The Fine Structure Constant and Electron (g-2) Factor

Nick Hutzler

Physics 135c

Spring 2007

Theory Review

- A (spin) magnetic moment μ quantifies how a particle interacts with magnetic fields
- The electron has μ proportional to spin

$$\mu = g \frac{e\hbar}{2m} \frac{S}{\hbar} = g\mu_B \frac{S}{\hbar}$$

• The fine structure constant α characterizes the strength of the EM interaction

$$\alpha = \frac{e^2}{4\pi\varepsilon_0 \hbar c} \approx \frac{1}{137}$$

Nick Hutzler // Ph 135c // Spring 2007

Theory Review

- The (spin) factor g is dimensionless and varies by particle type
 - Classical charged sphere: g = 1
 - Dirac point particle: g = 2
 - Neutron: g = -3.826 085 45(90)
 - Proton: g = 5.585 694 713(46)
- The anomalous magnetic moment is defined as a = (g-2)/2

Nick Hutzler // Ph 135c // Spring 2007

3

Theory Review

- Why measure g?
 - Probe of possible internal structure
 - One of best tests of QFT/QED, new physics
 - Fine structure constant α determined by g+QED

Nick Hutzler // Ph 135c // Spring 2007

Theory Review

- Why isn't g = 2?
 - Tree level Feynman diagram gives g = 2

 Higher order corrections from quantum fluctuations add ~.001

Nick Hutzler // Ph 135c // Spring 2007

5

Theory Review

- g and α are closely related
 - -a has a series expansion in α (remember that α is commonly expanded in perturbation series)

$$a = C_1\left(\frac{\alpha}{\pi}\right) + C_2\left(\frac{\alpha}{\pi}\right)^2 + C_3\left(\frac{\alpha}{\pi}\right)^3 + \dots + a_{\mu\tau} + a_{hadronic} + a_{weak}$$

- The C_i are calculated from QED
- The $a_{\mu\tau,hadronic,weak}$ terms are the QED muon/tau contribution, and non-QED hadronic and weak contributions (respectively)

Nick Hutzler // Ph 135c // Spring 2007

Theory Review

FIG. 2 (color). Contributions to g/2 for the experiment (green), terms in the QED series (black), and from short-distance physics (blue). Uncertainties are in red. The μ , τ , and $\mu\tau$ indicate terms dependent on mass ratios $m_e/m_\mu, \; m_e/m_\tau$ and the two ratios, m_e/m_μ and m_e/m_τ , respectively.

Nick Hutzler // Ph 135c // Spring 2007

History

- Earlier α measurements
 - Quantum Hall effect

$$R_K = \frac{\mu_0 c}{2\alpha}$$

 $R_{\scriptscriptstyle K} = \frac{\mu_0 c}{2\alpha}$ — Atomic spectra

$$R_{\infty} = \frac{\alpha^2 m_e c}{2h}$$

 $R_{\infty} = \frac{\alpha^2 m_e c}{2h}$ — Josephson effect

$$U = \frac{h}{2a} \frac{\partial \phi}{\partial t}$$

 $U = \frac{h}{2e} \frac{\partial \phi}{\partial t}$ — Recoil measurements, numerology, others

FIG. 1 (color). The least uncertain α determinations [3,5,6] (a), with older determinations [2] on a 10 times larger scale (b). Measured g are converted to α using current QED theory.

Nick Hutzler // Ph 135c // Spring 2007

Philosophy

- Why does α have this value?
 - Anthropic Principle: small changes in the value of α would dramatically change the universe
 - Numerology: Arthur Eddington calculated α =1/136 using numerology and gave the Eddington Number: $N = 2^{256}/\alpha$
 - Feynman: "one of the greatest damn mysteries of physics: a magic number that comes to us with no understanding by man"
 - James Gilson: α has a formula:

$$\alpha = \frac{\cos(\pi/137)}{137} \frac{\tan(\pi/(137 \cdot 29))}{\pi/(137 \cdot 29)} \approx 1/137.0359997867$$

Nick Hutzler // Ph 135c // Spring 2007

٥

The Experiment

- We shall discuss a recent measurement of g and resulting calculation of α
- New Measurement of the Electron Magnetic Moment Using a One-Electron Quantum Cyclotron
 - Odom, Hanneke, D'Urso, Gabrielse
 - Harvard Physics Department
 - PRL 2006

Nick Hutzler // Ph 135c // Spring 2007

The Experiment

- Overview:
 - Put an electron in cyclotron motion
 - Measure jumps between lowest quantum states
 - Calculate g
 - Calculate α

Nick Hutzler // Ph 135c // Spring 2007

11

Penning Traps

- Static fields used to trap charged particles
 - Uniform axial B field
 - Quadrupole E field
- Earnshaw's Theorem: static electric fields alone cannot confine a charged particle

Nick Hutzler // Ph 135c // Spring 2007

Penning Traps

- Four motions:
 - Spin (v_s)
 - Cyclotron ($v_c = 2 v_s/g$)
 - Axial (v_z)
 - Magnetron (v_m)
- In the present experiment:
 - $v_s \approx v_{c'} \approx 149 \text{ GHz}$
 - $v_{z'} \approx 200 \text{ MHz}$
 - ν_{m′} ≈ 134 kHz
 - Prime denotes "actual"

Nick Hutzler // Ph 135c // Spring 2007

1

Particle Motion

- Spin motion is essentially free
- Cyclotron motion is damped by synchrotron radiation (~0.1 s in free space)
 - However, in this trap the fields are tuned so that cyclotron motion is far from a cavity mode
 - Lifetime extended to several seconds

Nick Hutzler // Ph 135c // Spring 2007

Energy Levels

Measure jumps

- $v_{a'}$ and $f_{c'}$ are anomaly $\overline{v}_{c} \delta/2$ and spin-up frequencies (respectively)
- ν_c is classical cyclotron frequency eB/2πm

$$n = 0$$
 $m_S = -1/2$ $m_S = 1/2$

Nick Hutzler // Ph 135c // Spring 2007

Energy Levels

• v_c is obtained using the Brown-Gabrielse Invariance Theorem:

$$(v_c)^2 = (v_{c'})^2 + (v_{z'})^2 + (v_{m'})^2$$

 This allows us to calculate g/2:

$$\frac{g}{2} = \frac{v_{a'} + v_{c'}}{v_c} \cong 1 + \frac{v_{a'} - v_{z'}^2 / (2f_{c'})}{f_{c'} + 3\delta / 2 + v_{z'}^2 / (2f_{c'})}$$

Brown-Gabrielse (b)
$$n = 1$$
 Invariance Theorem: $n = 2$ $\overline{f_c} = \overline{v_c} - 3\delta/2$ $\overline{v_c} - 3\delta/2$ $\overline{v_c} - 3\delta/2$ $\overline{v_c} - 3\delta/2$ $n = 0$ This allows us to calculate g/2: $\overline{v_c} - \delta/2$ $\overline{v_c} - \delta/2$

Nick Hutzler // Ph 135c // Spring 2007

What is Measured?

- Spin and cyclotron jumps induce a change in v₂
- A resonant circuit drives the axial motion at v_{z'} (SEO)
- Quantum Jump Spectroscopy

Nick Hutzler // Ph 135c // Spring 2007

17

What is *Measured*?

- Anomaly transitions are created by inducing spin-flips with a perpendicular B field
- Cyclotron transitions are induced by microwaves
- Both drives are always on, but tuned so that only one affects the electron

Nick Hutzler // Ph 135c // Spring 2007

Results

- g/2 = 1.001 159 652 180 85(76)
- That's 76 parts per trillion
- Certainly of the most accurate measurements ever made

Nick Hutzler // Ph 135c // Spring 2007

19

Sources of Error

- Magnetic field instabilities
 - After settling for several months, the superconducting solenoid is constant to 10⁻⁹/hours
 - Maintain in 0.3K environment
 - Perform measurements at night
- Fitting/statistics
 - ~50 measurements/night
- Cavity radiation modes
- Blackbody Photon Excitation
 - Cool sample to <100mK

Nick Hutzler // Ph 135c // Spring 2007

Fine Structure Constant

• This g-value translates to

 $\alpha^{-1} = 137.035 999 710(90)(33)[0.66][0.24]$

= 137.035 999 710(96)[0.70]

- The top line errors are experimental, QED respectively (second line gives total error)
- Square brackets give error in ppb

Nick Hutzler // Ph 135c // Spring 2007

21

Fine Structure Constant

- C₄,C₆,C₈,C₁₀ require the evaluation of 7,72,891,12 672 Feynman diagrams respectively
- C₈ is known fairly well, C₁₀ is still being calculated

Nick Hutzler // Ph 135c // Spring 2007

Important Conclusions

- QED continues to be a highly accurate description of the physical world
- The electron can still be viewed as having no internal structure

Nick Hutzler // Ph 135c // Spring 2007

23

Electron Internal Structure

- Internal constituents must have m > 130 GeV
 - Calculations made assume no internal structure
 - Thus corrections must come from very high energy/short distance scales
 - i.e. constituents must be very tightly bound
- No QED error: m > 600 GeV

Nick Hutzler // Ph 135c // Spring 2007

<u>References</u>

- New Measurement of the Electron Magnetic Moment Using a One-Electron Quantum Cyclotron Odom, Hanneke, D'Urso, Gabrielse. PRL 97, 030801
- New Determination of the Fine Structure Constant from the Electron g Value and QED Gabrielse, Hanneke, Kinoshita, Hio, Odom. PRL 91 030802
- Fully Quantum Measurement of the Electron Magnetic Moment Brian Odom, Thesis, Harvard University, 2004
- A Finer Constant, Czarnecki, Nature 443 p. 516
- James Gilson, fine-structure-constant.org

Nick Hutzler // Ph 135c // Spring 2007