈x1, x2 |
h
V (1) ⊗ I (2) + I (1) ⊗ V (2)

i
|x ′1 , x ′2 〉(1)⊗(2)

The potential operator is in this case separable into two terms that are each the
identity operator in all of the factor spaces except one. The second potential can be
written

(x2
1 x2

2 ) δ(x1 − x ′1 ) δ(x2 − x ′2 ) =(1)⊗(2)〈x1, x2 |
h
V (1) ⊗ V (2)

i
|x ′1 , x ′2 〉(1)⊗(2)

In this case, the potential operator is factorizable into a direct product of two
single-particle operators, but that is not a separable operator.

The third potential cannot be decomposed in either of these simpler fashions.
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The Hamiltonian and Time-Evolution (cont.)

Example 11.2: Dependence of separability on choice of generalized coordinates

The 2D simple oscillator, which can also be thought of as two independent 1D simple
harmonic oscillators, is separable:

V (x1, x2) =
1

2
k x2

1 +
1

2
k x2

2

or, more formally,

V (1)⊗(2) =

„
1

2
k X 2

1

«
⊗ I + I ⊗

„
1

2
k X 2

2

«

where we have left out the (1) and (2) subscripts when possible.
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The Hamiltonian and Time-Evolution (cont.)

There is another separable way to write the above potential. Classically, we know the
above potential can be separated in polar coordinates:

V (r , φ) =
1

2
k r2

If we choose our factor Hilbert spaces to describe the polar coordinates r and φ
instead of x1 and x2, then, instead of factor spaces V(1) and V(2) describing the
behavior in x1 and x2, we have factor spaces V(r) and V(φ) describing the behavior in r
and φ. The potential is not only separable, but it also consists of only one term:

V (r)⊗(φ) =

„
1

2
k R2

«
⊗ I (φ)

The particle is free in the φ coordinate and looks like a 1D SHO restricted to r > 0
and with a boundary condition at r = 0.
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The Hamiltonian and Time-Evolution (cont.)

The potential

V (x1, x2) =

r
1

2
k x2

1 +
1

2
k x2

2

is clearly non-separable (and non-factorizable) in x1 and x2, but it can be rewritten in
polar coordinates as

V (r , φ) =

„
1

2
k

«1/2

r

is again separable in r and φ. Here, as with the Coulomb potential between two
particles, separability depends on the choice of the classical generalized coordinates.
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The Hamiltonian and Time-Evolution (cont.)

Example 11.3: Separability by change of variables

Some potentials are non-separable when written down in their obvious form as an
operator in a direct product space whose factor spaces are single-particle Cartesian
degrees of freedom. However, by changing the the degrees of freedom we use to
describe the system, and hence the factor Hilbert spaces, we can sometimes obtain
some amount of separability. A classic example of this type is the Coulomb interaction
between two particles. The Hamiltonian in the direct product space of the
single-particle Hilbert spaces is

H =
P2

1,x + P2
1,y + P2

1,z

2 m1
+

P2
2,x + P2

2,y + P2
2,z

2 m2

−
e2q

(X1 − X2)
2 + (Y1 − Y2)

2 + (Z1 − Z2)
2

where every operator is implied to have a (1)⊗(2) superscript and where the second
term is a shorthand for implying what the potential term’s matrix elements are in the
position basis. While the kinetic terms are trivially separable into single-particle
Hamiltonians, the potential term is definitely not.

Section 11.2 Multiparticle Systems: The Hamiltonian and Time-Evolution Page 556



The Hamiltonian and Time-Evolution (cont.)

However, in this particular case, the problem can be rewritten into new degrees of
freedom that are, to some extent, separable. Define

XCM =
m1 X1 + m2 X2

M
PCM,x = P1,x + P2,x

X12 = X1 − X2 P12,x =
m2

M
P1,x +

m1

M
P2,x M = m1 + m2

and so on for the y and z degrees of freedom. Then the Hamiltonian becomes

H =
P2

CM,x + P2
CM,y + P2

CM,z

2 M
+

P2
12,x + P2

12,y + P2
12,z

2µ
−

e2q
X 2

12 + Y 2
12 + Z2

12

≡ HCM,x + HCM,y + HCM,z + H12

µ =
m1 m2

M
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The Hamiltonian and Time-Evolution (cont.)

In doing the above, we have implicitly chosen new factor spaces: rather than
considering the states of particle 1 and particle 2 separately, we consider the state of
the center of mass coordinate and the difference coordinate. This should be somewhat
disconcerting, as it is the first time we have considered the idea of the states in a
Hilbert space representing anything besides the state of a single particle. But the
redefinition is completely reasonable; the first Hilbert space is the state describing the
system’s center of mass (where it is, how fast it moves, etc.) and the second is the
one describing the different coordinate (how far apart the particles are, how quickly
this distance changes, etc.). In quantum mechanics, we use Hilbert space states to
represent the behavior of a system in its classical generalized coordinates, which may
or may not correspond to single-particle degrees of freedom.

With the above, we see that, if, instead of considering our full Hilbert space to be the
direct product of individual states of the two particles in three-dimensional space, and
thus of six one-dimensional degrees of freedom, we consider it to be the direct product
of a one free three-dimensional particle (i.e., three one-dimensional free degrees of
freedom) and one three-dimensional particle subject to a Coulomb interaction, then
the problem is partially separable. We will see later that H12 can be separated further
by again re-choosing the classical degrees of freedom to be spherical rather than
cartesian coordinates.

The above separability proof holds for any two-particle Hamiltonian in which the
potential depends only on the vector separation of the two particles. In the above
case, the potential in fact only depends on distance between the two particles.
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Position-Space Wavefunction

Position-Space Wavefunctions

Since we frequently work with particle states in the position basis — i.e., the
position-space wavefunction — let us be explicit about how to project direct product
states onto the position basis of the direct product space.

First, what is the position basis of the direct product space? It is the direct product of
the individual position bases:

|x1, · · · , xN 〉
QN

n=1(n) =
NY

n=1

|xn 〉(n)

This is a complete basis for the direct product space because the factors are complete
bases for the factor spaces.
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Position-Space Wavefunction (cont.)

Now, let’s write the state |ψ 〉
QN

n=1(n) in terms of the position basis. That is, there are

some set of coefficients for expanding |ψ 〉
QN

n=1(n) in terms of the

{|x1, · · · , xN 〉
QN

n=1(n)}; there have to be, since the latter are a complete basis. Let’s
label those coefficients ψ(x1, · · · , xN):

|ψ 〉
QN

n=1(n)

=

Z ∞
−∞

dx ′1

Z ∞
−∞

dx ′2 · · ·
Z ∞
−∞

dx ′N ψ(x ′1 , x
′
2 , · · · , x ′N) |x ′1 , x ′2 , · · · , x ′N 〉

QN
n=1(n)

=

Z ∞
−∞

dx ′1

Z ∞
−∞

dx ′2 · · ·
Z ∞
−∞

dx ′N ψ(x ′1 , x
′
2 , · · · , x ′N)

NY
n=1

|x ′n 〉(n)
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Position-Space Wavefunction (cont.)

Then, the position space wavefunction is obtained trivially:

QN
m=1(m)〈x1, · · · , xN |ψ 〉

QN
n=1(n)

=

 
NY

m=1

(m)〈xm |
!Z ∞
−∞

dx ′1

Z ∞
−∞

dx ′2 · · ·
Z ∞
−∞

dx ′N ψ(x ′1 , x
′
2 , · · · , x ′N)

NY
n=1

|x ′n 〉(n)

=

Z ∞
−∞

dx ′1

Z ∞
−∞

dx ′2 · · ·
Z ∞
−∞

dx ′N ψ(x ′1 , x
′
2 , · · · , x ′N)

NY
n=1

(n)〈xn |x ′n 〉(n)

=

Z ∞
−∞

dx ′1

Z ∞
−∞

dx ′2 · · ·
Z ∞
−∞

dx ′N ψ(x ′1 , x
′
2 , · · · , x ′N)

NY
n=1

δ(xn − x ′n )

= ψ(x1, · · · , xN)

Let’s consider the implications of the above wavefunction for position measurement.

Since |x1, · · · , xN 〉
QN

m=1(m) projects onto the state in which degree of freedom (dof) 1
is at x1, dof 2 is at x2, etc., the squared modulus of the position-space wavefunction
|ψ(x1, · · · , xN)|2 gives the probability of measuring dof 1 to be at x1, dof 2 to be at
x2, and so on. The position space wavefunction thus gives the probability of a
particular position configuration of the ensemble of degrees of freedom.
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Position-Space Wavefunction (cont.)

In some cases, the direct product space state may be factorizable into a product of
single-dof states:

|ψ 〉
QN

n=1(n) =
NY

n=1

|ψn 〉(n)

In such cases, the position-space wavefunction can be seen to be factorizable:

ψ(x1, · · · , xN) =

 
NY

m=1

(m)〈xm |
!
|ψ 〉

QN
n=1(n) =

 
NY

m=1

(m)〈xm |
! 

NY
n=1

|ψn 〉(n)

!

=
NY

n=1

(n)〈xn |ψn 〉(n) =
NY

n=1

ψn(xn)

where we have used the definition of the single-dof position-space wavefunction,
ψn(xn) = (n)〈xn |ψn 〉(n). This form is one you may be familiar with from previous
courses. Here, we have that the direct product space position wavefunction is, literally,
the arithmetic product of the individual dof position-space wavefunctions.
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Position-Space Wavefunction (cont.)

This simple outcome — arithmetic product instead of direct product — arises because
the position-space wavefunction is not the Hilbert space state itself, but gives the
expansion coefficients in terms of the position basis. The coefficients of such
expansions are always numbers (regardless of the basis in terms of which one
expands), hence we expect to end up with arithmetic multiplication of numbers
instead of direct product.

The above concept of course generalizes to any basis: momentum-basis, energy-basis,
etc. In all cases, the wavefunction for that basis, which is of course just the
coefficients of the expansion of the state in that basis, gives the probability of that
particular configuration for the ensemble of the degrees of freedom.

One may even end up with “hybrid” wavefunctions. As we will see later, we describe
particles with intrinsic spin as living in the direct product space of a standard particle
Hilbert space (three dof) and a Hilbert space that describes spin (it turns out to be a
vector space of dimension 2 j + 1 where j is the spin). One might choose to use the
position basis for the spatial dof; for the spin dof, one typically chooses a basis of Sz ,
spin z-projection, eigenstates (see Examples 3.3, 3.7, 3.14). The expansion coefficients
in the resulting direct product basis can be thought of as a
“position-space/spin-space” wavefunction.
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Indistinguishable Particles

The Basic Problem

We have assumed that the degrees of freedom under study are distinguishable: we can
label them and identify them. For example, we call one “1” and the other “2”, and no
matter where we observe them in whatever space they live in, it is clear which is
which. This is trivial if the degrees of freedom are different — e.g., two different
spatial dimensions for a single particle, two different kinds of degrees of freedom for an
object (position and rigid body orientation), etc. It is nontrivial if the degrees of
freedom are the same — e.g., two particles in the same single spatial dimension.

In particular, fundamental particles are in general indistinguishable — one electron is
indistinguishable from another because an electron has no internal degrees of freedom
that can be used to label it (we neglect particle spin for now.)

So what? Our construction of the position or momentum operator for a particular
particle in the direct product space is now called into question. Recall, we defined

X
(1)⊗(2)
1 ≡ X

(1)
1 ⊗ I (2)

But, if we cannot distinguish particle 1 from particle 2, how do we know whether our
“X” measurement is a measurement of particle 1 or particle 2?

We must revisit our construction of direct product space states and operators — i.e.,
Postulates 1, 2, and 3 — when we consider systems of indistinguishable particles.
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Indistinguishable Particles (cont.)

States for Indistinguishable Particles

Let’s first revisit Postulate 1. We need the states to live in a Hilbert space. But
nothing says that we must take the entire direct product Hilbert space to be our
Hilbert space.

Let’s first elucidate better how the indistinguishability of the particles relates the two
factor spaces. The factor spaces V1 and V2 must be identical if the particles are
indistinguishable. Note that we are not saying they are the same space; but rather
that they are identical to each other in every way, in the same way that the x and y
axes in two dimensions are identical but are separate spaces.

One implication is that for any state |v 〉(1) in V1, there is a matching state |v 〉(2) in
V2 and vice versa. This is not necessarily true for distinguishable particles or
distinguishabel degrees of freedom.
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Indistinguishable Particles (cont.)

Operators for Indistinguishable Particles

Given that V1 and V2 are identical, we recognize that for any operator Ω(1) acting in
V1, there is a matching operator Ω(2) acting in V2 that acts in an identical manner on
V2 as Ω(1) acts on V1. What do we mean by “identical”? An operator is a rule
assigning to any input ket an output ket. We’ve already stated that for any |v 〉(1) in
V1, there is a corresponding |v 〉(2) in V2. Ω(1)|v 〉(1) is another ket |w 〉(1) in V1. By
saying that V1 and V2 are identical, we are assured there is a state |w 〉(2) that
matches up with |w 〉(1). But the operator Ω(2) acting on |v 〉(2) generates some
output state Ω(2)|v 〉(2) in V2. When we say that the action of Ω(2) in V2 is identical
to that of Ω(1) in V1, we are saying:

Given |v 〉(1) ↔ |v 〉(2), |w 〉(1) = Ω(1)|v 〉(1), Ω(1) ↔ Ω(2), and |w 〉(1) ↔ |w 〉(2),

then |w 〉(2) = Ω(2)|v 〉(2)

(↔ indicates “correspondence”). One could exchange the last condition and the
inference, but the point is the same: there is a matching of the action of the operators.
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Indistinguishable Particles (cont.)

Back to States for Indistinguishable Particles

The above discussion of operators implies that, given two eigenvalues bω and eω, bω 6= eω
and corresponding eigenstates |bω 〉 and |eω 〉 for a single-particle operator Ω, the state
|bω, eω 〉(1)⊗(2) is an eigenstate for both Ω(1) and Ω(2) with eigenvalues bω and eω for
particles 1 and 2, respectively. But, if the particles are indistinguishable, there is no
experimental way to create a state that has particle 1 is in state |bω 〉 and particle 2 in
state |eω 〉. We must consider linear combinations of the form

α |bω, eω 〉(1)⊗(2) + β |eω, bω 〉(1)⊗(2)

Furthermore, we must require that the state be unchanged under exchange of the two
particles’ eigenvalues because, if it were not, then the particles would be
distinguishable. So, we require

α |eω, bω 〉(1)⊗(2) + β |bω, eω 〉(1)⊗(2) = γ
h
α |bω, eω 〉(1)⊗(2) + β |eω, bω 〉(1)⊗(2)

i

Section 11.4 Multiparticle Systems: Indistinguishable Particles Page 568



Indistinguishable Particles (cont.)

We thus obtain the conditions

α = γ β β = γ α =⇒ γ2 = 1 α2 = β2

Note that we have the square, not the modulus squared, of each variable, which
implies that the solutions are

γ = 1 β = α and γ = −1 β = −α

So the allowed states are (up to normalization)

|bω, eω 〉(1)⊗(2)
+ = |bω, eω 〉(1)⊗(2)

S = |bω, eω 〉(1)⊗(2) + |eω, bω 〉(1)⊗(2)

|bω, eω 〉(1)⊗(2)
− = |bω, eω 〉(1)⊗(2)

A = |bω, eω 〉(1)⊗(2) − |eω, bω 〉(1)⊗(2)

These states are symmetric and antisymmetric under exchange of the two particles.

Since the original “distinguishable particle” states |bω, eω 〉(1)⊗(2) form a basis for the
space (because the eigenstates of any Hermitian operator are a basis), the ensemble of
both symmetric and antisymmetric states also form a basis for the space.
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Indistinguishable Particles (cont.)

However, we may not allow both kinds of states in our Hilbert space since. If both
exist, we can construct the “distinguishable states” by linear combinations:

1

2

“
|bω, eω 〉(1)⊗(2)

+ + |bω, eω 〉(1)⊗(2)
−

”
= |bω, eω 〉(1)⊗(2)

This is to be expected, as the ensemble of symmetric and antisymmetric states form a
basis for the whole product space. So, what we must do is restrict to either the
symmetric or antisymmetric part of the basis. By restricting the basis, we restrict the
entire space, of course; we restrict the physical Hilbert space to contain either
symmetric or antisymmetric states. We shall see later that these two kinds of particles
are called bosons and fermions and that the above requirement has significant physical
consequences.
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Indistinguishable Particles (cont.)

Back to Operators for Indistinguishable Particles

The following discussion is not present in Shankar.

Now, we have the problem that our allowed states are no longer eigenstates of our
operators. For example:

Ω
(1)⊗(2)
1 |bω, eω 〉(1)⊗(2)

± =
“
Ω

(1)
1 ⊗ I (2)

”
|bω, eω 〉(1)⊗(2)

±

=
“
Ω

(1)
1 ⊗ I (2)

”“
|bω, eω 〉(1)⊗(2) ± |eω, bω 〉(1)⊗(2)

”
= bω |bω, eω 〉(1)⊗(2) ± eω |eω, bω 〉(1)⊗(2)

=
bω
2

“
|bω, eω 〉(1)⊗(2)

+ + |bω, eω 〉(1)⊗(2)
−

”
±
eω
2

“
|bω, eω 〉(1)⊗(2)

+ − |bω, eω 〉(1)⊗(2)
−

”
=
eω ± bω

2
|bω, eω 〉(1)⊗(2)

+ +
eω ∓ bω

2
|bω, eω 〉(1)⊗(2)

−

It makes sense that there is a problem because the above operator distinguishes the
particles by picking one to operate on. We need new operators.
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Indistinguishable Particles (cont.)

How do we construct operators that respect the indistinguishable nature of the
particles? Recall that, in the case of distinguishable particles, the operator on the
product space to measure some observable ω for particle 1 would be

Ω
(1)⊗(2)
1 = Ω(1) ⊗ I (2) and for particle 2 would be Ω

(1)⊗(2)
2 = I (1) ⊗ Ω(2). So, to

construct the indistinguishable particle analogue, we simply average and difference the
two:

Ω
(1)⊗(2)

=
1

2

“
Ω

(1)⊗(2)
1 + Ω

(1)⊗(2)
2

”
=

1

2

“
Ω(1) ⊗ I (2) + I (1) ⊗ Ω(2)

”
h
δΩ(1)⊗(2)

i2
=
h
Ω

(1)⊗(2)
1 − Ω

(1)⊗(2)
2

i2
=
h
Ω(1) ⊗ I (2) − I (1) ⊗ Ω(2)

i2
That is, we construct the two linear combinations of Ω

(1)⊗(2)
1 and Ω

(1)⊗(2)
2 that are

symmetric under exchange of the two particles. We will see below why we need the
absolute value for the difference operator. Note that we mathematically allow the

“distinguishable particle operators” Ω
(1)⊗(2)
1 and Ω

(1)⊗(2)
2 , but we do not allow them

physically: any indistinguishable particle observable must be made of a linear
combination of the above type.
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Indistinguishable Particles (cont.)

The action of the above operators on our allowed states is then

Ω
(1)⊗(2)|bω, eω 〉(1)⊗(2)

± =
1

2

“
Ω(1) ⊗ I (2) + I (1) ⊗ Ω(2)

”“
|bω, eω 〉(1)⊗(2) ± |eω, bω 〉(1)⊗(2)

”
=
bω + eω

2
|bω, eω 〉(1)⊗(2) ±

eω + bω
2
|bω, eω 〉(1)⊗(2)

=
bω + eω

2
|bω, eω 〉(1)⊗(2)

±h
δΩ(1)⊗(2)

i2
|bω, eω 〉(1)⊗(2)

± =
h
Ω(1) ⊗ I (2) − I (1) ⊗ Ω(2)

i2 “
|bω, eω 〉(1)⊗(2) ± |eω, bω 〉(1)⊗(2)

”
= (bω − eω)2 |bω, eω 〉(1)⊗(2) ± (eω − bω)2 |bω, eω 〉(1)⊗(2)

= (bω − eω)2 |bω, eω 〉(1)⊗(2)
±

In both cases, the expression did not vanish for the (−) case because the two states
being differenced are different states. We see why we needed the absolute value for
the difference operator: had we note taken the absolute value, the sign of the

eigenvalue would have distinguished |bω, eω 〉(1)⊗(2)
± from |eω, bω 〉(1)⊗(2)

± .
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Indistinguishable Particles (cont.)

Bosons and Fermions

We have explained about how we must restrict the physical Hilbert space to either the
symmetric or antisymmetric piece for indistinguishable particles. Since any sum of
symmetric states is also a symmetric state, and similarly for antisymmetric states, we
see that the each of these restricted spaces is a subspace, and hence we may write the
direct product as a direct sum:

V(1)⊗(2) = V+ ⊕ V− = VS ⊕ VA

Recall that the above does not imply that V(1)⊗(2) is the union of the two subspaces:
the direct sum spaces is bigger than either of the subspaces V+ and V− because there
are linear combinations of symmetric and antisymmetric states – such as the
|bω, eω 〉(1)⊗(2) example considered earlier — that do not belong to either subspace. The
result is that the restriction to V+ or V− significantly reduces the number of states
available. For Hilbert spaces that have countably or uncountably infinite dimension,
this reduction means little, but the idea is the same.

An analogy would be think of V(1)⊗(2) as the real plane, V+ as all the vectors along
the line y = x , and V− as all the vectors along the line y = −x . The two spaces V+

and V− are subspaces and their linear combinations give the entire space V(1)⊗(2), but
their union would just be the points satisfying y = ±x .
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Indistinguishable Particles (cont.)

One might be tempted to think that V+ and V− are in some sense identical, that for
every state in V+ there is a state in V− and vice versa. This turns out not to be true:
consider the symmetric and antisymmetric versions of the “distinguishable particle
state” |ω, ω 〉(1)⊗(2). It is clear that

|ω, ω 〉(1)⊗(2)
+ = |ω, ω 〉(1)⊗(2)

|ω, ω 〉(1)⊗(2)
− = 0

(where 0 means the null vector here). That is, there is a subset of states in V+ for
which there is no partner in V−.

We note that the above statement is the Pauli Exclusion Principle: two
indistinguishable particles cannot be in the same state if they are fermions because the
particle-exchange-antisymmetrized state is the null state. There is no such prohibition
on bosons since such states are automatically symmetric under particle exchange.
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Indistinguishable Particles (cont.)

Expansions in Terms of Symmetric and Antisymmetric Bases

In constructing states in terms of V+ or V− basis elements, we need to be careful to
avoid double-counting. For distinguishable particles, our generic 2-particle state is of
the form (see Equation 11.1)

|u 〉(1)⊗(2) =
X
j,k

ujk |vj ,wk 〉(1)⊗(2)

where there is no restriction on j and k. If we specialize to a system with two particles
that are identical but distinguishable, the above becomes

|u 〉(1)⊗(2) =
X
j,k

ujk |ωj , ωk 〉(1)⊗(2)

where we have labeled the single particle states by ωj and ωk instead of vj and wk

because the two factor spaces are now identical (i.e., we should use vk instead of wk )
and for consistency with our early notation (use ωj , ωk instead of vj , vk ). There is no
restriction on j and k yet.
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Indistinguishable Particles (cont.)

Let’s now rewrite in terms of the symmetric and antisymmetric bases, still treating the
particles as distinguishable:

|u 〉(1)⊗(2) =
X

j

ujj |ωj , ωj 〉(1)⊗(2)

+
X
j>k

h
ujk |ωj , ωk 〉(1)⊗(2) + ukj |ωk , ωj 〉(1)⊗(2)

i
=
X

j

ujj |ωj , ωj 〉(1)⊗(2)

+
X
j>k

h ujk√
2

“
|ωj , ωk 〉

(1)⊗(2)
+ + |ωj , ωk 〉

(1)⊗(2)
−

”
+

ukj√
2

“
|ωj , ωk 〉

(1)⊗(2)
+ − |ωj , ωk 〉

(1)⊗(2)
−

” i
Now, define

ujk,+ =
ujk + ukj√

2
|ωj , ωk 〉

(1)⊗(2)
+ =

1
√

2

“
|ωj , ωk 〉(1)⊗(2) + |ωk , ωj 〉(1)⊗(2)

”
ujk,− =

ujk − ukj√
2

|ωj , ωk 〉
(1)⊗(2)
− =

1
√

2

“
|ωj , ωk 〉(1)⊗(2) − |ωk , ωj 〉(1)⊗(2)

”
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Indistinguishable Particles (cont.)

Therefore, we have

=
X

j

ujj |ωj , ωj 〉(1)⊗(2)

+
X
j>k

„
ujk + ukj√

2
|ωj , ωk 〉

(1)⊗(2)
+ +

ujk − ukj√
2
|ωj , ωk 〉

(1)⊗(2)
−

«
≡
X

j

ujj |ωj , ωj 〉(1)⊗(2) +
X
j>k

“
ujk,+ |ωj , ωk 〉

(1)⊗(2)
+ + ujk,− |ωj , ωk 〉

(1)⊗(2)
−

”

We have pulled out the j = k part of the sum because there is no antisymmetric
contribution to it and because the state does not get a 1/

√
2 in front. We have

properly normalized the + and − states assuming the “distinguishable particle” states
are normalized. We explicitly see the decomposition V(1)⊗(2) = V+ ⊕ V−. Also, now
instead of coefficients ujk with j > k and j < k allowed, we consider only the
coefficients ujk,+ and ujk,− with j > k allowed. Same number of free parameters, but
labeled in a different way.
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Indistinguishable Particles (cont.)

Now, if we consider identical, indistinguishable particles, we need to restrict to states
that are either purely symmetric or antisymmetric. In the above, this is simple: for
symmetric states, we set all ujk,− = 0, and for antisymmetric states, we set all ujj = 0
and all ujk,+ = 0. The resulting two kinds of states are

|u 〉(1)⊗(2)
+ =

X
j

ujj |ωj , ωj 〉(1)⊗(2) +
X
j>k

ujk,+ |ωj , ωk 〉
(1)⊗(2)
+

|u 〉(1)⊗(2)
− =

X
j>k

ujk,− |ωj , ωk 〉
(1)⊗(2)
−

If the |ωj , ωk 〉(1)⊗(2) have unity norm, then |ωj , ωj 〉(1)⊗(2) and |ωj , ωk 〉
(1)⊗(2)
± have

unity norm, so the normalization condition on the states isX
j

|ujj |2 +
X
j>k

|ujk,+|2 = 1 or
X
j>k

|ujk,−|2 = 1 (11.4)

So, the algorithm for normalizing the states is clear.
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Indistinguishable Particles

Expectation Values

Are expectation values for observables normalized correctly? Shankar goes through
some rigamarole with factors of 1/2 to get this all straight. But if we use the
“indistinguishable particle” operators we constructed earlier, then everything is
properly normalized. We can check this explicitly:

〈Ω(1)⊗(2)〉+ =
(1)⊗(2)

+〈u |Ω
(1)⊗(2)|u 〉(1)⊗(2)

+

=
X

j

|ujj |2
(1)⊗(2)

+〈ωj , ωj |Ω
(1)⊗(2)|ωj , ωj 〉

(1)⊗(2)
+

+
X
j>k

|ujk,+|2
(1)⊗(2)

+〈ωj , ωk |Ω
(1)⊗(2)|ωj , ωk 〉

(1)⊗(2)
+ (11.5)

Recall that |ωj , ωk 〉
(1)⊗(2)
± is an eigenvector of Ω with eigenvalue (ωj + ωk )/2. So the

sum becomes easy:

〈Ω(1)⊗(2)〉+ =
X

j

|ujj |2ωj +
X
j>k

|ujk,+|2
„
ωj + ωk

2

«
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Indistinguishable Particles (cont.)

For an antisymmetric state, we have

〈Ω(1)⊗(2)〉− =
X
j>k

|ujk,−|2
(1)⊗(2)

−〈ωj , ωk |Ω
(1)⊗(2)|ωj , ωk 〉

(1)⊗(2)
−

=
X
j>k

|ujk,−|2
„
ωj + ωk

2

«
(11.6)

For the difference operator, we havefih
δΩ(1)⊗(2)

i2fl
+

=
X

j

|ujj |2(0) +
X
j>k

|ujk,+|2(ωj − ωk )2 =
X
j>k

|ujk,+|2(ωj − ωk )2

fih
δΩ(1)⊗(2)

i2fl
−

=
X
j>k

|ujk,−|2(ωj − ωk )2
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Indistinguishable Particles (cont.)

It is sometimes more convenient to let both j and k run over their full range and
throw in a factor of 1/2 for the double counting because the full sums, or, for a
continuous eigenvalue, the full integrals, are easier to evaluate than the partial sums.
That is, we may rewrite Equation 11.5 as

〈Ω(1)⊗(2)〉+ =
X

j

|ujj |2
(1)⊗(2)

+〈ωj , ωj |Ω
(1)⊗(2)|ωj , ωj 〉

(1)⊗(2)
+

+
X
j>k

|ujk,+|2
(1)⊗(2)

+〈ωj , ωk |Ω
(1)⊗(2)|ωj , ωk 〉

(1)⊗(2)
+

=
1

2

X
j

|ujj,+|2
(1)⊗(2)

+〈ωj , ωj |Ω
(1)⊗(2)|ωj , ωj 〉

(1)⊗(2)
+

+
1

2

X
j 6=k

|ujk,+|2
(1)⊗(2)

+〈ωj , ωk |Ω
(1)⊗(2)|ωj , ωk 〉

(1)⊗(2)
+

=
1

2

X
j,k

|ujk,+|2
(1)⊗(2)

+〈ωj , ωk |Ω
(1)⊗(2)|ωj , ωk 〉

(1)⊗(2)
+

where we have defined ujj,+ by extending the formula for ujk,+ without modification,

ujj,+ =
ujj+ujj√

2
=
√

2 ujj .
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Indistinguishable Particles (cont.)

and 11.6 as

〈Ω(1)⊗(2)〉− =
X
j>k

|ujk,−|2
(1)⊗(2)

−〈ωj , ωk |Ω
(1)⊗(2)|ωj , ωk 〉

(1)⊗(2)
−

=
1

2

X
j 6=k

|ujk,−|2
(1)⊗(2)

−〈ωj , ωk |Ω
(1)⊗(2)|ωj , ωk 〉

(1)⊗(2)
−

=
1

2

X
j,k

|ujk,−|2
(1)⊗(2)

+〈ωj , ωk |Ω
(1)⊗(2)|ωj , ωk 〉

(1)⊗(2)
−

where ujj,− = 0 follows from the definition of ujk,−, ujj,− =
ujj−ujj√

2
= 0.

If the eigenvalue ω is continuous and we write the above as integrals (with the original
single-particle states |ω 〉 appropriately normalized given that ω is now continuous), we
have

〈Ω(1)⊗(2)〉+ =
1

2

Z
dbω Z deω |u+(bω, eω)|2 (1)⊗(2)

+〈bω, eω |Ω(1)⊗(2)|bω, eω 〉(1)⊗(2)
+

〈Ω(1)⊗(2)〉− =
1

2

Z
dbω Z deω |u−(bω, eω)|2 (1)⊗(2)

−〈bω, eω |Ω(1)⊗(2)|bω, eω 〉(1)⊗(2)
−

which are Shankar’s equations 10.3.15 and 10.3.25 with bω = x1 and eω = x2.
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Indistinguishable Particles (cont.)

Probabilities

If we do a measurement of Ω followed by a measurement (δΩ)2, we will obtain values
ωj+ωk

2
and (ωj − ωk )2 ( bω+eω

2
and (bω− eω)2 for the continuous case). (Note that Ω and

(δΩ)2 commute and are hence simultaneously diagonalizable.) From these, we may
calculate the two numbers ωj and ωk (or bω and eω), though, we don’t know which is
which; that is, we obtain

ωj or bω = 〈Ω〉 ±
rD

(δΩ)2
E

ωk or eω = 〈Ω〉 ∓
rD

(δΩ)2
E

and we don’t know which sign pair to choose because of the indistinguishability of the
particles. What is the probability of obtaining this measurement, which we shall
designate by P±(bω, eω), where the ± reminds us that the two values are unordered
because of the above indeterminacy? The above expressions for the state

normalizations (Equation 11.4) and for the expectation values 〈Ω〉± and
D
(δΩ)2

E
±

make this clear: the probability is

P±(ωj , ωk ) = |ujk,±|2 or P±(bω, eω) = |u±(bω, eω)|2

We are assured that the probability, summed or integrated over all possible outcomes,
is normalized to unity by Equation 11.4.
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Indistinguishable Particles (cont.)

Example 11.4: Two free particles of the same mass with a particle-in-a-box
attractive potential between them. Consider the cases of the particles being
distinguishable and indistinguishable.

Consider two free particles on the real line with position coordinates x1 and x2 and
suppose they experience the following attractive potential:

V (x1, x2) =


0 |x1 − x2| < L/2
∞ |x1 − x2| ≥ L/2

What are the eigenstates and energy eigenvalues of the system?

Let’s begin by writing down the full Hamiltonian in the two-particle direct product
space, where V1 and V2 are the individual Hilbert spaces for the two particles
separately.

H(1)⊗(2) =
1

2 m

h
P

(1)⊗(2)
1

i2
+

1

2 m

h
P

(1)⊗(2)
2

i2
V (1)⊗(2)

where P
(1)⊗(2)
1 = P(1) ⊗ I (2) P

(1)⊗(2)
2 = I (1) ⊗ P(2)

and (1)⊗(2)〈x1, x2 |V (1)⊗(2)|x ′1 , x ′2 〉(1)⊗(2) = V (x1, x2) δ(x1 − x ′1 ) δ(x2 − x ′2 )

The kinetic energy part of the Hamiltonian is that of two free particles, but the
potential energy is not, rendering the Hamiltonian unseparable.
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Indistinguishable Particles (cont.)

The clear solution is to change to CM and difference coordinates. One can do this in
one of two ways. The first is to rewrite the classical Hamiltonian in terms of CM and
difference coordinates and then take those difference coordinates over to operators in
QM that satisfy the canonical commutation relations. The other thing way to do it,
which is more straightforward here, is to define new QM operators in terms of the old
ones. That is

X
(1)⊗(2)
CM =

1

2

“
X

(1)⊗(2)
1 + X

(1)⊗(2)
2

”
X

(1)⊗(2)
12 = X

(1)⊗(2)
1 − X

(1)⊗(2)
2

P
(1)⊗(2)
CM =

1

2

“
P

(1)⊗(2)
1 + P

(1)⊗(2)
2

”
P

(1)⊗(2)
12 = P

(1)⊗(2)
1 − P

(1)⊗(2)
2

One can check that the new operators satisfy the usual commutation relations
(dropping the now unnecessary (1)⊗(2) superscript):

[XCM ,PCM ] = i ~ [X ,P] = i ~
[XCM ,P12] = 0 = [X12,PCM ] [X12,XCM ] = 0 = [P12,PCM ]
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Indistinguishable Particles (cont.)

The new operators have their own eigenbases, which we can express in terms of the
original bases as follows:

|xCM , x12 〉(CM)⊗(12) =
˛̨̨
xCM +

x12

2
, xCM −

x12

2

E(1)⊗(2)

|pCM , p12 〉(CM)⊗(12) =
˛̨̨
pCM +

p12

2
, pCM −

p12

2

E(1)⊗(2)

We have introduced the (CM)⊗(12) superscripting not because the kets on the left side
live in a different Hilbert space, but rather to make it clear whether a ket |xa, xb 〉
refers to an eigenstate of XCM and X12 or an eigenstate of X1 and X2. It is not an
unreasonable notation, however, because one could have begun with single-dof Hilbert
spaces VCM and V12 if one had changed to CM and relative coordinates in the
classical variables first. The Hamiltonian becomes

H =
1

2 M
P2

CM +
1

2µ
P2 + V

The first two terms are clearly separable in the new labeling of the basis, but that was
not the problem; it was the V term.
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Indistinguishable Particles (cont.)

Let’s evaluate the matrix elements of V in our new labeling of the position basis by
using the correspondence to the original labeling:

(CM)⊗(12)〈xCM , x12|V |x ′CM , x
′
12〉(CM)⊗(12)

= (1)⊗(2)
D
x1 = xCM +

x12

2
, x2 = xCM −

x12

2

˛̨̨
V

˛̨̨̨
x ′1 = x ′CM +

x ′12

2
, x ′2 = x ′CM −

x ′12
2

fl
= δ

„h
xCM +

x12

2

i
−
»
x ′CM +

x ′12
2

–«
δ

„h
xCM −

x12

2

i
−
»
x ′CM −

x ′12
2

–«
×


0 |x12| < L/2
∞ |x12| ≥ L/2

where we have used the same evaluation for the matrix element of V as we did when
we initially wrote down the Hamiltonian, but now we have replaced x1, x ′1 , x2, and x ′2
with xCM , x ′CM , x12, and x ′12.
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Indistinguishable Particles (cont.)

Let’s evaluate the product of delta functions. The expression is nonzero only when the
arguments of both delta functions vanish, which occurs when

xCM − x ′CM =
1

2

`
x ′12 − x12

´
and xCM − x ′CM =

1

2

`
x12 − x ′12

´
Therefore, we may replace xCM − x ′CM in the second delta function with the value
given by the first equation above (or, alternately, replace it in the first delta function
with the value in the second equation). This gives us for the delta function product

δ

„h
xCM +

x12

2

i
−
»
x ′CM +

x ′12
2

–«
δ

„
1

2

ˆ
x ′12 − x12

˜
+

1

2

ˆ
x ′12 − x12

˜«
= δ

„ˆ
xCM − x ′CM

˜
+

1

2

ˆ
x12 − x ′12

˜«
δ(x ′12 − x12)

Using the same kind of manipulation, we can set x12 − x ′12 to zero in the first delta
function, yielding

δ(xCM − x ′CM) δ(x12 − x ′12)

Note that we reversed the sign of the argument in the second delta function, which is
allowed because a delta function is an even functions of its argument.
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Indistinguishable Particles (cont.)

Therefore, we may rewrite the matrix element for the potential operator as

(CM)⊗(12)〈xCM , x12 |V |x ′CM , x
′
12 〉(CM)⊗(12) =

δ(xCM − x ′CM) δ(x12 − x ′12)×


0 |x12| < L/2
∞ |x12| ≥ L/2

In the end, we have relabeled our basis so the space is of the form

V = VCM ⊗ V12

and the Hamiltonian breaks into two pieces,

H = H(CM) ⊗ I (12) + I (CM) ⊗ H(12)

with H(CM) ⊗ I (12) = P2
CM and I (CM) ⊗ H(12) = P2

12 + V

where the P2
CM operator is the identity in the V12 factor space, the P2

12 operator is the
identity in the VCM factor space, and the V operator has explicitly been shown to be
the identity in the VCM factor space.
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Indistinguishable Particles (cont.)

The Hamiltonian is thus separable, giving us a free particle in xCM and a particle in a
box in x12. We know how to solve these separate single-particle problems, so we may
conclude that the eigenvalues of the Hamiltonian are

E = ECM± + E12 with ECM± = any value ≥ 0

and E12 =
~2 π2 n2

2µ L2
n > 0 any integer

and the projections of the eigenstates onto the position basis (the position-basis
wavefunctions) are

ψ(ECM±,E12),(xCM ,x12)(xCM , x12) = (CM)⊗(12)〈xCM , x12|ECM±,E12〉

=
1

√
2π ~

r
2

L
e±

i
~
√

2 M ECM± xCM

8<:
cos n π x12

L
n > 0, odd

sin n π x12
L

n > 0, even

The ± in ECM± refers to whether the solution is a right-going or left-going plane wave.
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Indistinguishable Particles (cont.)

How do we modify the above for indistinguishable particles? One way to do this would
be to replace X1 and X2 with indistinguishable particle operators and repeat the
process of recasting the Hamiltonian in terms of CM and difference coordinate
operators. This would be quite straightforward, as P = PCM , (δP)2 = P2

12, and V

would become a function of
p

(δX )2. We would solve the problem in the symmetrized
space V+ or antisymmetrized space V−, meaning that, instead of calculating the
matrix elements of the Hamiltonian in the basis

|xCM , x12〉(CM)⊗(12) =
˛̨̨
x1 = xCM +

x12

2
, x2 = xCM −

x12

2

E(1)⊗(2)

we would do the calculation in the symmetrized or antisymmetrized basis

1
√

2

“
|xCM , x12〉(CM)⊗(12) ± |xCM ,−x12〉(CM)⊗(12)

”
=

1
√

2

“ ˛̨̨
x1 = xCM +

x12

2
, x2 = xCM −

x12

2

E(1)⊗(2)

±
˛̨̨
x2 = xCM −

x12

2
, x1 = xCM +

x12

2

E(1)⊗(2) ”
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Indistinguishable Particles (cont.)

We could write our vector space as the direct sum

V = V+ ⊕ V−

but let’s use the factorizability of the vector space into CM and difference coordinates
as we did before. The CM coordinate does not care about the sign of x12, so which
subspace we pick does not affect the choice of which CM coordinate states are
allowed. Thus, we may conclude that the space can be written as

V = VCM ⊗ (V12,+ ⊕ V12,−) = (VCM ⊗ V12,+)⊕ (VCM ⊗ V12,−)

and that we need to pick one of the two subspaces to work in. Our basis elements
factorize:

1
√

2

“
|xCM , x12〉(CM)⊗(12) ± |xCM ,−x12〉(CM)⊗(12)

”
= |xCM 〉(CM) ⊗

1
√

2

“
|x12 〉(12) ± | − x12 〉(12)

”
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Indistinguishable Particles (cont.)

We could go through and re-solve the single particle in a box in the V12,+ or V12,−
subspace — that is, project the eigenvalue-eigenvector equation onto symmetrized or
antisymmetrized versions of the |x12 〉 basis for V12, which would restrict us to V12,+

or V12,− as required. But it is easier to simply note that our existing solutions already
are restricted to these subspaces: the cos solutions live in the V12,+ subspace and the
sin solutions live in the V12,− subspace. Thus, we need only pick one or the other type
of solution based on whether our particles are bosons (n odd) or fermions (n even).

We could have seen this more quickly, though perhaps less rigorously, by simplying
seeing from the start that the n odd states are allowed for bosons and the n even
states are allowed for fermions because these pick up the appropriate sign under
x12 → −x12, which is equivalent to exchanging the particles. xCM is unaffected by
particle exchange, so the part of the position-basis wavefunction that depends on xCM

is unchanged by exchange.
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Indistinguishable Particles

Is it a Boson or a Fermion?

How do we experimentally determine whether to use the symmetric or antisymmetric
states for a particle? It turns out it is easy because of the propensity that fermions
have to avoid the same state. We put two particles in a box in single-particle
eigenstates |ψa 〉 and |ψb 〉. Then we calculate what the probability of finding them at
the position pair (bx ,ex) is, depending on their statistics. Using the above formula for
the probability of obtaining a particular position pair outcome, we have

P±(bx ,ex) = |u±(bx ,ex)|2

What is u±(bx ,ex)? It is the projection of the system state onto the symmetric or
antisymmetric position eigenstate |bx ,ex 〉±. That is,

u±(bx ,ex) = ± 〈bx ,ex |ψa, ψb 〉±
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Indistinguishable Particles (cont.)

Let’s expand this out in terms of distinguishable particle eigenstates for calculational
convenience (remembering that such states are not physically allowed!):

±〈bx ,ex |ψa, ψb 〉± =
1
√

2
(〈bx ,ex | ± 〈ex ,bx |) 1

√
2

(|ψa, ψb 〉 ± |ψb, ψa 〉)

=
1

2

h
ψa,x (bx)ψb,x (ex) + ψb,x (ex)ψa,x (bx)

± ψb,x (bx)ψa,x (ex)± ψa,x (ex)ψb,x (bx)
i

= ψa,x (bx)ψb,x (ex)± ψb,x (bx)ψa,x (ex)

where we made the last step because the functions ψa,x and ψb,x are just numbers
now and therefore commute.

Now, we calculate the probability:

P±(bx ,ex) = |u±(bx ,ex)|2 =
ˆ
ψa,x (bx)ψb,x (ex)± ψb,x (bx)ψa,x (ex)

˜∗
(11.7)

×
ˆ
ψa,x (bx)ψb,x (ex)± ψb,x (bx)ψa,x (ex)

˜
= |ψa,x (bx)|2|ψb,x (ex)|2 + |ψb,x (bx)|2|ψa,x (ex)|2 (11.8)

± ψ∗a,x (bx)ψb,x (bx)ψ∗b,x (ex)ψa,x (ex)

± ψ∗b,x (bx)ψa,x (bx)ψ∗a,x (ex)ψb,x (ex)
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Indistinguishable Particles (cont.)

That is, we obtain entirely different probability distributions depending on whether the
particles are bosons or fermions. And, moreover, had the particles been
distinguishable, but we just didn’t know how to distinguish them, so that the particles
were in an incoherent superposition of (a, b) and (b, a), the cross terms with the ±
would not have appeared at all. So we can even distinguish distinguishable particles
from indistinguishable bosons and fermions, even if we didn’t know they were
distinguishable! An example would be two electrons in opposite spin states, but
supposing we didn’t know about spin.

It is interesting to calculate P±(x0, x0), the probability of finding the two particles at
the same position x0:

P±(x0, x0) = 2
`
|ψa,x (x0)|2|ψb,x (x0)|2 ± |ψa,x (x0)|2|ψb,x (x0)|2

´
=


4 |ψa,x (x0)|2|ψb,x (x0)|2 +
0 −

and we would have obtained P(x0, x0) = 2 |ψa,x (x0)|2|ψb,x (x0)|2 if the particles were
distinguishable. The above result is inevitable from Postulate 3: the position
measurements would put the two particles into position eigenstates, but there is no
antisymmetric state with both particles at the same position, so the probability for
obtaining that measurement outcome had better vanish!
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Indistinguishable Particles (cont.)

So we have a clear experimental means for deciding the indistinguishability
characeristics for new particles. See also the example in Shankar about the K and K
mesons.

We note in passing that the above implies that a plot of P−(bx ,ex) as a function of bx
and ex would be a surface with a node along the line bx = ex . P(bx ,ex), and a plot of
P+(bx ,ex) would be larger along this line than a plot of P(bx ,ex) (which would of course
be larger than P−(bx ,ex) along this line.)
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Indistinguishable Particles (cont.)

Symmetrization and Antisymmetrization for Systems of N Particles

Suppose one has N indistinguishable particles. What should the properties of the
overall state be under permutation of the particles?

The key to answering this question is to realize that any permutation of N objects can
be obtained by successive pairwise exchanges. One can prove this inductively.

Suppose you have N objects, n of which are out of their ordered positions. Pick the
first one that is out of its normal place i ; call it i and suppose it is sitting in position j .
Clearly, position i must be occupied by another object k whose normal position is
k 6= i because i belongs in position i . So, exchange these two particles, so that i is
now in position i and k is in position j . One either has now n − 1 (if k 6= j) or n − 2
(if k = j) objects out of their normal positions. So, a permutation with n out of N
objects out of place can be obtained by pairwise exchange from a permutation with
either n − 1 or n − 2 objects out of place.

Now, prove it for n = 2 and n = 3 explicitly so the inductive proof carries through. For
n = 2, just exchange the two out of place objects — done. For n = 3, label the three
objects a, b, and c. Exchange a and b. Exactly one of them must now be in its
correct position: first, if both were still of out place, then they both have only one
other choice for their correct positions, the position that c is in, and that must be
wrong because two objects cannot have the same correct position; if both were now in
their correct positions, then object c must also now be in its correct position, which is
wrong by assumption that n = 3. So, if n = 3, a single pair exchange brings us to
n = 2. We know how to send n = 2 to n = 0 by pair exchange. QED.
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Indistinguishable Particles (cont.)

Once one sees that any permutation of N particles can be obtained by pair exchange,
one understands that one only has to apply the pair exchange rule multiple times. For
bosons, the state should be an equally weighted sum over all permutations of the
particles with no sign flips. For fermions, the state is an equally weighted sum over all
permutations also, but with the “odd” permutations — those that require an odd
number of pair exchanges to obtain — picking up −1’s and the “even” permutations
retaining +1 coefficients. Assuming the single-particle states are normalized, the
whole thing requires a

√
N! normalization factor. If we designate the jth of N!

possible permutations as Pj , where m = Pj (k) indicates that particle k in the
unpermuted state should be replaced by particle m in the jth permuted state, and the
permutations are defined so that Pj requires an odd number of exchanges when j is
odd and an even number when j is even, then we have

|ψn1 , · · · , ψnN 〉± =
1
√

N!

N!X
j=1

(±1)j |ψn1 〉
(Pj (1)) ⊗ · · · ⊗ |ψnN 〉

(Pj (N))

=
1
√

N!

N!X
j=1

(±1)j
NY

k=1

|ψnk 〉
(Pj (k))

where, in order to provide compact notation, the states are allowed to go out of
particle order; the (Pj (k)) indicates which particle the state nk is assigned to in the jth
permutation.
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Indistinguishable Particles (cont.)

The above notation works only if all the states are distinct (if nk 6= nm for all k and
m) or if the particles are fermions. If the particles are fermions, the above formula will
vanish if there are duplicate states, which is fine. For bosons, if there are duplicate
states, there will be terms in the sum that repeat. For example, if two of the states
are identical, nk = nm for some k,m pair, then, for every permutation j , there will be
a matching permutation that differs only by exchanging the two particles Pj (k) and

Pj (m) to which the states nk = nm have been assigned. The sum collapes to N!
2

terms

and acquires a 2 out front; that is, the prefactor becomes 2√
N!

. But this is wrong; if

there are N!
2

distinct terms, the normalization should
q

2
N!

. One simply has to correct

the normalization for the fact that terms in the sum repeat and so the original
normalization calculation that gave 1√

N!
was wrong.
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Indistinguishable Particles (cont.)

For fermions, the antisymmetrized state can be written conveniently as a determinant,
usually termed a Slater Determinant:

|ψn1 , · · · , ψnN 〉− =
1
√

N!

˛̨̨̨
˛̨̨̨ |ψn1 〉(1) · · · |ψnN 〉(1)

...
. . .

...

|ψn1 〉(N) · · · |ψnN 〉(N)

˛̨̨̨
˛̨̨̨

where the product between states when the determinant is calculated is taken to be
the direct product, ⊗. Note how the particle number is fixed for each row (the
superscript number) while the state is fixed for each column (the subscript): this
structure gives the approprate result.
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Indistinguishable Particles (cont.)

Let’s consider a possible point of confusion on whether different ways of obtaining the
same permutation are consistent. That is, it is quite important for fermions that the
“oddness” or “evenness” of a given permutation be well-defined — that there not be
a way of obtaining a given permutation by two different sets of pair exchanges, one
with an odd number of exchanges and one with an even number — otherwise it will
not be clear whether to assign a given permutation a negative sign or not.

This proof must also be done by induction. Suppose it is true for N particles that a
given permutation requires either an odd or an even number of pairwise exchanges but
never both. Now, tack on another particle and consider all the possible new
permutations. There are two kinds of new permutations.

In the first kind, the N + 1 particle remains in the N + 1 spot. In this case, we just
have a permutation of N particles, with the new particle tacked on to the end, so our
assumption that permutations are either odd or even but never both applies — this
new permutation of N + 1 particles is also either odd or even but not both.
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Indistinguishable Particles (cont.)

The second kind of permutation is the kind for which the N + 1 particle is in position
j ≤ N and the kth particle in the N + 1 position (j 6= k in general though j = k is
allowed). Call this permutation Π1. Clearly, one can do a single pairwise exchange of
the j and N + 1 positions to put the N + 1 particle in the N + 1 position and the k
particle in the j position. Now one has a permutation of N particles with the N + 1
particle stuck on the end; call this permutation Π2. So, whatever the sign of the
permutation of N particles that yields Π2, the original permutation of N + 1 particles
Π1 is opposite in sign because it requires one more pairwise exchange. To complete
the proof, we need to show that every way of obtaining Π1 from Π2 requires an odd
number of pair exchanges; that is, we’ve shown that the sign of Π2 is unique, but we
need to show that the sign flip in getting from Π2 to Π1 is unique, also. Suppose it
were not; suppose there were a path from Π2 to Π1 requiring an even number of
exchanges; call this path B, and path A is our single pairwise exchange of particle k
and particle N + 1. Consider the path that consists of path B with the path A single
pairwise exchange added on. This path has an odd number of exchanges, yet it takes
the permutation Π2 and returns the permutation Π2. Π2 is really a permutation of N
particles only because the N + 1 particle is stuck on the end, so this says that there
are two paths, one odd and one even, of obtaining a permutation of N particles,
contradicting the assumption that the uniqueness of the sign of permutations is true
for N particles.

Proving the uniqueness of permutation sign for N = 2 particles is straightforward:
there are only two permutations, one even and one odd, and any other path to those
permutations requires doing an even number of unnecessary exchanges of the two
particles, so the oddness or evenness of a permutation is unique.

Section 11.4 Multiparticle Systems: Indistinguishable Particles Page 606



Indistinguishable Particles (cont.)

Let’s consider an implication of the above for non-adjacent and adjacent pairwise
exchanges. An adjacent pairwise exchange is one in which you exchange particles that
are adjacent to each other. A non-adjacent pairwise exchange is one in which two
particles that are not adjacent to each other are exchanged. Our proof implies that
the sign of a permutation arrived at by a single non-adjacent pairwise is consistent
with the sign one would obtain by obtaining that permutation by a set of adjacent
pairwise exchanges. To illustrate this, consider a 3-particle example. Consider the two
permutations

1 2 3 3 2 1

One can obtain the second from the first by the non-adjacent pairwise exchange
1↔ 3, indicating it is an odd permutation. Is the path between these permutations by
adjacent pairwise exchanges also odd? Yes:

1 2 3 → 1 3 2 → 3 1 2 → 3 2 1

which requires three pairwise exchanges, also an odd number.
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Indistinguishable Particles (cont.)

When to Symmetrize or Antisymmetrize

In some limit, we must be able to ignore the need to symmetrize or antisymmetrize
states of a system of indistinguishable particles — the behavior of the electron in a
hydrogen atom in Santa Monica does not care about the electrons in hydrogen atoms
in a distant location such as, or example, Orange County. How do we recover this
limit from the above formalism?

It is easy. Let’s consider two indistinguishable particles that are created in a state

|ψa, ψb 〉
(1)⊗(2)
± =

1
√

2

h
|ψa 〉(1) ⊗ |ψb 〉(2) ± |ψb 〉(1) ⊗ |ψa 〉(2)

i
where |ψa 〉 is localized in Santa Monica (preferably, in a cafe with a good view of the
ocean and a good beer), and |ψb 〉 is localized in Orange County (it doesn’t really
matter where because, to first order, every point in Orange County looks like every
other point in Orange County). The probability of finding one particle at position xSM

in the cafe in Santa Monica and the other particle at position xOC somewhere in
Orange County is, by analogy to Equation 11.8,

P±(xSM , xOC ) = |ψa,x (xSM)|2|ψb,x (xOC )|2 + |ψb,x (xSM)|2|ψa,x (xOC )|2

± ψ∗a,x (xSM)ψb,x (xSM)ψ∗b,x (xOC )ψa,x (xOC )

± ψ∗b,x (xSM)ψa,x (xSM)ψ∗a,x (xOC )ψb,x (xOC )
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Indistinguishable Particles (cont.)

Now, let’s calculate the probability of finding one of the particles at a position xSM

somewhere in that cafe without caring where the second particle is. We obtain that
probability by integrating over xOC : any outcome for xOC is fine for our purposes.
That is:

P±(xSM) = |ψa,x (xSM)|2
Z ∞
−∞

dxOC |ψb,x (xOC )|2

+ |ψb,x (xSM)|2
Z ∞
−∞

dxOC |ψa,x (xOC )|2

± ψ∗a,x (xSM)ψb,x (xSM)

Z ∞
−∞

dxOC ψ
∗
b,x (xOC )ψa,x (xOC )

± ψ∗b,x (xSM)ψa,x (xSM)

Z ∞
−∞

dxOC ψ
∗
a,x (xOC )ψb,x (xOC )

We may neglect the last three terms: they all contain at least one power of ψb,x (xSM),
which is vanishing according to our localization assumptions for |ψa 〉 and |ψb 〉. The
integral in the first term gives unity because the single-particle states are assumed to
be individually normalized.
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Indistinguishable Particles (cont.)

So we have

P±(xSM) = |ψa,x (xSM)|2

which is what we would have obtained had we neglected the other particle. As one
might expect, indistinguishability only matters when particles are close enough that
their wavefunctions have some overlap.
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Passive Coordinate Transformations

Coordinate Transformations

A coordinate transformation is any relabeling of the points in space from set of axes F
with coordinates q to a different set of axes F ′ with coordinates q ′, with
q ′ = q ′(q, t). Some examples:

I Mirror transformation:

x ′ = −x y ′ = y z ′ = z

I Rotation transformation about the z axis by θ (CCW):

x ′ = x cos θ + y sin θ y ′ = −x sin θ + y cos θ z ′ = z

I Translation:

x ′ = x − a y ′ = y z ′ = z

In all of these, a new set of axes are being imposed on space and one chooses to label
points relative to the new system rather than the old one. You should draw the old
and new axes so you are clear on what is meant by each transformation.
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Passive Coordinate Transformations (cont.)

Discrete vs. Continuous Transformations

A discrete coordinate transformation is one for which there is no continuous parameter
that varies the effect of the transformation. A continuous coordinate transformation is
therefore one that does depend on a continuous parameter. Continuous
transformations can be differentiated with respect to the parameter.

Examples of discrete transformations include parity transformation (inversion of the
coordinates through the origin) and mirror transformations (inversion through a plane;
of course, one can vary the plane, but once one picks a plane, there is just one
transformation) are a couple obvious ones.

Continuous transformations include spatial translations and rotations, where, even
after one has picked a direction for the transformation (a translation direction or
rotation axis), there is a continuous parameter: the translation distance or rotation
angle in these cases.

Discrete transformations in general need to be treated on a case-by-case basis,
whereas continuous transformation can be treated in a unified manner. The latter also
result in conserved quantities, as we shall see.

Section 12.1 Symmetries: Passive Coordinate Transformations Page 614



Passive Coordinate Transformations (cont.)

Effect of Coordinate Transformations in Quantum Mechanics

A relabeling of the above type has no effect on the particle state |ψ 〉 because it is an
abstract object and makes no reference to a particular coordinate system. But, there
are two ways in which the relabeling matters:

I First, because of the redefinition of the coordinate axes, the position and
momentum basis change; there are new sets of basis states {|q ′ 〉} and {|p ′q 〉}
that indicate states with well-defined position or momentum relative to the new
axes rather than the old axes. The old position and momentum bases {|q 〉} and
{|pq 〉} still exist and the projections 〈q |ψ 〉 and 〈pq |ψ 〉 are unchanged.

I Second, it affects the operators. We want the above new basis elements to be
eigenvectors of position and momentum operators, so we require new position
and momentum operators {Q ′} and {P ′q }, as these new basis elements will not
be eigenvectors of the original position and momentum operators with the
expected eigenvalues. These are not the same as the old operators {Q} and
{Pq}, meaning that the action of {Q ′} and {P ′q } on states are different from
that of {Q} and {Pq}. The {Q} and {Pq} operators of course still exist and
there is no change in their action.

Realize that the new bases live in the same Hilbert space as the old bases, and that
the new and old operators both act there; the coordinate relabeling results in no new
Hilbert space!
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Passive Coordinate Transformations (cont.)

Passive Coordinate Transformations

We define the passive transformation operator TP to be the operator that maps from
the original basis {|q 〉} to the new basis {|q ′ 〉}, element-by-element:

e i θ|q ′ 〉 = TP |q 〉

where θ is real. That is, the passive transformation operator “transforms” the
position-basis elements associated with the old coordinate system into position-basis
elements associated with the new coordinate system. (We will define an active
transformation below.) The e i θ factor is allowed out front because it does not affect
the norm of the state or the unitarity property derived below. In general, we will
choose θ = 0 so that the factor’s value is always unity, but that is an additional
assumption that must be made; it need not always hold true.

Since we are just relabeling points in space, the dimensionality of the new basis must
be the same as that of the old basis; that is, the mapping is one-to-one, or invertible.
Assuming the new basis elements are normalized in the same way as the old ones
(which is unaffected by the unity modulus factor), the transformation also preserves
inner products between basis elements because the unit-modulus factor cancels out.

Therefore, it preserves all inner products, and hence is unitary, T †P = T−1
P .
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Passive Coordinate Transformations (cont.)

We define position and momentum operators in the new basis by the requirement that
their action in the new basis be the same as the corresponding old operators’ action in
the old basis; this follows from their being position and momentum operators for the
new coordinate system. So,

〈q ′1 |Q ′|q ′2 〉 = 〈q1 |Q |q2 〉

By the definition of the transformation operator’s action on states, |q ′ 〉 = TP |q 〉, we

also have 〈q ′1 |Q ′|q ′2 〉 = 〈q1 |T †PQ ′TP |q2 〉. Combining the two statements gives

〈q1 |Q |q2 〉 = 〈q1 |T †PQ ′TP |q2 〉

Since this relation holds for all |q1 〉 and |q2 〉, it therefore holds that

Q ′ = TP Q T †P = TP Q T−1
P

The above proof carries through for the {Pq} also, and, in fact, for any operator.
Because it holds for any pair of basis elements, it holds for any pair of states, giving

〈v ′ |O ′|w ′ 〉 = 〈v |O|w 〉 ⇐⇒ O ′ = TPQT †P (12.1)
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Passive Coordinate Transformations (cont.)

We may thus think of the passive transformation operator as not only transforming
the basis elements but also transforming any operator, with the new operator defined
by the requirement that the action of the new operator in the new basis is the same as
the old operator in the old basis.

Note that the passive transformation operator affects any basis, not just the position
basis. All of our bases are defined by being eigenbases of some Hermitian operator (Q,
Pq , etc.). If the transformation changes these operators, then their eigenbases will
change, too. One obtains the transformed eigenbases by diagonalizing the transformed
operators.

We note that, in general, in addition to the defining transformation relation
Equation 12.1, it is also possible to rewrite the primed operators in terms of the
unprimed operators simply because the primed observables are also observables in the
unprimed coordinate system and hence must be functions of the {Q} and {Pq}. The
form of these latter relations will depend on the particular type of transformation,
though.

Additionally, because we do not want to move the potentials and particles when we
perform a coordinate transformation, we do not in general want to transform H to H ′.
We will, though, write H in terms of the {Q ′} and {P ′q } operators by using this latter
set of relations that write the primed operators in terms of the unprimed operators
(and vice versa).
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Passive Coordinate Transformations (cont.)

Example 12.1: Passive Mirror Transformation of a Particle in a
Two-Dimensional Box

Consider a particle in the an eigenstate of a two-dimensional box of dimension L1 × L2

whose corner is at the origin. Let the state be denoted by |ψab 〉. The energy is

Eab =
~2 π2

2 m

„
a2

L2
1

+
b2

L2
2

«

The position-basis representation is

ψab(x , y) = 〈x , y |ψab 〉 =

s
4

L1L2
sin

„
a π x

L1

«
sin

„
b π y

L2

«

(Note that, because the box’s corner, not center, is at the origin, the sines are the only
allowed states. We do this to avoid having to carry around sines and cosines in this
example.) and we would find the expectation values

〈ψab |X |ψab 〉 =
L1

2
〈ψab |Y |ψab 〉 =

L2

2
〈ψab |Px |ψab 〉 = 0 〈ψab |Py |ψab 〉 = 0
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Passive Coordinate Transformations (cont.)

Now, perform the coordinate transformation x ′ = y , y ′ = x , which is a mirroring
through the line x = y . The transformation is visualized in the figure below. We see
clearly that the axes are relabeled but the potential has not moved in space; this is
what we mean by a passive transformation.

x, y′

y, x′

x

y

L2

L1

y′

x′

L2

L1

L2

L1

Coordinate Transformations (cont.)

The transformation gives |x ′ = u, y ′ = v 〉 = TP |x = u, y = v 〉. Be sure you
understand what is meant by this notation, in particular the ordering of u and v : for
example, a state along the x axis, |x = 1, y = 0 〉, gets mapped to a state along the x ′

axis, |x ′ = 1, y ′ = 0 〉. The transformation rules tell us that
|x ′ = u, y ′ = v 〉 = |x = v , y = u 〉. That is, when written in terms of unprimed
coordinates, the state that |x = u, y = v 〉 gets mapped to by TP is the state
|x = v , y = u 〉 in the unprimed coordinates. In the example, the state along the x ′

axis at (x ′ = 1, y ′ = 0) is along the y axis at (x = 0, y = 1). Make sure you have the
above straight; it is confusing!

The state ψab stays unchanged, but it must now be written in terms of the basis
elements in the new axes, the {|x ′, y ′ 〉}. We denote this wavefunction by
ψab,q ′ (x ′, y ′) and it is given by ψab,q ′ (x ′, y ′) = 〈x ′, y ′ |ψab 〉. We need the extra q ′

subscript to indicate that ψab,q ′ is a different function of its arguments than the old
ψab(x , y), which we shall now denote by ψab,q(x , y). This is consistent with our
generic notation of denoting a wavefunction in some particular representation (basis)
with a subscript that specifies the representation: the {|x ′, y ′ 〉} and {|x , y 〉} are
different bases, so the representation of |ψab 〉 in the two bases are different and need
to be distinguished.
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Coordinate Transformations (cont.)

The transformation gives |x ′ = u, y ′ = v 〉 = TP |x = u, y = v 〉. Be sure you
understand what is meant by this notation, in particular the ordering of u and v : for
example, a state along the x axis, |x = 1, y = 0 〉, gets mapped to a state along the x ′

axis, |x ′ = 1, y ′ = 0 〉. The transformation rules tell us that
|x ′ = u, y ′ = v 〉 = |x = v , y = u 〉. That is, when written in terms of unprimed
coordinates, the state that |x = u, y = v 〉 gets mapped to by TP is the state
|x = v , y = u 〉 in the unprimed coordinates. In the example, the state along the x ′

axis at (x ′ = 1, y ′ = 0) is along the y axis at (x = 0, y = 1). Make sure you have the
above straight; it is confusing!

The state ψab stays unchanged, but it must now be written in terms of the basis
elements in the new axes, the {|x ′, y ′ 〉}. We denote this wavefunction by
ψab,q ′ (x ′, y ′) and it is given by ψab,q ′ (x ′, y ′) = 〈x ′, y ′ |ψab 〉. We need the extra q ′

subscript to indicate that ψab,q ′ is a different function of its arguments than the old
ψab(x , y), which we shall now denote by ψab,q(x , y). This is consistent with our
generic notation of denoting a wavefunction in some particular representation (basis)
with a subscript that specifies the representation: the {|x ′, y ′ 〉} and {|x , y 〉} are
different bases, so the representation of |ψab 〉 in the two bases are different and need
to be distinguished.
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Coordinate Transformations (cont.)

The transformation gives |x ′ = u, y ′ = v 〉 = TP |x = u, y = v 〉. Be sure you
understand what is meant by this notation, in particular the ordering of u and v : for
example, a state along the x axis, |x = 1, y = 0 〉, gets mapped to a state along the x ′

axis, |x ′ = 1, y ′ = 0 〉. The transformation rules tell us that
|x ′ = u, y ′ = v 〉 = |x = v , y = u 〉. That is, when written in terms of unprimed
coordinates, the state that |x = u, y = v 〉 gets mapped to by TP is the state
|x = v , y = u 〉 in the unprimed coordinates. In the example, the state on the x ′ axis
|x ′ = 1, y ′ = 0 〉 is equal to the state on the y axis |x = 0, y = 1 〉. Make sure you
have the above straight; it is confusing!

The state ψab stays unchanged, but it must now be written in terms of the basis
elements in the new axes, the {|x ′, y ′ 〉}. We denote this wavefunction by
ψab,q ′ (x ′, y ′) and it is given by ψab,q ′ (x ′, y ′) = 〈x ′, y ′ |ψab 〉. We need the extra q ′

subscript to indicate that ψab,q ′ is a different function of its arguments than the old
ψab(x , y), which we shall now denote by ψab,q(x , y). This is consistent with our
generic notation of denoting a wavefunction in some particular representation (basis)
with a subscript that specifies the representation: the {|x ′, y ′ 〉} and {|x , y 〉} are
different bases, so the representation of |ψab 〉 in the two bases are different and need
to be distinguished.
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Coordinate Transformations (cont.)

The transformation gives |x ′ = u, y ′ = v 〉 = TP |x = u, y = v 〉. Be sure you
understand what is meant by this notation, in particular the ordering of u and v : for
example, a state along the x axis, |x = 1, y = 0 〉, gets mapped to a state along the x ′

axis, |x ′ = 1, y ′ = 0 〉. The transformation rules tell us that
|x ′ = u, y ′ = v 〉 = |x = v , y = u 〉. That is, when written in terms of unprimed
coordinates, the state that |x = u, y = v 〉 gets mapped to by TP is the state
|x = v , y = u 〉 in the unprimed coordinates. In the example, the state on the x ′ axis
|x ′ = 1, y ′ = 0 〉 is equal to the state on the y axis |x = 0, y = 1 〉, and the state
|x ′ = 0, y ′ = 1 〉 on the y ′ axis is equal to the state |x = 1, y = 0 〉 on the x axis.
Make sure you have the above straight; it is confusing!

The state ψab stays unchanged, but it must now be written in terms of the basis
elements in the new axes, the {|x ′, y ′ 〉}. We denote this wavefunction by
ψab,q ′ (x ′, y ′) and it is given by ψab,q ′ (x ′, y ′) = 〈x ′, y ′ |ψab 〉. We need the extra q ′

subscript to indicate that ψab,q ′ is a different function of its arguments than the old
ψab(x , y), which we shall now denote by ψab,q(x , y). This is consistent with our
generic notation of denoting a wavefunction in some particular representation (basis)
with a subscript that specifies the representation: the {|x ′, y ′ 〉} and {|x , y 〉} are
different bases, so the representation of |ψab 〉 in the two bases are different and need
to be distinguished.
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Passive Coordinate Transformations (cont.)

The transformation gives |x ′ = u, y ′ = v 〉 = TP |x = u, y = v 〉 where u and v are
just numbers, not tied to any coordinate system. We’ll see below why we use the u
and v . Be sure you understand what is meant by this notation, in particular the
ordering of u and v : for example, a state along the x axis, |x = 1, y = 0 〉, gets
mapped to a state along the x ′ axis, |x ′ = 1, y ′ = 0 〉. The transformation rules tell
us that |x ′ = u, y ′ = v 〉 = |x = v , y = u 〉. That is, when written in terms of
unprimed coordinates, the state that |x = u, y = v 〉 gets mapped to by TP is the
state |x = v , y = u 〉 in the unprimed coordinates. In the example, the state on the x ′

axis |x ′ = 1, y ′ = 0 〉 is equal to the state on the y axis |x = 0, y = 1 〉, and the state
|x ′ = 0, y ′ = 1 〉 on the y ′ axis is equal to the state |x = 1, y = 0 〉 on the x axis.
Make sure you have the above straight; it is confusing! These relationships are also
indicated in the figure.

The state ψab stays unchanged, but it must now be written in terms of the basis
elements in the new axes, the {|x ′, y ′ 〉}. We denote this wavefunction by
ψab,q ′ (x

′, y ′) and it is given by ψab,q ′ (x
′, y ′) = 〈x ′, y ′ |ψab 〉. We need the extra q ′

subscript to indicate that ψab,q ′ is a different function of its arguments than the old
ψab(x , y), which we shall now denote by ψab,q(x , y). This is consistent with our
generic notation of denoting a wavefunction in some particular representation (basis)
with a subscript that specifies the representation: the {|x ′, y ′ 〉} and {|x , y 〉} are
different bases, so the representation of |ψab 〉 in the two bases are different and need
to be distinguished.
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Passive Coordinate Transformations (cont.)

How do we calculate ψab,q ′ (x
′, y ′), explicitly? We recall that

|x ′ = u, y ′ = v 〉 = |x = v , y = u 〉. So, we have:

ψab,q ′ (x
′ = u, y ′ = v) = 〈x ′ = u, y ′ = v |ψab 〉

= 〈x = v , y = u |ψab 〉
= ψab,q(x = v , y = u)

=

s
4

L1L2
sin

„
a π v

L1

«
sin

„
b π u

L2

«

So, ψab,q ′ (x
′, y ′) =

s
4

L1L2
sin

„
b π x ′

L2

«
sin

„
a π y ′

L1

«

We went through these specific numbers u and v to avoid confusion about when you
replace (x , y) by (x ′, y ′) and when by (y ′, x ′): u and v are just numbers, not tied to
any coordinate system. We know that the state at |x ′ = u, y ′ = v 〉 is the same state
as |x = v , y = u 〉, and knowing that lets us rewrite the wavefunction in terms of x ′

and y ′. The above form should be intuitively obvious, though; if the x ′ axis lies along
the y axis and the y ′ axis lies along the x axis, and the state does not change, then
x ′ must take on the role of y and y ′ of x .
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Passive Coordinate Transformations (cont.)

What are the new operators? As we said, the formula O ′ = TP O T †P is abstract. To
figure it out, we resort to matrix elements. We require

〈x ′1 , y ′1 |X ′|x ′2 , y ′2 〉 = 〈x1, y1 |X |x2, y2 〉

Again, it will be far clearer if we use specific numbers not tied to a coordinate system.
So let’s write the above as

〈x ′ = u1, y
′ = v1 |X ′|x ′ = u2, y

′ = v2 〉 = 〈x = u1, y = v1 |X |x2 = u2, y2 = v2 〉

Note how the u’s and v ’s are distributed: the state |x ′ = u1, y ′ = v1 〉 satisfies
|x ′ = u1, y ′ = v1 〉 = TP |x = u1, y = v1 〉 and also
|x ′1 = u1, y ′1 = v1 〉 = |x = v1, y = u1 〉. The matrix element on the right is

〈x = u1, y = v1 |X |x = u2, y = v2 〉 = u1 δ(u1 − u2) δ(v1 − v2)
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Passive Coordinate Transformations (cont.)

So our requirement becomes

〈x ′ = u1, y
′ = v1 |X ′|x ′ = u2, y

′ = v2 〉 = u1 δ(u1 − u2) δ(v1 − v2)

which may now be rewritten as

〈x ′, y ′ |X ′|x ′, y ′ 〉 = x ′1 δ(x
′
1 − x ′2 ) δ(y ′1 − y ′2 )

Thus, our operator X ′ does exactly what we expect it to do: it has as eigenvectors
the states {|x ′, y ′ 〉} with eigenvalues {x ′}. It therefore is the X ′ operator.

If you do not use the u’s and v ’s when trying to prove the above statement, it is very
easy to get confused and end up thinking that the X ′ operator pulls out the y ′

coordinate of |x ′, y ′ 〉 because you end up with x1 instead of u1 at the front of the
expression, and the transformation says y ′1 = x1, so one is tempted to replace the x1

with y ′1 and think that one gets Y ′ instead of X ′. This problem occurs because it is
unclear whether one should use the relation (x1, y1)→ (x ′1 , y

′
1 ) or the relation

|x ′1 , y ′1 〉 = |y1, x1 〉. By instead using these “numbers” (u1, v1) and (u2, v2), one
doesn’t get into notational quandaries like this.
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Passive Coordinate Transformations (cont.)

By analogy, we may also conclude

〈x ′1 , y ′1 |Y ′|x ′2 , y ′2 〉 = y ′1 δ(x
′
1 − x ′2 ) δ(y ′1 − y ′2 )

〈x ′1 , y ′1 |P ′x |x ′2 , y ′2 〉 = −i ~
d

dx ′1
δ(x ′1 − x ′2 ) δ(y ′1 − y ′2 )

〈x ′1 , y ′1 |P ′y |x ′2 , y ′2 〉 = −i ~
d

dy ′1
δ(x ′1 − x ′2 ) δ(y ′1 − y ′2 )

That is, all the primed operators do exactly what we expect them to in terms of the
primed coordinate system. In obtaining the above, we will have taken a derivative with
respect to the “numbers” u1 and v1 because they are indeed still variables: the point
of introducing them is that they are not notationally tied to a particular coordinate
system, so they remove the confusion noted above.

We have defined the primed operators by requiring that their matrix elements in the
primed basis be the same as the matrix elements of the unprimed operators between
the unprimed basis elements that are transformed into the primed basis elements.
Since the unprimed and primed basis elements are not equal, this is not a statement of
equality between the unprimed operators and primed operators.
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Passive Coordinate Transformations (cont.)

However, because the unprimed and primed basis elements describe the same Hilbert
space and there are equality relations between them (as illustrated in the figure), we
can calculate the matrix elements of the primed operators in the unprimed basis and
compare these to the matrix elements of the unprimed operators in the unprimed basis
to obtain a relation between the primed and unprimed operators (or conversely, we
could calculate the matrix elements of the unprimed operators in the primed basis and
compare to the matrix elements of the primed operators in the primed basis).

Explicitly:

〈x = u1, y = v1 |X ′|x = u2, y = v2 〉 = 〈x ′ = v1, y
′ = u1 |X ′|x ′ = v2, y

′ = u2 〉
= v2〈x ′ = v1, y

′ = u1 |x ′ = v2, y
′ = u2 〉

= v2〈x = u1, y = v1 |x = u2, y = v2 〉
= 〈x = u1, y = v1 |Y |x = u2, y = v2 〉

=⇒ 〈x1, y1 |X ′|x2, y2 〉 = 〈x1, y1 |Y |x2, y2 〉

We find that all the possible matrix elements between unprimed basis elements of X ′

and Y are equal, so they must be the same operator:

X ′ = Y

.
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Passive Coordinate Transformations (cont.)

But we also have a relation between X ′ and X . Let’s write both of these down:

X ′ = TPX T †P X ′ = Y

Interesting, eh? The former is true, regardless of the situation, but the latter is far
more useful in trying to understand this specific example. Similar relations hold for
Y ′, P ′x , and P ′y :

Y ′ = TPY T †P Y ′ = X

P ′x = TPPxT
†
P P ′x = Py

P ′y = TPPyT †P P ′y = Px

For P ′x and P ′y , one establishes the relations in the right column by taking matrix
elements in the momentum basis rather than the position basis because these
operators are diagonal in the momentum basis but not in the position basis. One can
of course establish relationships between primed and unprimed momentum basis
elements as we have done for position basis elements.

Simple relations like these do not always hold: they are specific to our mirror
transformation example. As we noted above, though, it is always possible to write the
{Q ′} and {P ′

q ′} operators in terms of the {Q} and {Pq} operators.

Section 12.1 Symmetries: Passive Coordinate Transformations Page 627



Passive Coordinate Transformations (cont.)

As we explained above, we do not transform the Hamiltonian, we simply rewrite it in
terms of primed operators. But, for the sake of pedagogy, let us explicitly transform
the Hamiltonian and see what goes wrong:

H ′ = TP

 
P2

x + P2
y

2 m
+ V (X ,Y )

!
T †P =

(P ′x )2 +
`
P ′y
´2

2 m
+ V (X ′,Y ′)

where we can make the step by thinking of V in terms of a Taylor expansion and

inserting T †P T between each factor of X , Y , Px , or Py . Nothing obviously wrong
happens in the kinetic terms, but the potential term has X ′ as its first argument and
Y ′ as its second argument: the L1 dimension of the box is along x ′ and the L2

dimension along y ′. This corresponds to mirroring the box, which we did not want to
do!

With that out of the way, let us rewrite H in terms of X ′, Y ′, P ′x , and P ′y using the
relations like X ′ = Y proved above:

H =
P2

x + P2
y

2 m
+ V (X ,Y ) =

`
P ′y
´2

+ (P ′x )2

2 m
+ V (Y ′,X ′)

X ′ and Y ′ are in the right arguments of V to have the L1 side of the box along y ′

and the L2 side along x ′.
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Passive Coordinate Transformations (cont.)

The above rewriting of H tells us two things: first, our prior rewriting of the eigenstate
wavefunctions in the {|x ′, y ′ 〉} basis was correct: we expect the x ′ coordinate to be
linked up with L2 and the y ′ coordinate to be linked up with L1, as we found earlier
for ψab,q ′ (x

′, y ′). Second, the energies of the states are unchanged because the
Hamiltonian is unchanged.

We may calculate the expectation values of the operators in two ways. The first
method is to do the necessary integrals for, e.g., 〈ψab |X ′ |ψab 〉, explicitly by inserting
completeness relations for the new {|x ′, y ′ 〉} basis. The second method is to simply
use the relations between the primed and unprimed operators (like X ′ = Y ) that we
proved above, making the whole exercise trivial:

〈ψab |X ′|ψab 〉 = 〈ψab |Y |ψab 〉 =
L2

2

〈ψab |Y ′|ψab 〉 = 〈ψab |X |ψab 〉 =
L1

2

〈ψab |P ′x |ψab 〉 = 〈ψab |Py |ψab 〉 = 0

〈ψab |P ′y |ψab 〉 = 〈ψab |Px |ψab 〉 = 0
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Passive Coordinate Transformations

Example 12.2: Passive Rotation Transformation of a Particle in a
Two-Dimensional Box

Let’s consider the same Hamiltonian as in the previous example, but let the coordinate
transformation be rotation in the plane by an angle θ (CCW when viewed from above):

x ′ = x cos θ + y sin θ y ′ = −x sin θ + y cos θ

For the sake of brevity, we will write the above as

x ′ = x cθ + y sθ y ′ = −x sθ + y cθ

As before, let’s first understand the relation between elements of the unprimed and
primed bases. Our generic transformation rule is

|x ′ = u, y ′ = v 〉 = TP |x = u, y = v 〉
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Passive Coordinate Transformations (cont.)

Because the primed and unprimed basis elements describes states in the same Hilbert
space, and using the following figure, we recognize that the following equalities hold
also:

|x = u cθ + v sθ, y
′ = −u sθ + v cθ 〉 = |x = u, y = v 〉
|x ′ = u, y ′ = v 〉 = |x = u cθ − v sθ, y = u sθ + v cθ 〉

The above relationships are illustrated in the following figure, where we consider the
specific basis elements |x = 1, y = 0 〉 and |x = 0, y = 1 〉.

x, y′

y, x′

x

y

L2

L1

y′

x′
L2

L1

L2

L1

TP

TP

equality

equality

| x′ = 1 cos θ + 0 sin θ, y′ = −1 sin θ + 0 cos θ 〉

| x′ = 0 cos θ + 1 sin θ, y′ = −0 sin θ + 1 cos θ 〉

| x = 1, y = 0 〉

| x = 0, y = 1〉

| x′= 1, y′ = 0 〉

| x′= 0, y′ = 1 〉
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Passive Coordinate Transformations (cont.)

Following along our previous example, let’s now calculate the primed position basis
wavefunction using the expressions obtained above that related unprimed and primed
basis elements:

ψab,q ′ (x
′ = u, y ′ = v) = 〈x ′ = u, y ′ = v |ψab 〉

= 〈x = u cθ − v sθ, y = u sθ + v cθ |ψ 〉

=

s
4

L1L2
sin

„
a π (u cθ − v sθ)

L1

«
sin

„
b π (u sθ + v cθ)

L2

«

So, ψab,q ′ (x
′, y ′) =

s
4

L1L2
sin

„
a π (x ′cθ − y ′sθ)

L1

«
sin

„
b π (x ′sθ + y ′cθ)

L2

«

The form of the wavefunction in the primed coordinates is of course more complicated
because the box is not aligned with the primed coordinate axes.
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Passive Coordinate Transformations (cont.)

Next, let’s use the relationship between basis elements to obtain the matrix elements
of the new operators X ′, Y ′, P ′x , and P ′y , again along the lines of what we did in the
previous example. Because of the defining relationship in Equation 12.1,
〈q ′1 |O ′|q ′2 〉 = 〈q1 |O|q2 〉, we may write

〈x ′ = u1, y
′ = v1 |X ′|x ′ = u2, y

′ = v2 〉 = 〈x = u1, y = v1 |X |x = u2, y = v2 〉
= u1 δ(u1 − u2) δ(v1 − v2)

=⇒ 〈x ′1 , y ′1 |X ′|x ′2 , y ′2 〉 = x ′1 δ(x
′
1 − x ′2 )δ(y ′1 − y ′2 )

Analogously, we have

〈x ′1 , y ′1 |Y ′|x ′2 , y ′2 〉 = y ′1 δ(x
′
1 − x ′2 )δ(y ′1 − y ′2 )

〈x ′1 , y ′1 |P ′x |x ′2 , y ′2 〉 = −i ~
d

dx ′1
δ(x ′1 − x ′2 ) δ(y ′1 − y ′2 )

〈x ′1 , y ′1 |P ′y |x ′2 , y ′2 〉 = −i ~
d

dy ′1
δ(x ′1 − x ′2 ) δ(y ′1 − y ′2 )

You will notice that these kinds of relations are always the same for any coordinate
transformation. That is the whole idea of Equation 12.1: we want the action of the
primed operators in the primed basis to be the same as the action of the unprimed
operators in the unprimed basis.
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Passive Coordinate Transformations (cont.)

Let’s next use the matrix elements to obtain an explicit relationship between the
primed and unprimed operators. For X ′, we have

〈x = u1, y = v1 |X ′|x = u2, y = v2 〉
= 〈x ′ = u1cθ + v1sθ, y = −u1sθ + v1cθ |X ′|x ′ = u2cθ + v2sθ, y

′ = −u2sθ + v2cθ 〉
= (u2cθ + v2sθ)

× 〈x ′ = u1cθ + v1sθ, y
′ = −u1sθ + v1cθ |x ′ = u2cθ + v2sθ, y

′ = −u2sθ + v2cθ 〉
= (u2cθ + v2sθ) 〈x = u1, y = v1 |x = u2, y = v2 〉
= 〈x = u1, y = v1 | (X cθ + Y sθ) |x = u2, y = v2 〉
=⇒ 〈x1, y1 |X ′|x2, y2 〉 = 〈x1, y1 | (X cθ + Y sθ) |x2, y2 〉
=⇒ X ′ = X cθ + Y sθ

Similarly, Y ′ = −X sθ + Y cθ P ′x = Pxcθ + Py sθ P ′y = −Px sθ + Py cθ

For P ′x and P ′y , one establishes the above relations by taking matrix elements in the
momentum basis rather than the position bsis because these operators are diagonal in
the momentum basis but not in the position basis. One can of course establish
relationships between primed and unprimed momentum basis elements as we have
done for position basis elements.
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Passive Coordinate Transformations (cont.)

Finally, let’s rewrite the original Hamiltonian in terms of the primed operators as we
did for the previous example:

H =
P2

x + P2
y

2 m
+ V (X ,Y )

=

`
P ′x cθ − P ′y sθ

´2
+
`
P ′x sθ + P ′y cθ

´2
2 m

+ V
`
X ′cθ − Y ′sθ,X

′sθ + Y ′cθ
´

=
[P ′x ]2 +

ˆ
P ′y
˜2

2 m
+ V

`
X ′cθ − Y ′sθ,X

′sθ + Y ′cθ
´

The kinetic term remains simple in the new coordinate system, but the potential term
becomes complicated, which is expected because the box is not aligned with the
primed axes.
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Generators for Continuous Coordinate Transformations

General Properties of Continuous Passive Coordinate Transformations

Consider a passive coordinate transformation that can be parameterized by and
differentiated with respect to a continuous variable ε, TP = TP(ε). This might be the
translation vector for a translation, the rotation angle for a rotation (such as in the
example we just did), etc. Are there any interesting properties of such transformations
that arise from this additional differentiability property?

The first point we may make is that the infinitesimal version of such a transformation
(that is, TP(ε) for ε→ 0) may always be written in the form

TP(ε) = I −
i

~
εG

where G is some operator to be determined. This property arises simply because
TP(ε)→ I as ε→ 0. The choice of the − i

~ coefficient is of course motivated by prior
knowledge of what will happen below, but is completely general.
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Generators for Continuous Coordinate Transformations (cont.)

What may we say about G? Let’s investigate the consequences of the unitarity of
TP(ε). To do this, we need to know what T−1

P (ε) is. It is T−1
P (ε) = I + i

~ εG , which
we can prove by applying it to TP(ε):

T−1
P (ε) TP(ε) =

„
I +

i

~
εG

«„
I −

i

~
εG

«
= I +O(ε2) = I

where we drop O(ε2) terms because we are assuming ε is infinitesimal. From the
above, we can see that G must be Hermitian:

T †P(ε) = T−1
P (ε)

I † +
i

~
G† = I +

i

~
εG

G† = G
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Generators for Continuous Coordinate Transformations (cont.)

With some knowledge of the properties of G , we may construct the full transformation
for arbitary ε by taking an infinite product of infinitesimal transformations:

TP(ε) = lim
N→∞

h
TP

“ ε
N

”iN
= lim

N→∞

»
I −

i

~
ε

N
G

–N

= exp

„
−

i

~
εG

«
where ε/N is infinitesimal as N →∞. We have used a generic property of the
exponential function in the last step, one that can be verified to be equivalent to the
standard Taylor expansion via inductive proof. That G is Hermitian is now not
surprising, as we know from previous work that e iΛ is unitary if Λ is Hermitian. The
above formula leads us to an explicit formula for G :

T−1
P (ε)

»
i ~

d

dε
TP(ε)

–
= T−1

P (ε) TP(ε) G = G

That is, G can be obtained by differentiating TP(ε). Due to the relation between G
and TP(ε), G is called the generator of the passive coordinate transformation TP(ε).
Because G is Hermitian, G is allowed to be an observable, a property that will be
interesting for symmetry transformations.
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Generators for Continuous Coordinate Transformations (cont.)

We note that the explicit form for TP(ε) for continuous transformations lets us write
down a more explicit form for how position-basis elements, states, and operators
transform:

|q ′ 〉 = exp

„
−

i

~
εG

«
|q 〉

O ′ = exp

„
−

i

~
εG

«
O exp

„
i

~
εG

«
That is, rather than specifying TP(ε) by the mapping from unprimed to primed basis
elements, we can now specify it simply by the action of G .

The effect of the transformation TP(ε) with generator G may be particularly simply
written in terms of the eigenstates of G . Consider first the action of the
transformation on an eigenstate |g 〉 of G :

|g ′ 〉 = e−
i
~ ε G |g 〉 = e−

i
~ ε g |g 〉

That is, the eigenstates of G transform very simply under TP(ε): they retain the same
direction in Hilbert space, picking up only a unity-modulus factor.
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Generators for Continuous Coordinate Transformations (cont.)

The above suggests that the transformation of the {|g 〉}-basis wavefunction of the
state is trivial. This wavefunction is ψg (g) = 〈g |ψ 〉. Then we have

ψg ′ (g
′) = 〈g ′ |ψ 〉 = 〈g | e

i
~ ε G |ψ 〉 = e

i
~ ε g 〈g |ψ 〉 = e

i
~ ε g ψg (g)

Note the sign in the argument of the expoential, which arises because we have 〈g ′ |
not |g ′ 〉 in the expression. Our result shows that the {|g 〉}-basis wavefunction simply
picks up a g -dependent unity-modulus factor. Of course, the g dependence of that
factor is what results in interesting behavior. But, clearly, things are much simplified
in this form.

Finally, the above encourages us to look at the transformation of O in the {|g 〉}
basis. That is:

〈g1 |O ′|g2 〉 = 〈g1 |e−
i
~ ε GO e

i
~ ε G |g2 〉 = e−

i
~ ε (g1−g2) 〈g1 |O |g2 〉

Again, we get a very simple relation between the matrix elements of O ′ and those of
O in the {|g 〉} basis. (Note that the above is different from the transformed operator
defining relation, Equation 12.1, which here takes the form 〈g ′1 |O ′|g ′2 〉 = 〈g1 |O|g2 〉.)
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Generators for Continuous Coordinate Transformations (cont.)

Explicitly Determining the Generator

The above is very nice, but how do you figure out what the generator is, explicitly?
We have not found an explicit form for the transformation operators, so we cannot
just Taylor expand it to find the generator. The answer is that we must Taylor expand
the transformed wavefunction.

Let’s begin by Taylor-expanding the transformation operator:

ψq ′ (q
′ = u) = 〈q ′ = u |ψ 〉 = 〈q = u |T †P |ψ 〉

≈ 〈q = u |
„

I +
i

~
εG

«
|ψ 〉

= 〈q = u |ψ 〉+
i

~
ε 〈q = u |G |ψ 〉

where we have done the usual substitution trick to avoid confusion and where the ≈
sign is used because we have considered an infinitesimal transformation by parameter
value ε.
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Generators for Continuous Coordinate Transformations (cont.)

Let’s move things around:

i

~
ε 〈q = u |G |ψ 〉 ≈ 〈q ′ = u |ψ 〉 − 〈q = u |ψ 〉 =

ˆ
〈q ′ = u | − 〈q = u |

˜
|ψ 〉

We know that, for any transformation, there is an equality relationship between the
{|q ′ 〉} basis and the {|q 〉} basis that will allow us to rewrite |q ′ = u 〉 in terms of
{|q 〉} basis elements. Let’s write this as |q ′ = u 〉 = |q = q(q ′ = u, ε) 〉 where ε
indicates the value of the transformation parameter that determines the relationship
between q and q ′. So we have

i

~
ε 〈q = u |G |ψ 〉 ≈

ˆ
〈q = q(q ′ = u) | − 〈q = u |

˜
|ψ 〉

= ψq(q = q(q ′ = u, ε))− ψq(q = u)

That is, we have now written everything on the right side in terms of the {|q 〉}-basis
wavefunction.
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Generators for Continuous Coordinate Transformations (cont.)

Finally, because we are considering an infinitesimal transformation, we may calculate
the right side by Taylor expansion in ε near ε = 0. Note that ε = 0 corresponds to
q = q ′, so we will be able to evaluate the derivatives at q = q ′ = u and ε = 0. We
have

i

~
ε 〈q = u |G |ψ 〉 ≈ ε

∂ψq

∂q

˛̨̨̨
q=u

∂q

∂ε

˛̨̨̨
q=q ′=u
ε=0

where the derivatives in the last expression are schematic — there may be more than
one coordinate, so one has to generalize appropriately to multiple coordinates.
Regardless, one see that one can obtain the action of G on an arbitrary state,
projected onto the {|q 〉} basis, which should let us determine explicitly what G is.
We’ll see this work in examples.
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Generators for Continuous Coordinate Transformations (cont.)

Example 12.3: Generator for the Passive Rotation Transformation

Recall from Example 12.2 that the position-basis wavefunctions of the untransformed
state in the {|q 〉} and {|q ′ 〉} bases are:

ψab(x , y) = 〈x , y |ψab 〉 =

s
4

L1L2
sin

„
a π x

L1

«
sin

„
b π y

L2

«

ψab,q ′ (x
′, y ′) = 〈x ′, y ′ |ψab 〉 =

s
4

L1L2
sin

„
a π (x ′cθ − y ′sθ)

L1

«
sin

„
b π (x ′sθ + y ′cθ)

L2

«

Let’s calculate the above Taylor expansion. First, let’s recall that

x(x ′, y ′) = x ′cθ − y ′sθ y(x ′, y ′) = x ′sθ + y ′cθ

Taking the derivatives and allowing θ to be infinitesimal gives

∂x

∂θ

˛̨̨̨
x=x ′=u
y=y ′=v
θ=0

≈ −v
∂y

∂θ

˛̨̨̨
x=x ′=u
y=y ′=v
θ=0

≈ u
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Generators for Continuous Coordinate Transformations (cont.)

So, our expression becomes

i

~
θ 〈x = u, y = v |G |ψ 〉 = θ

∂ψab,q

∂x

˛̨̨̨
x=u
y=v

∂x

∂θ

˛̨̨̨
x=x ′=u
y=y ′=v
θ=0

+ θ
∂ψab,q

∂y

˛̨̨̨
x=u
y=v

∂y

∂θ

˛̨̨̨
x=x ′=u
y=y ′=v
θ=0

= θ

„
−y

∂

∂x
+ x

∂

∂y

«
ψab,q(x , y)

˛̨̨̨
x=u
y=v

=
i

~
θ〈x = u, y = v | (X Py − Y Px ) |ψab 〉

where we used

i ~
∂

∂x
ψab,q(x , y) = 〈x , y |Px |ψab 〉 i ~

∂

∂y
ψab,q(x , y) = 〈x , y |Py |ψab 〉

So we have G = X Py − Y Px . This expression should be familiar: straightforward
replacement of classical x , y , px , py in lz = x py − y px with the corresponding
quantum mechanical operators yields Lz = X Py − Y Px . Hence, G = Lz , the z-axis
angular momentum operator, and we see that Lz generates rotations about the z axis,

T (θ) = exp
“
− i

~ θ Lz

”
.
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Active Coordinate Transformations

Active Coordinate Transformations

We have defined passive coordinate transformations as a simple relabeling of space.
However, one could have viewed the transformation as a movement of all the particles
and potentials in the problem relative to the original axes. This is called an active
transformation. In contrast to the passive transformation case, we transform the
states and the Hamiltonian also. We call the new state |ψ ′ 〉 = TA |ψ 〉 where TA is
the operator that maps from the old states to the new states (the active
transformation operator).

That said, we will need a way to define explicitly what we mean by the above. The
natural way to do that is to consider a set of transformed axes {q ′} with
corresponding new position and momentum basis elements {|q ′ 〉} and {|p ′q 〉}, and to
define the transformation in terms of its action on the basis elements in the same way
as we did for passive transformations,

e i θ|q ′ 〉 = TA |q 〉

where θ is again real, and the prefactor exists for the same reasons discussed in
connection to passive transformations. We shall take θ = 0 in general. Though the
definition has the same form, there is indeed a distinction between passive and active
transformation operators that we will explain shortly.
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Active Coordinate Transformations (cont.)

The unitarity of TA follows by an argument similar to that used for TP . Since we are
just moving the system relative to the underlying space, the dimensionality of the new
basis must be the same as that of the old basis; that is, the mapping is one-to-one, or
invertible. Assuming the new basis elements are normalized in the same way as the old
ones, the transformation also preserves inner products between basis elements because
there are no coefficients in front. Therefore, it preserves all inner products, and hence

is unitary, T †A = T−1
A .

The unitarity of TA then lets us see in a more intuitive way how the state transforms.
The transformed state satisfies

〈q ′ |ψ ′ 〉 = 〈q |T †ATA |ψ 〉 = 〈q |T−1
A TA |ψ 〉 = 〈q |ψ 〉

That is, the projection of the transformed state onto the transformed basis elements is
the same as the projection of the untransformed state onto the untransformed basis
elements. Since this projection is the position-basis wavefunction, what we are saying
is that the position-basis wavefunction for the transformed state depends on the new
(primed) coordinate axes in the same way as the position-basis wavefunction for the
untransformed state depended on the old (unprimed) coordinate axes.
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Active Coordinate Transformations (cont.)

The definition of transformed operators follows in the same way as it did for the
passive transformation: because we have new coordinate axes and new (position- and
momentum-) basis elements, we want to define new operators that act on the
transformed basis elements in the same way as the old operators acted on the
untransformed basis elements:

〈q ′1 |Q ′|q ′2 〉 ≡ 〈q1 |Q |q2 〉 (12.2)

By the definition of the transformation operator’s action on basis elements,

|q ′ 〉 = TA|q 〉, we also have 〈q ′1 |Q ′|q ′2 〉 = 〈q1 |T †A Q ′TA|q2 〉. Combining the two
statements gives

〈q1 |Q |q2 〉 = 〈q1 |T †A Q ′TA |q2 〉

Since this relation holds for all |q1 〉 and |q2 〉, it therefore holds that

Q ′ = TA Q T †A = TA Q T−1
P

The above proof carries through for any operator, including the {Pq}, and thus we
now have a means to transform the operators. Notice how the formula is identical to
the one we calculated for the passive transformation case; the distinction between
active and passive transformations will be explained below. Again, if there is any
confusion, one only needs to write the above in terms of matrix elements.
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Active Coordinate Transformations (cont.)

In contrast to the passive transformation case, we will transform H to H ′ because we
want to move the particles and potentials. Unitarity assures us that the transformed
Hamiltonian’s eigenstates are the transformed eigenstates of the untransformed
Hamiltonian. That is, if |ψE 〉 is an eigenstate of H with eigenvalue E , then we have

H ′ (TA|ψE 〉) =
“
TAH T †A

”
(TA|ψE 〉) = TAH |ψE 〉 = TAE |ψE 〉 = E (TA|ψE 〉)

For continuous transformations, we may write the transformation operator in terms of
generators. Recall that we were able to write the action of the transformation operator
on the basis elements and operators as

|q ′ 〉 = exp

„
−

i

~
εG

«
|q 〉 O ′ = exp

„
−

i

~
εG

«
O exp

„
i

~
εG

«
The above forms continue to hold for active transformations, though, as we will see,
one may not assume that the sign of ε will be the same for passive and active
transformations. In addition, we may now also write

|ψ ′ 〉 = exp

„
−

i

~
εG

«
|ψ 〉 H ′ = exp

„
−

i

~
εG

«
H exp

„
i

~
εG

«
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Active Coordinate Transformations (cont.)

The next obvious question to ask is: are the untransformed eigenstates of the
untransformed Hamiltonian, the {|ψE 〉}, also eigenstates of the transformed
Hamiltonian, and are the eigenstates of the transformed Hamiltonian, the
{|ψ ′E 〉 = TA|ψE 〉}, also eigenstates of the untransformed Hamiltonian? The answer to
both questions is, in general, no:

H |ψ ′E 〉 = H TA|ψE 〉 H ′|ψE 〉 = H T †A |ψ
′
E 〉 (12.3)

We see that we need [H,TA] = 0 in order for the above to simplify in the necessary
fashion for |ψ ′E 〉 to be an eigenstate of H and for |ψE 〉 to be an eigenstate of H ′. We
shall discuss later symmetry transformations, which do satisfy the above commutation
property and for which the answer to the above questions is “yes”.
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Active Coordinate Transformations (cont.)

Relation between Passive and Active Transformations

It is clear that passive and active transformations are very much alike. Why make any
distinction at all? What is the distinction?

In the passive case, we define a new set of coordinate axes and corresponding basis
elements, leave the states and Hamiltonian unchanged (i.e., leave the particles and
potentials fixed relative to the old coordinate axes), and ask what the position-basis
wavefunctions looks like in terms of the new coordinate axes and what the
Hamiltonian looks like in terms of the new operators. That is, we are interested in
〈q ′ |ψ 〉 and H

`
Q ′,P ′q

´
.

In the active case, we define a new set of coordinate axes and corresponding basis
elements and transform the states and Hamiltonians along with the basis elements,
and then we will ask what the new position-basis wavefunction looks like in terms of
the old coordinate axes and what the Hamiltonian looks like in terms of the old
operators. That is, we will be interested in 〈q |ψ ′ 〉 and H ′(Q,Pq).

Before writing any formulae, let’s first think conceptually about what the difference is,
with our example of a coordinate system rotation for a particle in a 2d box in mind,
Example 12.2.
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Active Coordinate Transformations (cont.)

For the passive transformation, we rotate the axes CCW by an angle θ and leave the
box and state in place. We calculate the position-basis wavefunction in terms of the
new coordinates and the Hamiltonian in terms of the new operators. The
wavefunction and Hamiltonian look ugly because the box is at an angle −θ with
respect to the new coordinates.

For the active transformation, we rotate the axes and the box and state CCW by an
angle θ. We will see that the new wavefunction in terms of the old coordinates and
the Hamiltonian in terms of the old operators are ugly because the box and
wavefunction are rotated by an angle +θ relative to the old coordinate axes.

We see that there is a sign flip of the transformation parameter involved because the
box is at an angle −θ relative to the new coordinate axes for the passive
transformation while the box is at an angle +θ relative to the old coordinate axes for
the active transformation. This is in general what happens, that the passive and active
transformations are related by a sign flip of the transformation parameter. Effectively,
TP = T−1

A and TA = T−1
P .

For discrete transformations like the mirror transformation in Example 12.1, the
distinction vanishes because doing the transformation twice returns one to the original
situation, so T 2

P = I and T 2
A = I . Since the transformation is its own inverse,

T−1
P = TP and T−1

A = TA and thus our relation TP = T−1
A yields TP = TA. In cases

of discrete transformations where T 2
P 6= I or T 2

A 6= I , there will be a distinction and one

will require TP = T−1
A in order for the two transformations to yield the same effects.
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Active Coordinate Transformations (cont.)

Now, let’s write generic formulae that state the above:

Passive: ψq ′ (q
′) = 〈q ′ |ψ 〉 = 〈q |T †P |ψ 〉

H = H(Q,Pq) = H
“
T †PQ ′TP ,T

†
PP ′q TP

”
Active: ψ ′q(q) = 〈q |ψ ′ 〉 = 〈q |TA|ψ 〉

H ′ = TA H T †A = H(Q ′,P ′q ) = H
“
TAQT †A ,TAPqT

†
A

”
where we use H to indicate the classical Hamiltonian function, now treated as a
function whose arguments can be operators; introducing H is necessary in order to be
completely clear about what we mean. We immediately see that the old wavefunction
in the new basis, 〈q ′ |ψ 〉, and the new wavefunction in the old basis, 〈q |ψ ′ 〉, are the

same function of their arguments if and only if T †P = TA, which is equivalent to

T−1
P = TA, the condition we stated above. Similarly, the untransformed Hamiltonian

is a function of the new operators in the same way that the transformed Hamiltonian

is a function of the old operators if and only if the same condition is met, T †P = TA.

An important implication of the above is that, if one focuses on the case T †P = TA for
the above reason, then the transformed operators will not be the same in the two
cases, but will only have the same form when TP = TA.
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Active Coordinate Transformations (cont.)

For continuous transformations, which can be written as complex exponentials of
generators, our explicit forms are:

TP(ε) = exp

„
−

i

~
εG

«
TA(ε) = exp

„
i

~
εG

«
where we define the sign of ε be positive when the new axes are “to positive ε” of the
old axes. For rotations, positive ε thus corresponds to the new axes being CCW from
the old ones, as one would expect. For translation, positive ε corresponds to the origin
displaced to a positive value in the particular coordinate for which the translation is
being considered.

For such continuous transformations, the expressions given on the previous page for
the transformation of the wavefunction can be simplified if the {|g 〉} basis is used:

Passive: ψg ′ (g
′) = 〈g ′ |ψ 〉 = 〈g | e

i
~ ε G |ψ 〉 = e

i
~ ε g 〈g |ψ 〉 = e

i
~ ε g ψg (g)

Active: ψ ′g (g) = 〈g |ψ ′ 〉 = 〈g | e
i
~ ε G |ψ 〉 = e

i
~ ε g 〈g |ψ 〉 = e

i
~ ε g ψg (g)
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Active Coordinate Transformations

Example 12.4: Active Mirror Transformation of a Particle in a Two-Dimensional
Box

Let’s consider the active-transformation version of Example 12.1. The active version
corresponds to inverting the box through the line x = y , putting the L1 dimension
along the y axis and the L2 dimension along x .

We define a new coordinate system by x ′ = y and y ′ = x in the same way as for the
passive transformation. We have the transformed basis {|x ′, y ′ 〉 = TA |x , y 〉} (we

drop the unity-modulus factor again), transformed operators {Q ′ = TA Q T †A} and

{P ′q = TA Pq T †A}, and the transformed eigenstate |ψ ′ab 〉 = TA |ψab 〉. As we noted
earlier in our general discussion, the action of TA on basis elements and operators is
identical to that of the corresponding TP operator.
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Active Coordinate Transformations (cont.)

Let’s study the various wavefunctions we get out of these transformations. Remember
first that, because of the unitarity of TA, the projection of the transformed state onto
the transformed basis is equal to the projection of the untransformed state onto the
corresponding untransformed basis element:

〈x ′ = u, y ′ = v |ψ ′ab 〉 = 〈x = u, y = v |T †A TA |ψab 〉 = 〈x = u, y = v |ψab 〉

Note that the basis elements on the left and right side are related by
|x ′ = u, y ′ = v 〉 = TA|x = u, y = v 〉, not by an equality! Another way of saying this
is that we are not projecting onto |x = u, y = v 〉 = |x ′ = v , y ′ = u 〉 on the left side
of the equation.

Let’s go through all the same things we did for the passive transformation example,
starting with the wavefunction. The transformed basis elements {|x ′, y ′ 〉} are no
different from those we found in the passive transformation case, so we still have

ψab,q(x , y) =

s
4

L1L2
sin

„
a π x

L1

«
sin

„
b π y

L2

«

ψab,q ′ (x
′, y ′) =

s
4

L1L2
sin

„
b π x ′

L2

«
sin

„
a π y ′

L1

«
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Active Coordinate Transformations (cont.)

The new twist is that we have the new state |ψ ′ab 〉 that is defined by
〈x ′ = u, y ′ = v |ψ ′ab 〉 = 〈x = u, y = v |ψab 〉. We may immediately write

ψ ′ab,q ′ (x
′ = u, y ′ = v) = ψab(x = u, y = v)

=

s
4

L1L2
sin

„
a π u

L1

«
sin

„
b π v

L2

«

=

s
4

L1L2
sin

„
a π x ′

L1

«
sin

„
b π y ′

L2

«

or, ψ ′ab,q ′ (x
′, y ′) =

s
4

L1L2
sin

„
a π x ′

L1

«
sin

„
b π y ′

L2

«

The functional dependence of ψ ′
ab,q ′ on (x ′, y ′) is the same as that of ψab,q on

(x , y), as we have stated in our general discussion. Note of course that
ψ ′

ab,q ′ (x
′, y ′) 6= ψab,q ′ (x

′, y ′) because |ψ ′ 〉 is a different state than |ψ 〉 and hence

their projections onto the same {|x ′, y ′ 〉} basis are different.
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Active Coordinate Transformations (cont.)

Let’s look at the last thing to consider, ψ ′ab,q = 〈x = u, y = v |ψ ′ 〉:

〈x = u, y = v |ψ ′ab 〉 = 〈x ′ = v , y ′ = u |ψ ′ab 〉

=

s
4

L1L2
sin

„
a π v

L1

«
sin

„
b π u

L2

«

=⇒ ψ ′ab,q(x , y) =

s
4

L1L2
sin

„
b π x

L2

«
sin

„
a π y

L1

«

Thus, we see a relationship between the active and passive transformations:

Passive: ψab,q ′ (x
′, y ′) =

s
4

L1L2
sin

„
b π x ′

L2

«
sin

„
a π y ′

L1

«

Active: ψ ′ab,q(x , y) =

s
4

L1L2
sin

„
b π x

L2

«
sin

„
a π y

L1

«

We thus have that the functional dependence of the transformed-basis wavefunction
of the untransformed state ψab,q ′ on the transformed coordinates is the same as that
of the untransformed-basis wavefunction on the untransformed coordinates ψ ′ab,q .

This is a surprising and unusual result, though one for which there is a good reason.
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Active Coordinate Transformations (cont.)

The above wavefunctions are the two projections 〈x = u, y = v |ψ ′ab 〉 and
〈x ′ = u, y ′ = v |ψab 〉. (We again use the dummy variables (u, v) to avoid confusion
about what arguments we need to consider.) In general, they are not related to each
other because they may be written as

〈x = u, y = v |ψ ′ab 〉 = 〈x = u, y = v |TA|ψab 〉

〈x ′ = u, y ′ = v |ψab 〉 = 〈x = u, y = v |T †A |ψab 〉 = 〈x = u, y = v |T †P |ψab 〉

However, in this specific case of a mirror transformation, they are related because

T 2
A = I and thus T †A = TA = TP = T †P . As we noted in our general discussion, the

generic result will be that the above kind of relation holds when the passive and active

transformations are related by TP = T †A = T−1
A .
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Active Coordinate Transformations (cont.)

Recall that the passively and actively transformed operators will in general be equal
when TP = TA, but in this case they will also be equal when TP = T−1

A because

T 2
A = I . That is, we have

TPOT †P = TAOT †A in general

TPOT †P = T−1
A O

“
T−1

A

”†
= T †AOTA for this particular case

In particular, the relation between transformed and untransformed operators will not
depend on whether we consider TP = TA or TP = T−1

A : we always get X ′ = Y ,
Y ′ = X , P ′x = Py and P ′y = Px .
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Active Coordinate Transformations (cont.)

Let’s now consider the Hamiltonian operator. We have from before

H(Q ′,P ′q ) =
[P ′x ]2 +

ˆ
P ′y
˜2

2 m
+ V (Y ′,X ′)

For the active transformation, we have

H ′(Q,Pq) =
[Px ]

2 + [Py ]2

2 m
+ V (Y ,X )

(Note: when we write H as a function of Q ′ and P ′q , we intend “take H(Q,Pq) and
use the relationships between Q,Pq and Q ′,P ′q to substitute for Q and P ′q ;” we do
not mean “replace Q,Pq in H with Q ′,P ′q directly.” The same kind of statement
holds for writing H ′ as a function of Q and Pq . However, when we write V , we do
mean to treat it as a simple function of its arguments.) We see that the dependence
of the untransformed Hamiltonian and the transformed operators is the same as that
of the transformed Hamiltonian on the untransformed operators. This is again a
special case resulting from the fact T 2

P = I and T 2
A = I . In general, the above

functional dependences will not be the same and one will have to require instead
TP = T−1

A in order for them to match up.
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Active Coordinate Transformations (cont.)

One last comment on eigenstates. We know from our general discussion that
|ψ ′ab 〉 = TA|ψab 〉 is an eigenstate of H ′ with energy

Eab = ~2π2
`
a2/L2

1 + b2/L2
2

´
/2 m. It is fairly obvious that |ψab 〉 is not an eigenstate

of H ′ and |ψ ′ab 〉 is not an eigenstate of H because the functional dependences of the
corresponding wavefunctions on the coordinates do not match up with the potential in
the corresponding Hamiltonian. So, though ψab,q ′ (x

′, y ′) may depend on its
arguments in the same way that ψ ′ab,q(x , y) depends on its arguments, these are not

somehow the same state. They are different states simply because |ψab 〉 6= |ψ ′ab 〉 no
matter what basis one projects them on to, and of course one can only test equality
between two states by projecting them onto the same basis. We can see from the
work above that 〈x , y |ψ ′ab 〉 6= 〈x , y |ψab 〉 and 〈x ′, y ′ |ψ ′ab 〉 6= 〈x

′, y ′ |ψab 〉.
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Active Coordinate Transformations (cont.)

Example 12.5: Active Rotation Transformation of a Particle in a
Two-Dimensional Box

Now, let’s go through the same rigamarole for the active rotation transformation of
the particle in a box. We’ll go pretty quickly since we have a lot of experience in doing
these transformations by now.

Let’s write down the four possible wavefunctions:

ψab,q(x , y) = 〈x , y |ψab 〉 =

s
4

L1L2
sin

„
a π x

L1

«
sin

„
b π y

L2

«

ψab,q ′ (x
′, y ′) = 〈x ′, y ′ |ψab 〉 =

s
4

L1L2
sin

„
a π (x ′cθ − y ′sθ)

L1

«
sin

„
b π (x ′sθ + y ′cθ)

L2

«

ψ ′ab,q(x , y) = 〈x , y |ψ ′ab 〉 =

s
4

L1L2
sin

„
a π (x cθ + y sθ)

L1

«
sin

„
b π (−x sθ + y cθ)

L2

«

ψ ′ab,q ′ (x
′, y ′) = 〈x ′, y ′ |ψ ′ab 〉 =

s
4

L1L2
sin

„
a π x ′

L1

«
sin

„
b π y ′

L2

«
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Active Coordinate Transformations (cont.)

Let’s explicitly derive the third one because it is the only interesting one we have not
dealt with before:

ψ ′ab,q(x = u, y = v) = 〈x = u, y = v |ψ ′ab 〉

= 〈x ′ = u cθ + v sθ, y
′ = −u sθ + v cθ |ψ ′ab 〉

= ψ ′ab,q ′ (x
′ = u cθ + v sθ, y

′ = −u sθ + v cθ)

=

s
4

L1L2
sin

„
a π (u cθ + v sθ)

L1

«
sin

„
b π (−u sθ + v cθ)

L2

«

where the equality in the first line between untransformed and transformed basis
elements is the same equality we justified in Example 12.2.

Going back to the four wavefunctions, we clearly see that the dependence of the
untransformed wavefunction on the transformed coordinates, ψab,q ′ (x

′, y ′), is the
same as that of the transformed wavefunction on the untransformed coordinates,
ψ ′ab,q(x , y), if and only if we take the angle for the latter active transformation to be

the opposite of the angle for the former passive transformation. That is, as we said for
the general case, we require TP = T−1

A in order to get these functional dependences
to match up.
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Active Coordinate Transformations (cont.)

As we noted earlier, when we take TP = TA, the transformed operators are the same
regardless of whether the transformation is active of passive. We remind you that
these relations are

X ′ = X cθ + Y sθ P ′x = Px cθ + Py sθ

Y ′ = −X sθ + Y cθ P ′y = −Px sθ + Py cθ

Of course, if we want the wavefunction functional dependences to match up, then the
passively and actively transformed operators will not be equal because they will have
different signs on θ.
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Active Coordinate Transformations (cont.)

Let’s look at the relation between the untransformed and transformed Hamiltonians:

H(Q,Pq) =
[Px ]

2 + [Py ]2

2 m
+ V (X ,Y )

H(Q ′,P ′q ) =
[P ′x ]2 +

ˆ
P ′y
˜2

2 m
+ V

`
X ′cθ − Y ′sθ,X

′sθ + Y ′cθ
´

H ′(Q,Pq) =
[Px ]

2 + [Py ]2

2 m
+ V (X cθ + Y sθ,−X sθ + Y cθ)

H(Q ′,P ′q ) =
[P ′x ]2 +

ˆ
P ′y
˜2

2 m
+ V

`
X ′,Y ′

´
We have obtained H ′(Q ′,P ′q ) by H ′ = TAHT †A , which we calculate by inserting

T †ATA between every power of untransformed operators and thus transforming them.
The result should be intuitively clear, though, because it just consists of replacing
every operator O in H with its transformed version O ′. We see that the functional
dependence of H on X ′ and Y ′ only matches up with the functional dependence of
H ′ on X and Y when the sign of θ for the active and passive trasnformations are
opposite, as we expect from our general discussion.
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Active Coordinate Transformations (cont.)

Passive and Active Transformations Use the Same Operator

Note that we now no longer need to distinguish between active and passive
transformations at an operator level, as we saw that they act on the bases in the same
way. The distinction between passive and active transformations is more a matter of
which things one looks at: in the passive case, one cares about writing the
untransformed state in terms of the transformed basis elements and the untransformed
Hamiltonian in terms of the transformed operators; in the active case, one focused on
writing the transformed state in terms of the untransformed basis elements and the
transformed Hamiltonian in terms of the untransformed operators. When one
compares the two, one sees that the passive and active transformations corresponding
to a given transformation operator T do different things. But this is a matter of
interpretation, not a matter of a distinction between passive and active
transformations at an operator level.
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Symmetry Transformations

Definition

A coordinate transformation T is a symmetry transformation of a Hamiltonian H if it
satisfies any of the three following equivalent statements

H ′ = T H T † = H ⇐⇒ T H = H T ⇐⇒ [T ,H] = 0 (12.4)

That is, a symmetry transformation is a coordinate transformation that commutes
with the Hamiltonian. In practice, one must write H and H ′ in terms of the same
operators in order to demonstrate the equality. That is, given

H(Q,Pq) = H(Q,Pq) H ′(Q ′,P ′q ) = H(Q ′,P ′q )

H(Q ′,P ′q ) = H(Q = T †Q ′T ,Pq = T †P ′q T )

H ′(Q,Pq) = H(Q ′ = TQT †,P ′q = T PqT
†)

where H(q, pq) is the classical Hamiltonian function, one needs to demonstrate one of
the equalities

H ′(Q,Pq) = H(Q,Pq) H(Q ′,P ′q ) = H ′(Q ′,P ′q )

This is the active transformation method for showing a coordinate transformation is
a symmetry transformation.
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Symmetry Transformations (cont.)

There is also a passive transformation method. If and only if the above equalities hold,
we then have

H(Q ′,P ′q ) = H ′(Q ′,P ′q ) = H(Q ′,P ′q )

We also have H(Q,Pq) = H(Q,Pq). So, if H depends on Q ′,P ′q in the same way as
it depends on Q,Pq , then T is a symmetry transformation. This is the passive
transformation method for showing a coordinate transformation is a symmetry
transformation.

Since each set of eigenstates forms a complete basis, it must therefore hold that the
eigenstates of H and H ′ are the same. More generally, we can conclude

〈ψ |H ′|ψ 〉 = 〈ψ |H |ψ 〉 = 〈ψ ′ |H |ψ ′ 〉

Moreover, eigenstates of H must be eigenstates of T and vice versa — the two
operators are simultaneously diagonalizable. Not only are eigenstates of H unaffected
by the symmetry transformation up to a unity-modulus factor (the eigenvalue, which
must be unity modulus for unitary operators), but the eigenstates of T are therefore
also eigenstates of H. Therefore, if a system is put in an eigenstate of T at t = 0, it
remains in that state for all time.
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Symmetry Transformations (cont.)

The above fact is a useful classification tool for eigenstates of H. It also sometimes
allows us to show that specific matrix elements of some operator between eigenstates
of H vanish without explicit calculation due to its properties under the T symmetry
transformation. When we get to perturbation theory later, this will be useful for
showing that some contributing perturbing matrix elements vanish.

We must remember one thing, though, about how far symmetry transformations go.
Though we have stated above that eigenstates of H and H ′ are the same, we shall see
in examples that this does not necessarily mean that the position-basis wavefunctions
of the eigenstates will be unchanged by the transformation.
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Symmetry Transformations (cont.)

More explicitly: because of unitarity, we always have that the functional dependence
on the transformed coordinates of the position-basis wavefunction in the transformed
basis of a transformed eigenstate is the same as that of the position-basis
wavefunction in the untransformed basis of an untransformed eigenstate on the
untransformed coordinates,

ψ ′E ,q ′ (q
′ = u) = 〈q ′ = u |ψ ′E 〉 = 〈q = u |ψE 〉 = ψE ,q(q = u)

However, it does not in general hold that the position-basis wavefunction in the
transformed basis of an untransformed eigenstate depends on the transformed
coordinates in the same way as the untransformed eigenstate’s position-basis
wavefunction in the untransformed basis depends on the untransformed coordinates:

ψE ,q ′ (q
′ = u) = 〈q ′ = u |ψE 〉 6= 〈q = u |ψE 〉 = ψE ,q(q = u) in general

Similarly, it does not in general hold that the position-basis wavefunction in the
untransformed basis of a transformed eigenstate depends on the untransformed
coordinates in the same way as the transformed eigenstate’s position-basis
wavefunction in the transformed basis depends on the transformed coordinates:

ψ ′E ,q(q = u) = 〈q = u |ψ ′E 〉 6= 〈q
′ = u |ψ ′E 〉 = ψ ′E ,q ′ (q

′ = u) in general

So, we expect states to change their position-basis representations under symmetry
transformations, but for their energy eigenvalues to stay the same.
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Symmetry Transformations (cont.)

Continuous Symmetry Transformations

Suppose a continuous coordinate transformation T (ε) is a symmetry transformation of
a Hamiltonian H. As we have shown before, one way of writing this is [T (ε),H] = 0.
Then, by considering the infinitesimal form of T (ε), we conclude [G ,H] = 0. This has
a number of important implications:

I The eigenstates of G are eigenstates of H and vice versa — the two operators
are simultaneously diagonalizable.

I Not only does T (ε) commutes with the unitary time evolution operator, but so

does G : U = e
i
~ H t , [G ,U(t)] = 0.

I If the system is in an eigenstate |g 〉 of G at t = 0, it remains in that eigenstate
for all time.

I The expectation value of G in any state is conserved:

〈ψ(t) |G |ψ(t) 〉 = 〈ψ(0) |U†(t) GU(t) |ψ(0) 〉

= 〈ψ(0) |U†(t) U(t) G |ψ(0) 〉 = 〈ψ(0) |G |ψ(0) 〉

That is, in any way one can think of, the physical quantity associated with G is a
conserved quantity. And, as with commutativity of T and H, this provides ways of
classifying eigenstates of H and showing matrix elements of operators will vanish.
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Symmetry Transformations (cont.)

Example 12.6: Mirror Symmetry Transformation for a Particle in a Square Box

Consider our particle in a two-dimensional box, but now let the two sides of the box
be the same size, L1 = L2 ≡ L. Let’s first consider how H changes under the
transformations. The symmetry of the potential ensures that V (x , y) = V (y , x). We
have for the passively and actively transformed Hamiltonians

H =
[P ′x ]2 +

ˆ
P ′y
˜2

2 m
+ V (Y ′,X ′) =

[P ′x ]2 +
ˆ
P ′y
˜2

2 m
+ V (X ′,Y ′)

H ′ = T

 
P2

x + P2
y

2 m
+ V (X ,Y )

!
T † =

(P ′x )2 + (P ′y )2

2 m
+ V (X ′,Y ′)

=
P2

y + P2
x

2 m
+ V (Y ′,X ′) =

P2
x + P2

y

2 m
+ V (X ,Y ) = H

where in the second step for H we used V (x , y) = V (y , x) and in the third step for
H ′ we used P ′x = Py , P ′y = Px , and the symmetry of V and in the fourth step we
used X ′ = Y and Y ′ = X . The passive transformation method is the demonstration
that H depends on X ′, Y ′, P ′x , P ′y in the same way that it depends on X , Y , Px , Py .
The equality of H ′ and H when both are written as a function of X , Y , Px , Py

specifically demonstrates T H T † = H: this is the active transformation method. Both
of these equalities arise because now the potential V (x , y) is unchanged under the
mirror transformation.
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Symmetry Transformations (cont.)

Let’s also look at the wavefunctions of the eigenstates, which are:

ψab,q(x , y) =
2

L
sin
“a π x

L

”
sin

„
b π y

L

«
ψab,q ′ (x

′, y ′) =
2

L
sin

„
b π x ′

L

«
sin

„
a π y ′

L

«
ψ ′ab,q ′ (x

′, y ′) =
2

L
sin

„
a π x ′

L

«
sin

„
b π y ′

L

«
ψ ′ab,q(x , y) =

2

L
sin

„
b π x

L

«
sin
“a π y

L

”
We see the point we noted above: the wavefunctions change under a symmetry
transformation, but they retain the same energy eigenvalue. For example,
ψab,q ′ (x

′, y ′) depends on its arguments in a different way than ψab,q(x , y). However,
they are both position-basis projections of the same state |ψab 〉, which is an
eigenstate of H and H ′ because the two are equal. Similarly, ψ ′ab,q(x , y) depends on

its arguments in a different way that ψ ′
ab,q ′ (x

′, y ′), but again they are both

position-basis projections of the same state |ψ ′ab 〉, which is an eigenstate of both H
and H ′ because they are equal.
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Symmetry Transformations (cont.)

Example 12.7: Rotational Symmetry Transformation for a Particle in a Circular
Box

Consider the classical potential

V (x , y) =

(
0

p
x2 + y2 < R

∞
p

x2 + y2 ≥ R
⇐⇒ V (ρ) =


0 ρ < R
∞ ρ ≥ R

Let’s first consider the effect of a rotation transformation by an angle θ CCW on the
Hamiltonian.
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Symmetry Transformations (cont.)

This is pretty trivial: we know that, while the rotation transformation yields the
relations

X ′ = X cθ + Y sθ Y ′ − X sθ + Y cθ

P ′x = Pxcθ + Py sθ P ′y = −Px sθ + Py cθ

it nevertheless holds thatˆ
P ′x
˜2

+
ˆ
P ′y
˜2

= [Px ]
2 + [Py ]2

ˆ
X ′
˜2

+
ˆ
Y ′
˜2

= [X ]2 + [Y ]2

Since H only depends on p2
x + p2

y and x2 + y2, it will therefore hold that

Active: H ′(X ,Y ,Px ,Py ) = H(X ,Y ,Px ,Py )

Passive: H(X ′,Y ′,P ′x ,P
′
y ) = H(X ′,Y ′,P ′x ,P

′
y )

both of which show that the rotation is a symmetry transformation of this
Hamiltonian.
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Symmetry Transformations (cont.)

Next, let’s look at the effect of the rotation transformation on the wavefunctions. We
must first know what the form of the wavefunction is. The eigenvalue-eigenvector
equation in polar coordinates is»

−
~2

2 m

„
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2

∂2

∂φ2

«
+ V (ρ)

–
ψq(ρ, φ) = E ψq(ρ, φ)

The eigenvalue-eigenvector problem is separable when written in terms of polar
coordinates, ψq(ρ, φ) = P(ρ)Φ(φ):

d2

dρ2
P(ρ) +

1

ρ

d

dρ
P(ρ) +

2 m (E − V (ρ))

~2
P(ρ)−

m2

ρ2
P(ρ) = 0

d2

dφ2
Φ(φ) + m2Φ(φ) = 0

There will thus be solutions of the form ψEm,q(ρ, φ) = PE ,m(ρ)Φm(φ).
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Symmetry Transformations (cont.)

The φ differential equation is trivially solved, giving

Φm(φ) =
1
√

2π
e i m φ m any integer

where the quantization on m arises because of the boundary condition
Φ(φ+ 2π) = Φ(φ), which is required for Φ(φ) to be a single-valued function of φ. It
will not be necessary to solve the radial equation for our purposes here, so we will just
leave the radial solutions in the form PE ,m(ρ) where E designates the unspecified
quantized energies (quantized by the boundary conditions on the wavefunction at
ρ = 0 and ρ = R) and m is the φ quantum number, which sets the boundary
condition on P(ρ) at ρ = 0. Our eigenstates are thus of the form

ψEm,q(ρ, φ) =
1
√

2π
e i m φPE ,m(ρ)
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Symmetry Transformations (cont.)

Now, let’s consider the effect of a rotation transformation. Since we are working in
polar coordinates, the rotation transformation takes the form

ρ ′ = ρ φ ′ = φ− θ

which corresponds to the x ′ axis being an angle θ CCW of the x axis, as we did in
Examples 12.2 and 12.5. This yields the following relations between basis elements:

|ρ ′ = u, φ ′ = v 〉 = T |ρ = u, φ = v 〉
|ρ ′ = u, φ ′ = v 〉 = |ρ = u, φ = v + θ 〉

|ρ ′ = u, φ ′ = v − θ 〉 = |ρ = u, φ = v 〉
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Symmetry Transformations (cont.)

The various wavefunctions we usually consider will be

ψnm,q(ρ, φ) =
1
√

2π
e i m φPE ,m(ρ)

ψEm,q ′ (ρ
′, φ ′) =

1
√

2π
e i n (φ ′+θ)PE ,m(ρ ′) = e i n θ 1

√
2π

e i m φ ′PE ,m(ρ ′)

ψ ′Em,q ′ (ρ
′, φ ′) =

1
√

2π
e i m φ ′PE ,m(ρ ′)

ψ ′Em,q(ρ, φ) =
1
√

2π
e i n (φ−θ)PE ,m(ρ) = e−i n θ 1

√
2π

e i m φPE ,m(ρ)

If it is unclear how we obtained the above, you may repeat the steps we did in the
various prior examples using the above relations between the position-basis elements in
the two bases. From the above, we thus see that a rotation transformation adds a
unity-modulus factor e±i n θ in front of the wavefunction. That factor of course can be
absorbed in the normalization, so in fact we see that the functional dependence of
ψEm,q ′ (ρ

′, φ ′) on ρ ′, φ ′ is the same as that of ψEm,q(ρ, φ) on ρ, φ, which is unusual
and does not always happen to the wavefunction due to a symmetry transformation.
The same holds in the comparison of ψ ′

Em,q ′ (ρ
′, φ ′) to ψ ′Em,q(ρ, φ).
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Time Transformations

Time Translation vs. Coordinate Transformations

At a fundamental level, the time coordinate is different from the spatial coordinates in
non-relativistic classical and quantum mechanics. The main reason is that time is
considered a parameter: in classical mechanics, it is not a dynamical variable; in QM,
there is no observable operator associated with time. There is no momentum
(operator) conjugate to time with which to construct a Poisson bracket
(commutation) relation. Energy is, to some extent, the observable conjugate to time,
but it is only a rough correspondence between (t,H) and (X ,P).

Another problematic issue is that the Schrödinger Equation tells us how time evolution
— i.e., time translation — should be done. We don’t have any freedom in defining the
time translation. Or, we could assume we could define time translations as we like,
but they would have no physical relevance. For example, it would be nonsense to
define a transformation

T (t) |q(t = 0) 〉 = |q ′ 〉 = |q(t) 〉

because we know that, even for an explicitly time-independent Hamiltonian, |q 〉 is in
general not an eigenstate of H and so its time evolution is not a simple
time-dependent mapping to other position-basis elements in the space.
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Time Transformations (cont.)

That said, we can see that much of our formalism for coordinate transformations can
be carried over to time translations. Let’s define time translation to be the standard
unitary time-evolution operator, but allowing for the fact that H may be
time-dependent and may not commute with itself at different times ([H(t),H(t ′)] = 0
is only guaranteed for t = t ′). That is,

T (t) = U(t) = T
»
exp

„
−

i

~

Z t

0
dt ′ H(t ′)

«–
= lim

N→∞

N−1Y
j=0

exp

»
−

i

~

„
t

N

«
H

„
j

N
t

«–

(Equation 4.19) That is, there is a very specific transformation that provides time
translation: the only freedom is in the amount of time t. The form of the translation
depends on the particular Hamiltonian, unlike any of the coordinate transformations,
which can be applied to any system with any Hamiltonian. We know the above
transformation is unitary from previous work. We will write the transformation as

|ψ(t) 〉 = |ψ ′ 〉 = U(t) |ψ(t = 0) 〉
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Time Transformations (cont.)

For an arbitrary operator, we take as a requirement

〈ψ1(t) |O(t) |ψ2(t) 〉 ≡ 〈ψ ′1 |O ′|ψ ′2 〉 = 〈ψ1(t = 0) |O0 |ψ2(t = 0) 〉

⇐⇒ O(t) ≡ O ′ = U(t) O0 U†(t)

where we define our untransformed operator to be O0 to avoid confusion between O0

and O(t) (i.e., if we had taken our untransformed operator to be just O, as we did for
coordinate transformations, it would be unclear whether O refers to O(t) or
O(t = 0)). Of course, O0 = O(t = 0). In addition to the above relation between the
matrix elements of O(t) in the transformed basis and the matrix elements of O0 in the
untransformed basis, we might be inclined to ask whether there is a relation between
the matrix elements of O(t) in the untransformed basis and the matrix elements of O0

in the transformed basis. As we frequently find, there is no such relation in general:

〈ψ1(t) |O0|ψ2(t) 〉 = 〈ψ1(t = 0) |U†(t) O0 U(t)|ψ2(t = 0) 〉

〈ψ1(t = 0) |O(t)|ψ2(t = 0) 〉 = 〈ψ1(t = 0) |U(t) O0 U†(t)|ψ2(t = 0) 〉

The expressions simplify and are equal if [O0,U(t)] = 0 for all t, which is equivalent
to [O0,H(t)] = 0 for all t. But, in that case, O(t) = O0 and O is conserved.
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Time Transformations (cont.)

Even for a time-dependent Hamiltonian, it holds that the infinitesimal time evolution
operator that goes from t to t + dt is

U(t + dt, t) = 1−
i

~
H(t) dt

If H is time-dependent, knowing that H is the generator is not particuarly helpful
because there is no fixed basis of eigenstates of H. So, at this point, let us specialize
to time-independent H. The time translation operator has an explicit form,

U(t) = e−
i
~ H t

As note above, the usual coordinate transformation formula, |q ′ 〉 = T |q 〉 does not

hold because T |q 〉 = e−
i
~ H t |q(t = 0) 〉 is in general not a position basis element.

The other two general relations do carry through:

|ψ ′ 〉 ≡ |ψ(t) 〉 = e−
i
~ H t |ψ(t = 0) 〉 ≡ e−

i
~ H t |ψ 〉

O(t) ≡ O ′ = e−
i
~ H t O e

i
~ H t

Section 12.5 Symmetries: Time Transformations Page 689



Time Transformations (cont.)

As we did for coordinate transformations, we are led to consider the effect of the
transformation on the eigenstates of the generator:

|E(t) 〉 ≡ |E ′ 〉 = e−
i
~ H t |E 〉 = e−

i
~ E t |E 〉

We may also follow the example from coordinate transformations for transformation of
the generator-eigenbasis representation of an arbitrary state |ψ 〉. That is, consider the
transformation of an arbitrary state |ψ 〉 when written in the {|E 〉}-basis
representation. We denote this representation, 〈E |ψ(t) 〉 ≡ 〈E |ψ ′ 〉, by
ψE (E , t) ≡ ψ ′E (E), and term it the “{|E 〉}-basis wavefunction” or “energy-basis
wavefunction” (it is not to be confused with our notation |ψE 〉 for the Hamiltonian
eigenstate with energy E). It is

〈E |ψ(t) 〉 ≡ 〈E |ψ ′ 〉 = 〈E |e−
i
~ H t |ψ 〉 = e−

i
~ E t 〈E |ψ 〉 = e−

i
~ E t ψE (E)
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Time Transformations (cont.)

Consider the time transformation of matrix elements of the operators in the energy
eigenbasis:

〈E1 |O(t) |E2 〉 = 〈E1 |O ′|E2 〉 = 〈E1 |e−
i
~ H t O e

i
~ H t |E2 〉 = e−

i
~ (E1−E2) t〈E1 |O |E2 〉

So, in spite of the imperfect analogy between the time-translation transformation and
coordinate transformations, we see that many of the general results for coordinate
transformations carry through for time translation.

As a final note, we state the obvious: the generator H commutes with the
Hamiltonian H, so the eigenstates of the Hamiltonian are eigenstates of the generator
and vice versa, and the generator H is conserved in all the usual ways.
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Time Transformations (cont.)

Time Reversal Transformation

The other analogy between time and coordinate transformations that we should
consider is the temporal equivalent of a parity transformation, the time reversal
transformation. As with translations, there are some subtleties that arise. One might
think that the right rule for the transformation would be

Πt |ψ(t) 〉 = |ψ(−t) 〉

Let’s see what time evolution equations |ψ(−t) 〉 satisfies. To avoid confusion, define
|φ(t) 〉 = |ψ(−t) 〉 and work on it, changing variables to t ′ = −t and then back to t
to make the manipulations clearer:

i ~
d

dt
|φ(t) 〉 = i ~

d

dt
|ψ(−t) 〉 = −i ~

d

d(−t)
|ψ(−t) 〉 = −i ~

d

dt ′
|ψ(t ′) 〉

= −H(t ′) |ψ(t ′) 〉 = −H(−t) |ψ(−t) 〉 = −H(−t) |φ(t) 〉
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Time Transformations (cont.)

So, |φ(t) 〉 = |ψ(−t) 〉 satisfies the Schrödinger Equation with a Hamiltonian that is
the negative of the time reverse of the Hamiltonian for which |ψ(t) 〉 satisfies the
Schrödinger Equation. This is clearly not useful if we consider an eigenstate of a
time-independent H: if |ψ(t) 〉 = |E(t) 〉 is an eigenstate of H with energy E , then
|ψ(−t) 〉 is an eigenstate of −H with energy −E !

If we look at the Schrödinger Equation in the position basis, we are led to a slightly
different definition of the operation of the parity operator. Suppose that |ψ(t) 〉 is a
solution of the Schrödinger Equation with Hamiltonian H. Then the position-basis
Schrödinger Equation is

i ~
d

dt
ψx (x , t) = H

„
x ,−i ~

d

dx
, t

«
ψx (x , t)

where we have shown H as a function of x and −i ~ d
dx

instead of X and P because
we are working in the position basis. Take the complex conjugate:

−i ~
d

dt
ψ∗x (x , t) = H∗

„
x ,−i ~

d

dx
, t

«
ψ∗x (x , t)
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Time Transformations (cont.)

Now, define φx (x , t) = ψ∗x (x ,−t). Then we have

−i ~
d

dt
φx (x ,−t) = H∗

„
x ,−i ~

d

dx
, t

«
φx (x ,−t)

Change variables to t ′ = −t:

−i ~
d

d(−t ′)
φx (x , t

′) = H∗
„

x ,−i ~
d

dx
,−t ′

«
φx (x , t

′)

i ~
d

dt ′
φx (x , t

′) = H∗
„

x ,−i ~
d

dx
,−t ′

«
φx (x , t

′)

So we see that φx (x , t) is the position-space representation of a state that satisfies the
Schrödinger Equation for the Hamiltonian that is the time-reversed, complex
conjugate of the original Hamiltonian. This is a much more reasonable result than
what we had before.
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Time Transformations (cont.)

So, we define

Πt |ψ(t) 〉 = |φ(t) 〉 with φx (x , t) = ψ∗x (x ,−t)⇐⇒ 〈x |φ(t) 〉 = 〈ψ(−t) |x 〉

The second part of the definition, 〈x |φ(t) 〉 = 〈ψ(−t) |x 〉, corrects what was wrong
with the first definition, which would have defined 〈x |φ(t) 〉 = 〈x |ψ(−t) 〉. The
subtlety here is that, while complex conjugation is perfectly well defined for the
ψx (x ,−t), it is not defined for a Hilbert space vector |ψ(−t) 〉, so we had to go
through the position-basis representation of the Schrödinger Equation to see that the
complex conjugation step was needed.

We see from the above that the condition for time reversal to be a symmetry of the
Hamiltonian is for H = H∗; if this happens, then the Schrödinger Equation that
|φ(t) 〉 satisfies in the position basis is the same as the one that |ψ(t) 〉 satisfies.

It would be nice to be able to write this last statement (and, in general, transformation
rules for operators under Πt) in a form similar to what we did for the spatial parity
transformation, but the lack of a direct ket-to-ket mapping makes this difficult.
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The Relation between Classical and Quantum Transformations

Canonical Transformations and Continuous Coordinate Transformations:
General Relations

In classical mechanics, a canonical transformation is one that preserves Hamilton’s
equations. Consider a system described by a classical Hamiltonian H(q, pq) and for
which Hamilton’s equations in q and pq are satisfied

dpq

dt
= −

∂H
∂q

dq

dt
=
∂H
∂pq

Consider the contact transformation defined by

q ′ = q ′(q(t), pq(t), t) p ′q = p ′q (q(t), pq(t), t)

(It is called a contact transformation for historical reasons; simple coordinate
transformations are a special case in which q ′ = q ′(q(t), t) and are called point
transformations.)
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The Relation between Classical and Quantum Transformations (cont.)

This contact transformation is a canonical transformation if, when the Hamiltonian is
written in terms of the new coordinates and momenta, H = H(q ′, p ′), Hamilton’s
equations are satisfied in the new coordinates,

dp ′q

dt
= −

∂H
∂q ′

dq ′

dt
=
∂H
∂p ′q

One can show that a transformation is canonical if the Poisson brackets of the new
coordinates in terms of the old coordinates is equal to 1:

{q ′, p ′q}q,pq =
∂q ′

∂q

∂p ′q

∂pq

−
∂p ′q

∂q

∂q ′

∂pq

= 1
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The Relation between Classical and Quantum Transformations (cont.)

The quantum analogue is Postulate 2, whose alternate version (see Section 6.5) is

[Q,Pq] = i ~

If we carry the Poisson bracket over to a commutator in the standard fashion, the
classical requirement becomes

[Q ′,P ′q ] = i ~

We do not need to explicitly write a Q,Pq subscript because the only way to evaluate
the commutator is to rewrite it in terms of Q and Pq . We thus see that the
requirement that a classical contact transformation be canonical is exactly analogous
to the requirement that Postulate 2 be satisfied by the transformed Q and Pq

operators after a quantum mechanical coordinate transformation. We know that the
this requirement is satsfied by any unitary transformation:

[Q ′,P ′] = Q ′P ′ − P ′Q ′ = T Q T †T Pq T † − T Pq T †T Q T †

= T Q Pq T † − T PqQ T † = T [Q,Pq] T
† = T i ~ T † = i ~
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The Relation between Classical and Quantum Transformations (cont.)

Infinitesimal Classical and Quantum Transformations

An infinitesimal canonical transformation is of the form

q ′ = q + δε
∂G

∂pq

= q + δε {q,G}q,pq p ′q = pq − δε
∂G

∂q
= pq + δε {pq ,G}q,pq

where G = G(q, pq) is some differentiable function of q and pq satisfying
∂2G
∂q ∂pq

= ∂2G
∂pq ∂q

. The use of the same function G in the two equations ensures the

transformation is canonical, as we can see by calculating the Poisson bracket:

{q ′, p ′q}q,pq =
∂q ′

∂q

∂p ′q

∂pq

−
∂p ′q

∂q

∂q ′

∂pq

=

„
1 + δε

∂2G

∂q ∂pq

«„
1− δε

∂2G

∂pq ∂q

«
−
„
−δε

∂2G

∂q2

«„
δε
∂2G

∂p2

«

= 1 + δε

„
∂2G

∂q ∂pq
−

∂2G

∂pq ∂q

«
+ δε2

 
−

∂2G

∂q ∂pq

∂2G

∂pq ∂q
+
∂2G

∂q2

∂2G

∂p2
q

!
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The Relation between Classical and Quantum Transformations (cont.)

With our condition on G(q, pq), the coefficient of δε vanishes. We neglect the term of
order (δε)2, leaving

{q ′, p ′q}q,pq = 1

The infinitesimal transformation may be rewritten as

δq = q ′ − q = δε {q,G}q,pq δpq = p ′q − pq = δε {p,G}q,pq

Now, compare this to the transformation of an operator Q or Pq by the infinitesimal
coordinate transformation generated by the quantum analogue of G , G(Q,Pq). The
operator is

T (δε) = I +
i

~
δεG

We have changed the sign on δε here for reasons that are more easily explained in
terms of particular examples, which we shall do below.
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The Relation between Classical and Quantum Transformations (cont.)

The infinitesimal transformation of an arbitrary operator O is

O ′ = T (δε) O T †(δε) =

„
I +

i

~
δεG

«
O

„
I −

i

~
δεG

«
= O +

δε

i ~
[O,G ] +O(δε2)

or δO = O ′ − O =
δε

i ~
[O,G ]

So, δQ = Q ′ − Q =
δε

i ~
[Q,G ] δP = P ′q − Pq =

δε

i ~
[Pq ,G ]

We see there is a direct correspondence: the rules for coordinate transformations in
quantum mechanics directly correspond to the analogous rules in classical mechanics.
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The Relation between Classical and Quantum Transformations (cont.)

Here are a couple examples:

I Spatial translation
The generator is G(q, pq) = pq or G(Q,Pq) = Pq . The classical and quantum
transformations are

δq = δε {q, pq}q,pq = δε δp = δε {pq , pq}q,pq = 0

δQ =
δε

i ~
[Q,Pq] = δε δPq =

δε

i ~
[Pq ,Pq] = 0

Now let us discuss the issue of the sign of δε. First, consider the classical
coordinate transformation. If δε > 0, then we have increased the value of the
coordinate q by δε. This corresponds to a passive transformation in which we
move the origin to −q by a distance δε, or to an active transformation in which
we move the particle to +q by a distance δε.
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The Relation between Classical and Quantum Transformations (cont.)

Now consider the quantum analogues. When we talked about a passive
translation by δε, we defined that to be such that the origin moved by δε to +q,
resulting in Q ′ = Q − δε I . For an active transformation, the the same result
holds, and it makes sense as follows. If we consider 〈ψ |Q ′|ψ 〉, we are
considering the position of the untransformed state relative to the new axes.
Thus, we expect 〈ψ |Q ′|ψ 〉 = 〈ψ | (Q − δε I ) |ψ 〉. If we consider the relation
between the expectation value of Q or Q ′ for the transformed and
untransformed states, then we have 〈ψ ′ |Q|ψ ′ 〉 = 〈ψ |Q |ψ 〉+ δε. Hence,
〈Q〉 → 〈Q〉+ δε is completely consistent with Q ′ = Q − δε I as well as with the
classical transformation q → q + δε.

So, we see that we must employ the opposite sign in the transformation of the
operators as we do in the classical transformation in order to depict the same
physical situation.
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The Relation between Classical and Quantum Transformations (cont.)

I Time translation
The generator is G(q, pq) = H(q, pq) or G(Q,Pq) = H(Q,Pq). The classical
transformations are

δq = δε {q,H}q,pq δp = δε {pq ,H}q,pq

If we take δε = δt, we have

δq

δt
= δε {q,H}q,pq

δp

δt
= δε {pq ,H}q,pq

which are just Hamilton’s equations. For the quantum case, we have

δQ =
δε

i ~
[Q,H] δPq =

δε

i ~
[Pq ,H]

Again, let δε = δt and also take expectation values. We thus havefi
δQ

δt

fl
=

1

i ~
〈[Q,H]〉

fi
δPq

δt

fl
=

1

i ~
〈[Pq ,H]〉

and we thus recover Ehrenfest’s Theorem.

The issue with the sign of δε is identical to that for spatial translations.
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The Relation between Classical and Quantum Transformations (cont.)

Finite Classical and Quantum Transformations

One can construct both classical and quantum transformations from the infinitesimal
transformations involving Poisson brackets or commutators. Since we are more
familiar with the quantum transformation, let’s do that one first. The standard form is

O ′ = e
i
~ ε G O e−

i
~ ε G

We may rewrite this as follows:

O ′ = O +
ε

i ~
[O,G ] +

1

2!

“ ε

i ~

”2
[[O,G ],G ] + · · ·

(You can check that this is correct by simply expanding it.)
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The Relation between Classical and Quantum Transformations (cont.)

We can see that classical transformations can be written in similar fashion. Our
general relation for some classical function O(q, pq) is

δO = δε{O,G}q,pq ⇐⇒
d

dε
O(q, pq ; ε) = {O,G}q,pq

This holds for any function O(q, pq ; ε), so apply it to dO/dε:

d2

dε
O(q, pq ; ε) =

d

dε

dO

dε
=


dO

dε
,G

ff
q,pq

=
˘
{O,G}q,pq ,G

¯
q,pq

One can see that this formula extends to any order derivative, so we now know the full
Taylor expansion for O(q, pq) as a function of ε:

O(q, pq ; ε) = O(q, pq ; ε = 0) + ε {O,G}q,pq +
1

2!
ε2 {{O,G}q,pq ,G}q,pq

So, again, we have direct correspondence with the substitution { , } → 1
i ~ [ , ].
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The Relation between Classical and Quantum Transformations (cont.)

Classical and Quantum Symmetry Transformations and Conserved Quantities

With the above correspondences in hand, it is immediately evident that the conditions
for classical and quantum transformations to be symmetry transformations are also in
correspondence. The quantum condition is that the generator of the transformation
commute with H so that H is unchanged by the symmetry transformation (which
follows from the formulae involving commutators on the previous page):

[H,G ] = 0 ⇐⇒ H ′ = H

We see from the previous page that the classical Hamiltonian H is unchanged if a
similar condition holds involving Poisson brackets:

{H,G}q,pq = 0 ⇐⇒ H ′ = H

Moreover, because H and H are the generators of time translation in the classical and
quantum formalisms, respectively, the relation [O,H] = or {O,H}q,pq = 0 implies
that O remains unchanged under time translation. Classically, the functional value O
is conserved. Quantum mechanically, the operator O does not change with time and
its matrix elements and expectation values are constant.
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Angular Momentum Summary

Spherical Tensor States

Classical Spherical Tensors and Quantum Mechanical Spherical Tensor
States

Recall that we defined classical tensors of rank n in terms of their behavior under a
passive rotation via

T ′
i1···in =

X

j1,j2,··· ,jn

“
R−!θ

”

i1 j1
· · ·

“
R−!θ

”

in jn
Tj1···jn (15.57)

where F ′ is rotated from F by an angle θ CCW about bθ; the use of R−!θ (instead of R!θ)
is consistent with our original definition in Section 14.2 because the transformation of
the tensor is passive – it is the same tensor, but in a different coordinate system. We
know that the rotation matrices can be obtained from the j = 1 angular momentum
generators (see, e.g., Section 13.4)

R−!θ = exp
“
−"θ · "M

”
= exp

„
−

i
!

“
−"θ

”
· i ! "M

«
(15.58)

This definition takes a fundamentally Cartesian point of view because it relates
coordinate representations that are the projections of the tensor onto Cartesian unit
vectors.
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Classical Cartesian Tensors of Rank n

Classical Spherical Tensors of Rank j

Spherical Tensor States (cont.)

We thus recognize that we could have simply defined, by fiat in the same way as we do
spinors, classical objects T (j) having coordinate representations T (j)

q consisting of
2 j + 1 components {T (j)

q } (again, q = 1, . . . , 2 j + 1) that are related under a passive
transformation (again, F ′ obtained from F by rotation by !θ, but we want to calculate the
components of T (j) in F ′ from those in F ; we are not seeking to rotate T (j)) by

T (j) ′ = exp
„

i
!

!θ · !J(j)
«
T (j) (15.63)

or, component-wise,

T (j) ′
p =

2j+1X

q=1

»
exp

„
i
!

!θ · !J(j)
«–

pq
T (j)

q (15.64)

These classical objects are termed spherical tensors of rank j where j is integral. With
this definition, we see that spinors are also classical spherical tensors, but with
half-integral rank j .
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Classical Spherical Vectors

Spherical Tensor States (cont.)

We may infer a definition of a classical spin-j spinor from the above: a classical spin-j
spinor !v (j) is an object that has coordinate representations !v (j) consisting of 2 j + 1
components {v (j)

q }, q = 1, . . . , 2 j + 1, that transform under a passive coordinate
system transformation (F ′ obtained from F by rotation by !θ, but we want to calculate
the components of !v in F ′ from those in F ; we are not seeking to rotate !v (j)) by

!v (j) ′ = exp
„

i
!

!θ · !J(j)
«

!v (j) (15.61)

or, component-wise,

v (j) ′
p =

2j+1X

q=1

»
exp

„
i
!

!θ · !J(j)
«–

pq
v (j)

q (15.62)

Here, we have used a passive rotation because that is the natural way to define
tensors classically; one essentially always works in a “position basis” in classical
mechanics, so being tied to that position basis is not problematic.
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Classical Cartesian Vectors

Review of Tensors in Classical Mechanics (cont.)

You are certainly familiar with two kinds of tensors. The first, called a scalar, is also
known as a rank 0 tensor. A scalar is essentially a trivial tensor because its
transformation law is that its representation in any coordinate system is a single
number and that this number is the same in any two coordinate systems related by a
rotation. Examples include the mass of a particle, the total energy of a particle, etc.

The second kind of tensor you are familiar with is called a vector or rank 1 tensor. As
you know, the coordinate representation of a vector !v in a particular coordinate system
F consists of N numbers (N is the number of spatial dimensions, N = 3 for what are
considering), which we shall denote by !v or {vi}. Its representation in a different frame
F ′, which we shall denote by !v ′ or {v ′

i }, is related to that in F by

!v ′ = RP,!θ
!v (14.1)

v ′
i =

X

i

“
RP,!θ

”

ij
vi (14.2)

where RP,!θ is the passive rotation matrix that relates F and F ′. Recall that, by
convention, RP,!θ = RA,−!θ ≡ R−!θ .
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Spherical Tensor States

Classical Spherical Tensors and Quantum Mechanical Spherical Tensor
States

Recall that we defined classical tensors of rank n in terms of their behavior under a
passive rotation via

T ′
i1···in =

X

j1,j2,··· ,jn

“
R−!θ

”

i1 j1
· · ·

“
R−!θ

”

in jn
Tj1···jn (15.57)

where F ′ is rotated from F by an angle θ CCW about bθ; the use of R−!θ (instead of R!θ)
is consistent with our original definition in Section 14.2 because the transformation of
the tensor is passive – it is the same tensor, but in a different coordinate system. We
know that the rotation matrices can be obtained from the j = 1 angular momentum
generators (see, e.g., Section 13.4)

R−!θ = exp
“
−"θ · "M

”
= exp

„
−

i
!

“
−"θ

”
· i ! "M

«
(15.58)

This definition takes a fundamentally Cartesian point of view because it relates
coordinate representations that are the projections of the tensor onto Cartesian unit
vectors.
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Classical Coord System Rotations

Spherical Tensor States

Classical Spherical Tensors and Quantum Mechanical Spherical Tensor
States

Recall that we defined classical tensors of rank n in terms of their behavior under a
passive rotation via

T ′
i1···in =

X

j1,j2,··· ,jn

“
R−!θ

”

i1 j1
· · ·

“
R−!θ

”

in jn
Tj1···jn (15.57)

where F ′ is rotated from F by an angle θ CCW about bθ; the use of R−!θ (instead of R!θ)
is consistent with our original definition in Section 14.2 because the transformation of
the tensor is passive – it is the same tensor, but in a different coordinate system. We
know that the rotation matrices can be obtained from the j = 1 angular momentum
generators (see, e.g., Section 13.4)

R−!θ = exp
“
−"θ · "M

”
= exp

„
−

i
!

“
−"θ

”
· i ! "M

«
(15.58)

This definition takes a fundamentally Cartesian point of view because it relates
coordinate representations that are the projections of the tensor onto Cartesian unit
vectors.
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is the diagonalized version of 

Classical Rotation Generator

Rotations and Angular Momentum in Three Dimensions (cont.)

Infinitesimal rotations about different axes commute because they are infinitesimal. For
example,

Rδθx bx Rδθy by = (I + δθx Mx ) (I + δθy My ) = I + δθx Mx + δθy My + O(δθ)2 (13.81)

Rδθy by Rδθx bx = (I + δθy My ) (I + δθx Mx ) = I + δθx Mx + δθy My + O(δθ)2 (13.82)

≈ Rδθx bx Rδθy by (13.83)

The generic form for an infinitesimal rotation is therefore

Rδ#θ = I + δθx Mx + δθy My + δθzMz ≡ I + δ#θ · #M (13.84)

with #M = bx Mx + by My + bz Mz (13.85)

The definition of #M is purely for the sake of notational convenience. It turns out that #M
is not a vector, but is actually a third-rank tensor. We will not use this property here, but
we refer those who are interested to the Ph106 Lecture Notes.
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Tensors in Quantum Mechanics (cont.)

The Eigenvector-Eigenvalue Problem of i ! !M

Before we go on to what the eigenvalues and eigenvectors of !J (actually, Jz and J 2)
are, we clearly need to sort out what the eigenvalues and eigenvalues of i ! !M in τ (1)

are. As noted above, i ! !M satisfies the standard angular momentum commutation
relations. Our work in the |j, m 〉 basis showed that any set of operators that satisfies
these relations yields a set of eigenstates |j, m 〉 of M2 and Mz with allowed
eigenvalues defined by

“
i ! !M

”2
|j, m 〉 = !2j (j + 1) |j, m 〉 i !Mz |j, m 〉 = !m |j, m 〉 (14.67)

j =
k
2

k any integer m = −j,−(j − 1), · · · , j − 1, j (14.68)

However, that discussion only said the above values were allowed; it did not say they
had to exist. For example, in the Hilbert space of scalar states in three spatial
dimensions, we have shown that the particulars of the problem (i.e., the specific
representation of the angular momentum operators, which yield the specific
eigenvalue-eigenvector differential equations) imply that only the integral values of j
exist. What |j, m 〉 states exist in τ (1)?
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Tensors in Quantum Mechanics (cont.)

Another issue is: How does this relate to the !J(1) matrices obtained in our discussion of
the |j, m 〉 basis? Well, we simply need to apply a unitary transformation from the
conventional {!ei} basis for τ (1) to the basis of the above eigenvectors {!vi}. In the latter
basis, the !J(1) are the matrix representations of (i ! !M) (as one can verify by explicitly
doing the unitary transformation).

Note: Be sure not to confuse the unitary transformation necessary for diagonalizing
i !Mz with a spatial rotation. Because !v±1 are complex, one can never obtain !v±1 from
the {!ei} by an orthogonal spatial rotation transformation: the matrix representations of
such a rotation only contains real numbers! The spatial rotations are a subset of all
unitary transformations on τ (1), and the necessary unitary transformation is outside of
that subset.
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Cartesian Tensor QM State
= Direct Product of

Scalar State and Classical
Cartesian Tensor

QM Orbital Angular 
Momentum Operators

(Ang Mom for Scalar States)

Rotations and Angular Momentum in Three Dimensions (cont.)

Quantum Mechanical Rotations in Three Dimensions

The obvious extension of our quantum two-dimensional and classical
three-dimensional rotation formalisms is to recognize that the three quantum angular
momentum component operators will generate rotation transformations about their
respective axes and that they may be treated as a vector whose inner product with a
particular rotation vector will generate that rotation. That is, we have

Lx = Y Pz − Z Py Ly = Z Px − X Pz Lz = X Py − Y Px (13.93)
!L = bx Lx + by Ly + bz Lz (13.94)

The components satisfy the commutation relation

[Li , Lj ] = εijk i !Lk ⇐⇒ !L× !L = i !!L (13.95)

just as the Mi matrices do, up to a factor of i !. By analogy to our three-dimensional
classical and two-dimensional quantum rotation operators, finite rotations are then
obtained via

T (!θ) = exp
„
−

i
!

!θ · !L
«

(13.96)

Section 13.4 Rotations and Orbital Angular Momentum: Rotations and Angular Momentum in Three Dimensions Page 590

Rotations and Angular Momentum in Three Dimensions (cont.)

Quantum Mechanical Rotations in Three Dimensions

The obvious extension of our quantum two-dimensional and classical
three-dimensional rotation formalisms is to recognize that the three quantum angular
momentum component operators will generate rotation transformations about their
respective axes and that they may be treated as a vector whose inner product with a
particular rotation vector will generate that rotation. That is, we have

Lx = Y Pz − Z Py Ly = Z Px − X Pz Lz = X Py − Y Px (13.93)
!L = bx Lx + by Ly + bz Lz (13.94)

The components satisfy the commutation relation

[Li , Lj ] = εijk i !Lk ⇐⇒ !L× !L = i !!L (13.95)

just as the Mi matrices do, up to a factor of i !. By analogy to our three-dimensional
classical and two-dimensional quantum rotation operators, finite rotations are then
obtained via

T (!θ) = exp
„
−

i
!

!θ · !L
«

(13.96)
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Rotations and Angular Momentum in Three Dimensions (cont.)

Quantum Mechanical Rotations in Three Dimensions

The obvious extension of our quantum two-dimensional and classical
three-dimensional rotation formalisms is to recognize that the three quantum angular
momentum component operators will generate rotation transformations about their
respective axes and that they may be treated as a vector whose inner product with a
particular rotation vector will generate that rotation. That is, we have

Lx = Y Pz − Z Py Ly = Z Px − X Pz Lz = X Py − Y Px (13.93)
!L = bx Lx + by Ly + bz Lz (13.94)

The components satisfy the commutation relation

[Li , Lj ] = εijk i !Lk ⇐⇒ !L× !L = i !!L (13.95)

just as the Mi matrices do, up to a factor of i !. By analogy to our three-dimensional
classical and two-dimensional quantum rotation operators, finite rotations are then
obtained via

T (!θ) = exp
„
−

i
!

!θ · !L
«

(13.96)
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Rotations and Angular Momentum in Three Dimensions (cont.)

Quantum Mechanical Rotations in Three Dimensions

The obvious extension of our quantum two-dimensional and classical
three-dimensional rotation formalisms is to recognize that the three quantum angular
momentum component operators will generate rotation transformations about their
respective axes and that they may be treated as a vector whose inner product with a
particular rotation vector will generate that rotation. That is, we have

Lx = Y Pz − Z Py Ly = Z Px − X Pz Lz = X Py − Y Px (13.93)
!L = bx Lx + by Ly + bz Lz (13.94)

The components satisfy the commutation relation

[Li , Lj ] = εijk i !Lk ⇐⇒ !L× !L = i !!L (13.95)

just as the Mi matrices do, up to a factor of i !. By analogy to our three-dimensional
classical and two-dimensional quantum rotation operators, finite rotations are then
obtained via

T (!θ) = exp
„
−

i
!

!θ · !L
«

(13.96)
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Rotations and Angular Momentum in Three Dimensions (cont.)

Quantum Mechanical Rotations in Three Dimensions

The obvious extension of our quantum two-dimensional and classical
three-dimensional rotation formalisms is to recognize that the three quantum angular
momentum component operators will generate rotation transformations about their
respective axes and that they may be treated as a vector whose inner product with a
particular rotation vector will generate that rotation. That is, we have

Lx = Y Pz − Z Py Ly = Z Px − X Pz Lz = X Py − Y Px (13.93)
!L = bx Lx + by Ly + bz Lz (13.94)

The components satisfy the commutation relation

[Li , Lj ] = εijk i !Lk ⇐⇒ !L× !L = i !!L (13.95)

just as the Mi matrices do, up to a factor of i !. By analogy to our three-dimensional
classical and two-dimensional quantum rotation operators, finite rotations are then
obtained via

T (!θ) = exp
„
−

i
!

!θ · !L
«

(13.96)
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QM Rotation
Operator for Scalar States

Rotations and Angular Momentum in Three Dimensions (cont.)

Quantum Mechanical Rotations in Three Dimensions

The obvious extension of our quantum two-dimensional and classical
three-dimensional rotation formalisms is to recognize that the three quantum angular
momentum component operators will generate rotation transformations about their
respective axes and that they may be treated as a vector whose inner product with a
particular rotation vector will generate that rotation. That is, we have

Lx = Y Pz − Z Py Ly = Z Px − X Pz Lz = X Py − Y Px (13.93)
!L = bx Lx + by Ly + bz Lz (13.94)

The components satisfy the commutation relation

[Li , Lj ] = εijk i !Lk ⇐⇒ !L× !L = i !!L (13.95)

just as the Mi matrices do, up to a factor of i !. By analogy to our three-dimensional
classical and two-dimensional quantum rotation operators, finite rotations are then
obtained via

T (!θ) = exp
„
−

i
!

!θ · !L
«

(13.96)
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Rotations and Angular Momentum in Three Dimensions (cont.)

The matrices satisfy the cyclic commutation relation

[Mi , Mj ] = εijk Mk ⇐⇒ "M× "M = "M (13.90)

which is a strange identity, indeed, again because "M is not a vector but is a third-rank
tensor. Since "M · "M = −2 I, we have

[Mi , "M · "M] = 0 (13.91)

Finally, just as "rT Mz"p = −lz , we have in general

"l = −"rT "M"p (13.92)
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Addition of Angular Momentum – States (cont.)

Formal Decomposition of the State Space

So, let’s consider two angular momentum operators, !J(j1) and !J(j2) acting in factor
spaces V (j1) and V (j2). Note that it is completely generic to use the V (j) spaces we
found in Section 13.6, regardless of whether we are considering orbital or spin angular
momentum or integral or half-integral j values, because the eigenstates for anY
angular momentum operator can be written in that form. We also drop the notational
complications (boldface, calligraphic letters) because we do not care about the
distinction between orbital, spin, and total angular momentum right now. So we
consider

!J = !J(j1) ⊗ !J(j2) V = V (j1) ⊗ V (j2) (15.6)

The basis states for the factor spaces are {|j1, m1 〉} and {|j2, m2 〉}. The obvious basis
for the product space is {|j1, m1 〉 ⊗ |j2, m2 〉}. This is called the uncoupled basis or
uncoupled representation because we consider the angular momentum state of each
factor separately.
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Both are just matrices
They are the matrix representation of the  

operator in the j = 1 subspace
of whatever Hilbert space 

you are working with

Tensors in Quantum Mechanics

Tensor Particle States — Motivation

Consider a quantum-mechanical particle state |ψ 〉. Since we are interested in
coordinate system rotations, we must necessarily work with the position-basis
representation of such a state, 〈"r |ψ 〉 = ψq("r) in a coordinate system F . So far, we
have considered particle states that consist of just a single number at any position in
space. When we change coordinate systems from F to F ′ by a passive rotation
transformation, or if we rotate the state itself so that the transformed state’s orientation
relative to F ′ is the same as the untransformed state’s orientation relative to F , we use
the formalism we developed in Section 9.1 to calculate

ψq ′ ("r ′) = 〈"r ′ |ψ 〉 = 〈"r |T †("θ)|ψ 〉 = 〈"r | exp
„

i
!

"θ · "L
«

|ψ 〉 (14.35)

ψ ′
q("r) = 〈"r |ψ ′ 〉 = 〈"r |T ("θ)|ψ 〉 = 〈"r | exp

„
−

i
!

"θ · "L
«

|ψ 〉 (14.36)

We can explicitly calculate the above by using completeness to insert
R

d3r |"r 〉〈"r |
between the transformation operator and |ψ 〉, yielding the position-basis matrix
elements of the transformation operator, which will essentially perform a Taylor
expansion to rotate the wavefunction ψq("r) around bθ by θ.
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lowering operators

Spherical Tensor QM State
= Direct Product of

Scalar State and Classical
Spherical Tensor

Tensors in Quantum Mechanics (cont.)

The above basis for τ (n) suggests a more fundamental way of writing τ (n) and its basis.
Each basis element Ei1···in can be written as an outer product of unit vectors:

Ei1···in = "ei1 · · ·"ein (14.47)

It should be clear that an outer product of vectors is just a kind of direct product. That
is, one could write the above as

Ei1···in = "ei1 ⊗ · · ·⊗ "ein =
nY

k=1

"eik (14.48)

and thus the vector space of tensors of rank n is just a direct product of vector spaces
of vectors:

τ (n) = τ (1) ⊗ · · ·⊗ τ (1) =
nY

k=1

τ (1) (14.49)

where there are n elements in the direct product. The idea of using direct products of
unit vectors in τ (1) as the basis for τ (n) is thus the natural thing to do.
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Spherical Tensor States (cont.)

We have this nice conversion from Cartesian to spherical tensors for integral rank j , in
which the space of spherical tensors of rank j , V (j), is a subspace of the space of
Cartesian tensors of rank j , τ (j) (or of τ (n) for n > j). Is there a similar set of Cartesian
tensors for half-integral j? Sort of.

It is hard to think of a way to represent spherical tensors of half-integral rank in a
completely Cartesian fashion because one would need a half-integral number of
rotation matrices! But one can of course obtain a spherical tensor of half-integral rank
j > 1/2 as a subspace of the direct product of Cartesian tensors of rank j − 1/2 and
spherical tensors of rank 1/2 (or of j + 1/2 and 1/2). But one fundamentally needs to
include one space of spherical tensors of half-integral rank from the start to get
spherical tensors of half-integral rank as a subspace of the result, so the
representation is not completely Cartesian in character.
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Tensors in Quantum Mechanics (cont.)

Tensor Particle States — Formal Definition

The above factorization of the transformation law into the Hilbert space transformation
operator T (!θ) and the classical transformation operator R−!θ suggests that the natural
way to write these tensor states is as direct products. Let’s first begin with vector
states. Suppose V is the space of scalar Hilbert space states, with basis {|φi 〉}. Let
τ (1) denote the vector space of vectors for spatial dimension N = 3. A valid basis for
τ (1) is the set of unit vectors {!ei} of the frame F . A basis for the product space
V ⊗ τ (1) consists of direct products of these two bases, {|φi 〉 ⊗ !ej}. Any vector state
may be expanded in this basis via

!|ψ 〉 =
X

i

NX

j=1

Cij
`
|φi 〉 ⊗ !ej

´
(14.40)

where the vector symbol indicates that !|ψ 〉 is a vector state. To match up with the
notation used before, we treat ⊗ as multiplication of scalar numbers against scalar
Hilbert space states, so the above may be written in F as

!|ψ 〉 =
X

i

0

@Ci,1

2

4
|φi 〉
0
0

3

5 + Ci,2

2

4
0
|φi 〉
0

3

5 + Ci,3

2

4
0
0
|φi 〉

3

5

1

A (14.41)
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Space:

Basis Elements:

Space:

Basis Elements:

Scalar (Spinless) QM States

Tensors in Quantum Mechanics

Tensor Particle States — Motivation

Consider a quantum-mechanical particle state |ψ 〉. Since we are interested in
coordinate system rotations, we must necessarily work with the position-basis
representation of such a state, 〈"r |ψ 〉 = ψq("r) in a coordinate system F . So far, we
have considered particle states that consist of just a single number at any position in
space. When we change coordinate systems from F to F ′ by a passive rotation
transformation, or if we rotate the state itself so that the transformed state’s orientation
relative to F ′ is the same as the untransformed state’s orientation relative to F , we use
the formalism we developed in Section 9.1 to calculate

ψq ′ ("r ′) = 〈"r ′ |ψ 〉 = 〈"r |T †("θ)|ψ 〉 = 〈"r | exp
„

i
!

"θ · "L
«

|ψ 〉 (14.35)

ψ ′
q("r) = 〈"r |ψ ′ 〉 = 〈"r |T ("θ)|ψ 〉 = 〈"r | exp

„
−

i
!

"θ · "L
«

|ψ 〉 (14.36)

We can explicitly calculate the above by using completeness to insert
R

d3r |"r 〉〈"r |
between the transformation operator and |ψ 〉, yielding the position-basis matrix
elements of the transformation operator, which will essentially perform a Taylor
expansion to rotate the wavefunction ψq("r) around bθ by θ.
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Space:
Basis Elements:

Tensors in Quantum Mechanics (cont.)

The natural extension to tensor states is obvious. Let τ (n) be the vector space of rank n
tensors and let V be the space of scalar Hilbert space states as before. Then, our
vector space of tensor states is

V = V ⊗ τ (n) (14.46)

Now, what is a good basis for τ (n)? One reasonable basis is the set of all rank n
tensors E whose coordinate representation in the frame F has exactly one element
being 1 and all others being 0; we could label these as Ei1···in , ik = 1, . . . , N,
k = 1, . . . , n, where the indices indicate which entry is nonzero in the coordinate
representation in F .

Section 14.2 Spin Angular Momentum: Tensors in Quantum Mechanics Page 674

Tensors in Quantum Mechanics (cont.)

Therefore, our vector space of tensor states is

V = V ⊗
nY

k=1

τ (1) (14.50)

This space is a Hilbert space because it inherits the necessary properties from the
factor spaces. Any state can be expanded as

|ψ(n) 〉 =
X

i

NX

i1,...,in=1

Ci i1·in

 
|φi 〉 ⊗

nY

k=1

$eik

!
(14.51)

where the ψ(n) symbol is meant to indicate that the state is a tensor state of rank n as
opposed to a scalar state. A vector state may be written as |ψ(1) 〉 or as |$ψ 〉.
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Space:

Basis Elements:

Tensors in Quantum Mechanics (cont.)
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Spherical Harmonics
(Position-Basis Representation

of Eigenstates of Lz and L2)

The Eigenvector-Eigenvalue Problem of Lz and L2 (cont.)

Combining all of this, we thus write our joint eigenfunctions of L2 and Lz as

Y m
l (θ, φ) =

s
2 l + 1

4 π

(l −m)!

(l + m)!
Pm

l (u = cos θ) ei m φ (13.114)

where the prefactor ensures correct normalization when integrated over all solid
angles. These functions are known as the spherical harmonics. The
orthonormalization condition (arising from the separate orthonormality of the polar and
azimuthal functions) is

Z 1

−1
d cos θ

Z 2 π

0
dφ

ˆ
Y m

l (θ, φ)
˜∗ Yl′,m′ (θ, φ) = δll′δmm′ (13.115)

The full wavefunction may have any radial dependence as long as its angular
dependence is in the form of a spherical harmonic.
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18. Perturbation theory

(a) In your lecture notes you say that for a degenerate unperturbed hamiltonian we must
resort to diagonalizing the whole hamiltonian (unperturbed + perturbation). That is
to say we have to solve it exactly. But I’m sure that I’ve heard about degenerate
perturbation theory? Could you explain how to get around the problem of degeneracy?

19. Detailed questions on derivations in the notes

(a) I’m confused as to how you arrived upon equation 13.10 on page 563 (from 1/14).

(b) On page 542 (from 1/11), I was wondering how you derived equation 12.15. Have
you made some sort of approximation to drop a couple of terms, or are you using the
parallel/perpendicular method from the book?

(c) This is a specific question on the equation for the infinitesimal J generator from lec-
ture. I don’t understand how the tensor sum and product in (14.62) is obtained as a
generalization of (14.61), or more specifically how to expand the third term of (14.62).

(d) In lecture 13.10, equation 13.211 as well as in equation 13.218, you give the orthonormal-
ization condition for the full 3-dimension bound eigenstates as integral over the whole
space (φ, sin θ, r) but without the r2 term in the integral. This comes up more often
later, can you explain why r2 can be left out in some cases?

(e) I want to know how you get from the radial equation to the reduced radial equation.
When I replace R(r) with U(r)/r and take derivatives, I do not get the right result.

V = V (0) ⊕ V (1) ⊕ V (2) ⊕ · · · (2)

10

orbital + spin

Tensors in Quantum Mechanics (cont.)

The natural extension to tensor states is obvious. Let τ (n) be the vector space of rank n
tensors and let V be the space of scalar Hilbert space states as before. Then, our
vector space of tensor states is

V = V ⊗ τ (n) (14.46)

Now, what is a good basis for τ (n)? One reasonable basis is the set of all rank n
tensors E whose coordinate representation in the frame F has exactly one element
being 1 and all others being 0; we could label these as Ei1···in , ik = 1, . . . , N,
k = 1, . . . , n, where the indices indicate which entry is nonzero in the coordinate
representation in F .
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Spherical Tensor States (cont.)

We have this nice conversion from Cartesian to spherical tensors for integral rank j , in
which the space of spherical tensors of rank j , V (j), is a subspace of the space of
Cartesian tensors of rank j , τ (j) (or of τ (n) for n > j). Is there a similar set of Cartesian
tensors for half-integral j? Sort of.

It is hard to think of a way to represent spherical tensors of half-integral rank in a
completely Cartesian fashion because one would need a half-integral number of
rotation matrices! But one can of course obtain a spherical tensor of half-integral rank
j > 1/2 as a subspace of the direct product of Cartesian tensors of rank j − 1/2 and
spherical tensors of rank 1/2 (or of j + 1/2 and 1/2). But one fundamentally needs to
include one space of spherical tensors of half-integral rank from the start to get
spherical tensors of half-integral rank as a subspace of the result, so the
representation is not completely Cartesian in character.
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Addition of Angular Momentum:
any direct product of a pair of 

spherical tensors (QM or classical)
is a direct sum of spherical tensors

of various ranks

  orbital + spin
  any + any

Tensors in Quantum Mechanics (cont.)

The natural extension to tensor states is obvious. Let τ (n) be the vector space of rank n
tensors and let V be the space of scalar Hilbert space states as before. Then, our
vector space of tensor states is

V = V ⊗ τ (n) (14.46)

Now, what is a good basis for τ (n)? One reasonable basis is the set of all rank n
tensors E whose coordinate representation in the frame F has exactly one element
being 1 and all others being 0; we could label these as Ei1···in , ik = 1, . . . , N,
k = 1, . . . , n, where the indices indicate which entry is nonzero in the coordinate
representation in F .
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Spherical Tensor States (cont.)
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Addition of Angular Momentum – States

Overview

We will do two things in this section:

! We will formally show that if one “adds” two angular momenta j1 and j2 by taking
the direct product of their angular momentum spaces V (j1) and V (j2), j1 ≥ j2,
then one obtains a direct sum of all angular momentum spaces between V (j1+j2)

and V (j1−j2), inclusive:

V (j1) ⊗ V (j2) = V (j1+j2) ⊕ V (j1+j2−1) ⊕ · · ·⊕ V (j1−j2+1) ⊕ V (j1−j2) (15.1)

! We will determine the generic form for the expansion coefficients needed to write
elements in the direct sum space in terms of the the direct products of the basis
elements in the factor spaces; that is, we will figure out how to write the obvious
basis kets {|j, m 〉} of the direct sum space in terms of the product space basis
kets {|j1, m1 〉 ⊗ |j2, m2 〉}. These expansion coefficients are called the
Clebsch-Gordan coefficients.
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Radial Equation via
Separation of Variables

Clebsch-Gordan Coefficient:
Unitary transformation from

direct product to 
direct sum space

Addition of Angular Momentum – States (cont.)

Clebsch-Gordan Coefficients

In the above, we have determined the basic structure of the product space formed by
“adding” two angular momenta. Now, let’s figure out in detail how to transform from the
uncoupled basis to the coupled basis; essentially, how to write the natural basis of the
direct sum space in terms of the natural basis of the direct product space.

The generic form for the expansion is, obviously,

|j, m 〉 =

j1X

m1=−j1

j2X

m2=−j2

(|j1, m1 〉 ⊗ |j2, m2 〉) (〈j1, m1 | ⊗ 〈j2, m2 |) |j, m 〉 (15.17)

where the expansion coefficients are called the Clebsch-Gordan (CG) coefficients.

How do we calculate the CG coefficients? We simply start from the top and work down,
making some reasonable choices for arbitrary phase conventions along the way.
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Cartesian Tensor QM Operators

Spherical Tensor Operators

Defining Spherical Tensor Operators

Recall that we defined a (Cartesian) tensor operator of rank n, O, to be a set of
operators that, under the unitary transformation corresponding to a coordinate system
rotation, are linearly combined in the same way as a classical coordinate
transformation for a tensor of rank n would mix them:

O ′
i1···in = T (!θ)Oi1···in T †(!θ) =

NX

j1,··· ,jn=1

RT
i1 j1 · · ·R

T
injn Oj1···jn (15.70)

where T (!θ) = exp
“
− i

!
!θ · !J

”
, Rij =

`
R!θ

´
ij , and where here we are writing the

representations of the tensor operator O of rank n as Oi1···in in frame F and O ′
i1···in

in

frame F ′, where F ′ is rotated by !θ from F . !J operates in whatever space T does,
whereas R is always just a N × N matrix of numbers. The fact that R must be
transposed was derived in Section 14.2 and recalls the definition of a classical
Cartesian tensor. (Actually, we never explicitly wrote the above equation for arbitrary
rank n, but we did write it for vector operators.)
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Spherical Tensor QM Operators

Spherical Tensor Operators (cont.)

It should be obvious that one can define spherical tensor operators in the same way as
we did classical spherical tensors. That is, a spherical tensor operator of rank j , O(j), is
a set of operators whose representations in different coordinate systems (coordinate
representations, just as for Cartesian tensors) O(j), consisting of 2 j + 1 components
{O(j)

q }, q = 1, . . . , 2 j + 1, are related by

O(j) ′
q = T (!θ) O(j)

q T †(!θ) =
2 j+1X

p=1

»
exp

„
−

i
!

!θ · !J(j)
«–

pq
O(j)

p (15.71)

where it is understood that O(j) is to be treated as a column vector with 2 j + 1
components indexed by q from 1 to 2 j + 1: on the right side, !J(j) is a
(2 j + 1)× (2 j + 1) matrix, as is its exponent, that acts on the column vector (note the
transposition, though!); and on the left side, the T (!θ) and T †(!θ) operators act on each
component of the column vectors separately. The !J(j) matrix is the same matrix we use
on spherical tensor states of rank j . The fact that the rotation operator on the right side
acts to the left on O(j)

p recalls the passive nature of the transformation defining classical
spherical tensors; action of this rotation operator to the left is like action of the adjoint
operator (corresponding to an opposite sign for the rotation angle) to the right.
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Spherical Tensor Operators (cont.)

Since the two states transform in the same way, they must be the same (up to
normalization):

O(k)
q |j, m 〉 = |k , mq 〉 ⊗ |j, m 〉 (15.109)

That is, acting on the spherical tensor state |j, m 〉 with the qth component of a
spherical tensor operator of rank k yields the product state |k , mq 〉 ⊗ |j, m 〉.
Spherical tensor operators add angular momentum.
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Action on            states

Spherical Tensor Operators (cont.)

! Action on |j, m 〉 states
Let’s consider the action of a spherical tensor operator of rank k O(k) on an
angular momentum eigenstate |j, m 〉. The way to figure this out is to determine
what properties O(k)

q |j, m 〉 has under rotations. We simply apply an active
rotation transformation to this state:

T (!θ)
h
O(k)

q |j, m 〉
i

=
“

T (!θ)O(k)
q T †(!θ)

” “
T (!θ)|j, m 〉

”
(15.103)

Evaluating the second factor is actually not straightforward, let’s do it separately
(with: ma ≡ j − a + 1 and mb ≡ j − b + 1):

T (!θ)|j, m 〉 =
2 j+1X

a,b=1

|j, ma 〉〈j, ma |T (!θ)|j, mb 〉〈j, mb |j, m 〉 (15.104)

=
2 j+1X

a,b=1

|j, ma 〉
»

exp
„
−

i
!

!θ · !J(j)
«–

ab
δmb,m (15.105)

=
2 j+1X

a=1

»
exp

„
−

i
!

!θ · !J(j)
«–

a,j−m+1
|j, ma 〉 (15.106)

Section 15.3 Addition of Angular Momenta: Spherical Tensor Operators Page 780

Explanation of
Accidental Degeneracies
via Raising and Lowering

Operators built from
Spherical Tensor Operators

that commute with H

Wigner-Eckart Theorem

material already 
covered already

material of moderate difficulty

very challenging material
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Angular Momentum Summary (cont.)

What will make this material difficult:

I Many of the proofs and arguments are indirect. The crux of this whole business
is the notion that the way classical and quantum mechanical states transform
under rotations provides a useful way to classify them and allows you to do
calculations in a relatively painless way. We thus focus on transformation
properties of states rather than doing direct things like solving differential
equations or calculating matrix elements explicitly, which is what we have spent
most of the course doing.

I You will be forced to think conceptually because, as with transformations,
notation only gets you so far. You must understand what the symbols you are
writing down mean. This is the greatest problem I see students having — that
they are not mastering the definitions and concepts, so they are unsure what
certain symbols and notation mean.

I There will be a great deal of looking at different representations of the same
objects by writing the Hilbert space in differing ways. An example is the idea of
breaking down the Hilbert space of states of a particle in three spatial
dimensions into the direct product of a space the describes the radial behavior
and one that describes the angular behavior, and the further decomposition of
the latter into subspaces of well-defined orbital angular momentum. Another
examples is addition of angular momentum, wherein we take the direct product
space of two angular momenta and break it down into a direct sum of the
subspaces of well-defined total angular momentum.

Section 13.0 Angular Momentum Summary: Page 711



Section 14
Rotations and Orbital Angular Momentum

Page 712



Lecture 42:
Rotations and Orbital Angular Momentum in Two Dimensions

Date Revised: 2009/02/04
Date Given: 2009/02/04

Page 713



Plan of Attack

We will study the problem of rotations and orbital angular momentum in the following
sequence:

I Rotation Transformations in Two Dimensions
We will first review classical rotation transformations in two dimensions, derive
the formula for the active rotation transformation of a quantum mechanical
state, and show that the generator of the transformation is the quantum
analogue of the classical z-axis angular momentum, Lz .

I The Lz Eigenvector-Eigenvalue Problem
Lz will be a Hermitian, observable operator. For Hamiltonians for which
[H, Lz ] = 0 – i.e., Hamiltonians with rotational symmetry in two dimensions – H
and Lz are simultaneously diagonalizable. Therefore, eigenvectors of H must
also be eigenvectors of Lz , and so the eigenvectors of Lz will be of interest. We
calculate the eigenvectors and eigenvalues of Lz and see how the requirement
that eigenvectors of H be eigenvectors of Lz reduces the Schrödinger Equation
to a differential equation in the radial coordinate only.

I Rotation Transformations in Three Dimensions
We then generalize classical rotation transformations to three dimensions and
use correspondences to identify the three angular momentum operators Lx , Ly ,
and Lz , as well as the total angular momentum magnitude L2.

Section 14.1 Rotations and Orbital Angular Momentum: Plan of Attack Page 714



Plan of Attack (cont.)

I The L2-Lz Eigenvalue Problem
In three dimensions, we shall see that Lx , Ly , Lz , and L2 are all Hermitian,
observable operators. But no two of Lx , Ly , and Lz commute, while each of
them commutes with L2, so it becomes clear that useful set of operators to
work with for Hamiltonians that are rotationally invariant in three dimensions is
H, Lz , and L2. We therefore consider the joint eigenvector-eigenvalue problem
of L2 and Lz and determine how it reduces the Schrödinger Equation to a
differential equation in the radial coordinate only.

We will refer back frequently to material on continuous symmetry transformations
that we covered in Section 12, so please review that material.
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Rotation Transformations in Two Dimensions

Passive Classical Rotation Transformations in Two Dimensions

A passive coordinate system rotation in two dimensions by an angle θ
counterclockwise yields the following relationship between the components of a vector
~a in the untransformed system (ax , ay , az ) and its components in the transformed
system (ax ′ , ay ′ , az ′ ):

ax ′ = ax cθ + ay sθ ay ′ = −ax sθ + ay cθ az ′ = az

where cθ = cos θ and sθ = sin θ as usual. The x ′ and y ′ axes are obtained by rotating
the x and y axes counterclockwise by the angle θ. The rotation is termed passive
because we are not changing the vector ~a, we are simply writing its representation in
terms of a new set of coordinate axes. The above may be written as a matrix
operation: 24 ax ′

ay ′

az ′

35 =

24 cθ sθ 0
−sθ cθ 0

0 1

3524 ax

ay

az

35 ≡ RP,θbz
24 ax

ay

az

35
where we use the P subscript to indicate a passive transformation (as we did in the
QM case) and the θbz subscript to indicate the rotation angle from the untransformed
to the transformed system.
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Rotation Transformations in Two Dimensions (cont.)

Let us emphasize here the concept of coordinate representations of classical vectors.
The unprimed and primed coordinate systems are just two different ways of labeling
space. The vector ~a has not changed by relabeling space. However, the components of
~a in the two coordinate systems are different. We thus call (ax , ay , az ) and
(ax ′ , ay ′ , az ′ ) two different coordinate representations of the same vector ~a. This is
very much the same idea as our discussion of different position-basis representations of
a state |ψ 〉 depending on whether we project it onto the position-basis elements for
the original coordinate system {|x , y 〉} or those of the transformed coordinate system
{x ′, y ′}, giving position-basis representations 〈x , y |ψ 〉 and 〈x ′, y ′ |ψ 〉, respectively.
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Rotation Transformations in Two Dimensions (cont.)

Active Classical Rotation Transformations in Two Dimensions

The classical analogue of an active coordinate transformation is to change the vector;
that is, to fix the coordinate system and to change the vector by changing its
coordinate representation (components) in that coordinate system. If we denote the
new vector by ~a ′, then the coordinate representation (components) of ~a ′ are related
to those of ~a by24 a ′x

a ′y
a ′z

35 =

24 cθ −sθ 0
sθ cθ 0
0 1

3524 ax

ay

az

35 ≡ RA,θbz
24 ax

ay

az

35
or

a ′x = ax cθ − ay sθ a ′y = ax sθ + ay cθ a ′z = az

where both are being represented in the untransformed coordinate system. This
transformation corresponds to physically rotating ~a by θ CCW about bz. ~a ′ is a
different vector than ~a because its coordinate representation in this fixed coordinate
system is different from that of ~a. Again, this is in direct analogy to our active
transformations in QM, where we kept the position basis unchanged but transformed
the state, |ψ ′ 〉 = T |ψ 〉, and saw that the states had different position-basis
representations in the same basis, 〈x , y |ψ 〉 and 〈x , y |ψ ′ 〉.

Section 14.2 Rotations and Orbital Angular Momentum: Rotation Transformations in Two Dimensions Page 718



Rotation Transformations in Two Dimensions (cont.)

Passive vs. Active Classical Rotation Transformations

The key difference between active and passive transformations is that the active
transformation rotates the vector ~a, creating a new vector ~a ′, while the passive
transformation rotates the coordinate system so that the representation of the vector
~a changes from (ax , ay , az ) to (ax ′ , ay ′ , az ′ ), but the vector ~a is unchanged. This is in
exactly analogy to what we considered for QM states: for a passive transformation, we
consider the projection of the untransformed state |ψ 〉 onto the transformed position
basis {|q ′ 〉 = T |q 〉} by looking at 〈q ′ |ψ 〉, while, for an active transformation, we
consider the projection of the transformed state |ψ ′ 〉 = T |ψ 〉 onto the untransformed
basis {|q 〉} by looking at 〈q |ψ ′ 〉.

It may be helpful to realize that the unit vectors of the transformed system, bx ′, by ′,
and bz ′, are obtained by performing an active transformation on the unit vectors of the
untransformed system, bx , by , and bz.
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Rotation Transformations in Two Dimensions (cont.)

The mathematical difference between the passive and active transformations is just
the change of sign of the sθ terms; that is RP,−θbz = RA,θbz . This sign flip tells us that
the coordinate representation of ~a in a transformed coordinate system is literally equal
to the coordinate representation in the untransformed coordinate system of the vector
~a ′ that has been obtained from ~a by active rotation by −θbz. Of course, in spite of this
equality, we know ~a and ~a ′ are different vectors because the coordinate
representations that are equal are coordinate representations in different coordinate
systems (the transformed and untransformed systems). This is analogous to the
situation in quantum mechanics of a passively transformed state having the same
position-basis representation in the transformed basis as an actively transformed state
has in the untransformed basis when the actively transformed state has been
transformed using the inverse transformation as was used for the passive
transformation (see Section 12.3).

It is convention to use Rθbz for RA,θbz and to never use RP,θbz . We will follow this
convention.
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Rotation Transformations in Two Dimensions (cont.)

Generators for Classical Rotation Transformations in Two Dimensions

Since we are going to be considering generators in the quantum case and for the
three-dimensional classical case, it is worth showing how the above transformation can
be written as an operator exponential of a generator. As we did in connection with
identifying the generator of a continuous coordinate transformation of quantum
mechanical states, we will begin by considering an infinitesimal version of the above
coordinate transformation:

Rδθbz =

24 cos δθ − sin δθ 0
sin δθ cos δθ 0

0 1

35 ≈
24 1 −δθ 0
δθ 1 0
0 1

35
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Rotation Transformations in Two Dimensions (cont.)

The generic relationship between a classical coordinate transformation and its
generator is

Tε = I + εG

Instead of relating Hermitian generators to unitary coordinate transformation
operators, we must relate antisymmetric generators to orthogonal coordinate
transformation operators. (The generator must be antisymmetric, not symmetric,
because we have no i in the argument of the exponential as we do for the QM
version). Thus, it makes sense to rewrite our infinitesimal rotation operators as

Rδθbz = I + δθMz Mz ≡

24 0 −1 0
1 0 0
0 0 0

35
Thus, Mz is the classical generator of rotations about bz. The use of the z subscript of
course foreshadows similar operators for rotations about bx and by .
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Rotation Transformations in Two Dimensions (cont.)

We of course recover the finite classical rotation transformation by the appropriate
infinite product, yielding an exponential:

Rθbz = lim
N→∞

„
I +

θ

N
Mz

«N

= exp (θMz )

We may evaluate the above using the fact

M2
z = −

24 1 0 0
0 1 0
0 0 0

35

Section 14.2 Rotations and Orbital Angular Momentum: Rotation Transformations in Two Dimensions Page 723



Rotation Transformations in Two Dimensions (cont.)

This yields

Rθbz =
∞X
n=0

θn

n!
Mn

z = I + θMz +
∞X
n=1

„
θ2n

(2n)!
M2n

z +
θ2n+1

(2n + 1)!
M2n

z Mz

«

=

24 0 0 0
0 0 0
0 0 1

35+
∞X
n=0

24 1 0 0
0 1 0
0 0 0

35„ θ2n(−1)n

(2n)!
+
θ2n+1(−1)n

(2n + 1)!
Mz

«

=

24 0 0 0
0 0 0
0 0 1

35+

24 1 0 0
0 1 0
0 0 0

35 (cθ + sθ Mz )

=

24 cθ −sθ 0
sθ cθ 0
0 0 1

35
as expected.
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Rotation Transformations in Two Dimensions (cont.)

What is the significance of the Mz matrix? See:

−~rT Mz~p =
ˆ

x y z
˜ 24 0 −1 0

1 0 0
0 0 0

3524 px

py

pz

35
= x py − y px = `z

That is, Mz can be used to compute the z component of the angular momentum
when combined with the ~r and ~p vectors. Mz is in some nontrivial way connected to
the z component of angular momentum.
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Rotation Transformations in Two Dimensions

Quantum Mechanical Active Rotation Transformation in Two Dimensions

Let’s recall Examples 12.2, 12.5, and 12.3 which were passive and active QM rotation
and calculation of the generator of rotations. Recall that we found that the generator
of the QM rotation transformation was the z-axis angular momentum operator,

G = X Py − Y Px ≡ Lz

and that the generic explicit form for the quantum mechanical operator for rotation
transformations about the z-axis is

T (θbz) = exp

„
−

i

~
θ Lz

«
We also now see the connection between the classical and quantum rotation
formalisms. We saw that the Mz matrix that generates two-dimensional rotations
returns the classical lz when it acts on ~r and ~p, lz = ~rT Mz~p. Thus, it is perhaps not
surprising that the quantum generator of two-dimensional rotations is the quantum
analogue, Lz .
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Rotation Transformations in Two Dimensions (cont.)

To build some intuition about what exactly the above operator does, let’s write down
the projection of its action on a state onto the position basis and convert that to polar
coordinates. We begin with the Cartesian coordinate version:

i

~
θ 〈x , y |Lz |ψ 〉 =

i

~
θ 〈x , y | (X Py − Y Px ) |ψ 〉 = θ

„
x
∂

∂y
− y

∂

∂x

«
ψq(x , y)

Now, we need to change variables to polar coordinates. The functional relationship
between polar and cartesian coordinates is

ρ =
p

x2 + y2 φ = arctan
y

x

Hence

∂ρ

∂x
=

x

ρ

∂ρ

∂y
=

y

ρ

∂φ

∂x
=

−y/x2

1 + (y/x)2
= −

y

ρ2

∂φ

∂y
=

1/x

1 + (y/x)2
=

x

ρ2
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Rotation Transformations in Two Dimensions (cont.)

The chain rule thus tells us

∂

∂x
=
∂ρ

∂x

∂

∂ρ
+
∂φ

∂x

∂

∂φ
=

x

ρ

∂

∂ρ
−

y

ρ2

∂

∂φ

∂

∂y
=
∂ρ

∂y

∂

∂ρ
+
∂φ

∂y

∂

∂φ
=

y

ρ

∂

∂ρ
+

x

ρ2

∂

∂φ

So, then,

θ

„
x
∂

∂y
− y

∂

∂x

«
ψq(x , y) = θ

„
∂

∂φ

«
ψq(ρ, φ)

where we simply rewrite ψq in terms of ρ and φ using x = ρ cosφ and y = ρ sinφ. So,

〈x , y |
i

~
θ Lz |ψ 〉 = 〈x , y |

i

~
θ (X Py − Y Px ) |ψ 〉

= 〈x , y | θ
„

x
∂

∂y
− y

∂

∂x

«
|ψ 〉 = 〈x , y | θ

∂

∂φ
|ψ 〉

which looks like the action of the generator of a translation in the polar angle φ by an
angle θ, as we expect.
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Rotation Transformations in Two Dimensions (cont.)

Recall that we also calculated the action of the rotation transformation on the
standard operators X , Y , Px , and PY in Example 12.2 and 12.5. There we did it by
calculating the matrix elements of the transformed operators in the untransformed
basis, but that is tedious. We can do it much more quickly using operator arithmetic
relations now that we know what the generator of the transformation is. We will need
the relation

e−A B eA = B + [B,A] +
1

2!
[[B,A],A] + +

1

3!
[[[B,A],A],A] · · ·

(which we do not prove here). This relation will make use of the following important
commutators:

[X , Lz ] = [X ,X Py ]− [X ,Y Px ] = 0− Y [X ,Px ] = −i ~ Y

[Y , Lz ] = [Y ,X Py ]− [Y ,Y Px ] = X [Y ,Py ]− 0 = i ~ X

[Px , Lz ] = [Px ,X Py ]− [Px ,Y Px ] = [Px ,X ] Py − 0 = −i ~ Py

[Py , Lz ] = [Py ,X Py ]− [Py ,Y Px ] = 0− [Py ,Y ] Px = i ~ Px

The evident cyclicity of the above relations will be written succinctly when we consider
rotations in three dimensions.
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Rotation Transformations in Two Dimensions (cont.)

With the above, the transformed operators are easily evaluated:

X ′ = T (θbz) X T (−θbz) = e−
i
~ θ Lz X e

i
~ θ Lz

= X +
i

~
θ[X , Lz ] +

1

2!

„
i

~
θ

«2

[[X , Lz ], Lz ] +
1

3!

„
i

~
θ

«3

[[[X , Lz ], Lz ], Lz ] + · · ·

= X + θY +
θ2

2!
(−1) X +

θ3

3!
(−1) Y + · · ·

= X

„
1−

θ2

2!
+ · · ·

«
+ Y

„
θ −

θ3

3!
+ · · ·

«
= X cθ + Y sθ

Y ′ = −X sθ + Y cθ

P ′x = Px cθ + Py sθ

P ′y = −Px sθ + Py cθ

where the last three are evaluated in the same way as X ′.

Note the way in which X and Y are mixed and Px and Py are mixed to obtain the
transformed operators; this looks very much like the transformation of classical
vectors. We will discuss vector and tensor operators later.
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The Eigenvalue Problem of Lz in Two Dimensions

Eigenvalues and Eigenfunctions of Lz

It is interesting to determine the eigenvalues and eigenfunctions of any Hermitian
operator. It will be especially useful for Lz because of the many Hamiltonians with
which it commutes.

We begin with the obvious, the eigenvector-eigenvalue equation for Lz :

Lz |`z 〉 = `z |`z 〉

where `z is an eigenvalue and |`z 〉 is the corresponding eigenvector. We take the
product on the left with position basis elements since that is the basis in which we
know the matrix elements of Lz from our previous calculation:

−i ~
„

x
∂

∂y
− y

∂

∂x

«
ψ`z (x , y) = `z ψ`z (x , y)

We also make use of the change of variables to (ρ, φ) to obtain a simpler equation:

−i ~
∂

∂φ
ψ`z (ρ, φ) = `z ψ`z (ρ, φ)
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The Eigenvalue Problem of Lz in Two Dimensions (cont.)

The solution is obvious,

ψ`z (ρ, φ) = R(ρ) e
i
~ φ `z

To this point, we have made no restrictions on `z . Not only are there no bounds or
discretization, there is no prohibition against an imaginary component because φ is
restricted to [0, 2π] and so the exponential will not diverge. Hermiticity will obviously
result in `z being real. Less obviously, it will also discretize `z . Recall from Section 3.9
that Hermiticity for the K (and hence P) operator for a particle on one dimension on
a finite interval [a, b] placed the requirement that any valid wavefunction vanish at the
endpoints, ψ(x = a) = 0 = ψ(x = b). We can derive a similar requirement here.
Hermiticity implies

〈ψ1 |Lz |ψ2 〉 = 〈ψ2 |Lz |ψ1 〉∗

which, written out in terms of the position-basis wavefunction, is

Z ∞
0

dρ ρ

Z 2π

0
dφψ∗1 (ρ, φ)

„
−i ~

∂

∂φ

«
ψ2(ρ, φ)

=

»Z ∞
0

dρ ρ

Z 2π

0
dφψ∗2 (ρ, φ)

„
−i ~

∂

∂φ

«
ψ1(ρ, φ)

–∗
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The Eigenvalue Problem of Lz in Two Dimensions (cont.)

To obtain a condition on ψ1 and ψ2, we integrate the right side by parts, yielding

RHS = i ~
Z ∞

0
dρ ρ

»
ψ2(ρ, φ)ψ∗1 (ρ, φ)

˛̨̨2π
0
−
Z 2π

0
dφψ∗1 (ρ, φ)

„
∂

∂φ

«
ψ2(ρ, φ)

–
= i ~

Z ∞
0

dρ ρψ2(ρ, φ)ψ∗1 (ρ, φ)
˛̨̨2π
0

+ LHS

We require RHS = LHS for any ψ1, ψ2 (not just eigenfunctions), including any
possible radial dependence, so we must have

ψ(ρ, 0) = ψ(ρ, 2π)

at any ρ for any ψ. If we impose the constrain on the eigenfunctions, we have

1 = e 2π i
~ `z

which implies

`z = m ~ m = 0,±1,±2, . . .
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The Eigenvalue Problem of Lz in Two Dimensions (cont.)

One could obtain the same result by requiring that the eigenfunctions be single-valued,

ψ(ρ, φ+ 2π) = ψ(ρ, φ)

which is actually a more restrictive constraint than the one we have applied. The
problem is that it is not clear that one should impose this constraint because it could
be violated up to a constant phase factor with no physically measurable implications.
One really only ought to require that the probability density be single-valued,

|ψ(ρ, φ+ 2π)|2 = |ψ(ρ, φ)|2˛̨̨
R(ρ) e

i
~ `z φe

i
~ 2π `z

˛̨̨2
=
˛̨̨
R(ρ) e

i
~ `z φ

˛̨̨2
This results in the requirement

˛̨̨
e

i
~ 2π `z

˛̨̨
= 1, which only implies `z is real. We

already know that from Hermiticity, though; we did not need to require the above
condition. Or, put another way, Hermiticity alone implies that the probability density
is single-valued. Note also that the lack of single-valuedness has no implications for
the action of any operators because it is a position-independent unity-modulus factor
that arises.
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The Eigenvalue Problem of Lz in Two Dimensions (cont.)

It turns out that, if one considers superposition states of the form

ψ(ρ, φ) = A(ρ) e
i
~ `z φ + B(ρ) e

i
~ `

′
z φ

and requires that their probability density always be single-valued, then one can obtain
the condition `z − ` ′z = m ~, m = 0,±1,±2, . . .. This, combined with the additional
fact that the eigenvalues must be symmetric about 0 (because if ψ(ρ, φ) is an
eigenfunction of Lz , then we can complex conjugate the eigenvalue-eigenvector
equation to obtain that ψ(ρ,−φ) ought also be an eigenfunction), implies `z must
either be an integer multiple of ~ or an odd half-integer multiple of ~, but one cannot
show that only the integer multiple solution holds based on single-valuedness alone.
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The Eigenvalue Problem of Lz in Two Dimensions (cont.)

We shall take as our normalized azimuthal eigenfunctions

Φm(φ) =
1
√

2π
e i m φ m = 0,±1,±2, . . .

They obey the orthonormality condition

Z 2π

0
dφΦ∗m(φ)Φm ′ (φ) = δmm ′

The full eigenfunctions are of the form

ψ(ρ, φ) = R(ρ)Φm(φ)

There is huge degeneracy for each eigenvalue m because the radial wavefunction is
completely unspecified.
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The Eigenvalue Problem of Lz in Two Dimensions (cont.)

Rotationally Invariant Problems in Two Dimensions

It is straightforward to see that, if the potential has no φ dependence, then
[H, Lz ] = 0. First, we show that the kinetic energy term always commutes with Lz :

[P2
x + P2

y , Lz ] = Px Px Lz − Lz Px Px + Py Py Lz − Lz Py Py

= Px [Px , Lz ] + [Px , Lz ] Px + Py [Py , Lz ] + [Py , Lz ] Py

= −i ~ Px Py − i ~ Py Px + i ~ Py Px + i ~ Px Py = 0

Second, when Lz is projected onto the position basis and written in polar coordinates,
we see that Lz only has derivatives with respect to φ. Therefore, [Lz ,V (ρ)] = 0 for
potentials that have no φ dependence and hence [H, Lz ] = 0.
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The Eigenvalue Problem of Lz in Two Dimensions (cont.)

It is therefore useful to solve for simultaneous eigenfunctions of H and Lz to break the
degeneracy in Lz (and to of course obtain the eigenfunctions of H classified by their
Lz eigenvalue). In polar coordinates with a radial potential V (ρ), the
eigenvector-eigenvalue equation for the Hamiltonian is»

−
~2

2µ

„
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2

∂2

∂φ2

«
+ V (ρ)

–
ψE (ρ, φ) = E ψE (ρ, φ)

(We use µ instead of m for the mass to avoid confusion with the Lz eigenvalue index
m.) The first term is obtained by rewriting the standard cartesian kinetic energy term
in two dimensions in polar coordinates. Doing it by chain rule is quite cumbersome, so
we omit the proof here; it can be found in any vector calculus textbook. It should be
clear that the third term in the kinetic energy is proportional to L2

z .

(As an aside, one might ask whether it would be easier to define position operators in
polar coordinates, R and Φ, and project directly onto their eigenstates, which we could
call |ρ, φ 〉. The problem is that it is difficult to define a Φ operator in a reasonable
way because the φ coordinate is not single-valued — multiple values of φ corresponds
to the same basis element. This problem is discussed in Liboff Problems 9.15 and 9.16
and references therein.)

Guided by [H, Lz ] = 0, let’s assume the solution is of the form of an eigenfunction of
Lz with eigenvalue `z , ψE ,m(ρ, φ) = RE ,m(ρ)Φm(φ), and with the form of the radial
equation and the energy eigenvalue to be specified by the above differential equation.
We shall see why we allow a dependence of R on m below.
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The Eigenvalue Problem of Lz in Two Dimensions (cont.)

Inserting the form ψE (ρ, φ) = RE ,m(ρ)Φm(φ) into the Hamiltonian’s
eigenvector-eigenvalue equation yields»

−
~2

2µ

„
∂2

∂ρ2
+

1

ρ

∂

∂ρ
−

m2

ρ2

«
+ V (ρ)

–
RE ,m(ρ)Φm(φ) = E RE ,m(ρ)Φm(φ)

Φm(φ) never vanishes, and no derivatives act on it now, so we may cancel it out, and
also convert all the radial partial derivatives to total derivatives, leaving the radial
equation »

−
~2

2µ

„
d2

dρ2
+

1

ρ

d

dρ
−

m2

ρ2

«
+ V (ρ)

–
RE ,m(ρ) = E RE ,m(ρ)

which now depends on and determines only the radial part of the eigenfunction and
the eigenvalue E . In general, the eigenvalue E and the radial wavefunction will depend
on m because of its presence in the equation. The solution can be determined when
one knows the particular form for V (ρ).
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Rotations and Angular Momentum in Three Dimensions

Classical Rotations in Three Dimensions

One can show (though we will not prove it here, see the Ph106 Lecture Notes), that
any rotation in three dimensions can always be decomposed into a “two-dimensional”
rotation about a single axis. Hence, we need only consider the extension of our
formalism for two-dimensional rotations to allow the axis to point in an arbitrary
direction. Let us first just consider rotations about the x or y axes. By analogy to our
infinitesimal rotation about the z axis, we may write the form for finite and
infinitesimal rotations about the x or y axes:

Rθbx =

24 1 0 0
0 cθ −sθ
0 sθ cθ

35 Rθby =

24 cθ 0 sθ
0 1 0

−sθ 0 cθ

35
Rδθbx =

24 1 0 0
0 1 −δθ
0 δθ 1

35 = I + δθMx Mx ≡

24 0 0 0
0 0 −1
0 1 0

35
Rδθby =

24 1 0 δθ
0 1 0

−δθ 0 1

35 = I + δθMy My ≡

24 0 0 1
0 0 0
−1 0 0

35
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Rotations and Angular Momentum in Three Dimensions (cont.)

Infinitesimal rotations about different axes commute because they are infinitesimal.
For example,

RδθxbxRδθy by = (I + δθxMx ) (I + δθyMy ) = I + δθxMx + δθyMy + O(δθ)2

Rδθy byRδθxbx = (I + δθyMy ) (I + δθxMx ) = I + δθxMx + δθyMy + O(δθ)2

≈ RδθxbxRδθy by
The generic form for an infinitesimal rotation is therefore

R
δ~θ

= I + δθxMx + δθyMy + δθzMz ≡ I + δ~θ · ~M

with δ~θ = bx δθx + by δθy + bz δθz
and ~M = bx Mx + by My + bz Mz

The definition of ~M is purely for the sake of notational convenience. It turns out that
~M is not a vector, but is actually a third-rank tensor. We will not use this property
here, but we refer those who are interested to the Ph106 Lecture Notes.
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Rotations and Angular Momentum in Three Dimensions (cont.)

It follows from the above that finite rotations may be written in the form

R~θ = exp(~θ · ~M) = exp(θxMx + θyMy + θzMz )

The fact that any rotation can be written as a two-dimensional rotation about a
particular axis is manifest in the above expression. The noncommutativity of finite
rotations about different axes is also preserved: even though the ordering of
infinitesimal rotations about the different axes does not matter, one finds that it does
matter when the power series expansion of the exponential is considered. You can test
this very easily by considering π/2 rotations about bx and by .

We make a few more useful points about the ~M matrices. First, an easy-to-remember
form for them is

(Ma)bc = −εabc

where a = 1, 2, 3 corresponds to a = x , y , z and where εabc is the Levi-Civita symbol
of rank 3; it is completely antisymmetric in its indices, which may take on the values
1, 2, 3. The symbol takes on the value 1 for cyclic permutations of its indices, −1 for
anticyclic permutations, and 0 otherwise. It is a third-rank tensor.
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Rotations and Angular Momentum in Three Dimensions (cont.)

Second, the squares of all three of the matrices are similar to the identity matrix:

M2
x = −

24 0 0 0
0 1 0
0 0 1

35 M2
y = −

24 1 0 0
0 0 0
0 0 1

35 M2
z = −

24 1 0 0
0 1 0
0 0 0

35
Therefore,

|~M|2 = ~M · ~M = M2
x + M2

y + M2
z = −2 I

which is a bit strange for the norm of a vector. That happens because ~M is not really
a vector, but is a third-rank tensor.
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Rotations and Angular Momentum in Three Dimensions (cont.)

The matrices satisfy the cyclic commutation relation

[Ma,Mb] =
X

c

εabcMc ≡ εabcMc ⇐⇒ ~M× ~M = ~M

Here we have our first encounter with the Einstein summation convention, wherein
any repeated indices are assumed to be summed over as indicated above. The above
relation is a strange identity, indeed, again because ~M is not a vector but is a
third-rank tensor. Since ~M · ~M = −2 I, we have

[Ma, ~M · ~M] = 0

Finally, just as ~rT Mz~p = −`z , we have in general

~̀= −~rT ~M~p
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Rotations and Angular Momentum in Three Dimensions (cont.)

Quantum Mechanical Rotations in Three Dimensions

The obvious extension of our quantum two-dimensional and classical
three-dimensional rotation formalisms is to recognize that the three quantum angular
momentum component operators will generate rotation transformations about their
respective axes and that they may be treated as a vector whose inner product with a
particular rotation vector will generate that rotation. That is, we have

Lx = Y Pz − Z Py Ly = Z Px − X Pz Lz = X Py − Y Px

~L = bx Lx + by Ly + bz Lz

The components satisfy the commutation relation

[La, Lb] = εabc i ~ Lc ⇐⇒ ~L× ~L = i ~~L

(note, Einstein summation convention used!) just as the Ma matrices do, up to a
factor of i ~. By analogy to our three-dimensional classical and two-dimensional
quantum rotation operators, finite rotations are then obtained via

T (~θ) = exp

„
−

i

~
~θ · ~L

«
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Rotations and Angular Momentum in Three Dimensions (cont.)

Additionally, one can show

[Ra, Lb] = εabc i ~ Rc [Pa, Lb] = εabc i ~ Pc

where Ra are the position component operators X , Y , and Z . (Einstein summation
convention, again!)

Just as we calculated ~M · ~M, we may also calculate L2,

L2 = L2
x + L2

y + L2
z

One may verify that

[La, L
2] = 0

which recalls a similar property of ~M · ~M. So, while no two of the {La} are
simultaneously diagonalizable, one may simultaneously diagonalize any one of the
{La} and the L2 operator.
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The Eigenvector-Eigenvalue Problem of Lz and L2

Methodology

There are two ways to find the eigenvalues and eigenfunctions of L2 and Lz :

I Standard Differential Equations Method
Here, we extend the technique we used for two dimensions, obtaining and
solving differential equations in φ and θ for the eigenfunctions of L2 and Lz , and
finding the allowed values for the eigenvalues by Hermiticity again.

I Operator Methods
One can begin by working in terms of a basis of L2 and Lz eigenstates and
introduce raising and lowering operators along the lines of what was done for
the SHO. This lets one study the structure of the eigenvalues of L2 and Lz

without the distraction of the differential equations to determine their
position-space representation. The existing of raising and lowering operators
also provides a relatively simple means to construct the position-basis
representations, again along the lines of what was done for the SHO.

We will pursue both methods. You are probably not yet expert enough in the
differential equations method to justify ignoring it completely, though we will not go
through all the gore of deriving the Legendre polynomials explicitly. Then we will rely
on the operator methodology to better understand the eigenvalue structure and to
obtain the full position-basis representations more conveniently.
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The Eigenvector-Eigenvalue Problem of Lz and L2 (cont.)

Differential Equations Method

To rewrite the eigenvalue-eigenvector problems of Lz and L2 as differential equations,
we need to write the action of the operators in a position-basis representation, just as
we did for Lz alone in two dimensions. We know the forms for Lx , Ly , and Lz in
cartesian coordinates. Putting these three operators on equal footing suggests that
the right coordinate system to work in will be spherical coordinates, defined by

r =
p

x2 + y2 + z2 θ = arccos
z

r
φ = arctan

y

x

We may relabel our cartesian coordinate system position basis using these relations:

|x , y , z 〉 =
˛̨̨
r =

p
x2 + y2 + z2, θ = arccos

z

r
, φ = arctan

y

x

E
(14.1)

Note: this is not a coordinate transformation, it is only a relabeling of the states that
we already know exist.
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The Eigenvector-Eigenvalue Problem of Lz and L2 (cont.)

Let’s first project the action of the angular momentum operators onto the position
basis:

〈x , y , z |La|ψ 〉 = 〈x , y , z |εabcRbPc |ψ 〉

= −i ~ εabc rb
∂

∂rc
ψq(x , y , z)

〈r , θ φ |La|ψ 〉 = −i ~ εabc rb
∂

∂rc
ψq(r , θ, φ)

(Einstein summation convention used) We have skipped the usual steps of inserting
completeness to go from the first line to the second line (review Section 5.2 of these
notes if you do not recall how to do this.) To go from the second line to the third, we
have made use of the equality between cartesian and spherical coordinate system
position-basis elements in Equation 14.1 in order to modify the left side. The change
to the ride side is a change of the independent variables on which ψq depends — it is
mathematics, not physics.
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The Eigenvector-Eigenvalue Problem of Lz and L2 (cont.)

Next, we do a change of variables from cartesian to spherical coordinates; again, this
is mathematics (calculus), there is no physics involved. It is more tedious than for two
dimensions, but you may do it yourself or look it up in a vector calculus text. The
result is

〈r , θ, φ |Lx |ψ 〉 = i ~
„

sφ
∂

∂θ
+ oθ cφ

∂

∂φ

«
ψq(r , θ, φ)

〈r , θ, φ |Ly |ψ 〉 = i ~
„
−cφ

∂

∂θ
+ oθ sφ

∂

∂φ

«
ψq(r , θ, φ)

〈r , θ, φ |Lz |ψ 〉 = −i ~
∂

∂φ
ψq(r , θ, φ)

where we introduce oθ = cot θ and of course sφ = sinφ and cφ = cosφ.

We will also need the L2 operator, which is straightforward (though tedious) to
calculate from the above:

〈r , θ, φ |L2|ψ 〉 = −~2

 
1

sθ

∂

∂θ
sθ

∂

∂θ
+

1

s2
θ

∂2

∂φ2

!
ψq(r , θ, φ)

Note that the first ∂
∂θ

acts on everything to its right including the sθ factor.
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The Eigenvector-Eigenvalue Problem of Lz and L2 (cont.)

Let us now restrict ourselves to Lz and L2 alone. Clearly, the process of solving for the
Lz eigenfunctions is as before, though now we must allow a dependence on both r and
θ. Moreover, the L2 eigenvalue-eigenvector equation has no dependence on r , so the
dependence on r and θ may be separated. So, we may immediately assume

ψα,m(r , θ, φ) = R(r)Θα,m(θ)Φm(φ)

Φm(φ) =
e i m φ

√
2π

`z = m ~ m = 0,±1,±2, . . .

The radial function R(r) is again arbitrary because neither L2 nor Lz include any r
dependence. The polar angle function Θ(θ) will depend not just on the L2 eigenvalue
(which we denote for now as α) but also the m eigenvalue because of the φ derivative
in L2.

The above form automatically satisfies the Lz eigenvalue-eigenvector equation, which
is (projected into the position basis)

〈r , θ, φ |Lz |ψα,m 〉 = m ~ 〈r , θ, φ |ψα,m 〉
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The Eigenvector-Eigenvalue Problem of Lz and L2 (cont.)

Next, we insert the above form into the L2 eigenvector-eigenvalue equation projected
onto the position basis:

〈r , θ, φ |L2|ψα,m 〉 = α〈r , θ, φ |ψα,m 〉

We have already calculated the left side, which yields differential operators acting on
the position-space wavefunction ψα,m(r , θ, φ). After applying the φ derivatives and
canceling out the nowhere-vanishing Φm, canceling out a radial function R(r) (which
may vanish at specific r , but certainly not at all r), moving the eigenvalue to the left
side, and replacing the partial derivatives with respect to θ with total derivatives, we
obtain

−~2

 
1

sθ

d

dθ
sθ

d

dθ
+

α

~2
−

m2

s2
θ

!
Θα,m(θ) = 0

This is now just a differential equation in θ. Let us change variables to u = cθ and
define Pm

α (u = cθ) = Θα,m. This yields


d

du

»
(1− u2)

d

du

–
+

»
α

~2
−

m2

1− u2

–ff
Pm
α (u) = 0 − 1 ≤ u ≤ 1
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The Eigenvector-Eigenvalue Problem of Lz and L2 (cont.)

If we set m = 0, we obtain
d

du

»
(1− u2)

d

du

–
+

α

~2

ff
P0
α(u) = 0

which is now an ordinary second-order differential equation with polynomial nonlinear
coefficients. You know that the standard solution technique is a series solution.

We will not subject you to the gore of doing the series solution. It suffices to say that
one obtains a recursion condition that relates Cn+2 to Cn in an expansion in powers of
u, and that termination results in the requirement

α

~2
= `(`+ 1) ` = 0, 1, 2, . . .

The functions are polynomials containing either even or odd powers of u. They are
termed the Legendre polynomials and are denoted by P`(u). There is a formula, called
Rodrigues’ Formula, that can be used to generate them:

P`(u) =
1

2` `!

d`

du`

`
u2 − 1

´`
(14.2)
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The Eigenvector-Eigenvalue Problem of Lz and L2 (cont.)

The full equation, with m 6= 0, is solved by the associated Legendre polynomials,
which can be generated from the formula

Pm
` (u) = (−1)m(1− u2)m/2

dm

dum
P`(u) 0 ≤ m ≤ ` (14.3)

where m ≤ ` is enforced by the fact that P`(u) is a `th-order polynomial; hence, any
derivatives of order m + 1 or larger simply vanish. We may now write P`(u) as P0

` (u)
based on this formula. For m < 0, we see that the θ differential equation is unchanged
by the sign of m, so we define

P−m
` (u) = Pm

` (u) 0 ≤ m ≤ `

Section 14.5 Rotations and Orbital Angular Momentum: The Eigenvector-Eigenvalue Problem of Lz and L2 Page 756



The Eigenvector-Eigenvalue Problem of Lz and L2 (cont.)

Combining all of this, we thus write our joint eigenfunctions of L2 and Lz as

Y m
` (θ, φ) =

s
2 `+ 1

4π

(`−m)!

(`+ m)!
Pm
` (u = cθ) e i m φ (14.4)

where the prefactor ensures correct normalization when integrated over all solid
angles. These functions are known as the spherical harmonics because they are
harmonic (sinusoidal) in the spherical coordinate system variables θ and φ. The
orthonormalization condition (arising from the separate orthonormality of the polar
and azimuthal functions) is

Z 1

−1
dcθ

Z 2π

0
dφ [Y m

` (θ, φ)]∗ Y m ′
`′ (θ, φ) = δ``′δmm ′

The full wavefunction may have any radial dependence as long as its angular
dependence is in the form of a spherical harmonic. We summarize our derivation by
stating that

〈r , θ, φ |ψ 〉 = R(r)Y m
` (θ, φ) ⇐⇒ 〈r , θ, φ |L2|ψ 〉 = `(`+ 1)~2〈r , θ, φ |ψ 〉

〈r , θ, φ |Lz |ψ 〉 = m ~〈r , θ, φ |ψ 〉 ‘
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The Eigenvector-Eigenvalue Problem of Lz and L2

Operator Method

We’ve found the eigenfunctions and eigenvalues in the standard pedestrian way. Let’s
now use some clever operator methods that recall how we used raising and lowering
operators to determine the eigenvalues of the SHO without having to explicitly find
the eigenfunctions. We shall see that this method leads to a simpler way to find the
eigenfunctions too, just as we were able to obtain all the eigenfunctions of the SHO by
applying the raising operator in the position basis to the simple Gaussian ground-state
wavefunction.

Let’s assume we know nothing about the eigenvalue spectrum of L2 and Lz except
that the operators commute so they have simultaneous eigenvectors. Denote an
eigenstate of L2 and Lz with eigenvalues α and β by |α, β 〉. That is

L2|α, β 〉 = α|α, β 〉 Lz |α, β 〉 = β|α, β 〉
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The Eigenvector-Eigenvalue Problem of Lz and L2 (cont.)

We define angular momentum raising and lowering operators:

L± = Lx ± i Ly

They are named this way because they satisfy

[Lz , L±] = ±~ L±

so that

Lz (L±|α, β 〉) = (±~ L± + L± Lz ) |α, β 〉 = (±~ + β) (L±|α, β 〉)

That is, when |α, β 〉 has Lz eigenvalue β, the state obtained by applying a raising or
lowering operator in the state, L±|α, β 〉, is an eigenvector of Lz with eigenvalue β± ~.

The raising and lowering operators commute with L2,

[L2, L±] = 0

so we are assured that |α, β 〉 and L±|α, β 〉 have the same eigenvalue α of L2.
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The Eigenvector-Eigenvalue Problem of Lz and L2 (cont.)

So, our space will break down into subspaces that are eigenspaces of L2, which will be
further decomposed into subspaces that are eigenspaces of Lz . L± moves between
these subspaces of a particular L2 eigenspace. Explicitly, we have

L±|α, β 〉 = C±(α, β)|α, β ± ~ 〉

We run into the same problem we had with the SHO raising and lowering operators,
which is that we so far have no condition that puts a lower or upper limit on the Lz

eigenvalue β. Heuristically, it would be unphysical to have β2 > α. This can be seen
rigorously as follows:

〈α, β |
`
L2 − L2

z

´
|α, β 〉 = 〈α, β |

`
L2

x + L2
y

´
|α, β 〉

The latter expression is nonnegative because the eigenvalues of L2
x and L2

y are all
nonnegative because the eigenvalues of Lx and Ly are real because they are Hermitian.
So we see α− β2 ≥ 0, or α ≥ β2 as desired.
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The Eigenvector-Eigenvalue Problem of Lz and L2 (cont.)

So, we require there to be states |α, βmax 〉 and |α, βmin 〉 that satisfy

L+|α, βmax 〉 = 0 L−|α, βmin 〉 = 0

where by 0 we mean the null vector, usually referred to as |0 〉, which may be
confusing in this situation. We need to rewrite these expressions in terms of L2 and Lz

to further reduce them; let’s apply L− and L+ to do this:

L−L+|α, βmax 〉 = 0 L+L−|α, βmin 〉 = 0`
L2 − L2

z − ~ Lz
´
|α, βmax 〉 = 0

`
L2 − L2

z + ~ Lz
´
|α, βmin 〉 = 0`

α− β2
max − ~βmax

´
|α, βmax 〉 = 0

`
α− β2

min + ~βmin

´
|α, βmin 〉 = 0

βmax (βmax + ~) = α βmin (βmin − ~) = α

which implies

βmin = −βmax
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The Eigenvector-Eigenvalue Problem of Lz and L2 (cont.)

In order for the raising chain begun at βmin and the lowering chain begun at βmax to
terminate, it is necessary that there be a k+ and k− such that

(L+)k++1 |α, βmin 〉 ∝ |α, βmax 〉 (L−)k−+1 |α, βmax 〉 ∝ |α, βmin 〉

Therefore

βmin + ~ k+ = βmax βmax − ~ k− = βmin

So we have

k+ = k− ≡ k βmax − βmin = ~ k

Since βmin = −βmax , we then have

βmax = k
~
2

α = βmax (βmax + ~) = ~2 k

2

„
k

2
+ 1

«
k = 0, 1, 2, . . .

For k even, we recover the allowed eigenvalues we obtained via the differential
equation method. The k odd eigenvalues are a different beast, though, and are
associated with spin, a degree of freedom that behaves like angular momentum in
many ways but is not associated with orbital motion of a particle.
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The Eigenvector-Eigenvalue Problem of Lz and L2 (cont.)

The last point is a very important one: the k odd values arose only from the
assumption of the angular momentum operator commutation relations. They did not
come from the differential equations, which is what ties all of this to the behavior of
spatial wavefunctions; the differential equations method does not permit k odd. This
is the source of our statement that the k odd values are not associated with orbital
angular momentum. In detail, the restriction to k even comes from the requirement
that the wavefunction be single-valued in φ, which is required by Hermiticity of Lz .
Such a requirement would not hold for a particle spin’s z-component operator because
there will be no spatial wavefunction to consider. Thus, the above proof tells us which
values of k are allowed, and then other restrictions can further reduce the set.

Unlike Shankar, who gives a bit more detailed of a hint at what is meant by spin, we
will delay discussion until we have time to do it thoroughly. For now it is not important
to have a physical picture of the states that result in half-integral values of Lz .
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The Eigenvector-Eigenvalue Problem of Lz and L2 (cont.)

Given that the spectrum of eigenvalues we have derived is more general than just
orbital angular momentum L, we will follow standard notation and use J instead of L.
We will denote the eigenvalues as follows:

I We will denote by j the value of k/2. j may take on any nonnegative integral or
half-integral value.

I The J2 eigenvalue is α = ~2 j(j + 1). However, we will replace α in |α, β 〉 by j
for brevity.

I The Jz eigenvalue β can take on values from −j ~ to j ~ in steps of size ~. We
define m = β/~. We will replace β in |α, β 〉 by m for consistency with the
notation we developed via the differential equation method.

Therefore, simultaneous eigenstates of J2 and Jz will be denoted by |j ,m 〉 and will
have J2 eigenvalue α = ~2 j (j + 1) and Jz eigenvalue β = m ~.
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The Eigenvector-Eigenvalue Problem of Lz and L2 (cont.)

Summary

Let us take a step back and see what we have done and where we should go. What we
have done:

I We are considering problems in two or three spatial dimensions in cylindrical and
spherical coordinates with an eye toward working with Hamiltonians that are
invariant under rotations and hence depend on the cylindrical coordinate ρ or
the radial coordinate r .

I Since a continuous symmetry transformation of a Hamiltonian derives from a
generator operator that commutes with the Hamiltonian, we knew it would be
useful to find the generator and its eigenvalues and eigenvectors to help us
reduce or solve the eigenvector-eigenvalue problem of the full Hamiltonian.

I This led us to write explicit forms for ~L and L2 and to obtain their eigenvectors
and eigenfunctions, both in the position basis and in the more natural basis of
their eigenstates.

I We have thus been able to organize the Hilbert space into subspaces of specific
values of the angular momentum magnitude.
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The Eigenvector-Eigenvalue Problem of Lz and L2 (cont.)

We have two important tasks left:

I To understand the full structure of the Hilbert space in terms of the eigenstates
of J2 and Jz ; i.e., let’s write down explicit forms for all the operators we have
considered: Jx , Jy , J+, J− and rotation operators.

I To understand the connection between the {|j ,m 〉} basis and the position basis
eigenstates — essentially, to show that we can obtain the position basis
eigenstates from the structure of the Hilbert space in terms of the {|j ,m 〉} basis.

We consider these tasks next.
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Operators in the {|j ,m 〉} Basis

Angular Momentum Operators in the |j ,m 〉 Basis

To evaluate explicitly the non-diagonal angular momentum operators Jx , Jy , J+, and
J− in the {|j ,m 〉} basis, we need to determine the coefficient C(α, β) in the relation

J±|α, β 〉 = C±(α, β)|α, β ± ~ 〉

which we should now rewrite as

J±|j ,m 〉 = C±(j ,m)|j ,m + 1 〉

Again, we use our SHO example as a guide for how to determine this coefficient; there,
we required each eigenstate to be normalized, which puts a constraint on the C ’s. So:

1 = 〈j ,m ± 1 |j ,m ± 1 〉 = |C±(j ,m)|−2 |J±|j ,m 〉|2

= |C±(j ,m)|−2 〈j ,m |J∓J±|j ,m 〉

= |C±(j ,m)|−2 〈j ,m |
`
J2 − J2

z ∓ ~ Jz
´
|j ,m 〉

= |C±(j ,m)|−2 ˆj(j + 1)−m2 ∓m
˜

~2

=⇒ |C±(j ,m)|2 = ~2(j ∓m)(j ±m + 1)
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Operators in the {|j ,m 〉} Basis (cont.)

We discard the phase freedom and take

C±(j ,m) = ~
p

(j ∓m)(j ±m + 1)

So we are left with

J±|j ,m 〉 = ~
p

(j ∓m)(j ±m + 1)|j ,m ± 1 〉 (14.5)

We have the expected result that J± annihilates |j ,±j 〉. Note that J± do not change
j , only m. That is, the matrix elements of J± between two states |j ,m 〉 and |j ′,m ′ 〉
are only nonzero if j = j ′: J± do not connect states of different j .
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Operators in the {|j ,m 〉} Basis (cont.)

So, we have obtained all the simultaneous eigenstates of J2 and Jz , properly
normalized, and we also know the action of J±, which finally lets us write the matrix
elements of Jx and Jy in the {|j ,m 〉} basis:

〈j ′,m ′ |Jx |j ,m 〉 = 〈j ′,m ′ |
„

J+ + J−

2

«
|j ,m 〉

=
~
2

h
δj,j ′δm ′,m+1

p
(j −m)(j + m + 1)

+δj,j ′δm ′,m−1

p
(j + m)(j −m + 1)

i
(14.6)

Similarly,

〈j ′,m ′ |Jy |j ,m 〉 = 〈j ′,m ′ |
„

J+ − J−

2i

«
|j ,m 〉

=
~
2i

h
δj,j ′δm ′,m+1

p
(j −m)(j + m + 1)

−δj,j ′δm ′,m−1

p
(j + m)(j −m + 1)

i
(14.7)

As with J±, the matrix elements of Jx and Jy between two states |j ,m 〉 and |j ′,m ′ 〉
are only nonzero if j = j ′: Jx and Jy do not connect states of different j .
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Operators in the {|j ,m 〉} Basis (cont.)

Let’s consider what the matrix representations of these various operators look like in
the |j ,m 〉 basis. J2 and Jz are completely diagonal because the basis consists of their
eigenvectors. Jx , Jy , and J± will be block diagonal: since these operators do not
change j , their matrix elements between states of different j vanish (as noted above:
they always have δj,j ′ ). The block diagonal nature of the matrix representations is
clear in the forms written out in Shankar Equations 12.5.22, 12.5.23, and 12.5.24,
which we reproduce here, with the ordering of the basis elements being |0, 0 〉, | 1

2
, 1

2
〉,

| 1
2
,− 1

2
〉, |1, 1 〉, |1, 0 〉, |1,−1 〉 (the (0)⊕(1/2)⊕(1) notation tells us which subspace

these operators are restricted to):

J(0)⊕(1/2)⊕(1)
z ←−−−−→

|j,m 〉
~

26666664

0 0 0 0 0 0

0 1
2

0 0 0 0

0 0 − 1
2

0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 −1

37777775

[J2](0)⊕(1/2)⊕(1) ←−−−−→
|j,m 〉

~2

26666664

0 0 0 0 0 0

0 3
4

0 0 0 0

0 0 3
4

0 0 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 2

37777775
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Operators in the {|j ,m 〉} Basis (cont.)

J
(0)⊕(1/2)⊕(1)
+ ←−−−−→

|j,m 〉
~

2666664
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0

0 0 0 0
√

2 0

0 0 0 0 0
√

2
0 0 0 0 0 0

3777775

J
(0)⊕(1/2)⊕(1)
− ←−−−−→

|j,m 〉
~

2666664
0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0

0 0 0
√

2 0 0

0 0 0 0
√

2 0

3777775

J(0)⊕(1/2)⊕(1)
x ←−−−−→

|j,m 〉

~
2

26666664

0 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0

0 0 0 0
√

2 0

0 0 0
√

2 0
√

2

0 0 0 0
√

2 0

37777775

J(0)⊕(1/2)⊕(1)
y ←−−−−→

|j,m 〉

i ~
2

26666664

0 0 0 0 0 0
0 0 −1 0 0 0
0 1 0 0 0 0

0 0 0 0 −
√

2 0

0 0 0
√

2 0 −
√

2

0 0 0 0
√

2 0

37777775
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Operators in the {|j ,m 〉} Basis (cont.)

This block diagonal nature recalls recalls the idea of direct sum spaces (Section 3.4):
we may write the entire vector space as a sum over all the possible j subspaces:

V = V(0) ⊕ V(1/2) ⊕ V(1) ⊕ V(3/2) ⊕ V(2) ⊕ · · ·

These are just the degenerate subspaces of the J2 operator. If we restrict to orbital
angular momentum, we know the half-integer j values are not allowed, leaving us with

V = V(0) ⊕ V(1) ⊕ V(2) ⊕ · · ·

But this space is a subspace of the more generic one, so there is no harm in discussing
the generic version and then specializing to integer j for particular problems.
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Operators in the {|j ,m 〉} Basis (cont.)

Let us write out the matrix representations of a single subspace too, the j = 1
subspace, which we denote by V(1) and which we will indicate by putting a (1)

subscript on the operators. We have

[J2](1) ←−−−→
|j,m 〉

2 ~2

24 1 0 0
0 1 0
0 0 1

35 J
(1)
z ←−−−→

|j,m 〉
~

24 1 0 0
0 0 0
0 0 −1

35
J

(1)
+ ←−−−→

|j,m 〉
~
√

2

24 0 1 0
0 0 1
0 0 0

35 J
(1)
− ←−−−→|j,m 〉

~
√

2

24 0 0 0
1 0 0
0 1 0

35
J

(1)
x ←−−−→

|j,m 〉

~
√

2

24 0 1 0
1 0 1
0 1 0

35 J
(1)
y ←−−−→

|j,m 〉

i ~
√

2

24 0 −1 0
1 0 −1
0 1 0

35
One important warning: just because the V(1) subspace is three-dimensional, do not
misinterpret this as implying it works on the R3 space of Cartesian vectors in three
spatial dimensions. First, V(1) is isomorphic to C3, not R3, because one is allowed to
have complex coefficients for QM Hilbert space vectors. Second, even if that were not
a problem, it does not hold true that, for example, |1, 1 〉 is the same as bx . We will see
the connection to three-dimensional Cartesian vectors later.
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Operators in the {|j ,m 〉} Basis (cont.)

That is, we have:

I [J2](1) is diagonal and the V(1) subspace is degenerate for it.

I J
(1)
z is diagonal and it breaks the degeneracy in the V(1) subspace. We have put

the eigenstates in the order |1, 1 〉, |1, 0 〉, |1,−1 〉 as is indicated by the ordering
of the Jz eigenvalues.

I J
(1)
+ and J

(1)
− are not diagonal, and the former only connects a particular m to

m + 1 and the latter only connects a particular m to m − 1. J
(1)
+ annihilates

|1, 1 〉 and can never yield |1,−1 〉 and similarly J
(1)
− annihilates |1,−1 〉 and can

never yield |1, 1 〉.

I J
(1)
x and J

(1)
y are not diagonal, but we see that they connect states that differ in

m by one unit.
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Operators in the {|j ,m 〉} Basis

Rotation Operators in the {|j ,m 〉} Basis

The Jk operator is the generator of rotations about the k axis, and any rotation can
be written in terms of the {Jk} as T (~θ) = exp(−(i/~) ~θ · ~J). (This holds for
odd-half-integer j also, though we have not proven it yet.) Any product of two
matrices that are block diagonal in the same manner will be block diagonal too, so we
see that the rotation operator will be block diagonal in the same way as the Jk . So we
see that rotations do not mix states of different j ; they cannot change j .

Just as we denoted above the restriction of the ~J operator to the V(j) subspace by ~J(j),
we can denote the restriction of the T (~θ) operator to the V(j) subspace by T (j)(~θ).
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Operators in the {|j ,m 〉} Basis (cont.)

If we again look at the V(0) ⊕ V(1/2) ⊕ V(1) subspace, we can see how the T (j)(~θ) fit

into the larger T (~θ) operator:

T (0)⊕(1/2)⊕(1)(~θ)←−−−−→
|j,m 〉26666666666664

h
T (0)(~θ)

i
11

0 0 0 0 0

0
h
T (1/2)(~θ)

i
11

h
T (1/2)(~θ)

i
12

0 0 0

0
h
T (1/2)(~θ)

i
21

h
T (1/2)(~θ)

i
22

0 0 0

0 0 0
h
T (1)(~θ)

i
11

h
T (1)(~θ)

i
12

h
T (1)(~θ)

i
13

0 0 0
h
T (1)(~θ)

i
21

h
T (1)(~θ)

i
22

h
T (1)(~θ)

i
23

0 0 0
h
T (1)(~θ)

i
31

h
T (1)(~θ)

i
32

h
T (1)(~θ)

i
33

37777777777775
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Operators in the {|j ,m 〉} Basis (cont.)

where

h
T (0)(~θ)

i
11

= 〈0, 0 |T (0)(~θ)|0, 0 〉h
T (1/2)(~θ)

i
11

=

fi
1

2
,

1

2

˛̨̨̨
T (1/2)(~θ)

˛̨̨̨
1

2
,

1

2

fl h
T (1/2)(~θ)

i
12

=

fi
1

2
,

1

2

˛̨̨̨
T (1/2)(~θ)

˛̨̨̨
1

2
,−

1

2

fl
h
T (1/2)(~θ)

i
21

=

fi
1

2
,−

1

2

˛̨̨̨
T (1/2)(~θ)

˛̨̨̨
1

2
,

1

2

fl h
T (1/2)(~θ)

i
22

=

fi
1

2
,−

1

2

˛̨̨̨
T (1/2)(~θ)

˛̨̨̨
1

2
,

1

2

fl
h
T (1)(~θ)

i
11

= 〈1, 1 |T (1)(~θ)|1, 1 〉
h
T (1)(~θ)

i
12

= 〈1, 1 |T (1)(~θ)|1, 0 〉h
T (1)(~θ)

i
13

= 〈1, 1 |T (1)(~θ)|1,−1 〉h
T (1)(~θ)

i
21

= 〈1, 0 |T (1)(~θ)|1, 1 〉
h
T (1)(~θ)

i
22

= 〈1, 0 |T (1)(~θ)|1, 0 〉h
T (1)(~θ)

i
23

= 〈1, 0 |T (1)(~θ)|1,−1 〉h
T (1)(~θ)

i
31

= 〈1,−1 |T (1)(~θ)|1, 1 〉
h
T (1)(~θ)

i
32

= 〈1,−1 |T (1)(~θ)|1, 0 〉h
T (1)(~θ)

i
33

= 〈1,−1 |T (1)(~θ)|1,−1 〉
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Operators in the {|j ,m 〉} Basis (cont.)

We may write explicit forms for the rotation operators in the V(j) subspaces using the
subspace-restricted version of ~J. In general, we define

T (j)(~θ) = exp

„
−

i

~
~θ · ~J(j)

«
=
∞X
n=0

1

n!

„
−

i

~
θ

«n “bθ · ~J(j)
”n

This may seem difficult to evaluate, but it turns out not to be because one can show

that
“bθ · ~J(j)

”n
for n > 2 j can be written as a linear combination of the first 2 j

powers of bθ · ~J(n). The j = 1 case is similar to the way in which the generators of
classical rotations, the ~M matrices, satisfied M2n

k = (−1)n M2
k so that only Mk and

M2
k were unique and independent.
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Operators in the {|j ,m 〉} Basis (cont.)

Therefore, we may write

T (j)(~θ) =

2 jX
n=0

fn(θ)
“bθ · ~J(j)

”n
(14.8)

Specific examples are:

T (0)(~θ) = I (0) (14.9)

T (1/2)(~θ) = cos
θ

2
+ 2

i

~
bθ · ~J(1/2) sin

θ

2
(14.10)

T (1)(θkbk) =

24I (1) +
`
cθk
− 1
´ J

(1)
k

~

!2
35− i sθk

 
J

(1)
k

~

!
(14.11)

where k runs over x , y , z and bk is the unit vector for the corresponding direction. Note
that there is no simple form for the j = 1 case for arbitrary bθ because of the fact that
one must necessarily end up with higher than linear powers of ~J, so noncommutativity
of the Ji becomes a problem.
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Operators in the {|j ,m 〉} Basis (cont.)

The fact that the T (~θ) operators are block diagonal in the same was as the ~J
operators leads us to call the V(j) invariant subspaces: rotations may mix up members
of a particular subspace, but they never send a subspace member out of that subspace.
“Invariant” is perhaps somewhat misleading because it suggests that rotations have no
effect at all on these subspaces. A better term might be “closed” subspaces.

We also term these subspaces irreducible because they contain no smaller invariant
subspaces. Shankar offers a detailed proof of this, but, it is rather easy to see the

irreducibility from the structure of the matrix representations of J
(j)
x and J

(j)
y . J

(j)
x

always connects a particular state |j ,m 〉 to |j ,m ± 1 〉. A rotation about x will always

result in 2 j nontrivial powers of J
(j)
x as we explained above. Since J

(j)
x connects |j ,m 〉

to |j ,m ± 1 〉, 2j powers of J
(j)
x will connect |j ,m 〉 to all possible |j ,m ′ 〉 since there

are at most 2 j other |j ,m ′ 〉. There may be values of the rotation angle for which
these connections vanish, but that will not happen in general. Hence, there is no
closed subspace of V(j) that is smaller than V(j).

We note that irreducibility of the invariant subspaces is equivalent to saying that they
cannot be made “more” block diagonal – i.e., that the blocks cannot be made smaller.
We can see this by realizing that, if the block for V(j) could be made smaller, then the
subblocks would indicate the subspaces of V(j) that are invariant (closed) under
rotations, which we have just concluded can be no smaller than V(j) itself.
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Operators in the {|j ,m 〉} Basis (cont.)

The block diagonal form of the rotation operators we have obtained is termed an
irreducible matrix representation of the rotation operators because it cannot be further
block diagonalized; equivalently, because all the invariant subspaces are irreducible.
The corresponding block diagonal form of the ~J and J2 operators is termed an
irreducible representation of those operators for the same reason, though the idea of
“invariance” does not realy apply because these operators are not performing a unitary
transformation. Certainly, though, the idea of “closed” subspaces does apply and
suffices here.
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Operators in the {|j ,m 〉} Basis (cont.)

Relation to the Degenerate Eigensubspaces of Rotationally Invariant
Hamiltonians

Let’s consider Hamiltonians that satisfy [H, ~J] = 0. We term these rotationally
invariant because this condition implies that a rotation transformation about any axis
is a symmetry transformation of H. Note that the condition [H, ~J] = 0 implies
[H, J2] = 0. Therefore, our work on eigenvectors and eigenvalues of J2 and Jz applies.

We can see that the invariant subspaces of the rotation operator, which are also the
closed subspaces of the ~J and J2 operators, must be degenerate eigensubspaces of a
rotationally invariant H. That is, all elements of a subspace V(j) are eigenstates of H
with the same eigenvalue E . This is not obvious just from [H, J2] = 0, and
[H, Jz ] = 0. Those commutation relations imply that eigenstates of H are eigenstates
of J2 and Jz and vice versa. But the commutators imply nothing about whether the
eigenvalues of H, J2, and Jz are related.

We may prove this point about eigensubspaces of H by realizing that our rotational
invariance condition includes [H, Jx ] = 0 and [H, Jy ] = 0, which then implies
[H, J±] = 0. If |j ,m 〉 is an eigenstate of H with eigenvalue E — which is implied by
[H, J2] = 0 and [H, Jz ] = 0 — then [H, J±] = 0 implies that Jk

±|j ,m 〉 is an eigenstate

of H with the same eigenvalue E (unless Jk
±|j ,m 〉 = 0). One can reach any of the

{|j ,m 〉} in V(j) using enough powers of J±, so all the {|j ,m 〉} in V(j) must also be
eigenstates of H of energy E . Since the {|j ,m 〉} span the V(j) subspace, V(j) is thus a
degenerate eigensubspace of H with eigenvalue E .
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Relation between |j ,m 〉 Basis and Position Basis Eigenstates

Relation between the |j ,m 〉 Basis and Position Basis Eigenstates

We have established the “structure” of the eigenstates and eigenvalues of J2 and Jz

via operator methods. The same structure came out of the “differential equation”
method of finding the eigenstates of L2 and Lz in the position basis, though this
structure was far less obvious. Now, let’s connect the two by showing how we can use
our operator results to derive the position-basis representation of the eigenstates
{|`,m 〉}. This will be very similar to the way we made the analogous connection for
the SHO.

We remark that working in the position basis forces us to specialize from J to L
because the existence of a position basis with particular matrix elements for the ~L and
L2 operators in that basis is specific to orbital angular momentum. Such a basis
simply does not exist for spin, as we shall see from how we define spin.
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Relation between |j ,m 〉 Basis and Position Basis Eigenstates (cont.)

When we did this for the SHO, we began with the fact that the lowering operator
annihilates the ground state. Here, we have that the raising operator annihilates |`, ` 〉
and the lowering operator annihilates |`,−` 〉. We shall see that we need to us both
relations, so let’s begin with both:

L±|`,±` 〉 = 0

Let’s project onto the position basis:

〈r , θ, φ | (Lx ± i Ly ) |`,±` 〉 = 〈r , θ, φ |0 〉 = 0

We calculated the above matrix elements for Lx and Ly in Section 13.5 when we
began the “differential equations” method, so we use those results to obtain

±~ e iφ

„
∂

∂θ
± i oθ

∂

∂φ

«
ψ±`` (r , θ, φ) = 0
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Relation between |j ,m 〉 Basis and Position Basis Eigenstates (cont.)

Since we know ψ±`` (r , θ, φ) must be an eigenstate of Lz with eigenvalue ±` ~, we
know the solution must be of the form

ψ±`` (r , θ, φ) = U±`` (r , θ) e±i ` φ

Inserting this, we obtain „
d

dθ
− ` oθ

«
U±`` (r , θ) = 0

where we canceled out the nonvanishing e±iφ and e±i ` φ factors. This is integrable:

dU±``

U±``
= `

d(sθ)

sθ

U±`` = R(r) (sθ)
`
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Relation between |j ,m 〉 Basis and Position Basis Eigenstates (cont.)

The angular part of ψ±`` ought to be the spherical harmonic Y±`` (Equation 14.4),
after we correct for normalization and follow the same sign convention as we used
before. It is:

Y±`` (θ, φ) = (−1)`
r

(2 l + 1)!

4π

1

2` `!
(sθ)

` e±i ` φ

That is, Y±`` has the same θ and φ dependences as the solutions we found to the
annihilation conditions.
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Relation between |j ,m 〉 Basis and Position Basis Eigenstates (cont.)

We of course obtain the position-basis representations by using the lowering and
raising operators on the |`,±` 〉 states:

ψ±m
` (r , θ, φ)

= 〈r , θ, φ |`,±m 〉

= 〈r , θ, φ |L(`−m)
∓ |`,±` 〉

=

»
∓~e∓iφ

„
∂

∂θ
∓ i oθ

∂

∂φ

«–(`−m)

R(r) Y±`` (θ, φ)

= R(r) (−1)`(±1)m

s
2 `+ 1

4π

(`+ m)!

(`−m)!
e± i m φ (sθ)

−m

„
d

d(cθ)

«`−m

(sθ)
2 `

= R(r) Y±m
`

where we recognize Rodrigues’ formula (Equation 14.2) and the formula for the
associated Legendre polynomials (Equation 14.3) in the penultimate step (remember,
u = cθ, s2

θ = u2 − 1, d
du

= d
d(cθ)

). We recover the spherical harmonics completely.

We note that we used the annihilation conditions on both |`,±` 〉 simply to make
explicit the symmetry between m and −m in this procedure; lowering Y 0

` would have
appeared to have broken this symmetry.
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Rotationally Invariant Problems in Three Dimensions

Rotationally Invariant Problems in Three Dimensions

Rotational invariance in three spatial dimensions means that H is invariant under a
rotation about any axis. That is, we need [H,~L] = 0. While this condition yields
[H, L2] = 0, this latter condition is not enough to meet our definition of rotational
invariance.

It is easy to see that [T ,~L] = 0 where T is the kinetic energy operator,
T = (P2

x + P2
y + P2

z )/2 m. We already know [P2
x + P2

y , Lz ] = 0 from our discussion of
rotationally invariant problems in two dimensions. It also easy to see [Pz , Lz ] = 0
because Lz = X Py − Y Px . So [T , Lz ] = 0. The same kinds of arguments, with the
coordinates permuted cyclically, work for [T , Lx ] and [T , Ly ].
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Rotationally Invariant Problems in Three Dimensions (cont.)

Therefore, in order for [H,~L] = 0, we need [V ,~L] = 0, which is equivalent to

[V ,T (~θ)] = 0 for any ~θ. Let’s project this equation onto the position basis:

[V ,T (~θ)] = 0

V T (~θ)− T (~θ) V = 0

T †(~θ) V T (~θ) = V

〈x = u1, y = v1, z = w1 |T †(~θ) V T (~θ)|x = u2, y = v2, z = w2 〉
= 〈x = u1, y = v1, z = w1 |V |x = u2, y = v2, z = w2 〉

〈x ′ = u1, y
′ = v1, z

′ = w1 |V |x ′ = u2, y
′ = v2, z

′ = w2 〉
= 〈x = u1, y = v1, z = w1 |V |x = u2, y = v2, z = w2 〉

V (x ′ = u1, y
′ = v1, z

′ = w1) δ(u1 − u2) δ(v1 − v2) δ(z1 − z2)

= V (x = u1, y = v1, z = w1) δ(u1 − u2) δ(v1 − v2) δ(z1 − z2)

V (x ′ = u1, y
′ = v1, z

′ = w1) = V (x = u1, y = v1, z = w1)

The only way for the potential’s functional dependence on the primed and unprimed
coordinates to be the same for any choice of ~θ is for the potential to be a function of
r only: you know this from classical mechanics. So we restrict to potentials that
depend on radius alone, V = V (r).
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Rotationally Invariant Problems in Three Dimensions (cont.)

The eigenvector-eigenvalue equation for the Hamiltonian with such a potential in
three dimensions in spherical coordinates is(

−
~2

2µ

"
1

r2

∂

∂r

„
r2 ∂

∂r

«
+

1

r2sθ

∂

∂θ

„
sθ
∂

∂θ

«
+

1

r2s2
θ

∂2

∂φ2

#
+ V (r)

)
ψE (r , θ, φ)

= E ψE (r , θ, φ)

Referring back to Section 13.5 where we wrote down the differential equation for L2ψ,
we see that the angular terms here are −L2/r2. The equation will thus simplify greatly
when we assume a solution that is an eigenvector of L2. We should also require it to
be an eigenvector of Lz since the Hamiltonian commutes with Lz . So we assume

ψE (r , θ, φ) = RE ,`(r)Y
m
` (θ, φ)

Since Lz does not appear in H, we are assured that R(r) has no m dependence, so we
only put E and ` in the subscript. Inserting this form into the above, we obtain

−
~2

2µ

»
1

r2

∂

∂r

„
r2 ∂

∂r

«
−
`(`+ 1)

r2

–
+ V (r)

ff
RE ,`(r) = E RE ,`(r)

This is the radial equation for a spherically symmetric potential in three dimensions.
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Rotationally Invariant Problems in Three Dimensions (cont.)

We note for later reference that we have effectively factored the Hilbert space. The
Hilbert space is

V = Vr ⊗ Vθ,φ = Vr ⊗
“

V(`=0)
θ,φ ⊕ V(`=1)

θ,φ ⊕ V(`=2)
θ,φ ⊕ · · ·

”
Our eigenstates are of the form

|E , `,m 〉 = |E , ` 〉(r) ⊗ |`,m 〉(θ,φ)

with (r)〈r |E , ` 〉(r) = RE ,`(r) and (θ,φ)〈θ, φ |`,m 〉(θ,φ) = Y m
` (θ, φ)

We will drop the superscripts (r) and (θ,φ) on the states since there will not be
ambiguity. We will keep them on the operators.
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Rotationally Invariant Problems in Three Dimensions (cont.)

Our Hamiltonian has the form

H =
h
T (r) + V (r)

i
⊗ I (θ,φ) +

1

2µ

h
R(r)

i−2
⊗
ˆ
L2
˜(θ,φ)

with

〈r , θ, φ |
“h

T (r) + V (r)
i
⊗ I (θ,φ)

”
|E , `,m 〉 = 〈r |

h
T (r) + V (r)

i
|E , ` 〉〈θ, φ |`,m 〉

〈r |T (r)|E , ` 〉 = −
~2

2µ

»
1

r2

∂

∂r

„
r2 ∂

∂r

«–
RE ,`(r)

〈r |V (r)|E , ` 〉 = V (r)RE ,`(r)

1

2µ
〈r , θ, φ |

„h
R(r)

i−2
⊗
ˆ
L2
˜(θ,φ)

«
|E , `,m 〉 =

1

2µ
〈r |
h
R(r)

i−2
|E , ` 〉〈θ, φ |L2|`,m 〉

=
1

2µ
〈r |r−2|E , ` 〉〈θ, φ |~2` (`+ 1) |`,m 〉

=
1

2µ

~2 ` (`+ 1)

r2
RE ,`(r)Y

m
` (θ, φ)
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Generic Properties of Solutions of the Radial Equation

Simplifying the Radial Equation

What can we learn about solutions of the radial equation without detailed knowledge
of the potential? We shall answer that question in this section.

We begin by rewriting the radial wavefunction as

RE ,`(r) =
UE ,`(r)

r

because the radial equation then simplifies to the reduced radial equation

D`(r) UE ,`(r) ≡
»
−

~2

2µ

d2

dr2
+ V (r) +

` (`+ 1) ~2

2µ r2

–
UE ,`(r) = E UE ,`(r)

This looks like the eigenvector-eigenvalue equation of the Hamiltonian in one
dimension for a potential

Veff (r) = V (r) +
` (`+ 1) ~2

2µ r2

with the additional restriction that r lies in the interval [0,∞). This effective
potential, which includes a centrifugal barrier, will be familiar to those who have
studied spherically symmetric potentials in classical mechanics.
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Generic Properties of Solutions of the Radial Equation (cont.)

Hermiticity Requirement

Since we now have something that looks like the eigenvector-eigenvalue equation for a
one-dimensional Hamiltonian defined over an interval, and we have the Hermitian
operator D`(r), we must check that the standard Hermiticity boundary condition is
satisfied. That is, we requireZ ∞

0
dr U∗1 (D`U2) =

»Z ∞
0

dr U∗2 (D`U1)

–∗
The piece of this due to Veff (r) trivially satisfies the above because Veff is a real
numerical function, not an operator. So we must consider the derivative operator
piece, which is

Z ∞
0

dr U∗1
d2

dr2
U2 =

Z ∞
0

dr U2
d2

dr2
U∗1
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Generic Properties of Solutions of the Radial Equation (cont.)

Let’s manipulate the RHS:

RHS =

Z ∞
0

dr U2
d2

dr2
U∗1 = U2

d

dr
U∗1

˛̨̨̨∞
0

−
Z ∞

0
dr

dU2

dr

dU∗1
dr

= U2
dU∗1
dr

˛̨̨̨∞
0

−
dU2

dr
U∗1

˛̨̨̨∞
0

+

Z ∞
0

dr
d2U2

dr2
U∗1

So, to obtain LHS = RHS, we require»
U2

dU∗1
dr
−

dU2

dr
U∗1

–˛̨̨̨∞
0

= 0

d

dr
[U2 U∗1 ]

˛̨̨̨∞
0

= 0

To evaluate the ∞ limit of the above, we need to know the behavior of UE ,`(r) for
r →∞. We can set this by requiring normalizability. We already know the angular
part of the wavefunction is normalized to unity when the solid angle integral is done.
The radial portion of the normalization integral isZ ∞

0
dr r2 |RE ,`(r)|2 =

Z ∞
0

dr |UE ,`(r)|2
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Generic Properties of Solutions of the Radial Equation (cont.)

In order for this to equal unity, we need UE ,`(r)→ 0 as r →∞. To make it

normalizable to a delta function, we require UE ,`(r)→ e i k r as r →∞ just as we
would for any one-dimensional problem. For the decaying case, the r →∞ term
vanishes. For the oscillating case, just as we showed in the case of plane waves in one
dimension, the upper limit also vanishes. So, we are left with the condition

d

dr
[U2 U∗1 ]

˛̨̨̨
0

= 0

Clearly, the function acted on by the derivative must converge to a constant as r → 0.
Since U1 and U2 are arbitrary, each one must converge to a constant separately. So
we have the additional requirement

U(r)
r→0−→ c

with c a constant.
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Generic Properties of Solutions of the Radial Equation (cont.)

Form of Solutions for r → 0

We have established that, in order for the D`(r) operator to be Hermitian, we require
UE ,`(r)→ c as r → 0 and UE ,`(r)→ 0 or e i k r as r →∞. Now let us check whether
these requirements are consistent with the eigenvector-eigenvalue equation.

Let’s first check r → 0. It is insufficient to check the one-dimensional equation for
UE ,`(r) because the relation RE ,`(r) = UE ,`(r)/r breaks down at r → 0 unless
UE ,`(r)→ 0 as fast as r . So we need to check the eigenvector-eigenvalue equation for
the full Hamiltonian of a particle in three dimensions. That is

−
~2

2µ
∇2ψE ,`,m(r , θ φ) + V (r)ψE ,`,m(r , θ, φ) = E ψE ,`,m(r , θ, φ)

which, based on our asymptotic form for r → 0, reduces to»
−

~2

2µ
∇2 + V (r) +

~2` (`+ 1)

2µ r2

–
1

r
= E

1

r
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Generic Properties of Solutions of the Radial Equation (cont.)

This is problematic in two ways. First, for r 6= 0, ∇2(1/r) = 0 for r 6= 0, so we obtain

V (r)
r→0−→ E −

~2` (`+ 1)

2µ r2

This is not a very generic form for the potential near the origin.

The other problem occurs at the origin. The derivatives involved in ∇2(1/r) become
infinite as r → 0. We have to resort to Gauss’s Law to determine its value in a
rigorous manner. Consider the integral of ∇2(1/r) over the sphere of radius r , whose
volume we will write as V(r) and whose surface is S(r). We can transform the integral
using Gauss’s Law: Z

V(r)
dΩ(r ′)2 dr ′∇2 1

r ′
=

Z
S(r)

dΩ r2 br · ~∇ 1

r ′

= 4πr2 d

dr

1

r

= −4π
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Generic Properties of Solutions of the Radial Equation (cont.)

The integral is independent of the size of the volume and yields a constant. This is
exactly the characteristic of a delta function. So we conclude

∇2 1

r
= 4π δ(~r) ≡ 4π δ(x) δ(y) δ(z)

Plugging this back into the eigenvector-eigenvalue equation, we see the it can only be
satisfied if V (r)→ δ(~r) at the origin. Again, a very special case that we will in general
not be interested in.

The only way to resolve the above problems is to set c = 0. That is, for r → 0,
UE ,`(r)→ 0. How quickly UE ,`(r) must vanish will be studied next.
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Generic Properties of Solutions of the Radial Equation (cont.)

Let’s now assume that V (r) is less singular than 1/r2 for r → 0. The reasons for
doing so are: 1) most physical potentials, such as the gravitational and Coulomb
potential, satisfy this condition; and 2) this allows us to assume the centrifugal term
dominates near the origin for ` 6= 0, so the exact form of the potential becomes
unimportant there and we may derive generic properties. In this limit, the
one-dimensional equation reduces to

d2

dr2
U`(r) =

` (`+ 1)

r2
U`(r)

where we have dropped the E term and hence the E subscript because the E term
becomes negligible as the centrifugal barrier dominates for r → 0. The appearance of
two powers of r in the denominator when two derivatives are taken suggests power law
behavior; assuming U`(r) = rγ implies

γ (γ − 1) = ` (`+ 1) =⇒ γ = `+ 1 or γ = −`

also known as the regular and irregular solutions because of their behavior near the
origin. The latter one fails our condition UE ,`(r)→ 0 for r → 0, so we keep only the
regular solution. Since ` ≥ 1, we are assured that RE ,`(r) = UE ,`(r)/r → 0 as r → 0.
Hence, there is no probability for finding the particle at the origin, which is consistent
with the infinitely large potential barrier there.
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Generic Properties of Solutions of the Radial Equation (cont.)

For ` = 0, which we did not consider above, the form of the solution will now depend
on the potential, and possibly also on E if the potential goes to a constant or vanishes
at the origin. Nothing generic can be said. In the context of the hydrogen atom, one
can see that the above form U`(r) = r`+1 is also valid for ` = 0 for the Coulomb
potential. This results in RE ,`(r)→ r/r = 1 as r → 0, so the absence of a centrifugal
barrier allows the particle to be found at the origin.
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Generic Properties of Solutions of the Radial Equation (cont.)

Form of Solutions for r →∞

Let’s consider potentials for which V (r)→ 0 as r →∞ so that the form of the
potential in this limit is unimportant. There are important violations of this condition
— the SHO, for example — that must be considered case-by-case. But, for potentials
that vanish at ∞, the eigenvector-eigenvalue equation reduces to

d2

dr2
UE (r) = −

2µE

~2
UE (r)

We see that the dependence on ` vanishes because the centrifugal barrier term
becomes negligible, so we label solutions by E alone. The form of the solution to the
above equation is an exponential, though whether it has real or imaginary argument
depends on the sign of E .
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Generic Properties of Solutions of the Radial Equation (cont.)

For E > 0, the exponential has an imaginary argument and our solutions are of the
form

UE (r) = Ae i k r + B e−i k r k =
1

~
p

2µE

which makes sense, since it looks like a free particle.

Let’s consider how this asymptotic form must match onto the form at smaller r . Since
the solution must have r`+1 dependence near the origin, and the exponential form
cannot provide this, there must be a multiplying term that matches onto the
power-law dependence at small r and that becomes constant at large r . To determine
this factor, we want to consider the problem in the regime where V (r) is not negligible
but is small compared to E : we will thus see the multiplying factor transition from a
power law to a constant. It should be clear that this regime is perfect for applying the
WKB approximation: for V (r) = 0 exactly, the wavefunction’s wavelength will be
constant, λ = 2π/k, but for 0 6= |V (r)/E | � 1, λ will be slowly varying.
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Generic Properties of Solutions of the Radial Equation (cont.)

That is, we start with the standard WKB form

UE (r) = e±
i
~ φ(r) φ(r) =

Z r

r0

dr
p

2µ (E − V (r))

(r0 is some arbitrary reference point at large enough r that |V (r)/E | � 1 holds)
Making the approximation |V (r)/E | � 1 lets us Taylor expand the square root:

φ(r) =

Z r

r0

dr ′
p

2µE

„
1−

1

2

V (r ′)

E

«
= ~ k

Z r

r0

dr ′ −
~ k

2 E

Z r

r0

dr ′V (r ′)

= ~ k (r − r0)−
µ

~ k

Z r

r0

dr ′V (r ′)

So we have

UE (r) = f (r0) e±i k r exp

„
∓

i

~
µ

~ k

Z r

r0

dr ′V (r ′)

«

where f (r0) is a normalization factor that depends on the choice of lower limit of the
integral.

Section 14.9 Rotations and Orbital Angular Momentum: Generic Properties of Solutions of the Radial Equation Page 809



Generic Properties of Solutions of the Radial Equation (cont.)

Now, we want the V (r) integral to converge as r →∞ so we recover the pure
plane-wave behavior; that is, we needZ ∞

r0

dr ′V (r ′) = c(r0)

In order for the integral to converge, we need V (r) to fall off faster than 1/r ;
V (r) = 1/r will make the value of the integral depend logarithmically on the infinite
upper limit, yielding an infinite integral. This condition may be rewritten as

r V (r)
r→∞−→ 0

(When we consider scattering, the lack of convergence of the integral for potentials
that fall off like 1/r or slower will manifest as an infinite cross-section for scattering.)

Note that, because there are two allowed solutions (the ± signs), there are two
coefficient degrees of freedom. These will be determined by requiring this solution to
match onto the wavefunction for smaller r . Because there are two matching
conditions (wavefunction and its derivative) and two degrees of freedom, we expect no
restriction on k and hence no quantization of energies for E > 0.
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Generic Properties of Solutions of the Radial Equation (cont.)

For E < 0, the exponential has real argument. As usual, we must reject the growing
solution because it cannot be normalized, so we have

UE (r)→ e−κ r κ =
1

~
p

2µ |E |

We may repeat the WKB procedure above to find

UE (r) = f (r0) e−κ r exp

„
−

1

~
µ

~κ

Z r

r0

dr ′V (r ′)

«

which yields the same condition on V (r) to yield the purely decaying form for r →∞.
We note, though, that for the Coulomb potential, the logarithmic dependence of the
integral on the upper limit manifests as a power law in r :Z r

r0

dr ′V (r ′) = −e2
Z r

r0

dr ′
1

r ′
= −e2 (ln r − ln r0)

=⇒ UE (r) = g(r0) r µ e2/~2κ e−κ r

(In the free-particle case, the logarithm is multiplied by i , so it does not result in a
power law in r , but in a nonconvergent complex phase.)
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Generic Properties of Solutions of the Radial Equation (cont.)

κ, and hence E , will become discretized by the requirement that UE (r) match onto a
solution valid for moderate and small r : there will be two matching conditions
(wavefunction and derivative) but only one normalization degree of freedom to use, so
the freedom in κ will be reduced by the other condition. This is the standard manner
of obtaining discretization of bound states in one dimension.

One can show that the eigenfunctions of D` with E < 0 and U
r→0−→ 0 are

nondegenerate in the same way that we showed that bound states of the Hamiltonian
for one-dimensional systems are nondegenerate.

Hence, we are assured that there is an orthonormalization condition for bound statesZ ∞
0

dr UE ,`(r) UE ′,`(r) = δE ,E ′

or, using ψE ,`,m(r) = RE ,`(r) Y m
` (θ, φ), the orthonormalization condition for the full

3-dimension bound eigenstates is

Z ∞
0

r2 dr

Z π

0
sθ dθ

Z 2π

0
dφ ψ∗E ,`,m(r , θ, φ)ψE ′,` ′,m ′ (r , θ, φ) = δE ,E ′δ`,` ′δm,m ′

Of course, the bound states are orthogonal to the free states, and the free states will
satisfy a delta-function normalization in E that we will discuss below.
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Solutions for Specific Rotationally Invariant Potentials

The Free Particle

This example is discussed in detail in Shankar, so we only quote the results here. It is
instructive to read Shankar, though, because the technique used to obtain the radial
solutions is an interesting application of raising and lowering operators. One could just
do the standard series solution for the differential equation, too.

For the free particle, the reduced radial equation becomes»
d2

dr2
+ k2 −

` (`+ 1)

r2

–
UE ,`(r) = 0 k =

1

~
p

2µE

One can solve the equation easily for ` = 0, and the equation looks like the SHO
problem with r2 replaced by 1/r2, so one is prompted to define raising and lowering
operators, solve the ` = 0 case, directly, and use the raising operators to obtain the
` 6= 0 solutions.

Section 14.10 Rotations and Orbital Angular Momentum: Solutions for Specific Rotationally Invariant Potentials Page 813



Solutions for Specific Rotationally Invariant Potentials (cont.)

One can also solve the problem using series solution techniques, though there will be
no termination requirement since the solutions should converge to e±i k r . The
resulting solutions for R(r) are called the spherical Bessel functions, jn(ρ) and
spherical Neumann functions, ηn(ρ), where ρ = k r . The first two of each of these are

j0(ρ) =
sin ρ

ρ
η0(ρ) = −

cos ρ

ρ

j1(ρ) =
sin ρ

ρ2
−

cos ρ

ρ
η1(ρ) = −

cos ρ

ρ2
−

sin ρ

ρ

These functions have asymptotic forms

j`(ρ)
ρ→0−→

ρ`

(2 `+ 1)!!
η`(ρ)

ρ→0−→ −
(2 `− 1)!!

ρ`+1

j`(ρ)
ρ→∞−→

1

ρ
sin
“
ρ− `

π

2

”
η`(ρ)

ρ→∞−→ −
1

ρ
cos
“
ρ− `

π

2

”
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Solutions for Specific Rotationally Invariant Potentials (cont.)

Only the spherical Bessel functions are regular as ρ→ 0, so they are the solutions we
are allowed to use. This reflects the matching conditions to the solution at the origin
and discards either the cos-like or sin-like solution for each value of `. The full
solutions are then

ψE ,`,m(r , θ, φ) = 〈r , θ φ |E , `,m 〉
= (〈r | ⊗ 〈θ, φ |) (|E , ` 〉 ⊗ |`,m 〉)
= 〈r |E , ` 〉〈θ, φ |`,m 〉

= j`(k r) Y m
` (θ, φ) k =

1

~
p

2µE

where we have written the solution as a direct product of states in the Vr Hilbert
space that describes the radial behavior and the Vθ,φ Hilbert space that describes the
angular behavior. The orthonormalization relation is

Z ∞
0

r2dr

Z π

0
sθ dθ

Z 2π

0
dφ ψ∗E ,`,m(r , θ, φ)ψE ′,` ′,m ′ (r , θ, φ)

=
2

π k2
δ(k − k ′)δ`,` ′δm,m ′
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Solutions for Specific Rotationally Invariant Potentials (cont.)

Relation to Free Particle Solutions in Cartesian Coordinates

Again, we don’t repeat in detail what is in Shankar. If we consider the special case of
a free particle state of well-defined momentum ~p = pbz, the wavefunction is

〈x , y , z |~p = pbz 〉 =

„
1

2π

«3/2

e
i
~ p z ⇐⇒ 〈r , θ, φ |~p = pbz 〉 =

„
1

2π

«3/2

e
i
~ p r cθ

One can show (see Shankar for details)

e i k r cθ =
∞X
`=0

i` (2`+ 1) j`(k r)P`(cθ)

⇐⇒ |~p = pbz 〉 =
∞X
`=0

i` (2`+ 1)

˛̨̨̨
E =

p2

2µ
, `,m = 0

fl

=
∞X
`=0

i` (2`+ 1)

˛̨̨̨
E =

p2

2µ
, `

fl
⊗ |`,m = 0 〉

where we have written the eigenstate |E , `,m 〉 of the Hamiltonian in factorized form
as explained earlier.
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Solutions for Specific Rotationally Invariant Potentials (cont.)

Then, one can obtain a state with the momentum directed in an arbitrary direction ~p
by applying the appropriate rotation operator to the above state. That is, suppose one
wants to know the free particle state with momentum operator eigenvalue

~p = bx p sθp cφp + by p sθp sφp + bz p cθp

The classical vector ~p is obtained from pbz by a rotation by an angle θp around the
direction bxsφp − bycφp (you can check this explicitly). Thus, the QM state |~p 〉 is
obtained from |pbz 〉 by the corresponding QM rotation operator:

|~p 〉 = T
“
θp
hbxsφp − bycφp

i”
|~p = pbz 〉

=
∞X
`=0

i` (2`+ 1)

˛̨̨̨
E =

p2

2µ
, `

fl
⊗ T (`)

“
θp
hbxsφp − bycφp x

i”
|`,m = 0 〉

where T (`) is the identity operator in Vr , the space in which |E , ` 〉 lives, and acts on
the |`,m 〉 portion of the state in the manner that we described earlier for the action of
rotation operators in the |j ,m 〉 basis.
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Spin in Quantum Mechanics

Formulation

So far, we have considered particles whose position-basis representations consist of a
single number at every point in space — this is the position-basis wavefunction.
However, it is found empirically that most fundamental particles and many composite
particles have associated with them an orientation information that is not encoded in
the spatial wavefunction. This orientation information seems to act empirically like an
angular momentum.

The archetypal examples of this effect are the Stern-Gerlach experiment and the
precession of a charged particle with spin in a magnetic field. In the former, it is
observed that, in addition to the spatial wavefunction, electrons and atoms can have
an additional degree of freedom that looks like a magnetic dipole moment, and a
magnetic field can be used to separate particles that have this moment aligned or
anti-aligned with the magnetic field. In the latter, it is observed that this magnetic
dipole momentum appears to be associated with an angular momentum, as if the
charged particle were a spinning ball of charge.

For these empirical reasons, we are led to ask whether there is a way to formulate the
concept of not only a position-dependent wavefunction, but one that carries some sort
of “spin” information at each point in space. To formulate such a concept, we need to
return to the concepts of vectors and tensors in classical mechanics; we will use them
to define a concept of spin in QM.
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Review of Cartesian Tensors in Classical Mechanics

Prologue

We have so far relied on your intuitive grasp of what a vector is and how it is affected
by a classical rotation. We need to formalize this intuition into a proper definition of
scalars, vectors, and tensors, Cartesian and spherical, so we may define a sensible
extension in quantum mechanics.
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Review of Cartesian Tensors in Classical Mechanics (cont.)

Cartesian Tensors — Definitions

In Section 14.2, we discussed passive and active coordinate transformations of classical
vectors. In discussing tensors, we will be interested in passive transformations because
we will define tensors in terms of the way the coordinate representations of a given
tensor in two different coordinate systems are related.

Recall that a vector ~a has two different representations (ax , ay , az ) and (ax ′ , ay ′ , az ′ )
in two different coordinate systems F and F ′ with coordinate axes (x , y , z) and
(x ′, y ′, z ′), with the latter representation obtained from the former by application of

R−~θ where ~θ indicates how F ′ is rotated relative to F :

24 ax ′

ay ′

az ′

35 =

24 cθ sθ 0
−sθ cθ 0

0 1

3524 ax

ay

az

35 = RP,θbz
24 ax

ay

az

35
with RP,θbz = RA,−θbz = R−θbz
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Review of Cartesian Tensors in Classical Mechanics (cont.)

Here, we generalize this idea to an object called a tensor that, in a similar way, has
different coordinate representations in coordinate systems that are related to each
other by rotation, but itself has an abstract existence independent of and unchanged
by the choice of coordinate system.

Specifically, if we consider two sets of coordinates axes F and F ′ that are related to
each other by a rotation, then the coordinate representation of a tensor in F consists
of a set of numbers (how many depends on the rank of the tensor and whether it is
Cartesian or spherical, which we will discuss below), and the tensor is defined by the
fact that its representation in F ′ is related to its representation in F by a specific set
of transformation laws involving the rotation matrices we discussed in Section 14.2
and 14.6. Cartesian tensors are transformed using the rotation matrices generated by
the ~M of Section 14.2 (the R−~θ shown above), while spherical tensors are transformed

using the rotation matrices generated by the |j ,m 〉 basis representation of ~J found in

Section 14.6, the matrix representations of the T (j)(~θ).
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Review of Cartesian Tensors in Classical Mechanics (cont.)

You are certainly familiar with two kinds of tensors. The first, called a scalar, is also
known as a rank 0 tensor (Cartesian or spherical). A scalar is essentially a trivial
tensor because its transformation law is that its representation in any coordinate
system is a single number and that this number is the same in any two coordinate
systems related by a rotation. Examples include the mass of a particle, the total
energy of a particle, etc.

The second kind of tensor you are familiar with is called a vector or rank 1 Cartesian
tensor. As you know, the coordinate representation of a vector ~v in a particular
coordinate system F consists of N numbers (N is the number of spatial dimensions,
N = 3 for what are considering), which we shall denote by (~v) or {(~v)

j
}. Its

representation in a different frame F ′, which we shall denote by (~v) ′ or {(~v) ′
j
}, is

related to that in F by

(~v) ′ = R−~θ (~v) (15.1)

(~v) ′
j

=
X

k

h
R−~θ

i
jk

(~v)
k

(We need the underscore to distinguish ~v from its coordinate representation (~v) and

we need the parentheses later on when we might consider a different vector ~v ′ and
need to make the distinction between (~v) ′, the coordinate representation ~v in F ′, and

(~v ′), the coordinate representation ~v ′ in F .)
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Review of Cartesian Tensors in Classical Mechanics (cont.)

The eabove equation is the same as the matrix equation we wrote down just a couple
of slides back, except that we have changed our convention on how primes are used
for the sake of brevity of notation: rather than putting the prime on the subscript as
we did earlier to indicate different coordinate representations of the same vector, we
are putting the prime on the vector representation or components themselves.

Let’s consider the relations between the unit vectors of the F and F ′ frames via the
rotation matrix to be sure these relationships are clear. Denote the unit vectors of the
F frame by {~ej} and those of the F ′ frame by {~e ′j } where j runs from 1 to 3 for three

spatial dimensions. The {~ej} are what we earlier would have called bx , by , and bz. The
{~e ′j } are what we would have called bx ′, by ′, and bz ′. Since we have written the prime

on a vector, not a coordinate representation, the prime is telling us ~e ′j is a different

vector than ~ej .
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Review of Cartesian Tensors in Classical Mechanics (cont.)

Here are the coordinate representations in their natural frames and how they are
related:

(~e1) =

24 1
0
0

35 =
`
~e ′1
´′

(~e2) =

24 0
1
0

35 =
`
~e ′2
´′

(~e3) =

24 0
0
1

35 =
`
~e ′3
´′

The left side of each equation is the coordinate representation of an ~ej in the F frame
(hence the lack of primes) while the right side is the coordinate representation of an
~e ′j in the F ′ frame; hence the prime both inside the parentheses, referring to the
vector, and outside the parentheses, referring to the frame of the coordinate
representation. The above simply states that the {~ej} are the unit vectors of the F
frame and the {~e ′j } are the unit vectors of the F ′ frame and that they, respectively,

correspond to the basis elements of the F and F ′ coordinate representations. You can
see that coordinate representations and matrix representations are not very different
from one another; the former is just a special case of the latter for a Hilbert space
consisting of vectors in three spatial dimensions.
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Review of Cartesian Tensors in Classical Mechanics (cont.)

Now, let’s see how the rotation matrices relate the coordinate representations between
frames. Again, F ′ is obtained from F by rotation by an angle θ CCW about the bθ
direction. Then the coordinate representations in the F ′ frame of the F frame unit
vectors {~ej} are obtained from their coordinate representation sin the F frame by

(~ei )
′ = R−~θ (~ei )

(~e1)
′ = R−~θ

24 1
0
0

35 (~e2)
′ = R−~θ

24 0
1
0

35 (~e3)
′ = R−~θ

24 0
0
1

35
This is just a special case of our generic transformation rule for the coordinate
representations of a vector, Equation 15.1. Remember, we use R−~θ because we are

not actively rotating the vectors {~ej}, we are writing their representations in a
different frame F ′.
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Review of Cartesian Tensors in Classical Mechanics (cont.)

Similarly, the coordinate representations of the F ′ frame unit vectors {~e ′j } in the F ′

frame are obtained from those in the F frame by“
~e ′j

”′
= R−~θ

“
~e ′j

”
However, this is not usually what one wants because, in this case, we know the“
~e ′j

”′ff
are simple and the

“
~e ′j

”ff
are not. Rather, we want the inverse equation:

“
~e ′j

”
= R~θ

“
~e ′j

”′
`
~e ′1
´

= R~θ

24 1
0
0

35 `
~e ′2
´

= R~θ

24 0
1
0

35 `
~e ′3
´

= R~θ

24 0
0
1

35
where now R~θ is used because we are obtaining the F frame coordinate representation
from the F ′ frame representations and the F frame is obtained from the F ′ frame by
rotation by −θ about bθ.
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Review of Cartesian Tensors in Classical Mechanics (cont.)

Now, let’s generalize. A rank n Cartesian tensor is an object that satisfies similar
relations between coordinate representations, but involving more rotation matrices and
more numbers in each representation. Specifically, a rank n Cartesian tensor T is an
object that has coordinate representation (T ) with Nn components (T )

j1···jn
(where N

is the dimensionality of the physical space, N = 3 for what we are considering) with
passive transformation properties

(T ) ′
j1···jn

=
X

k1,k2,··· ,kn

h
R−~θ

i
j1k1

· · ·
h
R−~θ

i
jnkn

(T )
k1···kn

(15.2)

We see why a scalar is a rank 0 tensor and a vector is a rank 1 tensor. We will in
general use the Einstein Summation Convention to write the above as

(T ) ′
j1···jn

=
h
R−~θ

i
j1k1

· · ·
h
R−~θ

i
jnkn

(T )
k1···kn
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Review of Cartesian Tensors in Classical Mechanics (cont.)

A rank 2 tensor has coordinate representations that look like square N × N matrices;
what distinguishes a rank 2 tensor from a simple matrix is the relation between the
coordinate representations in different frames. It is important to remember the
distinction! However, this form lets us write the transformation law in a compact
manner, like we do for vectors:

(T ) ′
jk

=
h
R−~θ

i
jm

h
R−~θ

i
kn

(T )
mn

=
h
R−~θ

i
jm

(T )
mn

h
RT
−~θ

i
nk

=
h
R−~θ

i
jm

(T )
mn

h
R−1

−~θ

i
nk

(T )′ = R−~θ (T )RT
−~θ = R (T )R−1

−~θ

where (T ) and (T )′ are N × N matrices and RT = R−1 follows from the fact that

rotation matrices are orthogonal matrices (so RT
~θ

= R−1
~θ

). The last expression is the

similarity transformation of the N × N matrix (T ) by the orthogonal matrix R−~θ.
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Review of Cartesian Tensors in Classical Mechanics (cont.)

Tensors — Examples

I The norm of a Cartesian vector is a scalar:

(~v) ′ · (~v) ′ = (~v) ′
j
(~v) ′

j
=
h
R−~θ

i
jm

(~v)
m

h
R−~θ

i
jn

(~v)
n

= δmn (~v)
m

(~v)
n

= (~v)
m

(~v)
m

= (~v) · (~v)

where we have used (~v) ′ = R−~θ (~v) and the orthonormality propertyh
R−~θ

i
jm

h
R−~θ

i
jn

= δmn (i.e., RT = R−1). We see that the value of the norm

of a Cartesian vector is the same in the two frames, hence the coordinate
representations of the norm are identical and it is a scalar. The dot product of
any two vectors is a scalar by a similar argument.

I An obvious rank 2 Cartesian tensor is the outer product of two vectors:

(T )
jk

= (~a)
j
(~b)

k
or T = ~a~b T

Since each Cartesian vector transforms as a rank 1 Cartesian tensor, it is
obvious that the above product transforms as a rank 2 Cartesian tensor:

(T ) ′
jk

= (~a) ′
j
(~b)
′
k

=
h
R−~θ

i
jm

(~a)
m

h
R−~θ

i
kn

(~b)
n

=
h
R−~θ

i
jm

h
R−~θ

i
kn

(T )
mn
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Review of Cartesian Tensors in Classical Mechanics (cont.)

I More generally, if we take a rank m Cartesian tensor U with coordinate
representation components (U)

j1···jm
and a rank n Cartesian tensor V with

coordinate representation components (V)
k1···kn

and contract over — i.e.,

match up indices and sum, the generalization of a dot product — any p pairs of
indices, then the resulting set of quantities is a rank m + n − 2p Cartesian
tensor. Proving it is clearly a tedious exercise in index arithmetic relying on the

rotation matrix orthogonality relation
h
R−~θ

i
mj

h
R−~θ

i
mk

= δjk and its transpose

relation
h
R−~θ

i
jm

h
R−~θ

i
km

= δjk , much like the proof that the norm of a

Cartesian vector is a scalar. Taking p = 0 as a special case gives us the simple
outer product of the two Cartesian tensors, which reduces to the previous
example when both Cartesian tensors are rank 1.
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Review of Cartesian Tensors in Classical Mechanics (cont.)

I The identity matrix is a rank 2 Cartesian tensor and, in fact, it is isotropic,
meaning that its coordinate representation is the same in all frames. Let’s just
try transforming it to see this:

(I) ′
jk

=
h
R−~θ

i
jm

h
R−~θ

i
kn

(I)
mn

=
h
R−~θ

i
jm

h
R−~θ

i
kn
δmn

=
h
R−~θ

i
jm

h
R−~θ

i
km

= δjk

(We used the “transposed” orthonormality condition
h
R−~θ

i
jm

h
R−~θ

i
km

= δjk .)

So, we see that the identity matrix has representation δjk in any frame and that
the representations in different frames are related by the appropriate
transformation relations.
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Review of Cartesian Tensors in Classical Mechanics (cont.)

I We can demonstrate that the εabc Levi-Civita symbol is an isotropic rank 3
Cartesian tensor. Let’s calculate the effect of the transformation rule on it:

(ε)′
abc

=
h
R−~θ

i
aj

h
R−~θ

i
bk

h
R−~θ

i
cm

(ε)
jkm

We may evaluate the above by recognizing that the “transposed”

orthonormality condition on R−~θ,
h
R−~θ

i
jm

h
R−~θ

i
km

= δjk , implies that the

rows of R look like N mutually orthonormal vectors in N-dimensional space.
(Here we use the term vector more loosely — we have no need to prove that
these rows behave like vectors in rotated frames, we only need the fact that
their component representations in a given frame looks like that of N

orthonormal vectors.) Denote these “vectors” by ~R r
j , where

“
~R r

j

”
k

=
h
R−~θ

i
jk

.

(The r superscript indicates we are treating the rows, rather than the columns,
of R−~θ as vectors.) With this notation, the above product looks like

~R r
a ·
“
~R r

b × ~R
r
c

”
. In N = 3 dimensions, the expression will only be nonvanishing

when the triplet abc is a cyclic or anticyclic combination; and the expression will
have magnitude 1 and take the sign of the permutation (cyclic or anticyclic).
These are exactly the properties of εabc , so we have

(ε)′
abc

= (ε)
abc

So the Levi-Civita symbol is an isotropic rank 3 Cartesian tensor for N = 3 (and
for arbitrary N, though we will not prove it here).
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Review of Cartesian Tensors in Classical Mechanics (cont.)

Note that this implies some properties of ~M:

1. When treated as a single rank 3 Cartesian tensorM with coordinate

representation components (M)
abc

=
“
~Ma

”
bc

= −(ε)
abc

,M is clearly an

isotropic rank 3 Cartesian tensor. For this particularly interesting case, we
will take the symbol ~M to stand for the rank 3 Cartesian tensorM. Since
~M is isotropic, there is no distinction between ~M and ~M.

2. Given a vector ~θ, we define the quantity ~θ · ~M by its coordinate
representation in any given frameh

~θ · ~M
i
jk

= (~θ)
a
(M)

ajk

Thus, ~θ · ~M is a contraction over one index of a rank 1 and a rank 3
Cartesian tensor, yielding a rank 2 Cartesian tensor.

3. ~θ · ~M has in frames F and F ′ coordinate representations ~θ · ~M = ~θ · ~M and“
~θ · ~M

”′
= ~θ
′ · ~M ′ = ~θ

′ · ~M, where the last step in each case is possible

because ~M is isotropic. Thus, only the coordinate representation of the
vector ~θ need be changed to write ~θ · ~M in different frames.
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Review of Cartesian Tensors in Classical Mechanics (cont.)

Active vs. Passive Transformations for Classical Cartesian Tensors

Our definition of Cartesian tensors was in terms of their transformation rules under a
passive rotation — the rules tell us how to obtain, from its coordinate representation
in one coordinate system F , the coordinate representation of the tensor in a new
coordinate system F ′ that has been obtained by a rotation of the original coordinate
system F by an angle ~θ. The transformation rule for a Cartesian tensor of rank n was
Equation 15.2

(T ) ′
j1···jn

=
h
R−~θ

i
j1k1

· · ·
h
R−~θ

i
jnkn

(T )
k1···kn

(Einstein summation convention) where we have used the underline to indicate
coordinate representation. The underline and the prime are outside the parentheses so
it is clear we are discussing the same tensor T ; the underline indicates “coordinate
representation” and the prime or lack thereof tells us which frame the coordinate
representation is for. For the sake of brevity, we did not use this cumbersome but
more explicit notation before, but it is necessary now. It is similar to the notation we
used in discussing the Cartesian unit vectors.
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Review of Cartesian Tensors in Classical Mechanics (cont.)

We can alternatively define tensors based on active transformations, in which the
coordinate system is left fixed but the tensor itself is rotated. We do this because it
will be more intuitive when we go over to QM. But active transformations are more
difficult to make intuitive sense of classically; it helps to think of the tensor as being
attached to some physical object and for the rotation to be a rotation of the physical
object. An example would be the inertia tensor of a rigid body, which rotates with the
rigid body when the rigid body is rotated relative to the coordinate axes. There has
been no new coordinate system created. This rotation yields a new tensor T ′. How
do we obtain the coordinate representation of the new tensor T ′ from the coordinate
representation of the original tensor T , both in the single coordinate system F that we
have referenced so far? Let’s first quote the result, which is as you would expect from
our discussion of passive vs. active coordinate transformations in QM:`

T ′
´
j1···jn

=
ˆ
R~θ
˜
j1k1
· · ·
ˆ
R~θ
˜
jnkn

(T )
k1···kn

(15.3)

Here, (T ′)
j1···jn

indicates the coordinate representation of the new tensor T ′ in the

frame F in which we already have the definition of the original tensor T .
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Review of Cartesian Tensors in Classical Mechanics (cont.)

Let’s prove the above, which is very similar to the earlier proof
“
~e ′j

”
= R~θ

“
~e ′j

” ′
. We

introduce a new coordinate system F ′ that is rotated by the same angle ~θ relative to
F as the angle by which we want to rotate the tensor T to get the new tensor T ′.
Since F ′ and T ′ are both obtained by the same rotation, we expect that`

T ′
´ ′

= (T ) ⇐⇒
`
T ′
´ ′
j1···jn

= (T )
j1···jn

This is the classical equivalent of unitarity, which is called orthogonality: the
coordinate representation of the new tensor T ′ in the new coordinate system F ′ is
the same as the coordinate representation of the old tensor T in the original
coordinate system F . To some extent, this is a definition.

Given the above, we have the following based on our passive transformation rule:

`
T ′
´ ′
j1···jn

=
h
R−~θ

i
j1k1

· · ·
h
R−~θ

i
jnkn

`
T ′
´
k1···kn

Note that we have coordinate representations of the new tensor T ′ on both sides of
the equation.
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Review of Cartesian Tensors in Classical Mechanics (cont.)

We may use orthogonality now, which lets us replace (T ′) ′ with (T ), so

(T )
j1···jn

=
h
R−~θ

i
j1k1

· · ·
h
R−~θ

i
jnkn

`
T ′
´
k1···kn

Finally, we multiply both sides by
ˆ
R~θ
˜
m1j1
· · ·
ˆ
R~θ
˜
mn jn

and sum over the j indices.

Recall that R−~θ = R−1
~θ

, so we have

ˆ
R~θ
˜
m1j1
· · ·
ˆ
R~θ
˜
mn jn

(T )
j1···jn

=
ˆ
R~θ
˜
m1j1

h
R−~θ

i
j1k1

· · ·
ˆ
R~θ
˜
mn jn

h
R−~θ

i
jnkn

`
T ′
´
k1···kn

= δm1k1
· · · δmnkn

`
T ′
´
k1···kn

=
`
T ′
´
m1···mn`

T ′
´
j1···jn

=
ˆ
R~θ
˜
j1k1
· · ·
ˆ
R~θ
˜
jnkn

(T )
k1···kn

which is the expected active transformation rule.
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Review of Cartesian Tensors in Classical Mechanics

Cartesian Tensors of Rank n as a Direct Product Hilbert Space

It should be fairly obvious that Cartesian tensors of a rank n form a Hilbert space with
the real numbers as the field. The necessary “vector addition,” “scalar addition and
multiplication,” and “scalar-vector multiplication” rules follow just as they do for rank
1 Cartesian tensors. The inner product is simply contraction over all indices, which is
a scalar belonging to the real numbers based on the previous discussion:

〈T |S 〉 = (T )
j1···jn

(S)
j1···jn

Linearity and antilinearity of the inner product are proven in much the same way as for
rank 1 Cartesian tensors. We will call the space of rank n Cartesian tensors τ (n).
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Review of Cartesian Tensors in Classical Mechanics (cont.)

Now, what is a good basis for τ (n)? One reasonable basis is the set of all rank n
tensors E whose coordinate representation in the frame F has exactly one element
being 1 and all others being 0; we could label these as {Ej1···jn}, jk = 1, . . . ,N,
k = 1, . . . , n, where the indices indicate which entry is nonzero in the coordinate
representation in F . That is,`

Ej1···jn
´
k1···kn

= δj1k1
· · · δjnkn (15.4)

Just as with unit vectors, a different coordinate system F ′ will have its own unit
tensors, whose coordinate representation is simple in the F ′ frame:“

E ′j1···jn
” ′

k1···kn

= δj1k1
· · · δjnkn

Note the primes both inside and outside the parentheses: the former indicate that
these are the unit tensors of the F ′ frame, and the latter indicates that we are
calculating their coordinate representation in the F ′ frame.
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Review of Cartesian Tensors in Classical Mechanics (cont.)

Let us translate tensors into our standard Hilbert space notation using kets. We will
denote a tensor by |T 〉. Its component representation in terms of the unit tensors of a
particular coordinate system is given by inner product with the appropriate unit tensor,
which we know does the right thing given the definitions above:

〈Ej1···jn |T 〉 =
`
Ej1···jn

´
k1···kn

(T )
k1···kn

= δj1k1
· · · δjnkn (T )

k1···kn

= (T )
j1···jn

The coordinate representation in a different coordinate system F ′ would be given by
inner product with the unit tensors of that coordinate system:

〈E ′j1···jn |T 〉 =
“
E ′j1···jn

” ′
k1···kn

(T ) ′
k1···kn

= δj1k1
· · · δjnkn (T ) ′

k1···kn

= (T ) ′
j1···jn
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Review of Cartesian Tensors in Classical Mechanics (cont.)

The above basis for τ (n) suggests a more fundamental way of writing τ (n) and its
basis. The coordinate representation of each basis element Ej1···jn can be written as a
product of the coordinate representations of the basis elements (unit vectors) of the
space of Cartesian vectors:ˆ

Ej1···jn
˜
k1···kn

=
ˆ
~ej1

˜
k1
· · ·
ˆ
~ejn

˜
kn

Since any rank n Cartesian tensor can be expanded in terms of the basis elements on
the left, and any member of the space of direct products of n Cartesian vectors can be
expanded in terms of the direct products of unit vectors on the right, we have a
one-to-one correspondence between the basis elements of the two spaces:

Ej1···jn ⇐⇒ ~ej1 ⊗ · · · ⊗ ~ejn =
nO

k=1

~ejk

where
Nn

k=1 stands for “multiple direct product”, or, in ket notation

|Ej1···jn 〉 ←→ |~ej1 〉 ⊗ · · · ⊗ |~ejn 〉 =
nO

k=1

|~ejk 〉
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Review of Cartesian Tensors in Classical Mechanics (cont.)

One can check in addition that the inner product rule matches up between the two
spaces, and thus the Hilbert space of tensors of rank n is equal to the direct product
of the Hilbert spaces of vectors:

τ (n) = τ
(1)
(1)
⊗ · · · ⊗ τ (1)

(n)
=

nO
k=1

τ
(1)
(k)

where there are n elements in the direct product and where the subscripts refer to
which of the n elements is being referenced. The idea of using direct products of unit
vectors in τ (1) as the basis for τ (n) is thus the natural thing to do.
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Review of Cartesian Tensors in Classical Mechanics (cont.)

With the abstract idea of a Hilbert space, we also have the concept of operators that
are “more than” their matrix representations in a specific basis. In particular, we must
abstract the rotation operator from the rotation matrix we have been working with.
Of course, operators are usually defined in terms of their matrix representations in a
particular basis. So, we simply define the rotation operator R(n)(~θ) acting on the
Hilbert space τ (n) to be the operator whose matrix representation in the basis of the
unit tensors of a particular coordinate frame F is the necessary rotation matrices that
act on the coordinate representation of tensors in that frame. That is, R(n)(~θ) is the
operator with matrix representation given by

〈Ej1···jn |R
(n)(~θ)|Ek1···kn 〉 =

ˆ
R~θ
˜
j1k1
· · ·
ˆ
R~θ
˜
jnkn

(15.5)
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Review of Cartesian Tensors in Classical Mechanics (cont.)

This form does exactly what one wants to the coordinate representations of tensors.
Suppose we want to do an active rotation on a tensor T with coordinate
representation {(T )

j1···jn
} in F to get a new tensor T ′ with coordinate representation

{(T ′)
j1···jn

} in F . Let’s do this using the above operator, and project onto the basis

of unit tensors of F to recover the coordinate representation of T ′:`
T ′
´
j1···jn

= 〈Ej1···jn |T
′ 〉

= 〈Ej1···jn |R
(n)(~θ)|T 〉

= 〈Ej1···jn |R
(n)(~θ)

X
k1···kn

(T )
k1···kn

|Ek1···kn 〉

=
X

k1···kn

(T )
k1···kn

〈Ej1···jn |R
(n)(~θ)|Ek1···kn 〉

=
X

k1···kn

ˆ
R~θ
˜
j1k1
· · ·
ˆ
R~θ
˜
jnkn

(T )
k1···kn

as desired.
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Review of Cartesian Tensors in Classical Mechanics (cont.)

We can also see that this definition of R(n)(~θ) gives us the right passive
transformation behavior. If {|Ej1···jn 〉} are the unit tensors of a frame F and
{|E ′j1···jn 〉} are the unit tensors of a different frame F ′, with F ′ obtained by a rotation

of F by ~θ, then we can obtain the coordinate representation of a tensor T in the frame
F ′, {(T ) ′

j1···jn
} from its representation in the frame F , {(T )

j1···jn
} using the operator

R(n)(~θ). First note that the definition of F ′ relative to F implies that the unit tensors
of F ′ are obtained by active rotation of the unit tensors of F :

|E ′j1···jn 〉 = R(n)(~θ)|Ej1···jn 〉

Then,
`
T ′
´
j1···jn

= 〈E ′j1···jn |T 〉

= 〈Ej1···jn |
h
R(n)(~θ)

i†
|T 〉

=
X

k1···kn

(T )
k1···kn

〈Ej1···jn |R
(n)(−~θ)|Ek1···kn 〉

=
X

k1···kn

h
R−~θ

i
j1k1

· · ·
h
R−~θ

i
jnkn

(T )
k1···kn

as expected.
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Review of Cartesian Tensors in Classical Mechanics (cont.)

Our definition of R(n)(~θ) has the nice feature of yielding a sensible direct product
breakdown:

〈Ej1···jn |R
(n)(~θ)|Ek1···kn 〉 =

ˆ
R~θ
˜
j1k1
· · ·
ˆ
R~θ
˜
jnkn

= 〈~ej1 |R
(1)(~θ)|~ek1

〉 · · · 〈~ejn |R
(1)(~θ)|~ekn 〉

=
`
〈~ej1 | ⊗ · · · ⊗ 〈~ejn |

´ h
R

(1)
(1)

(~θ)⊗ · · · ⊗ R
(1)
(n)

(~θ)
i `
|~ek1
〉 ⊗ · · · ⊗ |~ekn 〉

´
= 〈Ej1···jn |

h
R

(1)
(1)

(~θ)⊗ · · · ⊗ R
(1)
(n)

(~θ)
i
|Ek1···kn 〉

⇐⇒ R(n)(~θ) = R
(1)
(1)

(~θ)⊗ · · · ⊗ R
(1)
(n)

(~θ) =
nO

k=1

R
(1)
(k)

(~θ) (15.6)
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Review of Cartesian Tensors in Classical Mechanics (cont.)

Along with the generalized rotation operator, we should define a generalized generator
i ~ ~M(n). The above direct product breakdown shows us how to define it. Let’s first do
the n = 1 case by defining

〈~ej |i ~ ~M(1)|~ek 〉 ≡
h
i ~ ~M

i
jk

⇐⇒ 〈~ej |i ~ M
(1)
a |~ek 〉 ≡ [i ~ Ma]jk (15.7)

which implies

〈~ej | exp
„
−

i

~
~θ · i ~ ~M(1)

«
|~ek 〉 =

»
exp

„
−

i

~
~θ · i ~ ~M

«–
jk

=
ˆ
R~θ
˜
jk

= 〈~ej |R(1)(~θ)|~ek 〉

In going from the first expression to the second expression in the above, we skipped
over the steps where we wrote out the power series expansion of the exponential,
inserted completeness in between each power of ~M(1) to replace ~M(1) with matrix
elements of ~M, and then recollapsed the power series to be apower series in the ~M
matrix rather than the ~M(1) operator. Thus, we now have an operator version of the
generator for n = 1.
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Review of Cartesian Tensors in Classical Mechanics (cont.)

Now, let’s define the generalized generator for n > 1 in terms of ~M(1):

i ~ ~M(n) ≡ i ~
nX

k=1

~M
(1)
(k)
⊗

nO
p 6=k

I(p) (15.8)

= i ~
h
~M

(1)
(1)
⊗ I(2) ⊗ · · · ⊗ I(n) + I(1) ⊗ ~M

(1)
(2)
⊗ I(3) ⊗ · · · ⊗ I(n)

+ I(1) ⊗ · · · ⊗ I(n−1) ⊗ ~M
(1)
(n)

i
i ~ M

(n)
a ≡ i ~

nX
k=1

M
(1)
(k),a
⊗

nO
p 6=k

I(p)

where the (k) and (p) indicates which of the n factor spaces of Cartesian vectors the
operators act in.

Section 15.2 Spin Angular Momentum: Review of Cartesian Tensors in Classical Mechanics Page 851



Review of Cartesian Tensors in Classical Mechanics (cont.)

We can see that the above definition is consistent with our definition of the abstract
rotation operator:

exp

„
−

i

~
~θ · i ~ ~M(n)

«
= exp

0@− i

~

nX
k=1

~θ · i ~ ~M(1)
(k)
⊗

nO
p 6=k

I(p)

1A
=

nY
k=1

24exp

„
−

i

~
~θ · i ~ ~M(1)

(k)

«
⊗

nO
p 6=k

I(p)

35
=

nO
k=1

exp

„
−

i

~
~θ · i ~ ~M(1)

(k)

«
=

nO
k=1

R
(1)
(k)

(~θ) = R(n)(~θ)

as desired, so our generalized generator definition is correct. Note that, in going from
the second line to the third line, we made use of the fact that each term in the sum in
the argument of the exponential commutes with every other term in the sum because
each term has nontrivial action in only one of the n factor spaces and each one acts in
a different factor space.
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Review of Cartesian Tensors in Classical Mechanics (cont.)

There is one aspect of the above that we need to explain. It appears that our
definition of the matrix elements of R(n)(~θ) is the same regardless of the frame for
which the {Ej1···jn} are the unit tensors. How can the representation of an operator be
independent of the basis chosen?

The answer is that the representation is not independent of the frame because the R~θ
that provide the coordinate representation for R(n)(~θ) depend on the coordinate

representation of ~θ, which depends on one’s choice of coordinate frame F . The
formulae we have given that relate R(n)(~θ) and R~θ are completely correct and general,
but they have a coordinate frame dependence through the coordinate frame
dependence of the representation of ~θ.

A similar issue occurs for the generator ~M(n), too. The operator ~M(n) is not
frame-independent because it assumes a set of unit vectors that define the three
directions for component operators in ~M(n). The fact that the formulae that define
~M(n) are not dependent on the frame just implies that one always calculates the
version of ~M(n) that is tied to the coordinate frame one is working in. Here, we make
a distinction between frame independence and basis independence. A coordinate
frame defines a set of Cartesian unit vectors {~ej}. But we need not use those as a
basis for the Hilbert space, though we may still work in that coordinate frame. This
point will become clearer below.
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Review of Cartesian Tensors in Classical Mechanics (cont.)

Choosing a More Convenient Basis for τ (1): The Eigenvector-Eigenvalue
Problem of Rotations for Rank 1 Cartesian Tensors

We now know that τ (n) is a Hilbert space, and we have a basis that is composed of
direct products of the natural basis elements of τ (1), the Cartesian unit vectors. That’s
fine, but we are bringing the idea of tensors up because we are interested in setting up
quantum mechanical states with reasonable properties under coordinate system
rotations. We know from our study of orbital angular momentum that Cartesian
coordinates are not really the natural way to discuss rotations. We found in Section 14
that the structure of the Hilbert space of QM states of a particle in three spatial
dimensions breaks down quite cleanly if we consider the properties of the states under
rotations by finding the eigenvectors and eigenvalues of the L2 and Lz operators. We
found a basis of eigenvectors and eigenvalues of L2 and Lz , the {|`,m 〉}, and we saw
that the space breaks down into a direct sum of degenerate subspaces of L2:

V = V(0) ⊕ V(1) ⊕ V(2) ⊕ · · ·

(When we considered the more general J2 and Jz operators, we also found half-integer
j values, but we don’t need to consider the most general case right now; this
discussion is mainly for motivation.). Each of these subspaces is invariant under
rotations. Moreover, the |`,m 〉 states are themselves invariant under rotations about
z because such rotations are generated by Lz because they are eigenvectors of Lz .

That makes them eigenvectors of T (~θ) = exp
“
− i

~ θzLz

”
with eigenvalues e−i m θz ,

m = −`, −`+ 1, . . ., `− 1, `.
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Review of Cartesian Tensors in Classical Mechanics (cont.)

We did not emphasize the latter point much, but it provides important motivation
here. We know that ~M(1) generates classical rotations (recall,

R(1)(~θ) = exp(~θ · ~M(1))), that the components of ~M(1) satisfy a commutation relation

similar to the one the components of ~L satisfy, and that [M2](1) commutes with each

component of ~M(1). (We are using the matrix-representation-free operators ~M(1) and
[M2](1) here because we want to avoid getting tied to a basis whenever possible.) So,
we are led to ask the question: is there a basis for τ (1) that consists of eigenvectors of

[M2](1) and M
(1)
z ? These eigenvectors would presumably simplify the behavior of τ (1)

under rotations in the same way that the |`,m 〉 basis simplified the behavior of the
the Hilbert space of states of a particle in three spatial dimensions under rotations.

Note that, just because we are not yet picking a basis, we have indeed picked a
coordinate frame because we must choose Cartesian unit vectors before the operator
~M(1) makes sense.
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Review of Cartesian Tensors in Classical Mechanics (cont.)

Before finding these eigenvectors explicitly, we can predict the results. The
commutation relations of the components of ~M(1) imply that

[i ~ M
(1)
a , i ~ M

(1)
b ] = εabc i ~ M

(1)
c [−~2[M2](1), i ~ M

(1)
a ] = 0

The components of i ~ ~M(1) satisfy the same generic commutation relations as the
components of ~J and ~L. Thus, our operator method analysis of the eigenvectors and
eigenvalues of J2 and Jz applies here: we are assured that there is a basis of

eigenvectors of −~2[M2](1) and i ~ M
(1)
z that we can label |~e(j)

m 〉 and that satisfy

−~2[M2](1)|~e(j)
m 〉 = ~2j (j + 1) |~e(j)

m 〉 i ~ M
(1)
z |~e

(j)
m 〉 = ~ m |~e(j)

m 〉

j =
k

2
k any integer m = −j ,−(j − 1), · · · , j − 1, j

However, that discussion only said the above values were allowed; it did not say they
had to exist. For example, in the Hilbert space of states of a particle in three spatial
dimensions, we have shown that the particulars of the problem (i.e., the specific
representation of the angular momentum operators, which yield the specific
eigenvalue-eigenvector differential equations) imply that only the integral values of j

exist. What ~e
(j)
m states exist in τ (1)?
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Review of Cartesian Tensors in Classical Mechanics (cont.)

To find what the allowed values of j are, we do the obvious thing, which is to write
down the eigenvector-eigenvalue equations of −~2[M2](1):

−~2[M2](1)|~e(j)
m 〉 = ~2j (j + 1) |~e(j)

m 〉

We know M2 = −2 I, so we may infer the basis-independent statement [M2](1) = −2I .
This gives

2 ~2 I |~e(j)
m 〉 = ~2j (j + 1) |~e(j)

m 〉

Thus, the −~2[M2](1) equation tells us j = 1. We may now write ~e
(1)
m instead of ~e

(j)
m .
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Review of Cartesian Tensors in Classical Mechanics (cont.)

Next, let’s solve the i ~ M
(1)
z equation. Because we don’t have such a simple form for

i ~ M
(1)
z as we had for −~2[M2](1), we must project this equation onto a basis, so we

use the obvious basis of Cartesian unit vectors, for which we know the representation

of M
(1)
z is Mz

i ~ M
(1)
z |~e

(1)
m 〉 = m ~ |~e(1)

m 〉

i ~

24 0 −1 0
1 0 0
0 0 0

35
266664
“
~e

(1)
m

”
1“

~e
(1)
m

”
2“

~e
(1)
m

”
3

377775 = m ~

266664
“
~e

(1)
m

”
1“

~e
(1)
m

”
2“

~e
(1)
m

”
3

377775 with |~e(1)
m 〉 ←−→

~e

266664
“
~e

(1)
m

”
1“

~e
(1)
m

”
2“

~e
(1)
m

”
3

377775
where we write ←−→

~e
to indicate the coordinate representation in the standard

Cartesian coordinate system, or, equivalently, matrix representation in the basis of
Cartesian unit vectors of τ (1) for the coordinate frame we are working in.
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Review of Cartesian Tensors in Classical Mechanics (cont.)

Finding the roots of the characteristic polynomial for the i ~ M
(1)
z eigenvalue problem

shows us that the expected values m, m = −1, 0, 1, are indeed realized:

m~
`
m2~2 − ~2

´
= 0 =⇒ m = 0,±1

The eigenvectors are

~e
(1)
1 ←−→

~e

1
√

2

24 1
i
0

35 ~e
(1)
0 ←−→

~e

24 0
0
1

35 ~e
(1)
−1 ←−→

~e

1
√

2

24 1
−i
0

35
Because two of the eigenvectors are complex, we need to expand τ (1) to allow complex
coefficients. There are three reasons to just go ahead and do this rather than worrying
unduly about the fact that classical vectors are not complex. First, though we have a
basis of complex vectors, we can write any real vector in terms of them (because they
are a basis for the complex vector space in which the real vectors reside), and a
coordinate system rotation must leave a real vector as a real vector. Second, the
definition of a vector by its behavior under spatial rotations does not require that the
components be real; that is, there is nothing fundamental in the nature of a vector
about having real coefficients except that the physical vectors we are familiar with
from classical mechanics satisfy this requirement. Third, when we take this over to
quantum mechanics, we will naturally need complex coefficients.
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Review of Cartesian Tensors in Classical Mechanics (cont.)

Since the above vectors are eigenvectors of i ~ M
(1)
z , we thus know that they are

eigenvectors of the operator that rotates three-dimensional vectors about the z axis,

R(1)(θzbz) = exp
“
θzM

(1)
z

”
= exp

„
−

i

~
θz
“
i ~ M

(1)
z

”«

with eigenvalues e−i m θz , 1, and e i m θz . That is, these three vectors are invariant
under rotations about z. We did not emphasize this at the time, but the same fact
held for the |j ,m 〉 states when acted upon by the operator for rotations about z axis,
T (θzbz).

We also note the obvious fact that the most general rotation operator on this space

R(1)(~θ) = exp
“
~θ · ~M(1)

”
= exp

„
−

i

~
~θ ·
“
i ~ ~M(1)

”«

acts on vectors in this space τ (1) and produces vectors in this space τ (1). This is
identical to the way in which T (~θ) does not change the j value of |j ,m 〉 states: it
keeps vectors in V(j) in V(j), or, equivalently, V(j) is invariant or closed under the
action of T (~θ).
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Review of Cartesian Tensors in Classical Mechanics (cont.)

Finally, since we have a new basis for the space that −i ~ M
(1)
z and −~2[M2](1) work

on, the basis of their eigenvectors, let’s write their matrix representation in this basis:

i ~ M(1)
z ←−−−→

~e(1)
~

24 1 0 0
0 0 0
0 0 −1

35←−−−−→
|j,m 〉

J(1)
z

−~2[M2](1) ←−−−→
~e(1)

2 ~2

24 1 0 0
0 1 0
0 0 1

35←−−−−→
|j,m 〉

h
J2

i(1)

That is, we see that the matrix representations of −i ~ M
(1)
z and −~2[M2](1) in the

basis of their eigenvectors {~e(1)
m } are identical to the matrix representations of the Jz

and J2 operators in the |j ,m 〉 basis for the V(1) space. You can check that, if one

writes matrix representations of M
(1)
x and M

(1)
y in this same basis, those

representations would also match up to those of J
(1)
x and J

(1)
y and thus the

correspondence i ~ ~M(1) ↔ ~J(1) is perfect. Thus, our operators −i ~ ~M(1) and
−~2[M2](1) are really just analogues of ~J and J2 for the space τ (1). This is an
extremely interesting statement — it says that our generalized QM formalism for
rotation operations, the “operator method” that derived only from the commutation
relation [Ja, Jb] = i ~ Jc , also works for classical rank 1 Cartesian tensors. This
suggests that it will be reasonable to define quantum mechanical states for particles
with spin by making use of classical tensors in some way.
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Review of Cartesian Tensors in Classical Mechanics (cont.)

Let us make use of these correspondences to simplify our notation. First of all, the
above correspondence tells us

τ (1) = V(1)

While the two spaces may have arisen out of different physics, they are, for all intents
and purposes, identical. For the sake of clarity, we will continue to make a distinction
between them wherein we will refer to the space as τ (1) when we use the basis of

Cartesian unit vectors and as V(1) when we use the basis of eigenvectors of −i ~ M
(1)
z

and −~2[M2](1).

We also realize that i ~ ~M(1) and ~J(1) are the same operator on this space. We defined
i ~ ~M(1) through its matrix representation in the Cartesian unit vector {~ej} basis via

i ~ ~M(1) ←−→
~e

i ~ ~M, but our correspondence above implies that the matrix

representation of i ~ ~M(1) in the {~e(1)
m } basis is the same as that of ~J(1) in the {|j ,m 〉}

basis. We will now use ~J(1) in all cases.
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Review of Cartesian Tensors in Classical Mechanics (cont.)

In order to clearly distinguish between operators and matrix representations, we define
the matrix ~J(1) to be the above matrix representation of i ~ ~M(1) and ~j(1). That is,

i ~ ~M(1) ←−−→
~e(1)

~J(1) ←−−−→
|j,m 〉

~J(1) with

J
(1)
z = ~

24 1 0 0
0 0 0
0 0 −1

35 J
(1)
x =

~
√

2

24 0 1 0
1 0 1
0 1 0

35 J
(1)
y =

i ~
√

2

24 0 −1 0
1 0 −1
0 1 0

35
Then, we may write the matrix representations of the classical vector rotation operator

R(1)(~θ) in the conventional Cartesian {~ej} basis and the rotation eigenvector {~e(1)
m }

basis

〈~ej |R(1)(~θ)|~ek 〉 =

»
exp

„
−

i

~
~θ · i ~ ~M

«–
jk

=
ˆ
R~θ
˜
jk

〈~e(1)
m1
|R(1)(~θ)|~e(1)

m2
〉 =

»
exp

„
−

i

~
~θ · ~J(1)

«–
m1m2

≡
h
R

(1)
~θ

i
m1m2

where we define R
(1)
~θ

to be the matrix representation of R(1)(~θ) in the {~e(1)
m } basis; it

is also obtained by diagonalizing R~θ.
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Review of Cartesian Tensors in Classical Mechanics (cont.)

We recognize from the above that the matrix representation of R(1)(~θ) in the {~e(1)
m }

basis is the same as that of T (1)(~θ) in the {|j ,m 〉} basis. Since these two bases are

the same when one recognizes τ (1) = V(1), it follows that R(1)(~θ) = T (1)(~θ). This also

follows directly from i ~ ~M(1) = ~J(1), R(1)(~θ) = exp
“
− i

~
~θ · i ~ ~M(1)

”
, and

T (1)(~θ) = exp
“
− i

~
~θ · ~J(1)

”
.

As with i ~ ~M(1) and ~J(1), we will use R(1)(~θ) when discussing τ (1) in terms of its

Cartesian unit vector basis and we will use T (1)(~θ) when discussing it in the {~e(1)
m }

basis. We will always use R
(1)
~θ

for the the matrix representation in the latter basis

because we have no prior notation for this matrix.
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Spherical Tensors in Classical Mechanics

Spherical Tensors

The above example shows us that there is a different way of writing rank 1 Cartesian
tensors that makes their properties under rotations far clearer because the new basis
gives us the eigenvectors of the rotation operator. Can we generalize this idea of
“simple behavior” under rotations?

The first step to generalizing is figuring out what the generalized rotation operation
should be. Our vector example immediately suggests that we should look at the matrix
representations of the ~J and J2 operators that we have found for j 6= 1. We know how
to construct rotation operators based on these other j matrix representations.

Why are Cartesian tensors of rank n not the right objects to consider? We will see
later that it is because they are reducible, while the spherical tensors we are about to
define are irreducible. It would not be incorrect to use Cartesian tensors, but it would
not have the same simplicity. You cannot see this right now. For now, we work under
the assumption that generalizing the rotation operator generated by ~J(1) is the right
way to go.
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Spherical Tensors in Classical Mechanics (cont.)

We thus define a rank j spherical tensor to be an object T (j) whose coordinate

representation (T )(j) in a coordinate system consists of a set of 2 j + 1 numbers

{T (j)
m } (or

n`
T (j)

´
m

o
), with m = −j , −j + 1, . . ., j , that satisfy the transformation

rule under passive transformations

“
T (j)

” ′
= R

(j)

−~θ

“
T (j)

”
= exp

„
−

i

~

“
−~θ
”
·~J(j)

«“
T (j)

”
(15.9)

“
T (j)

” ′
m

=

jX
q=−j

h
R

(j)

−~θ

i
mq

“
T (j)

”
q

=

jX
q=−j

»
exp

„
−

i

~

“
−~θ
”
·~J(j)

«–
mq

“
T (j)

”
q

where
`
T (j)

´
is the coordinate representation of the spherical tensor T (j) in the

original frame F and
`
T (j)

´ ′
is the coordinate representation of the same spherical

tensor in the coordinate system F ′ that is obtained by rotation by the angle ~θ relative
to F . We write ~J(j) to indicate the matrix representation of the operator ~J(j) in the
|j ,m 〉 basis; remember, ~J(j) is a representation-free operator, not a matrix! Similarly,

R
(j)
~θ

is the matrix representation in the |j ,m 〉 basis of the operator T (j)(~θ) defined in

Equation 14.8. Recall that, R
(1)
~θ

is also the diagonalized version of our Cartesian

tensor rotation matrix R~θ. Note that, by dint of their definition in terms of the

Hermitian ~J(j) matrices, the R
(j)
~θ

matrices are unitary.
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Spherical Tensors in Classical Mechanics (cont.)

The analogous active transformation of spherical tensors is in direct analogy to the
relation between passive and active transformations for Cartesian tensors: we just

change the sign on the rotation angle and replace
`
T (j)

´ ′
with

`
T (j) ′´ ′:

“
T (j) ′

”
= R

(j)
~θ

“
T (j)

”
= exp

„
−

i

~
~θ ·~J(j)

«“
T (j)

”
(15.10)

“
T (j) ′

”
m

=

jX
q=−j

h
R

(j)
~θ

i
mq

“
T (j)

”
q

=

jX
q=−j

»
exp

„
−

i

~
~θ ·~J(j)

«–
mq

“
T (j)

”
q

We will not prove this explicitly because the proof is identical in technique to the one
we made for Cartesian tensors (and, in fact, is easier because we always have only a
single rotation matrix for spherical tensors).

We know from finding the eigenvectors of i ~ M
(1)
z and −~2[M2](1) that rank 1

Cartesian and spherical tensors are just different matrix representations of the same
objects: we call these objects rank 1 Cartesian tensors when we write their coordinate
representations in terms of the Cartesian unit vectors and consider the transformation
rules for that coordinate representation under rotations, and we call them rank 1
spherical tensors when we write their coordinate representations in terms of the

eigenvectors of −i ~ M
(1)
z and −~2[M2](1) and consider the transformation rules for

that coordinate representation under transformations.
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Spherical Tensors in Classical Mechanics (cont.)

Our rank j spherical tensors are, by definition, the space V(j) because we have defined
them by requiring their transformation rules under rotations are the same as that of the

elements of the V(j) space. We may define unit spherical tensors {~e(j)
m } of a coordinate

frame F to be the spherical tensors whose coordinate representation in that frame are“
~e

(j)
m

”
n

= δmn

Because the space of spherical tensors is V(j), there is a one-to-one relationship
between these spherical unit tensors and the |j ,m 〉 basis for this j :

~e
(j)
m = |j ,m 〉

Note the use of an equals sign rather than a representation correspondence —
spherical unit tensors are the |j ,m 〉 basis elements and vice versa. There is no reason

to define Hilbert space basis kets |~e(j)
m 〉 as we did for Cartesian tensors because we

already have them in the form of the |j ,m 〉.
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Spherical Tensors in Classical Mechanics (cont.)

The above implies that

T (j) =

jX
m=−j

(T (j))
m
~e

(j)
m ⇐⇒ |T (j) 〉 =

jX
m=−j

(T (j))
m
|j ,m 〉

We can see that the basis-free way of writing a rotation operation is exactly as we did
for |j ,m 〉 states:

|T (j) ′ 〉 = T (j)(~θ)|T (j) 〉

by simply projecting the above onto the |j ,m 〉 basis:

〈j ,m |T (j) ′ 〉 = 〈j ,m |T (j)(~θ)

jX
q=−j

|j , q 〉〈j , q |T (j) 〉

“
T (j) ′

”
m

=

jX
q=−j

h
R

(j)
~θ

i
mq

“
T (j)

”
q
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Spherical Tensors in Classical Mechanics (cont.)

Visualizing spherical tensors is basically impossible. Certainly, ~e
(1)
±1 are two

straigtforward linear combinations of bx and by , and ~e
(1)
0 = bz identically. But the use of

complex coefficients for the m = ±1 elements makes visualization impossible. Beyond
rank 1, it is hopeless. This is really no different from the way that it is difficult to
visualize Cartesian tensors of rank n > 1. So, one just has to accept that visualization
is difficult and that one has to build up intuition in a different way, through the
mathematics.

Finally, because spherical tensors of rank j are the space V(j), the inner product of the
latter carries over, giving

〈T (j) |S(j) 〉 = (T (j))
∗
m
(S(j))

m
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Spherical Tensors in Classical Mechanics (cont.)

Example 15.1: Spherical Tensors in Classical Physics: Electromagnetic Wave
Polarization

There is an example of spherical tensors in classical physics, the decomposition of the
EM field into circular polarization modes. Consider a plane-wave EM field propagating
in the bz = ~e3 direction. You know that the field can be linearly polarized, and that
there one basis for this linear polarization is bx = ~e1 and by = ~e2. The electric field is
given by the Cartesian vector

~E = Ex~e1 + Ey~e2 ←−→
~e

24 Ex

Ey

0

35
Ex and Ey must be real numbers for linear polarization so that the two polarizations
are in phase and the polarization vector is time-independent.
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Spherical Tensors in Classical Mechanics (cont.)

You also know that one can construct two circular polarization modes, right and left
circular polarization, in which the ~e2 component is advanced or retarded by π/2 in
phase relative to the ~e1 component:

~E = ER
1
√

2
(~e1 + i ~e2) + EL

1
√

2
(~e1 − i ~e2) ←−→

~e

1
√

2

24 ER + EL

i(ER − EL)
0

35
where ER and EL must be real numbers to obtain circular polarization (Ex and Ey out
of phase by π/2).
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Spherical Tensors in Classical Mechanics (cont.)

If we allow Ex , Ey , ER , and EL to all be complex numbers, then we can obtain either
type of polarization, or a mix of the two, in either basis. We could make circular
polarization easier to write by defining basis elements

~e
(1)
1 =

1
√

2

24 1
i
0

35 ~e
(1)
−1 =

1
√

2

24 1
−i
0

35
which yields

~E = ER~e
(1)
1 + EL~e

(1)
−1 ←−−→

~e(1)

24 ER

EL

0

35
The ~e

(1)
±1 are of course two of the three eigenvectors of rotations about the bz direction.

The last, ~e3 = bz = ~e
(1)
0 , is the same between the two bases. The latter version is thus

a decomposition of the electric field in terms of the unit spherical tensors of rank 1.
We thus have an explicit example of how a classical vector can be thought of as both
a Cartesian tensor of rank 1 or a spherical tensor of rank 1.
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Spherical Tensors in Classical Mechanics (cont.)

Example 15.2: Spherical Tensors in Classical Physics: Gravitational Wave
Polarization

A rank 2 example would be gravitational waves, which are propagating variations in
the space-time metric, a rank 2 cartesian tensor in four dimensions under rotations
and Lorentz transformations. Spatial rotations only affect the three spatial
dimensions, so we can consider the space-space part of the metric to be a rank 2
tensor under spatial rotations. One can show that this rank 2 Cartesian tensor can be
decomposed into spherical tensors of rank 2, 1, and 0 (one of each). There is a severe
restriction on the form of the Cartesian tensor due to generic physical restrictions on
the allowed form of the metric. These restrictions ensure that the rank 1 and rank 0
and m = 0,±1 rank 2 spherical tensor components are never populated, leaving only
the m = ±2 rank 2 spherical tensor components. With that, it is much simpler to
think of a gravitational wave as rank 2 spherical tensor than a rank 2 Cartesian tensor:
the Cartesian tensor carries along far more components than are necessary, and, even
though the rank 2 spherical tensor decomposition has unnecessary components, the
remaining conditions on the tensor are simplified — they are just the requirements
that the m = 0,±1 components vanish.
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Spherical Tensors in Classical Mechanics (cont.)

Connecting Cartesian Tensors and Spherical Tensors via Addition of Angular
Momentum

Now that we have defined spherical tensors, we can try to qualitatively answer the
question of why we chose to create them rather than just sticking with Cartesian
tensors.

We already see that rank 1 Cartesian and spherical tensors, τ (1) and V(1), are the
same objects, written in terms of different bases for the space. When the distinction is
unimportant, we will refer to them as vectors or rank 1 tensors.

However, there is no simple correspondence between rank n Cartesian tensors and rank
j spherical tensors for n, j > 1. Cartesian tensors of rank n have 3n numbers in their
coordinate representations, while spherical tensors of rank j have 2 j + 1 numbers.
While it does hold true that, for any n, there is a j for which 3n = 2 j + 1, we shall see
later that the rotation properties of rank n Cartesian tensors are not the same as those
of rank j spherical tensors with 3n = 2 j + 1.
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Spherical Tensors in Classical Mechanics (cont.)

Let us instead recall how one builds up rank n Cartesian tensors from direct products
of rank 1 tensors. That relationship tells us that understanding how rank n Cartesian
tensors relate to spherical tensors is a matter of asking how the space

τ (n) =
nO

k=1

τ
(1)
(k)

=
nO

k=1

V(1)
(k)

relates to the various V(j) spaces.
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Spherical Tensors in Classical Mechanics (cont.)

We will soon consider a similar problem, which is how one “adds” angular momenta.
By “add”, we really mean “take the direct product.” For example, given a system of
two particles that are each in states of orbital angular momentum ` = 1, what is the
angular momentum of the system as a whole? We know that the way to construct the
Hilbert space for the two-particle system is to take the direct product of the individual
particle Hilbert spaces. So, in this example, each particle has a Hilbert space of the
form Vr ⊗ Vθ,φ = Vr ⊗

`
V(0) ⊕ V(1) ⊕ V(2) ⊕ · · ·

´
, and, by specifying ` = 1, we know

that the we are picking the subspace Vr ⊗ V(1). So, the joint Hilbert space of the two
particles is the space“

V(1),r ⊗ V(1)
(1)

”
⊗
“

V2,r ⊗ V(1)
(2)

”
= V(1),r ⊗ V(2),r ⊗

“
V(1)

(1)
⊗ V(1)

(2)

”
where the subscript number refer to particle number (yes, different notation than we
used when we originally described direct products, which is now necessary because we
use (j) to refer to the space of states of J2 eigenvalue j).

We will show shortly that we can decompose V(1)
(1)
⊗ V(1)

(2)
as follows:

V(1)
(1)
⊗ V(1)

(2)
= V(0)

(1)⊗(2)
⊕ V(1)

(1)⊗(2)
⊕ V(2)

(1)⊗(2)
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Spherical Tensors in Classical Mechanics (cont.)

This kind of result generalizes, showing that we can decompose any direct product
V(j1) ⊗ V(j2) as a direct sum of V(j) with j running from |j1 − j2| to j1 + j2, and you
can similarly decompose a direct product of any number of V(j). The formalism for
addition of angular momenta will thus provide us a way to write the space of of
Cartesian tensors of rank n as a direct sum of spaces of spherical tensors of various
ranks. That is, a Cartesian tensor of rank n can be written as a sum of spherical
tensors.

Finally, we see why we defined spherical tensors rather than sticking with Cartesian
tensors. The above indicates that Cartesian tensors of rank n are reducible objects,
meaning that the space of Cartesian tensors of rank n can be decomposed as a direct
sum of spaces that are irreducible and invariant or closed under rotations. Quantum
mechanics is always easier if we can reduce our Hilbert space to a set of irreducible
closed subspaces. The Cartesian tensors of rank n are certainly invariant (closed)
under rotations — a rotation does not turn a Cartesian tensor of rank n into a
Cartesian tensor of a different rank — but the space is reducible, as explained above.

Another side of the same statement is that the behavior of spherical tensors under
rotations is simpler than that of Cartesian tensors exactly because the spherical
tensors form irreducible spaces. Irreducibility means that one cannot make the spaces
smaller or simpler.
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Tensor States in Quantum Mechanics

Tensor Particle States — Motivation

Consider a quantum-mechanical particle state |ψ 〉. Since we are interested in
coordinate system rotations, we must necessarily work with the position-basis
representation of such a state, 〈~r |ψ 〉 = ψq(~r) in a coordinate system F . So far, we
have considered particle states that consist of just a single number at any position in
space. When we change coordinate systems from F to F ′ by a passive rotation
transformation, or if we rotate the state itself so that the transformed state’s
orientation relative to F ′ is the same as the untransformed state’s orientation relative
to F , we use the formalism we developed in Section 12 to calculate

ψq ′ (~r
′) = 〈~r ′ |ψ 〉 = 〈~r |T †(~θ)|ψ 〉 = 〈~r | exp

„
i

~
~θ · ~L

«
|ψ 〉

ψ ′q(~r) = 〈~r |ψ ′ 〉 = 〈~r |T (~θ)|ψ 〉 = 〈~r | exp
„
−

i

~
~θ · ~L

«
|ψ 〉

We can explicitly calculate the above by using completeness to insert
R

d3r |~r 〉〈~r |
between the transformation operator and |ψ 〉, yielding the position-basis matrix
elements of the transformation operator, which will essentially perform a Taylor
expansion to rotate the wavefunction ψq(~r) around bθ by θ.
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Tensor States in Quantum Mechanics (cont.)

The point of interest here, though, is that there is a single number at each point in
space. This is like a classical scalar. What if, instead, the state were specified by a
vector or a tensor at each point in space? We would expect that this would be a
particular coordinate representation of the vector, and that, under a rotation, there
would be, in addition to the above action on the wavefunction, there would be an
additional transformation of the elements of the vector at each point in space to
obtain its coordinate representation in the rotated frame.
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Tensor States in Quantum Mechanics (cont.)

Tensor Particle States — Formal Definition

The formal way to do this is to define quantum mechanical tensor states to be states
that live in the space of direct products of the kind of QM states for a particle in three
spatial dimensions that we have dealt with so far and a space of classical tensors
(Cartesian or spherical). That is, if V is a QM Hilbert space for a particle in three
dimensions, then we define Hilbert spaces of spherical tensor states of rank j and
Cartesian tensor states of rank n:

S(j) = V⊗ V(j) W(n) = V⊗ τ (n) (15.11)

We have proven that V(j) and τ (n) are Hilbert spaces, so the standard properties of
direct product Hilbert spaces follow: a basis for the direct product space is provided by
all pairs of basis elements of the factor spaces, the inner product of the direct product
space is the product of the inner products of the factor spaces, etc.

We will refer to spaces like V as scalar Hilbert spaces to distinguish them from the
tensor Hilbert spaces of the type we are now defining.
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Tensor States in Quantum Mechanics (cont.)

If {|vk 〉} are a basis for V and we use the standard spherical unit tensors {|j ,m 〉} for
a particular coordinate system F as a basis for V(j) and the standard Cartesian unit
tensors {Ej1···jn} of that coordinate system as a basis for τ (n) as we defined earlier,
then bases for the spherical and Cartesian tensor spaces are

|v (j)
k,m 〉 = |vk 〉 ⊗ |j ,m 〉 (15.12)

|vk,j1···jn 〉 = |vk 〉 ⊗ |Ej1···jn 〉 = |vk 〉 ⊗
nO

p=1

|~ejp 〉 (15.13)

where we use the ket notation for the classical tensors to remind us that they are
elements of a Hilbert space and, in the last expression, we recall that the unit
Cartesian tensors of rank n are constructed by direct product of unit Cartesian vectors.
We emphasize that a coordinate system must be specified in choosing the {|j ,m 〉}
and {Ej1···jn} because they are the unit tensors of a particular coordinate system. This
is a new phenomenon: our scalar Hilbert space states have not required the choice of
a coordinate system; a coordinate system has only been necessary when we want to
project onto a particular position basis |x , y .z 〉 of the Hilbert space. This is an
important fact: it says that the orientation information we are adding by constructing
tensor states must reference a coordinate system.
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Tensor States in Quantum Mechanics (cont.)

Any state in the direct product space thus has the expansion

|ψ(j) 〉 =
X

k

jX
m=−j

ψ
(j)
km|vk 〉 ⊗ |j ,m 〉 |Ψ(n) 〉 =

X
k

3X
j1···jn=1

Ψ
(n)
kj1···jn |vk 〉 ⊗ |Ej1···jn 〉

We designate spherical tensor states by using lower case greek letters and the (j)

superscript and we designate Cartesian tensor states by using upper case greek letters
and the (n) superscript. Realize that only for j = n = 1 can the two kinds of states be
directly related. For j 6= 1 and n 6= 1, the relation will be more complex.

We obtain these expansion coefficients by projecting the state onto the appropriate
basis element:

(〈vk | ⊗ 〈j ,m |) |ψ(j) 〉 = ψ
(j)
km

`
〈vk | ⊗ 〈Ej1···jn |

´
|Ψ(n) 〉 = Ψ

(n)
kj1···jn
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Tensor States in Quantum Mechanics (cont.)

The inner product is, as usual, the product of the inner products in the factor spaces:

〈φ(j) |ψ(j) 〉 =

0@X
k1,m1

φ
(j)∗
k1m1
〈vk1
| ⊗ 〈j ,m |

1A0@X
k2,m2

ψ
(j)
k2m2
|vk2
〉 ⊗ |j ,m2 〉

1A
=

X
k1,k2,m1,m2

φ
(j)∗
k1m1

ψ
(j)
k2m2
〈vk1
|vk2
〉〈j ,m1 |j ,m2 〉

=
X

k1,k2,m1,m2

φ
(j)∗
k1m1

ψ
(j)
k2m2

δk1k2
δm1m2 =

X
k1,m1

φ
(j)∗
k1m1

ψ
(j)
k1m1

Similarly, for a Cartesian tensor state

〈Φ(n) |Ψ(n) 〉 =
X

k1,j1···jn

Φ
(j)∗
k1j1···jnΨ

(n)
k1j1···jn
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Tensor States in Quantum Mechanics (cont.)

Finally, you can think of a tensor state as a tensor whose elements in a particular
coordinate frame (its coordinate representation in that frame) consists of a set of
scalar states obtained by taking the inner product with the unit tensors of that
coordinate frame: “

|ψ(j) 〉
”

m
= 〈j ,m |ψ(j) 〉 =

X
k

ψ
(j)
km|vk 〉“

|Ψ(n) 〉
”

j1···jn
= 〈Ej1···jn |Ψ

(n) 〉 =
X

k

Ψ
(n)
kj1···jn |vk 〉

Note that these coordinate representations are frame-dependent. Hence we see how
the orientation information is provided by these tensor states: the components of the
coordinate representation of the state depend on the coordinate system. The scalar
states themselves also depend on the coordinate system in the usual fashion for scalar
states (i.e., the wavefunction looks different in different coordinate systems), but it is
the added orientation information provided by the different components that provide
the “spin” information.
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Tensor States in Quantum Mechanics (cont.)

Spin-j Particles, Translation to Textbook Notation

We define a spin-j particle in three spatial dimensions to be a spherical tensor state of
rank j because the behavior of the spherical tensor factor of the state is the same as
the of an angular momentum j . Suppose {|n, `,m` 〉} are a basis for the scalar Hilbert
space describing the spatial behavior of the particle in terms of eigenstates of a
spherically symmetric Hamiltonian and the eigenstates of Lz and L2; then an arbitrary
state may be written via the expansion

|ψ(j) 〉 =
X

n,`,m`,m

ψ
(j)
n,`,m`,m

|n, `,m` 〉 ⊗ |j ,m 〉

In textbooks, one usually sees the state written in one of two strange hybrid notations.
In the first, one writes out the spherical tensor factor as a column matrix in the matrix
representation for its |j ,m 〉 basis, but leaves the scalar factor as a Hilbert space state:

|ψ(j) 〉 ←−−−→
|j,m 〉

2666664

P
n,`,m`

ψ
(j)
n,`,m`,j

|n, `,m` 〉P
n,`,m`

ψ
(j)
n,`,m`,j−1|n, `,m` 〉

...P
n,`,m`

ψ
(j)
n,`,m`,−j |n, `,m` 〉

3777775 ≡
2666664
|ψ(j)

j 〉
|ψ(j)

j−1 〉
...

|ψ(j)
−j 〉

3777775
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Tensor States in Quantum Mechanics (cont.)

or in a form in which the scalar factor is projected onto the position basis:

|ψ(j) 〉 ←−−−−−−−−−→
|r,θ,φ 〉⊗|j,m 〉

2666664

P
n,`,m`

ψ
(j)
n,`,m`,j

〈r , θ, φ |n, `,m` 〉P
n,`,m`

ψ
(j)
n,`,m`,j−1〈r , θ, φ |n, `,m` 〉

...P
n,`,m`

ψ
(j)
n,`,m`,−j 〈r , θ, φ |n, `,m` 〉

3777775

=

2666664

P
n,`,m`

ψ
(j)
n,`,m`,j

Rn`(r)Y
m`
` (θ, φ)P

n,`,m`
ψ

(j)
n,`,m`,j−1Rn`(r)Y

m`
` (θ, φ)

...P
n,`,m`

ψ
(j)
n,`,m`,−jRn`(r)Y

m`
` (θ, φ)

3777775 ≡
2666664
ψ

(j)
j (r , θ, φ)

ψ
(j)
j−1(r , θ, φ)

...

ψ
(j)
−j (r , θ, φ)

3777775
These are the kinds of notation Shankar uses in Exercise 12.5.1 and Chapter 14,
especially Equation (14.3.13).
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Tensor States in Quantum Mechanics (cont.)

Rotation Operators for Tensor Particle States, Properties under Rotation

The natural rotation operator for tensor states is obviously the tensor product of
rotation operators in the factor spaces. Here we write the operators in a basis-free
form:

spherical: U(j)(~θ) = T (~θ)⊗ T (j)(~θ) (15.14)

Cartesian: U(n)(~θ) = T (~θ)⊗ R(n)(~θ) (15.15)

where the (j) and (n) superscripts indicate that these operators act on rank j spherical
or rank n Cartesian tensors states or tensors, as the case may be.
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Tensor States in Quantum Mechanics (cont.)

The action of the above operators on spherical and Cartesian tensor states (active
transformation) are as follows:

active spherical: |ψ(j) ′ 〉 = U(j)(~θ)|ψ(j) 〉 = U(j)(~θ)
X
k,m

ψ
(j)
km|vk 〉 ⊗ |~e

(j)
m 〉

=
X
km

ψ
(j)
km

h
T (~θ)|vk 〉

i
⊗
h
T (j)(~θ)|~e(j)

m 〉
i

(15.16)

active Cartesian: |Ψ(n) ′ 〉 = U(n)(~θ)|Ψ(n) 〉 = U(n)(~θ)
X

k,j1,...,jn

Ψ
(n)
kj1·jn |vk 〉 ⊗ |Ej1···jn 〉

=
X

k,j1,...,jn

Ψ
(n)
k,j1·jn

h
T (~θ)|vk 〉

i
⊗
h
R(n)(~θ)|Ej1···jn 〉

i

=
X

k,j1,...,jn

Ψ
(n)
k,j1·jn

h
T (~θ)|vk 〉

i
⊗

nO
a=1

h
R(1)(~θ)|~eja 〉

i
(15.17)

which performes the desired active rotation on each factor of the direct product state.
Recall that R(1)(~θ) = T (1)(~θ); we use different symbols only so Equations 15.14
and 15.15 can be written in a compact form.
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Tensor States in Quantum Mechanics (cont.)

Of course, the above basis-free expressions are not useful calculationally, so let’s write
out how the matrix representations — the expansion coefficients in terms of the above
bases — are related:

ψ
(j) ′
km =

“
〈vk | ⊗ 〈~e

(j)
m |
”
|ψ(j) ′ 〉

=
X
pq

h
〈vk |T (~θ)|vp 〉

i h
〈~e(j)

m |T (j)(~θ)|~e(j)
q 〉
i
ψ

(j)
pq

=
X
pq

h
〈vk |T (~θ)|vp 〉

i h
R

(j)
~θ

i
mq
ψ

(j)
pq (15.18)

Ψ
(n) ′
kj1···jn =

 
〈vk | ⊗

nO
a=1

〈~eja |
!
|Ψ(n) ′ 〉

=
X

pq1···qn

h
〈vk |T (~θ)|vp 〉

i nY
a=1

h
〈~eja |R

(1)(~θ)|~eqa 〉
i!

Ψ
(j)
pq1···qn

=
X

pq1···qn

h
〈vk |T (~θ)|vp 〉

i nY
a=1

ˆ
R~θ
˜
jaqa

!
Ψ

(j)
pq1···qn

(15.19)
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Tensor States in Quantum Mechanics (cont.)

If we are dealing with rotations, it is almost certain that we will want to use a basis for
the scalar space consisting of eigenstates of L2 and Lz (here, we are allowed to specific
orbital angular momentum because we know the space of scalar states refers to the
states of a particle in three spatial dimensions). That is, there will be a basis of states
{|vn`m`

〉 = |n, ` 〉 ⊗ |`,m` 〉} where n refers to the radial state index (quantum
number) and {|n, ` 〉} are states describing the radial behavior (which depend on `
through the centrifugal effective potential term) and {|`,m` 〉} are states describing
the angular dependence (the usual spherical harmonics in the position basis). This lets
us write our undefined scalar space matrix elements more explicitly:

〈vk |T (~θ)|vp 〉 −→
`
〈k, `1 | ⊗ 〈`1,m`1 |

´
T (~θ)

`
|p, `2 〉 ⊗ |`2,m`2 〉

´
= 〈k, `1 |p, `2 〉〈`1,m`1 |T (~θ)|`2,m`2 〉

= δkpδ`1`2

h
R

(`1)
~θ

i
m`1

m`2
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Tensor States in Quantum Mechanics (cont.)

So, we have

ψ
(j) ′
k`m`,1m =

X
m`,2,q

h
R

(`1)
~θ

i
m`,1m`,2

h
R

(j)
~θ

i
mq
ψ

(j)
k`m`,2q (15.20)

Ψ
(n) ′
k`m`,1j1···jn =

X
m`,2q1···qn

h
R

(`1)
~θ

i
m`,1m`,2

 
nY

a=1

ˆ
R~θ
˜
jaqa

!
Ψ

(j)
pq1···qn

(15.21)

Here we see very explicitly the utility of using spherical tensor states instead of
Cartesian tensor states. With spherical tensor states, the rotation of the orbital

portion and of the spin portion are identical in form, using the matrix R
(j)
~θ

. With

Cartesian tensor states, the rotation of the orbital and spin components are different.
And, of course, there are a lot more indices on the Cartesian component. This
complexity will be reflected below in the way that the angular momentum operators
act on the two kinds of states.
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Tensor States in Quantum Mechanics

Angular Momentum Operators for Tensor Particle States

We have written the rotation operators and properties of tensor states in a direct
product form, rotating the scalar state and the classical tensor pieces separately. In
many cases, this is not useful because the Hamiltonian depends on the total angular
momentum, which has a scalar piece (orbital angular momentum) and a tensor piece
(spin angular momentum). We want to see whether there is a way to decompose our
tensor states into states of well-defined total angular momentum.
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Tensor States in Quantum Mechanics (cont.)

Let’s write the above motivation mathematically. Our rotation operators are

spherical : U(j)(θ) = T (~θ)⊗ T (j)(~θ) = exp

„
−

i

~
~θ · ~L

«
⊗ exp

„
−

i

~
~θ · ~J(j)

«
Cartesian : U(n)(θ) = T (~θ)⊗ R(n)(~θ) = T (~θ)⊗

nO
a=1

R
(1)
(a)

(~θ)

= exp

„
−

i

~
~θ · ~L

«
⊗

nO
a=1

exp

„
−

i

~
~θ · i ~ ~M(1)

(a)

«

= exp

„
−

i

~
~θ · ~L

«
⊗

nO
a=1

exp

„
−

i

~
~θ · ~J(1)

(a)

«

where ~L is the appropriate angular momentum operator for the scalar Hilbert space (it

generates rotations of scalar states), ~J(j) is the angular momentum operator for the

V(j) space, and ~M
(1)
(a)

is the operator corresponding to the generator of classical

rotations in three spatial dimensions for the ath factor space. ~J(1), i ~ ~M(1), ~J
(1)
(a)

, and

i ~ ~M(1)
(a)

are the same operator, though we usually use ~J(1) when we are acting on

spherical tensors and i ~ ~M(1) when we act on Cartesian vectors, and we only use the

(a) subscript when we need to specify action in a particular factor space.
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Tensor States in Quantum Mechanics (cont.)

So, we see that a rotation operation consists of simultaneous rotation operations in a
set of factor spaces. Because the total angular momentum of the system should be
tied to the rotation properties of the state as a whole, rather than that of the factor
states, we want to see whether we can write the above as a single rotation operator.
We can see that this should be possible by recalling that the product of the
exponentials of the generators in the factor spaces is the exponential of the sum of the
generators in the direct product space because the generators in the different factor
spaces commute, which we proved in connection with Equation 15.8, the generator
operator for rotations of Cartesian tensors. That is, we may write

spherical : U(j)(θ) = exp

„
−

i

~
~θ · ~L

«
⊗ exp

„
−

i

~
~θ · ~J(j)

«
= exp

„
−

i

~
~θ ·
h
~L⊗ I (j) + I ⊗ ~J(j)

i«
(15.22)

Cartesian : U(n)(θ) = exp

„
−

i

~
~θ · ~L

«
⊗

nO
a=1

exp

„
−

i

~
~θ · ~J(1)

(a)

«

= exp

0@− i

~
~θ ·

24~L⊗ nO
a=1

I
(1)
(a)

+ I ⊗

0@ nX
k=1

~J
(1)
(k)
⊗

nO
a 6=k

I
(1)
(a)

1A351A
(15.23)
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Tensor States in Quantum Mechanics (cont.)

Based on the above exponential form for the rotation operator in the direct product
space, we are led to define the total angular momentum operator ~J by

spherical: ~J (j) = ~L⊗ I (j) + I ⊗ ~J(j) (15.24)

Cartesian: ~J (n) = ~L⊗
nO

a=1

I
(1)
(a)

+ I ⊗

0@ nX
k=1

~J
(1)
(k)
⊗

nO
a 6=k

I
(1)
(a)

1A (15.25)

That is, ~J (j) generates rotations of spherical tensor states of rank j and ~J (n)

generates rotations of Cartesian tensor states of rank n. We will naturally want to find
the eigenvectors and eigenvalues of Jz and J 2 for each kind of tensor. We recognize
that the two problems are essentially the same in that they consist of finding the
eigevectors and eigenvalues of the sum of two or more angular momentum operators.
Thus, we will need to turn to the problem of addition of angular momentum in order
to sort out the rotation properties of tensor states in terms of their total angular
momentum.
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Addition of Angular Momentum – States

Overview

We will do two things in this section:

I We will formally show that if one “adds” two angular momenta j1 and j2 by
taking the direct product of their angular momentum spaces V (j1) and V (j2),
j1 ≥ j2, then one obtains a direct sum of all angular momentum spaces between
V (j1+j2) and V (j1−j2), inclusive:

V (j1) ⊗ V (j2) = V (j1+j2) ⊕ V (j1+j2−1) ⊕ · · · ⊕ V (j1−j2+1) ⊕ V (j1−j2)

I We will determine the generic form for the expansion coefficients needed to
write elements in the direct sum space in terms of the the direct products of the
basis elements in the factor spaces; that is, we will figure out how to write the
obvious basis kets {|j ,m 〉} of the direct sum space in terms of the product
space basis kets {|j1,m1 〉 ⊗ |j2,m2 〉}. These expansion coefficients are called
the Clebsch-Gordan coefficients.
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Addition of Angular Momentum – States (cont.)

Motivation for “Addition” of Angular Momentum

Let’s first understand what we mean by “addition” of angular momentum. We have
already seen a need for this in our demonstration that, when we try to add “spin”
information to a particle state by considering direct products of a scalar Hilbert space
V and a classical tensor Hilbert space, we find that the generator of rotations for the
product space is

spherical: ~J (j) = ~L⊗ I (j) + I ⊗ ~J(j)

Cartesian: ~J (n) = ~L⊗
nO

a=1

I
(1)
(a)

+ I ⊗

0@ nX
k=1

~J
(1)
(k)
⊗

nO
a 6=k

I
(1)
(a)

1A
We have so far written states in this product space in terms of the eigenstates of L2,

Lz , [J2](j), and J
(j)
z . But, since it is the sum operator ~J that generates rotations in

the direct product space, it makes sense to want to consider a basis of eigenstates of
J 2 and Jz . We can see how this would be useful physically, as, in many cases, we are
interested in the total angular momentum of the system — summing together the
orbital and spin contributions — rather than the separate pieces.
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Addition of Angular Momentum – States (cont.)

Another milieu in which we would be interested in adding angular momenta is when
we form multiparticle systems. For example, neglecting spin, suppose we want to
consider the orbital angular momentum of a system of two particles. Clearly, if ~L(1)

and ~L(2) are the angular momentum operators for particles 1 and 2 acting in (scalar)
Hilbert spaces V(1) and V(2), then the generator of rotations in the product space is

~J = ~L(1) ⊗ I(2) + I(1) ⊗ ~L(2)

Another example would be to consider the combined spin of a two-particle system
consisting of spins j1 and j2:

~J = ~J(j1) ⊗ I (j2) + I (j1) ⊗ ~J(j2)

Thanks to the generic properties of angular momentum operators, all three of these
examples are essentially the same problem: taking the product of two angular
momentum spaces. So we will find a generic solution to the problem.
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Addition of Angular Momentum – States (cont.)

Formal Decomposition of the State Space

So, let’s consider two angular momentum operators, ~J(j1) and ~J(j2), acting in factor
spaces V (j1) and V (j2). Note that it is completely generic to use the V (j) spaces we
found in Section 14.6, regardless of whether we are considering orbital or spin angular
momentum or integral or half-integral j values, because the eigenstates for any
angular momentum operator can be written in that form. We also drop 3 the
calligraphic font for the total angular momentum because we do not care about the
distinction between the total and individual angular momenta now. So we consider

~J = ~J(j1) ⊗ I (j2) + I (j1) ⊗ ~J(j2) V = V(j1) ⊗ V(j2)

The basis states for the factor spaces are {|j1,m1 〉} and {|j2,m2 〉}. The obvious basis
for the product space is {|j1,m1 〉 ⊗ |j2,m2 〉}. This is called the uncoupled basis or
uncoupled representation because we consider the angular momentum state of each
factor separately.
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Addition of Angular Momentum – States (cont.)

The first thing we recognize is that ~J satisfies the standard angular momentum
commutation relations,

[Ja, Jb] = i ~ εabcJc

simply because ~J is the sum of two commuting terms that separately satisfy the
above. This immediately tells us that our standard angular momentum formalism is
valid for ~J; that is:

1. J2 is allowed to have eigenvalues of the form α = ~2j (j + 1), j any positive
integer or half-integer

2. Jz is allowed to have eigenvalues m = j , j − 1, . . ., −j + 1, −j

3. The space of states on which ~J operates has a basis {|j ,m 〉} of simultaneous
eigenstates of J2 and Jz labeled by their eigenvalues j and m. All we need to
determine now is which values of j are in use and how the {|j ,m 〉} are related
to the {|j1,m1 〉 ⊗ |j2,m2 〉}.
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Addition of Angular Momentum – States (cont.)

The second thing we notice is that, because Jz commutes with each of its contributing

terms, J
(j1)
z ⊗ I (j2) and I (j1) ⊗ J

(j2)
z , eigenstates of the factor operators are eigenstates

of Jz . From the form of Jz , the Jz eigenvalue of a product state |j1,m1 〉 ⊗ |j2,m2 〉 is
just the sum of the eigenvalues of the factor states; m = m1 + m2. This immediately
tells us what values of m are accessible: m = j1 + j2 to m = −(j1 + j2). So, we already
know that the product space must contain V(j1+j2); that is, V(j1+j2) is a subspace of V.
Moreover, just by counting states, we know that V(j1+j2) cannot be all of V: V has
(2 j1 + 1)(2 j2 + 1) states, while V(j1+j2) only has 2 j1 + 2 j2 + 1 states; there are 4 j1 j2
states to be identified. Those other states must live in other subspaces of V. Finally,
because of the angular momentum structure of ~J, those subspaces must be V(j) for
some values of j to be determined. That is, we already know

V(j1) ⊗ V(j2) = V(j1+j2) ⊕
X
j tbd

V(j)

where j tbd means the j values are to be determined.
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Addition of Angular Momentum – States (cont.)

The obvious next question is – what other j values are subspaces of V? We can see
this by walking down the possible values of Jz and counting states. Let’s list the
number of possible uncoupled basis states that could yield states of a particular Jz

eigenvalue m (the latter we will call the coupled basis). Certainly, m = m1 + m2 is
required; then we have

Jz contributing (m1,m2) values

j1 + j2 (j1, j2)

j1 + j2 − 1 (j1, j2 − 1), (j1 − 1, j2)

j1 + j2 − 2 (j1, j2 − 2), (j1 − 1, j2 − 1), (j1 − 2, j2)

...
...

j1 + j2 − n (j1, j2 − n), (j1 − 1, j2 − (n − 1)), . . . , (j1 − (n − 1), j2 − 1), (j1 − n, j2)

...
...

j1 − j2 (j1,−j2), (j1 − 1,−j2 + 1), . . . , (j1 − 2 j2 + 1, j2 − 1), (j1 − 2 j2, j2)

j1 − j2 − 1 (j1 − 1,−j2), (j1 − 2,−j2 + 1), . . . , (j1 − 1− 2 j2 + 1, j2 − 1), (j1 − 1− 2 j2, j2)

...
...
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Addition of Angular Momentum – States (cont.)

We note the following:

I There is a clear pattern in the first 2 j2 + 1 states in the coupled basis: there are
n + 1 states that can yield m = j1 + j2 − n for n = 0, . . . , 2 j2. V(j1+j2) can only
provide one of these for each value of m, so, as we noted, additional spaces are
needed in the direct sum. For example, for n = 1, m = j1 + j2 − 1, there are two
uncoupled basis states, so there must be two states with m = j1 + j2 − 1 in the
coupled basis. Only states in V(j) for j ≥ j1 + j2 − 1 can yield such a state. But
if j ≥ j1 + j2, then V(j) will also yield states with m ≥ j1 + j2, and we don’t need
any such states — we know there is only one state with m = j1 + j2 in either the
coupled or uncoupled basis. So there is only one choice for the space to add to
the direct sum, and that is V(j1+j2−1). A similar argument holds for the
remaining n = 2, 3, . . . 2 j2. So we successively add V(j1+j2−2), V(j1+j2−3), . . .,
V(j1+j2−2 j2) = V(j1−j2). That is,

V(j1) ⊗ V(j2) = V(j1+j2) ⊕ V(j1+j2−1) ⊕ · · · ⊕ V(j1−j2+1) ⊕ V(j1−j2) ⊕ · · ·
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Addition of Angular Momentum – States (cont.)

I Moreover, we can conclude that the direct sum terminates at V(j1−j2), that the
· · · at the end are unnecessary, by just counting states. The space V(j)

contributes 2 j + 1 states. The total number of states we have accounted for so
far is

N =

j1+j2X
j=j1−j2

2 j + 1 =

j1+j2X
j=0

(2 j + 1)−
j1−j2−1X

j=0

(2 j + 1)

= (j1 + j2) (j1 + j2 + 1) + (j1 + j2 + 1)

− (j1 − j2 − 1) (j1 − j2)− (j1 − j2)

= 4 j1 j2 + 2 j1 + 2 j2 + 1 = (2 j1 + 1) (2 j2 + 1)

where we have used
PN

n=0 = N(N + 1)/2. So, we have accounted for all the
uncoupled basis states. Therefore, we have 2 j2 + 1 terms in the direct sum,

V(j1) ⊗ V(j2) = V(j1+j2) ⊕ V(j1+j2−1) ⊕ · · · ⊕ V(j1−j2+1) ⊕ V(j1−j2)
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Addition of Angular Momentum – States (cont.)

I For completness, let’s explain which states contribute to m for m < j1 − j2. For
m ≤ −(j1 − j2), the situation is a mirror of what we have done so far, so that’s
trivial. For 0 ≤ m < j1 − j2, one can’t begin with m1 = j1 (as we do for
m ≥ j1 − j2) because m2 cannot be large and negative enough to yield
m < j1 − j2; it would require m2 < −j2, which is not possible. So, to obtain a
coupled state with m = j1 − j2 − n, one begins with (m1 = j1 − n,m2 = −j2)
and ends with (m1 = j1 − 2 j2 − n,m2 = j2); there are 2 j2 + 1 states that
contribute to each m. That exactly matches the number of terms in the direct
sum, and each term of the direct sum contributes one state, so the counting is
correct. This works all the way down to m = 0 or m = 1/2 (depending on
whether exactly one of j1 and j2 is half-integer or not), which corresponds to
n = j1 − j2 or n = j1 − j2 − 1/2. Then, of course, for −(j1 − j2) + 1 ≤ m < 0,
we just mirror 0 < m ≤ j1 − j2 − 1.

I Finally, we comment that the states in the coupled representation are linear
combinations of the states in the uncoupled basis. For example, for
m = j1 + j2 − 1, there are two coupled basis states to obtain,
|j = j1 + j2,m = j1 + j2 − 1 〉 and |j = j1 + j2 − 1,m = j1 + j2 − 1 〉, and two
uncoupled basis states that contribute, |j1,m1 = j1 〉 ⊗ |j2,m2 = j2 − 1 〉 and
|j1,m1 = j1 − 1 〉 ⊗ |j2,m2 = j2 〉. The coupled basis states are orthogonal
combinations of the two uncoupled basis states, as we will show below. In
general, the n coupled basis states for some m are n orthogonal linear
combinations of the uncoupled basis states that yield that m. We shall show
this explicitly below.
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Addition of Angular Momentum – States (cont.)

Some examples:

I Combination of orbital and spin angular momentum in the 3-dimensional SHO.
Recall that the eigenvalues and allowed ` values for the 3D SHO are

En,`,m =

„
n +

3

2

«
~ω ` = n, n − 2, . . . , 1 or 0

So ` can take on integer values. Consider the n = 1 state, which allows ` = 1
only. Suppose that the particle in the SHO potential is an electron with spin
1/2. We have j1 = 1 and j2 = 1/2, so the allowed coupled basis j values are
j = 3/2 and j = 1/2. There are 3× 2 = 6 uncoupled basis states from j1 = 1
and j2 = 1/2, and there are 4 + 2 = 6 coupled basis states from j = 3/2 and
j = 1/2.
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Addition of Angular Momentum – States (cont.)

I Allowed total spin for the proton. The proton consists of three spin-1/2 quarks.
The spin combinations, combined with possible additional orbital angular
momentum of the three quarks, will add together to yield the total spin of the
proton. Let’s first combine the spins of the three quarks. We will begin to use
the notation j to replace the more cumbersome V(j) where it will cause no
confusion. We have

1

2
⊗

1

2
⊗

1

2
=

1

2
⊗ (1⊕ 0) =

„
1

2
⊗ 1

«
⊕
„

1

2
⊗ 0

«
=

„
3

2
⊕

1

2

«
⊕

1

2
=

3

2
⊕

1

2
⊕

1

2

We see two interesting things in the above. First, we note the “distributivity”
property of direct products over direct sums. This can be checked by
considering the above expression for basis elements. Second, we see that two
spin 1/2 spaces appear in the end. That is, the resulting Hilbert space has two
subspaces that both look like V(1/2). There is nothing wrong with that, we just
have to be careful to explain which subspace we are talking about when we refer
to a spin-1/2 subspace of V.
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Addition of Angular Momentum – States (cont.)

If we now add in orbital angular momentum, we are assured that the resulting
Hilbert space will be a direct sum of half-integer-spin subspaces. Whether there
is a spin-1/2 subspace will depend on what orbital angular momentum we add
in. Obviously, adding in ` = 0 will change nothing, adding ` = 1 will provide
access to spin 5/2 but still allow spin 1/2, etc.

We note that the different subspaces correspond to different particles. Let’s
consider ` = 0, so what we have listed above is all that we have. One of the
spin-1/2 subspaces is the proton. The spin-3/2 subspace is the ∆+, which has
the same quark content but higher spin. The other spin-1/2 subspace is (I
believe) disallowed by the Pauli exclusion principle on quark color, not spin
because the quark content of these particles is up, up, down, so two are
identical.

Another example is the combination of the up, down, and strange quarks, which
yield the spin-1/2 Σ0(1193) and Λ(1116) particles and the spin-3/2 Σ0(1384)
particle (the numbers in parentheses indicate the mass in MeV). Here, all three
subspaces correspond to real particles because there is no Pauli exclusion
restriction.

States with ` 6= 0 may manifest as stable particles or as short-lived resonances.
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Addition of Angular Momentum – States (cont.)

Clebsch-Gordan Coefficients

In the above, we have determined the basic structure of the product space formed by
“adding” two angular momenta. Now, let’s figure out in detail how to transform from
the uncoupled basis to the coupled basis; essentially, how to write the natural basis of
the direct sum space in terms of the natural basis of the direct product space.

The generic form for the expansion is, obviously,

|j ,m 〉 =

j1X
m1=−j1

j2X
m2=−j2

(|j1,m1 〉 ⊗ |j2,m2 〉) (〈j1,m1 | ⊗ 〈j2,m2 |) |j ,m 〉

where the expansion coefficients are called the Clebsch-Gordan (CG) coefficients. We
define

C
(j1,j2)
m1m2jm = (〈j1,m1 | ⊗ 〈j2,m2 |) |j ,m 〉

How do we calculate the CG coefficients? We simply start from the top and work
down, making some reasonable choices for arbitrary phase conventions along the way.
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Addition of Angular Momentum – States (cont.)

In detail:

1. First, we know only one uncoupled basis state corresponds to the coupled basis
state of maximum m:

|j = j1 + j2,m = j1 + j2 〉 = |j1, j1 〉 ⊗ |j2, j2 〉

We follow the Condon-Shortley convention in setting the phase factor to 1 for
simplicity. There is a corresponding relation for |j = j1 + j2,m = −(j1 + j2) 〉,
and it turns out that setting the phase factor there to 1 also is consistent with
what one would get via lowering operators.
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Addition of Angular Momentum – States (cont.)

2. Second, we can obtain all the states |j = j1 + j2,m 〉 simply by acting with the
total angular momentum lowering operator J−:

J−|j = j1 + j2,m = j1 + j2 〉

=
“
J

(j1)
− ⊗ I (j2) + I (j1) ⊗ J

(j2)
−

”
(|j1, j1 〉 ⊗ |j2, j2 〉)

= ~
p

(j1 + j1) (j1 − j1 + 1) |j1, j1 − 1 〉 ⊗ |j2, j2 〉

+ ~
p

(j2 + j2) (j2 − j2 + 1) |j1, j1 〉 ⊗ |j2, j2 − 1 〉

= ~
p

2 j1 |j1, j1 − 1 〉 ⊗ |j2, j2 〉+ ~
p

2 j2 |j1, j1 〉 ⊗ |j2, j2 − 1 〉

We also expect, based on the fact that J− is a lowering operator, that

J−|j = j1 + j2,m = j1 + j2 〉

= ~
p

(j1 + j2 + j1 + j2) (j1 + j2 − (j1 + j2) + 1) |j = j1 + j2,m = j1 + j2 − 1 〉

= ~
p

2 (j1 + j2)|j = j1 + j2,m = j1 + j2 − 1 〉

Combining the two, we have

|j = j1 + j2,m = j1 + j2 − 1 〉 =

√
j2 |j1, j1 〉 ⊗ |j2, j2 − 1 〉+

√
j1 |j1, j1 〉 ⊗ |j2 − 1, j2 〉√

j1 + j2

Continuing downward is rather tedious but otherwise straightforward.
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Addition of Angular Momentum – States (cont.)

3. To obtain the top of each ladder for j1 − j2 ≤ j < j1 + j2, we simply require
orthogonality of the top of the ladder with the higher j states already calculated,
along with requiring real coefficients. For example, we find
|j = j1 + j2 − 1,m = j1 + j2 − 1 〉 by requiring it be a linear combination of the
same uncoupled states as |j = j1 + j2,m = j1 + j2 − 1 〉, but requiring the two be
orthogonal and that the new state have real Clebsch-Gordan coefficients.

With that, we are able to obtain all the Clebsch-Gordan coefficients for a given
problem. You can find CG coefficients for some low j combinations in the Particle
Data Book at

http://pdg.lbl.gov/2007/reviews/clebrpp.pdf

The Particle Data Book is produced by the Particle Data Group at LBNL
(http://pdg.lbl.gov/).
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Addition of Angular Momentum – States (cont.)

General Properties of Clebsch-Gordan Coefficients

I A CG coefficient is nonvanishing only if j1 − j2 ≤ j ≤ j1 + j2

(〈j1,m1 | ⊗ 〈j2,m2 |) 6= 0 only for j1 − j2 ≤ j ≤ j1 + j2

I A CG coefficient is nonvanishing only if m = m1 + m2.

I By convention, CG coefficients are always real.

I By convention,

(〈j1, j1 | ⊗ 〈j2, j − j1 |) |j , j 〉 ≥ 0 for any j1 − j2 ≤ j ≤ j1 + j2

This fixes the sign of the top state for each j .

I The symmetry properties under m1,m2,m→ −m1,−m2,−m imply

(〈j1,−m1 | ⊗ 〈j2,−m2 |) |j ,−m 〉 = (−1)j1+j2−j (〈j1,m1 | ⊗ 〈j2,m2 |) |j ,m 〉

I The Clebsch-Gordan coefficients define a transformation from one orthonormal
basis to another, so define a unitary transformation and the elements themselves
form a unitary matrix. Because all the coefficients are real, the matrix is in fact
orthogonal. It is just like any unitary transformation from one basis to another.
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Addition of Angular Momentum – States (cont.)

Examples

I Addition of two spin-1/2 angular momenta
Clearly, 1/2⊗ 1/2 = 1⊕ 0. Let’s work out the relations between the states
using the above formalism. First, the top and bottom state |j = 1,m = ±1 〉 are
obviously given by

|j = 1,m = 1 〉 =

˛̨̨̨
1

2
,
1

2

fl
⊗
˛̨̨̨
1

2
,
1

2

fl
|j = 1,m = −1 〉 =

˛̨̨̨
1

2
,−

1

2

fl
⊗
˛̨̨̨
1

2
,−

1

2

fl
We use the formula given above for the action of the lowering operator on the
top state to obtain

|j = 1,m = 0 〉 =
1
√

2

„˛̨̨̨
1

2
,
1

2

fl
⊗
˛̨̨̨
1

2
,−

1

2

fl
+

˛̨̨̨
1

2
,−

1

2

fl
⊗
˛̨̨̨
1

2
,
1

2

fl«
Finally, we use the orthogonality requirement and the normalization, realness,
sign-fixing conventions to obtain

|j = 0,m = 0 〉 =
1
√

2

„˛̨̨̨
1

2
,
1

2

fl
⊗
˛̨̨̨
1

2
,−

1

2

fl
−
˛̨̨̨
1

2
,−

1

2

fl
⊗
˛̨̨̨
1

2
,
1

2

fl«
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Addition of Angular Momentum – States (cont.)

For the sake of completeness, let’s invert the above. It is trivial for the
|j = 1,m = ±1 〉 states, but the other two are not:

˛̨̨̨
1

2
,
1

2

fl
⊗
˛̨̨̨
1

2
,−

1

2

fl
=

1
√

2
(|j = 1,m = 0 〉+ |j = 0,m = 0 〉)˛̨̨̨

1

2
,−

1

2

fl
⊗
˛̨̨̨
1

2
,
1

2

fl
=

1
√

2
(|j = 1,m = 0 〉 − |j = 0,m = 0 〉)
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Addition of Angular Momentum – States (cont.)

I Addition of ~L and ~S
A very typical situation is addition of an orbital angular momentum with a
particle spin. The former is guaranteed to be integer, and the latter is 1/2 for
all fundamental particles we know of. So we have

`⊗
1

2
=

„
`+

1

2

«
⊕
„
`−

1

2

«
Let’s construct the states explicitly. First, of course, the top and bottom states
of j = `+ 1/2: ˛̨̨̨

j = `+
1

2
,m = `+

1

2

fl
= |`, ` 〉 ⊗

˛̨̨̨
1

2
,
1

2

fl
˛̨̨̨
j = `+

1

2
,m = −

„
`+

1

2

«fl
= |`,−` 〉 ⊗

˛̨̨̨
1

2
,−

1

2

fl
As usual, we use the lowering operator to obtain the next highest state:

˛̨̨̨
j = `+

1

2
,m = `−

1

2

fl
=

s
1

2 `+ 1
|`, ` 〉 ⊗

˛̨̨̨
1

2
,−

1

2

fl
+

s
2 `

2 `+ 1
|`, `− 1 〉 ⊗

˛̨̨̨
1

2
,
1

2

fl
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Addition of Angular Momentum – States (cont.)

Similarly,˛̨̨̨
j = `+

1

2
,m = −

„
`−

1

2

«fl

=

s
1

2 `+ 1
|`,−` 〉 ⊗

˛̨̨̨
1

2
,
1

2

fl
+

s
2 `

2 `+ 1
|`,−(`− 1) 〉 ⊗

˛̨̨̨
1

2
,−

1

2

fl

We determine the top and bottom states of j = `− 1/2 by requiring
orthogonality, normalization, realness, and the sign-fixing convention:˛̨̨̨

j = `−
1

2
,m = `−

1

2

fl

=

s
2 `

2 `+ 1
|`, ` 〉 ⊗

˛̨̨̨
1

2
,−

1

2

fl
−

s
1

2 `+ 1
|`, `− 1 〉 ⊗

˛̨̨̨
1

2
,
1

2

fl
˛̨̨̨
j = `−

1

2
,m = −

„
`−

1

2

«fl

=

s
2 `

2 `+ 1
|`,−` 〉 ⊗

˛̨̨̨
1

2
,
1

2

fl
−

s
1

2 `+ 1
|`,−(`− 1) 〉 ⊗

˛̨̨̨
1

2
,−

1

2

fl
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Addition of Angular Momentum – States (cont.)

In general, this is where it begins to get difficult because the next states down
are composed of three uncoupled basis states. But, here, because j2 = 1/2, the
direct sum only has two terms and so every coupled basis state is composed of
only two uncoupled basis states. Let’s just write it out, leaving the coefficients
to be determined recursively:

J−

˛̨̨̨
j = `+

1

2
,m = n +

1

2

fl
=
“
L− ⊗ I (1/2) + I (`) ⊗ S−

”„
α|`, n + 1 〉 ⊗

˛̨̨̨
1

2
,−

1

2

fl
+ β|`, n 〉 ⊗

˛̨̨̨
1

2
,
1

2

fl«

~

s„
`+

1

2
+ n +

1

2

«„
`+

1

2
− n −

1

2
+ 1

« ˛̨̨̨
j = `+

1

2
,m = n −

1

2

fl
= α~

p
(`+ n + 1) (`− n − 1 + 1) |`, n 〉 ⊗

˛̨̨̨
1

2
,−

1

2

fl
+ β~

p
(`+ n) (`− n + 1) |`, n − 1 〉 ⊗

˛̨̨̨
1

2
,
1

2

fl
+ β~ |`, n 〉 ⊗

˛̨̨̨
1

2
,−

1

2

fl
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Addition of Angular Momentum – States (cont.)

which yields˛̨̨̨
j = `+

1

2
,m = n −

1

2

fl

=

 
α

s
`− n

`− n + 1
+ β

s
1

(`+ n + 1)(`− n + 1)

!
|`, n 〉 ⊗

˛̨̨̨
1

2
,−

1

2

fl

+ β

s
`+ n

`+ n + 1
|`, n − 1 〉 ⊗

˛̨̨̨
1

2
,
1

2

fl

We have α and β for n = `− 1, from these we guess the generic formulae

αn=`−1 =

s
1

2 `+ 1
=

s
`− n

2 `+ 1
βn=`−1 =

s
2 `

2 `+ 1
=

s
`+ n + 1

2 `+ 1
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Addition of Angular Momentum – States (cont.)

Inserting these, we find˛̨̨̨
j = `+

1

2
,m = n −

1

2

fl

=

s
`− n + 1

2 `+ 1
|`, n 〉 ⊗

˛̨̨̨
1

2
,−

1

2

fl
+

s
`+ n

2 `+ 1
|`, n − 1 〉 ⊗

˛̨̨̨
1

2
,
1

2

fl

We see that the coefficients obey the expected formulae

αn→n−1 =

s
`− (n − 1)

2 `+ 1
=

s
`− n + 1

2 `+ 1

βn→n−1 =

s
`+ (n − 1) + 1

2 `+ 1
=

s
`+ n

2 + 1

and that the resulting state is correctly normalized. So our guesses for αn and
βn were correct and the above result for |j = `+ 1/2,m = n − 1/2 〉 holds in
general for n = `, . . . ,−`.
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Addition of Angular Momentum – States (cont.)

Finally, we can obtain the other state of the same m by requiring orthogonality,
normalization, realness, and sign-fixing:

˛̨̨̨
j = `−

1

2
,m = n −

1

2

fl

=

s
`+ n

2 `+ 1
|`, n 〉 ⊗

˛̨̨̨
1

2
,−

1

2

fl
−

s
`− n + 1

2 `+ 1
|`, n − 1 〉 ⊗

˛̨̨̨
1

2
,
1

2

fl
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Addition of Angular Momentum – States (cont.)

I Tensors of rank n
We have seen that tensors of rank 0 and 1 (scalars and vectors) correspond to
angular momentum j = 0 and j = 1. Recalling that these spaces were called
τ (0) and τ (1), and that the space of states of angular momentum j is denoted by
V(j), we have τ (0) = V(0) and τ (1) = V(1). Does the same correspondence hold
for tensors of arbitrary rank n? No, which we can see by just counting basis
elements. Tensors of rank n are a 3n-dimensional space because there are 3n

basis elements (e.g., the unit tensors). The set of states of angular momentum j
is 2 j + 1-dimensional because there are 2 j + 1 basis elements, the {|j ,m 〉}.
The two dimensionalities only coincide for n = j = 0 and n = j = 1.

However, recall that

τ (n) =
nO

k=1

τ (1) =
nO

k=1

V(1)
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Addition of Angular Momentum – States (cont.)

That is, the space of tensors of rank n is the direct product of n spaces of
angular momentum j = 1, which means that it looks like the space obtained by
“adding angular momentum” for n angular momenta, all with j = 1. The result
will be of course be a direct sum space of V(j) with j = 0 to j = n; but the trick
is to see how many copies of each V(j) we obtain. We can derive it by induction.
Suppose

τ (n) =
nX

j=1

C
(n)
j V(j)

where C
(n)
j indicates the number of copies of V(j) in τ (n). Then it should be

clear that the formula for τ (n+1) is

τ (n+1) = V(1) ⊗
nX

j=0

C
(n)
j V(j)

=
nX

j=1

C
(n)
j

“
V(j+1) ⊕ V(j) ⊕ V(j−1)

”
⊕ C

(n)
0 V(1)

= C
(n)
n V(n+1) +

“
C

(n)
n + C

(n)
n−1

”
V(n)

⊕
n−1X
j=1

“
C

(n)
j+1 + C

(n)
j + C

(n)
j−1

”
V(j) ⊕ C

(n)
1 V(0)
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Addition of Angular Momentum – States (cont.)

Summarizing,

C
(n+1)
n+1 = C

(n)
n C

(n+1)
n = C

(n)
n + C

(n)
n−1 C

(n+1)
j = C

(n)
j+1 + C

(n)
j + C

(n)
j−1

C
(n+1)
0 = C

(n)
1

We must specify “initial conditions” for the recursion using n − 2, which is

τ (2) = V(1) ⊗ V(1) = V(2) ⊕ V(1) ⊕ V(0)

So,

C
(3)
3 = 1 C

(3)
2 = 2 C

(3)
1 = 3 C

(3)
0 = 1

C
(4)
4 = 1 C

(4)
3 = 3 C

(4)
2 = 6 C

(4)
1 = 6 C

(4)
0 = 3

C
(5)
5 = 1 C

(5)
4 = 4 C

(5)
3 = 10 C

(5)
2 = 15 C

(5)
1 = 15 C

(5)
0 = 6

I have been unable to find a generic closed form expression (though there may
be one) for any of the above except for the following:

C
(n)
n = 1 C

(n)
n−1 = n − 1
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Addition of Angular Momentum – States (cont.)

Given the above, it should be clear that one can do a generalized
Clebsch-Gordan expansion to express a Cartesian tensor of rank n in terms of
spherical tensors of varying ranks with the same kind of breakdown among the
rank j tensors as we have found above for the spaces. An example of this is
τ (2) = τ (1) ⊗ τ (1) = V(2) ⊕ V(1) ⊕ V(0); therefore, a rank 2 Cartesian tensor can
be expressed as a sum of a spherical tensors of rank 2, 1, and 0. Explicitly, the
formula will be

nO
k=1

|jk = 1,mk 〉 =
X
jp

jpX
m=−jp

|jp ,m 〉〈jp ,m |
 

nO
k=1

|jk = 1,mk 〉
!

where the jp that the first sum runs over is determined by n and the breakdown
of τ (n) into V(j). There is a p index on jp because there may be multiple
orthogonal copies of the same V(j) subspace in the direct sum; p indexes them.
Of course, it will be tremendously tedious to calculate all these coefficents for
n > 2, but it is feasible. There are tables of them, called the Wigner 6j , 9j , and
12j symbols, which provide the CG coefficients for addition of 3, 4, and 5
angular momenta respectively; clearly, these are applicable for Cartesian tensors
of rank 3, 4, and 5.
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