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Fig. 2 Left: Energy spectrum of e™’s in the early time window. Right: Time spectra for
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In this note, I address the questions that were asked during the talk.
What is the quark content of m* ?

The valence quarks of 7+ are (ud). Of course, there are also sea quark-antiquark
pairs and gluons.
What is fr?

The quantity that enters into the pion decay amplitude at the 7+ — W™ vertex is
et
(0] g4 ()| ™) . (1)

This mysterious object j& + (z) is called the axial current. It is basically the weak analog
of the electromagnetic current. The expression above represents the amplitude for the
7t to go to the vacuum |0) via this axial current (which is also coupled to the leptons).
Because of the difficulties of QCD, it is not possible to calculate this amplitude exactly.
However, though some tricks, it is possible to determine it up to an overall constant.
This constant is f;.

Why is the m — W wvertex not just a matter of the electroweak vertexr ud — W ?
You need to take into account the wavefunction of the 7.

Do the radiative corrections to the tree-level pion decay diagram increase or reduce the
matriz element?

It could be either, depending on the sign of a particular diagram.
What are the details of how the pion structure effects cancel out?

Suppose ty and ry are the tree-level and 1-loop, respectively, amplitudes to the
process T — {Tv,. Then R, ,u is proportional to

2

Te 2
e 7l N2l 11 4 9 Re(ry /1) — 2Re(ry/t,)] ®

e
|ty + 7l?

te

Re -

where we have Taylor expanded to leading order in ry, assuming r; < t;. We see that
for re/te = r,/tu, the radiative corrections cancel out. This is what happens with
charged Higgs exchange in the MSSM, as I discussed at the end of the talk.

How do uncertainties on e and mu mass affect the overall uncertainty on R(e/mu)?



The fractional uncertainties on the measurements of the e, pu, and 7+ masses are:

§(me) = 8x107° (3)
S(my) = 9x1078 (4)
S(m.+) = 3x107%. (5)

The current theoretical and target experimental uncertainty is about 4 x 1074, The

uncertainties in the particles masses are irrelevant for R,/ in the forseeable future.

What are the veto counters for — i.e., what do they veto?
Veto counters are placed after the target. They reject particles that penetrate
through the target, rather than being stopped.

How does the scintillator measure the total energy?

The incident positron causes an electromagnetic shower of gamma rays and electron-
positron pairs (whose annihilations result in more gamma rays) inside the scintillator
crystal. The scintillator absorbes the energy of the electromagnetic shower and re-
emits this energy as lower energy (visible) photons. A photomultiplier tube counts the
photons; the number of photons is (to first approximation) proportional to the initial
energy of the positron.

How does one get the e+ direction?

The et direction is obtained by a wire chamber located between the 7" -stopping
target and the scintillator crystal. This helps with knowing if the positron was aimed
close to the edge of the scintillator so that some of the electromagnetic energy might
have escaped.

Why is there a 511 keV peak in the mu event spectrum?

This peak is due to low energy positrons which activate (by annihilating with a
surface electron) but do not penetrate the scintillator crystal.

What is the background in the m — ev time spectrum?

This background is due to pile-up of muons in the target. Suppose there is a p
still in the target when another m — p — e decay comes along, and suppose both the
first © and the second p happen to decay at about the same time. The result is that
the scintillator will detect an event of higher energy, which can get misinterpretted as a
m — ev event. To avoid this, the experiments implement a cut to avoid pile-up: throw
out m — ev events which came within 6 us of a previous 7" stopped in the detector.

Why does the m — p — e time spectrum have that turn-on shape?

The turn on shape occurs because this decay is a two step process. Solving the
equations describing the two-step decay process, we find that

Ne

B I,
dt

N-(0 —Iut _ —I'xt , 6
(0) T (et ) ©
where N, and N, are the number of positrons and pions, respectively. The detector
looks for the positron up to ¢ = 300 ns. Plotting this, we get



dN. /dt
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which looks the same as the time-plot I showed during the talk. If we plot to a later
time (e.g. t=3000 ns), we get

dN. /dt
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where we can now see the turn-on behavior and the late-time exponential decay.
How does one in detail get a handle on the m— > ev~y background?

Actually, the m — evy background is not the dominant source of the long tail that
extends below the energy cut. (The 7’s are forward-peaked — i.e. mostly going in the
same direction as the et and into the scintillator crystal.) The tail is due the response
function of the scintillator — which, as I understand it, is the small likelihood that the
scintillator will scintillate less than it should, leading to a measured energy lower than
the true energy of the incident positron.

The m — ev tail was determined in two ways. (1) Using the timing information, as
I discussed. (2) By measuring the total momentum deposited in the target. (Here is
where it is important to get a narrow momentum distribution for the 7+ beam.) In a
7 — ev decay, the momentum deposited in the target is equal to the initial momentum
of the pions in the beam, which is about 80 MeV/c. For the 1 — pu — e decay, the
total momentum is equal to this 80 MeV /c plus an additional 4 MeV /c from the kinetic



energy of the p, which is also stopped within the target.
Is R-parity conservation necessary?

R-parity protects against proton decay and gives a stable SUSY dark matter parti-
cle. There are two sets of R-parity violating interactions: those that violate B (baryon
number) and those that violate L (lepton number). So R-parity implies conservation
of both B and L. If we throw out R-parity, but keep either B or L as a symmetry of
the MSSM (Minimal Supersymmetric Standard Model), then the proton is still stable,
although the SUSY DM particle is not.

What are the reasons to have/not to have R-parity violating theories?

R-parity is an ad hoc assumption of the MSSM, introduced to prohibit a variety of
new interactions which allow for proton decay. R-parity also allows for a stable SUSY
dark matter particle. It is possible to prohibit proton decay through a weaker ad
hoc assumption, which is either B (baryon number) conservation or L (lepton number)
conservation. One of those assumptions is sufficient to prohibit proton decay. (R-parity
includes both B and L conservation.) However, if either B or L is violated, there is no
stable SUSY DM particle.

In a sense, the postulate of R-parity or B or L conservation is a step backwards from
the usual Standard Model, in which B and L conservation arise naturally, without
added assumptions. (This is just one of the theoretically hurdles toward building a
viable model of SUSY.)



