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Preamble (a disclaimer)
LE, HE and UHE cosmic rays in context

— Basic phenomenology

— Propagation principles

e The GZK cutoff

— Theories of origin and their signatures
Detection methods

— The extensive air shower

— Ground arrays, cherenkov light, air fluoresncene
State of the art experiments

Recent results (including a very recent first glimpse of
the GZK cutoff)



“There's a hole in the ozone and deadly cosmic rays are getting in..

Apollo 8 (1968) space helmet = plastic track detector
IC RAY DEFLECTION SOCIETY

i 3 % ORPPPig ERiEA(Bedee Formula):

dE  Am n2? 2\’ In 2m.c* 3 72
dr  m.2 32 dmeg I-(1-3?) '

Plexan =~ S/CCr Z/A|1exan~ 0.5

dE/dx ~ 1 GeV/nucleon/cm
z ~10 for nuclei produced by stars

E ~100 MeV /nuc (~fission energy of U?%)

particle

Flux(E>100MeV) > 1/m?/hour

~ 500 um track




TRACK LENGTH (MICRONS)

“High-Resolution Study of Low-Energy Heavy
Cosmic Rays with Lexan Track Detectors”
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Low Energy Cosmic Rays (the tip of the iceberg)

Low Cosmic Rays

Power law spectra

Differential flux (m€ sr = MeV/ nucleon)-1
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Full Cosmic Ray Spectrum (the much bigger picture)

Bump due to
interaction w/
solar wind

Low energy
cosmic rays
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Fluxes of Cosmic Roys
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The GZK limit

e CMB = Bath of ~10-3eV photons in cosmic reference frame

=Bath of ~ [1+p) (L4 By =2 E photons in rest frame of
&)5 mc®

relativistic c ray.

1 1 . + 0 + + +
Photopion production: y+p—nx*,pn TV UV Vv e

* Photo-pion production becomes important when E, ~ m, =~ 160 MeV, which

corresponds to E, .~ 1020eV

e Photo-pion cross-section at CM energy of 300 MeV is ~ 5*10-28 cm?
N,y ~ 500 /cc (today) = mfp = 1/(no) ~5+10% cm < Rintergalactic™ 107

—

=Severe constraints on extragalactic UHECR sources

eSignatures of GZK include: suppression of hadronic nuclei at E > 10 EeV,
enhancement of neutrinos at hadronic “dip”

-pair production w/ CMB photons also should produce small dip in proton
contribution @ E~10%



Theories of Origin

« Statistical Acceleration (magnetic clouds, shock fronts)
— Fermi Model
— Gradual mechanism, naturally produces power spectrum
— Hard to account for high energies

« Direct Acceleration (neutron stars, BH accretion disks)
— May or may not produce power spectrum
— May imply specific sources
— Usually high den

« Top-down (topological defects, superheavy relics)

— Speculative, but accounts for UHE spectrum
— Signatures in UHECR composition



Statistical Acceleration

Hand-waving model: Energy Equipartition

- particle and magnetic cloud DOFs coupled = if you wait long
enough, energy strata will be diluted. Cold DOFs become warmer,
hot DOFs become colder (on average)
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Main assumption: large number of interactions before a (warm)

particle escapes interaction region

Main conclusion: statistical acceleration increasingly less
efficient for “hot” particles



Statistical Acceleration

“Microscopic” Model: Fermi Statistical Acceleration

(1)

Particle “scatters” repeatedly off magnetic clouds or a shock front.
Acceleration occurs if on average it gains a small amount of energy

with each pass.
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Top-Down Models

General Idea: Topological defects leading to direct

acceleration or superheavy relic particles decay to produce
UHECR spectrum

Motivation:

— Difficult to account for E>0.1EeV CRs w/ standard
astrophysical acceleration models.

— Circumvents GZK paradox if sources are local
— Theorists get married(“B-violation”), have children to feed.
Example: Superconducting Cosmic Strings!

— Large (cosmo scale) loop of heavy fermions,
residual from early phase transition in the universe.
— Loops enclose primordial B-field and to shrink
as they radiate EM and G-waves, eventually decay

to superheavy fermions @ GUT-scale masses, which
quickly decay to produce HE v,y,e,p,n

— Signatures include low weight composition at UHE, no anistropy



Detecting UHE cosmic Rays

e (Questions to answer:

— Flux, Composition, and Anisotropy at high energies

* Main Problem: Flux follows a power law

— F(E<10'eV) > 107/m?/yr = high enough for direct detection of primary particle
(calorimeter)

— F(E>10"eV) <102/ m?/yr = need a much bigger detector

Idea#1: Earth as a large space helmet!

- UHE cosmic rays produce air showers with impact cross-section of ~100 m? and
~ 10 m longitudinal extent at Earth’s surface

J

- Use array of detectors spaced by ~100m? over several km?. Effective area = A
- e.g. Sydney array (1990s) , A= 100km?=Events/yr(E>107eV)~10°

array

Idea#2: Detect flourencence from air showers

- 10%-10'Y ionizing particles (300-400nm) at shower maximum. Ionization occurs in
~10ns, ~1km from photodector = (best case) ~10° photons/m?/10ns at detector
on top of = 5*10*/m?/10ns from starlight (on a dark night)



The Extensive Air Shower

*Baby Model
- approximates photon primaries (EM shower)

X=fp(hcos€)cos¢9dh

0 h “slant depth”

e Adolescent Model (“superposition model”)
- approximates nuclear primaries (hadronic shower):
- assume nucleus behaves like A(atomic number) independent nucleons,
each giving rise to a toy model spectrum
=X_.. « Mn(E,/AE )/In(2) (stopping power of atmosphere is higher for

max
heavy primaries)




The Extensive Air Shower — Realistic Snapshot
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The Extensive Air Shower — Realistic Snapshot

Secondary Shower:
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Clues to Energy /Composition/ Anisotropy

e Lateral particle distribution at earth’s surface:

— charged particles
e Primarily EM shower products (electrons)

e Monte Carlo suggests normalized shape of distribution is insensitive to depth
of observation (so only have to specify at particular radius)

p(R) = C(R/RM)‘1~2(1+R/RM)—(T)—IQ)
0(600,0) = p(600,0)exp(1018(secH —1)/A)
E, = K[p(600)]"

- muons

e Total number at surface highly sensitive to initial shower interactions, and
thus to composition of primary

(E)~(E/A)

- Emperical model used in ground arrays:

a B
N, E,,) = K-AsecO( E_. 1 E_.
E E,/ A E,/ A

min

— Superposition model: n

muon

e Zenith angle obtained from time profile of wavefront across detector array.



Clues to Energy /Composition/ Anisotropy

e Cherenkov light:

p}‘o?}tll)ced when particle velocity greater than local speed of light,
c/n(h).

exists critical energ%, as a function of elevation, at which electrons
cherenkov radiate: E_. ~0.511/sqrt(1-n(h)) MeV

Qax=c0s (1 /n(h)) —lateral extent of cherenkov radiation varies
with height of shower.

— A map of the time dependence of the cherenkov wavefront can be
used to reconstruct the late longitudinal profile of the shower
beyond the critical energy.

—X_ __and therefore E, can be estimated

max

Radiation in the short-wave UV, near 300nm

- Color similar to air flourescence, partialgf separable because the
latter is isotropic and the former subtends an angle of <2° w/
respect to zenith

Zenith angle obtained from time profile of wavefront across detector
array.



Clues to Energy /Composition/ Anisotropy

e Air Flourescense:

— lonizing particles excite atmospheric N,, T Shower Axis
which spontaneously decay in the near | |-
UV (220-500nm) with ~10-50ns decay
time

— Flourescent yield insensitive to elevation,
>10%(0.1EeV) ionizing particles, ~5%
efficent — ~100-1000 photons/m?/s

at detector, atop 103 higher background P e
(scattered cherenkov light and starlight) <
— Longitudinal shower development «

monitored directly via inversion

of intensity / direction /time profile on
hemispheric detector (accounting for

cherenkov contribution) Shgwer
etector
- Energy of proportional to energy of air Plane P
1 L
flourescence shower (knowing E and S
N\,
N

X hax SiVes composition) s

- View showers ~15km away (effective I N . N

INtectoe

100km? detector) Fit: 4~ 1y 00, A= 1)



Example: Akeno Giant Shower Array (AGASA)

Overview:

*>10 years of data on 111 surface detectors
(2.2m? scintillator) and 27 lead shielded
muon detectors spread over 100km? ety
Energy band: 10'43(embedded previous- st e

0 e e 0 D D D D O i

E E E L.4m g : Eiron benﬁ1/‘:/: S,Om
generation 1km? array) -10205eV S — i

-Method: local particle density at 600m _»

* Measure composition by comparing
muon and electron transverse
profiles
eEvent rate:~1/yr above 10 eV
e Model-dependent/systematic error
in energy measurement:25% /18%



Example: Hi-Resolution Fly’s Eye Detector

Overview:
*2 detector stations 12.6 km apart.
e22 and 46 “fly’s eye” modules
@ respective stations
-256 PMTs on 3.6m? detection
area of each module
-field of view is ~1° cone/module
oStereo detection allowed between stations
improve angular resolution
*Energy band: 1017-102%eV
-Method: energy of air shower
flourescence
e Composition Method:
-Independent shower depth and
energy measurement
eEvent rate: 4-5 times AGASA (in principle
above 10V

DEPTH (gem?)

8*107 eV

Number of particles/10°

e Flux(systematic) / energy-scale uncertainty

00.0
i

400.0 6 800.0
Oepth in g/em?

3102 eV

=30% /17%

E [N.(X)dX = [1,(1,8)dSdi




Example: Pierre Auger Cosmic Ray Observatory

Overview:

e Hybrid water cherenkov and
Fly’s Eye detector

*2 arrays, water cherenkov tanks

and fly’s eye detectors for 6000km?
total coverage

eEnergy band: 107> - 10%
Method: Agasa and Fly’s Eye

techniques .~
e Composition Method: Agasa and N\ sl
Fly’s Eye techniques [N\
eEvent rate: >10*AGASA O\ -/
| g 7= i / K
B NL—
] o I



Recent Results
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