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ABSTRACT

We report the most complete analysis to date of observations of the cosmic microwave background
(CMB) obtained during the 1998 flight of BOOMERANG. We use two quite different methods to determine
the angular power spectrum of the CMB in 20 bands centered at l ¼ 50 1000, applying them to �50% more
data than has previously been analyzed. The power spectra produced by the two methods are in good agree-
ment with each other and constitute the most sensitive measurements to date over the range 300 < l < 1000.
The increased precision of the power spectrum yields more precise determinations of several cosmological
parameters than previous analyses of BOOMERANG data. The results continue to support an inflationary
paradigm for the origin of the universe, being well fitted by a �13.5 Gyr old, flat universe composed of
approximately 5% baryonic matter, 30% cold dark matter, and 65% dark energy, with a spectral index of
initial density perturbations ns � 1.

Subject headings: cosmic microwave background — cosmological parameters — cosmology: observations

On-line material: color figures

1. INTRODUCTION

Measurements of anisotropies in the cosmic microwave
background (CMB) radiation now tightly constrain the
nature and composition of our universe. High signal-
to-noise ratio detections of primordial anisotropies have

been made at angular scales ranging from the quadrupole
(Bennett et al. 1996) to as small as several arcminutes
(Mason et al. 2003; Pearson et al. 2003; Dawson et al. 2002).
The power spectrum of temperature fluctuations shows a
peak at spherical harmonic multipole l � 200, which has
been detected with very high signal-to-noise ratio by
several teams (de Bernardis et al. 2000; Hanany et al. 2000;
Halverson et al. 2002; Scott et al. 2003), and strong indica-
tions of peaks at higher l have also been found (Halverson
et al. 2002; Netterfield et al. 2002; de Bernardis et al. 2002).

Within the context of models with adiabatic initial pertur-
bations, as are generally predicted by inflation, these
measurements have been used in combination with various
other cosmological constraints to estimate the values of
many important cosmological parameters. Combining their
CMB data with weak cosmological constraints such as a
very loose prior on the Hubble constant, various teams have
made robust determinations of several parameters, includ-
ing the total energy density of the universe �total, the density
of baryons �b, and the value of the density perturb-
ation power spectral index ns (Lange et al. 2001; Balbi et al.
2000; Pryke et al. 2002; Netterfield et al. 2002). Many
other parameters are tightly constrained when stronger
constraints on cosmology are assumed.

We report here new results from the 1998 Antarctic flight
of the BOOMERANG experiment. Previous results from
this flight using less data than included here were published
in de Bernardis et al. (2000) and Netterfield et al. (2002).
Here we use the two very different analysis methods of de
Bernardis et al. (2000) andNetterfield et al. (2002) and apply
them over a larger fraction of the data set to make an
improved measurement of the CMB angular power
spectrum.
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2. INSTRUMENT AND OBSERVATIONS

BOOMERANG is a balloon-borne instrument, designed
to measure the anisotropies of the CMB at subdegree
angular scales. The instrument consists of a bolometric
millimeter-wave receiver mounted at the focus of an off-axis
telescope, borne aloft on an altitude-azimuth pointed
balloon gondola. Details of the instrument as it was config-
ured for the 1998 Antarctic flight, as well as its performance
during that flight, are given in Crill et al. (2003).

The receiver consists of 16 bolometers, optically coupled
to the telescope through a variety of cryogenic filters, feed
horns, and reimaging optics. We report here results from
four of the six 150 GHz detectors in the focal plane, the
same four analyzed in Netterfield et al. (2002). The other
two 150 GHz detectors exhibited nonstationary noise
properties and are not used in the analysis.

The telescope has a 1.2 m diameter primary mirror and
two cryogenic reimaging mirrors mounted to the 2K surface
of the receiver cryostat. These optics produce (9<2, 9<7, 9<4,
9<5) FWHM beams at 150 GHz in the four channels used
here. The measured beams are nearly symmetric Gaussians;
the beam shapes are estimated by a physical optics calcula-
tion and calibrated by measurements on the ground prior to
flight. Uncertainty in the pointing solution (2<5 rms) is esti-
mated to smear the resolution of these physical beams to
an effective resolution of (10<9, 11<4, 11<1, 11<2) FWHM,
respectively. Based on the scatter of our various beam

measures, and combined with our uncertainty in the smear-
ing due to the pointing solution errors, we assign a 1 �
uncertainty in the FWHM beamwidth of 1<4 in all channels.
This introduces an uncertainty in the measured amplitude
of the power spectrum that grows exponentially with l and
that is correlated between all bands. This effect reaches a
maximum of �40% in our highest bin (l ¼ 1000) and is
illustrated in Figure 2 of Netterfield et al. (2002).

The payload was launched from McMurdo Station,
Antarctica on 1998 December 29 and circumnavigated the
continent in 10.5 days at an approximately constant latitude
of �78�. During the flight, 247 hr of data were taken, most
of them on a ‘‘ CMB region ’’ that was chosen for its very
low dust contrast seen in the IRAS 100 lm maps of this
region (Moshir et al. 1992).

The field observed in CMB scan mode is shown in
Figure 1. We analyze a subset of this sky coverage here,
chosen to be a contiguous region that is both sufficiently far
from the Galactic plane and well covered by our observ-
ations. Figure 1 shows the boundary of the region that we
analyze in this paper. This region covers 2.94% of the sky
and is defined as the intersection of (1) an ellipse centered on
� ¼ 88�, � ¼ �47�, with semiaxes a ¼ 25� and b ¼ 19�,
where the short axis lies along the local celestial meridian;
(2) the strip bounded by �59� < � < �29=5; and (3) the
region with Galactic latitude b < �10�.

This contour includes the best observed area of the sur-
vey, while remaining far enough from the Galactic disk to

Fig. 1.—Sky covered by CMB observations; the color scale indicates the depth of coverage (diagonal component of the noise covariance matrix) in a 70

HEALPix pixel, in the map produced by the MADCAP analysis described below. The region enclosed by the solid line is that used for the power spectrum
estimation. The three circles show the locations of three bright known quasars; data within a 0=5 radius of the quasars are not used in the power spectrum
estimation.
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minimize galactic dust contamination. It also does not have
any small-scale features (such as sharp corners) that could
induce excessive ringing in the power spectrum extracted
using one of our two methods (FASTER) discussed below.
This contour also excludes most of the scan turnarounds,
where the scan speed is reduced and the low-frequency noise
can contaminate the angular scales of interest.

The vast majority of our observations of this region were
made by fixing the elevation of the telescope and scanning
azimuthally by �30�, typically centered roughly 30� from
the antisolar azimuth. Also used were the ‘‘ CMB region ’’
portions of infrequently made (�1 hr�1) wider scans
designed to traverse the Galactic plane as well.

CMB observations were made by scanning at three eleva-
tions (45�, 50�, and 55�) and at two azimuthal scan speeds
(1� s�1 and 2� s�1). The rising, setting, and rotation of the
sky observed from �78� latitude cause these fixed elevation
scans to fill out the coverage of a two-dimensional map.
The color coding in our sky coverage map (Fig. 1) gives the
errors per pixel after co-adding the data from the four
150 GHz detectors.

The raw detector time streams are cleaned, filtered, and
calibrated before being fed to the mapping and power spec-
trum estimation pipelines described below. The cleaning
and filtering used in this analysis are identical to those
described in Netterfield et al. (2002) and are also described
in Crill et al. (2003); we give the most relevant details here.

Bolometers are sensitive to any input that changes the
detector temperature, including cosmic-ray interactions in
the detector itself, radio-frequency interference (RFI), and
thermal fluctuations of the baseplate heatsink temperature.
After deconvolving the raw bolometer data with the filter
response of the detector and associated electronics, RFI,
cosmic rays, and thermal events are found by a variety of
pattern-matching and map-based iterative techniques. Bad
data are then flagged and replaced by a constrained realiza-
tion of the noise so that nearby data can be used. In the four
channels used here, approximately 4.8% is flagged. The tails
of thermal events are fitted to an exponential and corrected,
and the data are used in the subsequent analysis. Finally, a
very low frequency, high-pass filter is applied in the Fourier
domain, with a transfer function

Fð f Þ ¼ 0:5 1� cosð�f =0:01 HzÞ½ � for f � 0:01 Hz ;

Fð f Þ ¼ 1 for f > 0:01 Hz :

3. DATA ANALYSIS METHODS

This paper reports our third analysis of data from the
1998 flight. In de Bernardis et al. (2000) we reported
the angular power spectrum found by analyzing data from a
single detector covering 1.0% of the sky, using roughly 1
detector-day of integration. In Netterfield et al. (2002) we
reported results from four 150 GHz detectors, using 17
detector-days of integration on 1.9% of the sky. Here we
report new results using 50% more data from those same
four detectors, using over 24 detector-days of integration on
2.9% of the celestial sphere.

The results reported here use the same time stream clean-
ing and pointing solutions described in Netterfield et al.
(2002). In addition to the larger sky cut, here we use two
independent and very different analysis methods that derive
the angular power spectrum of the CMB from those time
stream inputs. One, using the MADCAP CMB analysis

software suite (Borrill 1999), creates a maximum likelihood
map and pixel-pixel covariance matrix from the input detec-
tor time streams and measured detector noise properties.
The power spectrum is derived from the map and its
covariance matrix; this was the method used in de Bernardis
et al. (2000). The other method, based on the MASTER/
FASTER algorithms described in Hivon et al. (2002) and C.
Contaldi et al. (2003, in preparation), relies on a spherical
harmonic transform of a filtered, simply binnedmap created
from those time streams; the angular power spectrum in the
filtered map is related to the full-sky unfiltered angular
power spectrum through corrections derived from Monte
Carlo procedures of the input detector time stream and
model CMB sky signals. In the FASTER procedure, the
best-fit angular power spectrum is then obtained by using
an iterative quadratic estimator analogous to that used in
conventional maximum likelihood procedures. This method
was used in Netterfield et al. (2002).

A theme of this paper is the comparison of the results
from these two very different analysis paths and the stability
of the cosmological results to any differences in the derived
power spectra.

3.1. Detector Noise Estimation

Both MADCAP and FASTER require an accurate esti-
mate of the detector noise properties in order to determine
the angular power spectrum. We estimate these noise prop-
erties from the data themselves, using an iterative method to
create an optimal, maximum likelihood map of the sky sig-
nal. We then remove this signal from the detector time
stream prior to calculating the noise statistics. This method
is described in both Netterfield et al. (2002) and Prunet et al.
(2001).

For bolometer i and iteration j, d i, Ai, n
ð jÞ
i , N

ð jÞ
i , and D jð Þ

are, respectively, the data, pointing matrix, noise time
stream, noise time stream correlation matrix, and sky map.
The sky map and noise time stream correlation matrices are
found by iteration:

1. Given the data time stream and estimated map, solve
for the noise-only time stream with n

ð jÞ
i ¼ d i � AiD

jð Þ.
2. Use n

ðjÞ
i to construct the noise time stream cor-

relation matrix,N
ð jÞ
i ¼ hnð jÞi n

ð jÞy
i i.

3. Solve for a new version of the map using D jþ1ð Þ ¼
ð
P

i A
y
iN

jð Þ�1
i AiÞ�1 P

i A
y
iN

jð Þ�1
i d i.

4. Return to step 1, using the new version of the map,
and repeat. Iterate until the map D and the noise correlation
matricesN i are stable.

For stationary noise N i is diagonal in Fourier space, with
the diagonal elements equal to the power spectrum of the
noise. We also assume, and check in practice, that the noise
correlation between channels is negligible.

The noise correlation matrix N i is computed in Fourier
space from the noise time stream ni with a simple periodo-
gram estimator. The maximum likelihood map of the com-
bined bolometers, D, is computed using a conjugate
gradient approach (Doré et al. 2001), which improves the
recovery of large-scale modes in the map.

Solving for all channels in a combined way takes
advantage of the redundant observations of the sky, there-
fore offering the best possible separation between signal and
noise in the time streams for each bolometer. The noise
power spectrum estimation is well converged after a few
iterations, typically three or four.
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In this iterative procedure, we find a singlemaximum likeli-
hood map using all the data from all detectors. In practice, a
separate noise covariance is solved for in each of the 78 con-
tiguous data ‘‘ chunks,’’ bordered by elevations, moves, or
other time stream disturbances. Thus, very slowly varying
noise properties (e.g., a drift in the instrument noise) will not
affect the analysis. Additionally, a line is evident in the noise
power spectrum of the time stream data, varying slowly
between 8 and 9 Hz over the course of the flight. We remove
the effects of this nonstationary source of noise by removing
information in the time stream between 8 and 9 Hz. These
frequencies correspond to angular scales l > 1000, outside
the range that we report here, for all scan speeds.

3.2. TheMADCAPAnalysis Path

Given a pixel-pointed time-ordered data set d with piece-
wise stationary Gaussian random noise, the maximum like-
lihood pixel map D and pixel-pixel noise correlation matrix
CN are (Wright 1996; Tegmark 1997; Ferreira & Jaffe 2000)

D ¼ AyN�1A
� ��1

AyN�1d ;

CN ¼ AyN�1A
� �

; ð1Þ
where, as before, A is the pointing matrix andN is the block
Toeplitz time-time noise correlation matrix.

Assuming that the CMB signal is Gaussian and azimu-
thally symmetric, the maximum likelihood angular power
spectrum Cl is that which maximizes the log-likelihood of the
derived map given that spectrum (Górski 1994; Bond, Jaffe,
&Knox 1998),

L djClð Þ ¼ �1
2 dyC�1d � Tr lnCð Þ
� �

; ð2Þ
where C is the full pixel-pixel covariance matrix. The CMB
signal and the detector noise are uncorrelated, soC is just the
sum of the CN found above and the theory pixel-pixel cova-
riancematrixCT derived for a particular set ofCl values.

In the MADCAP analysis path (Borrill 1999) we solve
these equations exactly, calculating the closed form solution
for the map, using quasi–Newton-Raphson iteration to find
the set of Cl values that maximizes the log-likelihood (Bond
et al. 1998). Because the pixel-pixel correlation matrices are
dense, the operation count scales as the cube, and the
memory requirement as the square, of the number of pixels
in the map. This imposes serious practical constraints on the
size of the problems we can tackle; by optimizing our
algorithms to minimize the scaling prefactors and using
massively parallel computers, we have been able to solve
systems with up to O(105) pixels, sufficient to analyze this
data set at 70 pixelization.

There are two analyses that we want to perform on this
data set, each of which involves both map-making and
power spectrum estimation. First, we want to analyze the
full data set including all four channels at both scan speeds,
to solve for the CMB angular power spectrum. Second, we
want to perform a systematic test of the self-consistency of
the data, differencing two halves of the data and checking
that the sky signal disappears.

For the first of these, we construct a time-ordered data set
by concatenating the data from all four channels at both
scan speeds and solve for the map using the eight associated
time-time noise correlation functions. This time stream con-
sists of 163,726,965 observations of 160,805 pixels. Using
400 processors on NERSC’s 3000 processor IBM SP3, the
associated map and pixel-pixel noise correlation matrix can

be calculated from equation (1) in about 4 hr. Pixels not
included in the cut being analyzed here are removed from
the map, and the corresponding rows and columns of the
pixel-pixel noise correlation matrix are excised, equivalent
to marginalizing over them. The resulting map contains
92251 pixels, and the associated noise correlation matrix
fills 70 Gbytes of memory at 8 byte precision.

For the second analysis, we construct two time-ordered
data sets, each containing the data from all four channels
but at only one of the two scan speeds. The 2� s�1 time-
ordered data contain 74,879,196 observations over 124,257
pixels, while at 1� s�1 we have 88,832,768 observations over
151,654 pixels. Having made the maps and pixel-pixel noise
correlation matrices from each time stream, we apply our
cut as above and, in addition, remove any pixels within the
cut that are not observed in both halves of the flight. This
results in two maps (DA and DB) and their associated noise
correlation matrices each covering an identical subset of
88,407 pixels. We then extract the power spectrum of the
map DJ ¼ ðDA � DBÞ=2, taking the noise correlation matrix
of DJ to be the appropriately weighted sum of those for
the component maps, CJ

N ¼ ðCA
N þ CB

NÞ=4. This assumes
that the 2� s�1 noise and 1� s�1 noise are uncorrelated. In the
power spectrum estimation process we assume a CMB-like
theory correlation matrix when calculating theCl values.

The finite extent of our maps creates finite correlation
between our estimates of the power in nearby multipoles.
However, we can reduce these correlations to small levels by
calculating the power in top-hat bins of sufficient width. We
choose bins of width Dl ¼ 50, centered on l ¼ 50, 100, 150,
. . ., 1000, together with additional ‘‘ junk ’’ bins below
l ¼ 25 and above l ¼ 1025, which are included to prevent
very low l and very high l power from being aliased into
the range of interest. This binning reduces the correla-
tions between adjacent bins to less than �13% between
neighboring bands.

The power in a multipole bin is related to the power in the
individual multipoles in that bin through a shape function:
Cl ¼ CbC

shape
l . Although we are free to choose any spectral

shape within each bin, experience shows that for relatively
narrow bins the particular choice makes very little differ-
ence. We can explicitly account for the assumed spectral
shape in our cosmological parameter extraction; here we
use a flat shape function such that lðl þ 1ÞCshape

l ¼ const.
The maps derived from the time-ordered data have been

smoothed by both the detector beams and the common
pixelization. For constant, circularly symmetric beams and
pixels we can account for this exactly by incorporating the
appropriate multipole window function in the pixel-pixel
signal correlation matrix,CT .

The fact that each detector has a different beam means
that ideally we should construct individual maps and noise
correlation matrices for each channel and solve for the max-
imum likelihood power spectrum of all four maps (each
convolved with its own beam) simultaneously. However,
this would give a fourfold increase in the number of pixels
and a 64-fold increase in the compute time. Instead, we ana-
lyze the single all-channel map assuming a noise-weighted
average beam; this approximation is quantitatively justified
by tests done with the FASTER pipeline, below.

We use the HEALPix pixelization (Górski, Hivon, &
Wandelt 199817); in this scheme, the pixels have equal area

17 See also http://www.eso.org/science/healpix.
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but are asymmetric and have varying shapes. These slightly
different shapes lead to pixel-specific window functions.
Calculating all of the individual pixel window functions at
our resolution is not feasible; instead, we use the all-sky
average HEALPix window function appropriate for our
resolution.

By comparing individual pixel window functions at lower
resolution, we can set an upper limit on the errors that may
be induced by this approximation. Scaling to 270 pixels (a
factor of 4 larger), we find maximum deviations of 5% in
temperature (i.e., 10% in power) in the ratio of actual pixel
window functions to the average pixel window function on
the whole celestial sphere, at the correspondingly scaled l of
1024=4 ¼ 256. Thus, the pixel window function employed
cannot be more than 5% (corresponding to an error in Cl of
10%) off the true value at our highest l. In fact, since the field
incorporates pixels of many geometries, averaging will
make the error much smaller, realistically less than 1% in
temperature.

Thus far we have assumed that the time-ordered data are
comprised of CMB signal and stationary Gaussian noise
only. However, we know that in our data there are system-
atics that lead to residual constant-declination stripes in the
map. Failure to account for these residuals leads to the
detection of a signal in the ð1� s�1 � 2� s�1Þ=2 difference
maps, which should be pure noise maps. In the MADCAP
approach we account for these residuals by marginalizing
over the contaminated modes when deriving the power
spectrum from the map (J. Borrill et al. 2003, in prepara-
tion). Specifically, to give zero weight to a particular pixel
template, we add infinite noise in that mode to the
pixel-pixel correlation matrix

C�1 ! lim
�!1

C þ �2MyM
� ��1

; ð3Þ

where M is the matrix of orthogonal templates, one of
each mode to be marginalized over. Applying the Sherman-
Morrison-Woodbury formula, this reduces to

C�1 ! C�1 � C�1M MyC�1M
� ��1

MyC�1 ; ð4Þ
yielding a readily calculable correction (requiring computa-
tionally inexpensive matrix-vector operations only) to the
inverse correlation matrix. Now whenever we multiply by
C�1 in estimating the power spectrum we simply add the
appropriate correction term. For the residual constant-
declination stripes in this data set we construct a sine and
cosine template along each line of pixels of constant declina-
tion for all modes with wavelengths longer than 32 pixels
(about 4�).

Once the iterative power spectrum estimation has con-
verged, the error bars on each bin are estimated from the
initial (zero signal) and final bin-bin Fisher information
matrices using the offset lognormal approximation (Bond
et al. 1998).

3.3. The FASTERAnalysis Path

The FASTER pipeline is based on the MASTER
technique described in Hivon et al. (2002). MASTER allows
fast and accurate determination of Cl without performing
the time-consuming matrix-matrix manipulations that
characterize exact methods such as MADCAP (Borrill
1999).

As in MADCAP, there are two separate steps in the
FASTER path: map-making and power spectrum estimation

from that map. In our current implementation of FASTER,
we make a map from the data by naively binning the time
stream into pixels on the sky. To reduce the effects of 1/f
noise on this naively binned map, a brick-wall high-pass
Fourier filter is first applied to the time stream at a frequency
of 0.1 Hz for the 1� s�1 data and 0.2 Hz for the 2� s�1 data.

The spherical harmonic transform of this naively binned
map is calculated using a fastOðN1=2

pix lÞmethod based on the
HEALPix tessellation of the sphere (Górski et al. 1998).
The angular power in a noisy map, ~CCl , can be related to the
true angular power spectrum on the full sky,Cl, by the effect
of finite sky coverage (Mll0 ), time and spatial filtering of the
maps (Fl), the finite beam size of the instrument (Bl), and
instrument noise (Nl) as

~CCl

� �
¼

X
l0

Mll0Fl0B
2
l0 hCl0 i þ h ~NNli : ð5Þ

The coupling matrix Mll 0 is computed analytically. Bl is
determined by the measured beam and the pixel window
function assuming here that the pixel has a circular sym-
metry. Fl is determined from Monte Carlo simulations
of signal-only time streams, and Nl from noise-only
simulations of the time streams.

The simulated time streams are created using the actual
flight pointing and transient flagging. The signal component
of these time streams is generated from simulated CMB
maps, while the noise component is from realizations of
the measured detector noise n( f ). In both cases the same
high-pass filtering (0.1 Hz at 1� s�1 and 0.2 Hz at 2� s�1)
and notch filtering (between 8 and 9 Hz, to eliminate the
previously mentioned nonstationary spectral line in the time
stream data) are applied to the simulated time-ordered data
(TOD) as to the real one. Fl and Nl are determined by
averaging over 600 and 750 realizations, respectively. Once
all of these components are known, the power spectrum
estimation is carried out as follows.

A suitable quadratic estimator of the full sky spectrum in
the cut sky variables ~CCl , together with its Fisher matrix, is
constructed via the coupling matrix Mll0 and the transfer
function Fl (Bond et al. 1998; Netterfield et al. 2002). The
underlying power is recovered through the iterative conver-
gence of the quadratic estimator onto the maximum likeli-
hood value as in standard maximum likelihood techniques.
A great simplification and speed-up are obtained as a result
of the diagonality of all the quantities involved, effectively
avoiding the O(N3) large matrix inversion problem of the
general maximum likelihood method. The extension of the
quadratic estimator formalism to Monte Carlo techniques
such as MASTER has the added advantage that the Fisher
matrix characterizing the uncertainty in the estimator is
recovered directly in the iterative solution and does not rely
on any potentially biased signal-plus-noise simulation
ensembles. A detailed discussion of the FASTER extension
to the MASTER procedure can be found in C. Contaldi
et al. (2003, in preparation).

A drawback of using naively binned maps in the pipeline
is that the aggressive time filtering completely suppresses
the power in the maps below a critical scale lc � 50 (Hivon
et al. 2002). This results in one or more bands in the power
spectrum running over modes with no power and that are
thus unconstrainable. In practice, we deal with this by
binning the power so that many of the degenerate modes
lie within the first band 2 < l � 25. The power in the
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degenerate band can then be regularized to zero power or a
level consistent with the Differential Microwave Radio-
meter (DMR) large-scale results. Regularizing with a non-
zero value carries the disadvantage that the second band
25 < l � 75 will be nontrivially correlated with power,
which carries a theoretical bias. Regularizing with zero
power results in no correlations between the first two bands
and is more consistent with the filtering done on the Monte
Carlo maps, which sets the signal in the affected modes to
zero identically below lc. We adopt the latter approach in
this analysis to recover a useful band, which we label as
25 < l � 75. However, as the window functions show below
(Fig. 12), most of the information in this band comes from
50 < l � 75.

The FASTER pipeline allows the use of nonuniform
masks applied to the observed patch of sky. We have experi-
mented with a number of such weighting schemes for our
patch including total variance weighting 1=ðSþNÞ and
Weiner-like S=ðSþNÞ weighting, where S is the Monte
Carlo estimated variance of the co-added signal in the pixel
(which varies from pixel to pixel because of the high-pass
filtering applied to the time data stream and the nonuniform
scanning speed) and N is the variance of the noise in the
pixel. We have found that the 1=ðSþNÞ weighting gives
optimal results for this particular patch and coverage
scheme of this analysis.

In order to remove any effect of the constant-declination
striping contaminant described above, a further (spatial)
filtering step is applied to all the maps in the pipeline. The
HEALPix map is projected to a rectangular, square-pixel
map, where a spatial Fourier filter is applied that removes
all modes in the map with wavelengths greater than 8=2 in
the right ascension direction. This filtered map is then
projected back to the HEALPix pixelization.

The inclusion of several channels is achieved by averaging
the maps (both from the data and from the Monte Carlo
procedures of each channel) before power spectrum estima-
tion. Weighting in the addition is by hits per pixel and by
receiver noise at 1 Hz. Each channel has a slightly different
beam size, which is taken into account in the generation of
the simulated maps. The Monte Carlo procedure employed
in FASTER and MASTER ensures that the estimated
power is explicitly unbiased with respect to any known sys-
tematics, thus any inaccuracy in assuming a common Bl in
the angular power spectrum estimation is then absorbed
into Fl. Similarly, any inaccuracy on the effective pixel
window function for the patch of sky under consideration
would be absorbed into Fl.

The calculation of the full angular power spectrum and
covariance matrix for the four good 150 GHz channels of
BOOMERANG (�350,000 3<5 pixels and �216,000,000
time samples; this is different from the MADCAP numbers
given above because non-CMB sections of the time stream
are treated differently) takes approximately 4 hr running on
six nodes of the NERSC IBM SP3.

3.4. Application to Data

When treating real data, each of the methods described
has particular advantages. MADCAP is an ‘‘ optimal ’’ tool,
in the sense that it uses the full statistical power of the data
in deriving the power spectrum; no other method can use
the same data and produce a power spectrum with smaller
error bars. In addition, it produces a maximum likelihood

map and pixel-pixel covariance matrix that take advantage
of the full cross linking of the scan strategy. However, the
MADCAP algorithms are computationally very costly.
This leads to the use of several approximations (e.g., the use
of a single beam for the four channels, using an average
pixel window function, and fitting errors as a lognormal
function) and reduces our ability to use this method for
wide-range testing of potential systematic effects. With our
current computing power and sky cut, we are limited to a 70

pixelization withMADCAP.
The FASTER method provides a less optimal estimate of

the power spectrum but is computationally much more
rapid. As is shown below, in our case the FASTER results
are nearly as statistically powerful as those from MAD-
CAP. The rapid computational turnaround allows the use
of finer pixelization (3<5) and extensive systematic testing
and modeling of potential systematic errors. Additionally,
FASTER is capable of handling independent beams and
enables the computation of a true window function for our
l bins for use in parameter extraction.

4. SIGNAL MAPS

The first step in each pipeline is the production of a sky
map. The fundamental differences between the two analysis
paths are well illustrated by a visual comparison of the two
maps, shown in Figure 2. Although there is a high correlation
of the small-scale structure in these two maps, their overall
appearance is strikingly different, primarily as a result of the
time domain filtering that suppresses large-scale structure in
the FASTER map. In addition, the FASTER map has
had the constant-declination modes removed (hereafter
‘‘ destriped ’’), while the MADCAP map has not. (The
MADCAP destriping occurs via marginalization over conta-
minated modes during the power spectrum estimation). The
MADCAP map should be interpreted in concert with its
covariance matrix, which describes which modes in the map
are well constrained and which are not. The FASTER proce-
dure does not create a covariance matrix; the correlations in
the map are accounted for in theMonte Carlo process. Thus,
while it is reassuring that the twomaps show similar structure
on small scales, a quantitative comparison can only be made
by proceeding through the estimation of the angular power
spectrumwith eachmethod.

5. FASTER ANALYSIS CONSISTENCY TESTS

The MADCAP analysis is limited to 70 pixelization and
assumes a common beam window function for the four
channels. We have used the FASTER pipeline to check the
effect of this coarser pixelization and window function
assumption with respect to the baseline FASTER result,
which is calculated using 3<5 pixels and individual window
functions for each channel. The baseline FASTER result is
shown in Figure 3, which also gives results derived using 70

pixels and results derived using the same ‘‘ single-beam ’’
assumption used byMADCAP. As can be seen in the figure,
the single-beam approximation has negligible effect. The 70

pixelization does have some effect, but it is small compared
with the statistical errors.

We have also tested the robustness of the FASTER result
to other changes in the pipeline. Figure 3 also shows the
effects of destriping and of using SþN weighting (rather
than uniform weighting). These have some effect on the
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Fig. 2.—Maps of CMB temperature produced by MADCAP (top) and FASTER (bottom). For comparison, both maps are pixelized at 70; in practice, we
use a 70 (3<5) pixelization in the MADCAP (FASTER) analysis. The strikingly different appearance of the maps, with the MADCAP map preserving more
information on large scales, illustrates some of the significant differences in the two analysis methods, as described in the text.



power spectrum, again smaller than the statistical errors.
Note that we expect these to have some effect given that
the information content of the map is modified by these
procedures.

Another test of the robustness of the angular power spec-
trum is to change the details of the l binning. We have used
the FASTER pipeline to derive power spectra with Dl ¼ 40
bins and for Dl ¼ 50 bins shifted by 25 from our fiducial
binning. Both of these give excellent agreement with the
power spectrum of Figure 3.

6. INTERNAL CONSISTENCY TESTS

The analysis pipelines described above deliver an esti-
mated CMB power spectrum along with statistical errors on
that power spectrum. Below we show the CMB power spec-
tra derived from the maps and use those results to estimate
cosmological parameters. Before doing so, we describe here
a variety of internal consistency tests designed to check for
residual systematic contamination.

Our internal consistency checks are done by splitting the
data set roughly in half, making a map with each half of
the data, subtracting these two maps, and asking whether
the power spectrum of the residual map is consistent with
pure detector noise. Note that one only expects the two
maps to be identical if they contain the same information; if

the two maps have been observed or filtered differently,
perfect agreement is not expected.

Our most powerful internal consistency check is to take
data that were gathered while scanning the gondola azimu-
thally at 1� s�1 (roughly the first half of the flight) and com-
pare them with data taken during 2� s�1 scans (roughly the
second half of the flight). This tests for effects that vary over
long timescales, position of the gondola over the Earth,
position of the scan region with respect to the Sun, and
instrumental effects that are modulated by scan speed. The
latter include any misestimate of the transfer function of
the detector system and any nonstationary noise in the
detector system. Hereafter, this test is referred to as the
ð1� s�1 � 2� s�1Þ=2 consistency test. Each pipeline was used
to produce and estimate the power spectrum of a
ð1� s�1 � 2� s�1Þ=2 map.

Figure 4 shows MADCAP and FASTER (1� s�1�
2� s�1) difference maps, each pixelized at 70. Many of the
gross features apparent in both maps are due to the varia-
tions in signal-to-noise ratio, as can be seen by comparison
with Figure 1. The MADCAP map is not destriped because
the destriping in that pipeline is done with a constraint
matrix in deriving the power spectrum. The FASTER map
is destriped and appears significantly cleaner to the eye. In
practice, a 3<5 pixelized map is used in the FASTER
analysis; here we display a 70 map so the noise level per pixel
remains comparable to theMADCAP version.

Figure 5 shows the power spectra of the signal maps (top
panel) shown in Figure 2 and of the (1� s�1 � 2� s�1) differ-
ence maps (bottom panel) shown in Figure 4. It is apparent
that the power spectra of the signal maps are in very good
agreement with one another; these are discussed in more
detail below. Here we focus on the ð1� s�1 � 2� s�1Þ=2
difference spectra.

The statistical error in the power spectra of the signal
maps is dominated by sample variance for l < 500. Because
there is no signal and thus no sample variance in the power
spectra of the difference maps, the difference maps are
sensitive to systematic effects that are well below the (sample
variance–dominated) statistical noise of the signal maps at
low l.

The FASTER Monte Carlo simulations show that the
different scanning and l-space filtering in the 1� s�1 and 2�

s�1 data lead to a leakage of CMB signal into the
ð1� s�1 � 2� s�1Þ=2 FASTERmap. The average level of this
signal is expected to be at the level of �10 lK2 near the first
peak at l � 200. We correct for this effect in the FASTER
pipeline consistency test by subtracting the Monte Carlo
mean residual power found in each bin from the actual
ð1� s�1 � 2� s�1Þ=2 power spectrum and by adding the
variance of this effect in quadrature to the errors on that
power spectrum.

After these corrections to the FASTER pipeline, we find
the difference map angular power spectra shown in the
bottom panel of Figure 5. The �2 per degree of freedom with
respect to a zero-signal model is 1.34 (1.28) with a probability
of exceeding this �2 of P> ¼ 0:14 (0.18) for the MADCAP
(FASTER) analysis. Thus, when the entire spectrum is con-
sidered, the difference spectra of both analysis methods are
reasonably consistent with zero. It is clearly apparent, how-
ever, that there is a statistically significant signal in the
FASTER difference spectrum, at l � 300. Over this limited
range of the spectrum, the FASTER spectrum has a reduced
�2 ¼ 3:7 for 6 degrees of freedom, for a P> ¼ 0:001. Over

Fig. 3.—Angular power spectra derived from the FASTER pipeline. The
filled circles in each panel show the reference FASTER spectrum, which is
derived from a 3<5 pixelized map using SþNweighting, spatially filtered as
described in the text to remove constant-declination stripes. In the top
panel the reference spectrum is compared with a spectrum derived using a
single-beam window function, as in MADCAP. The second panel shows
the effect of using 70 pixelization. The third panel illustrates the effect of re-
moving the constant-declination stripes; the primary effect is to increase the
error in the first bin. The bottom panel shows the result of using a uniformly
weighted map and neglecting to remove the constant-declination stripes.
The top three panels show excellent agreement with the reference spectrum,
while the bottom panel shows good agreement except at very high l. [See the
electronic edition of the Journal for a color version of this figure.]
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Fig. 4.—ð1� s�1 � 2� s�1Þ difference maps, both at 70 pixelization to facilitate map comparisons by eye, for the region of sky where these scans overlap. The
color scale is the same as for the previous figures. Note that the consistency test power spectra are calculated on these maps divided by two,
ð1� s�1 � 2� s�1Þ=2. Top: MADCAP difference map. This map is not destriped, since in that pipeline the constant-declination stripes are ignored (by
introducing a constraint matrix) in the derivation of the angular power spectrum. Bottom: Destriped FASTER difference map. Note that theMADCAP input
time stream contains additional low-frequency information that is removed by an additional high-pass filter in the FASTER pipeline.



the same range, the MADCAP analysis gives a reduced
�2 ¼ 1:10 for 6 degrees of freedom, for aP> ¼ 0:36.

The residual signal in the FASTER difference map is both
localized in l and very small, with a mean of only 45 lK2 in
the four bins 150 < l < 300. The CMB signal is roughly
5000 lK2 in this l range, and our statistical errors on the
CMB signal, dominated by sample variance, are �400 lK2.
Thus, although the FASTER pipeline formally fails this
test, our statistical errors dominate our systematic errors by
an order of magnitude.

Investigation of individual detector channels shows that
the ð1� s�1 � 2� s�1Þ=2 power spectra near l � 200 are of
similar shape and amplitude in each.We have done a variety
of other consistency tests and simulations using the
FASTER pipeline on our lowest noise channel, B150A, to
try and understand potential sources for the ð1� s�1�
2� s�1Þ=2 failure. We have broken the data into four quar-
ters (Q1 and Q2 at 1� s�1; Q3 and Q4 at 2� s�1) and found
difference map power spectra for combinations that mini-
mize effects that depend on scan speed [ðQ1þQ3Þ�
ðQ2þQ4Þ] or a drift in time [ðQ1þQ4Þ � ðQ2þQ3Þ].
These combinations fail the consistency test with ampli-
tudes and shapes similar to the ð1� s�1 � 2� s�1Þ=2 failure.

Simulations were done in an attempt to recreate the
ð1� s�1 � 2� s�1Þ=2 difference failure by inducing various
systematic effects. Changes in the gain, the pointing offset,
and the filtering were modeled. Of these, only the last can
explain the failure in the FASTER pipeline, given that the
data pass the test in the MADCAP pipeline, since gain and
pointing offsets should be treated identically by the two
methods. For plausible levels of these systematic errors,

none induced ð1� s�1 � 2� s�1Þ=2 failures at the level seen.
The systematic that created the most similar shape was a
pointing offset between the two data sets. This is not a priori
unlikely, as it is plausible that a differential offset might
occur in the attitude reconstruction for the two scan speeds.
The magnitude of the difference test failure would corre-
spond to an �70 offset between the two data sets. This is
inconsistent with the measured stability of the positions of
the quasars in the two maps and, more importantly, is
inconsistent with the fact that the MADCAP analysis
achieves equally high or higher sensitivity and passes this
test. We have not been able to find the cause of the FASTER
analysis failure of the ð1� s�1 � 2� s�1Þ=2 consistency test.

We also used the FASTER pipeline to perform two other
consistency tests on the real data. These are shown, along
with the ð1� s�1 � 2� s�1Þ=2 results for reference, in
Figure 6. One differences maps made using right-going ver-
sus left-going scans. Another compares maps made with
two of the four channels (channels A and A2) with the other
two (channels A1 and B2). Both of these power spectra
appear to be consistent with zero in all l regions, as
evidenced by the statistics quoted in Table 1.

The ð1� s�1 � 2� s�1Þ=2 test failure on the FASTER pipe-
line leads us to the inclusion of an additional systematic
error term in the region where that failure is significant, i.e.,
for l � 400. In our final results below, we increase the
quoted FASTER errors on those bins by the amount of
the failure, adding it in quadrature (in lK2) to the likelihood
derived errors. In the Fisher matrix this corresponds to
adding the difference map power spectrum residuals in

Fig. 5.—MADCAP and FASTER angular power spectra and
ð1� s�1 � 2� s�1Þ=2 difference map power spectra. Top: FASTER ( filled
blue circles) and MADCAP ( filled red squares) angular power spectra and
their respective ð1� s�1 � 2� s�1Þ=2 difference map power spectra (open
symbols). The effects of constant-declination stripes have been removed in
each of these analyses. Bottom: Difference map angular power spectra plot-
ted on a magnified scale. There is a systematic effect near l � 200 in the
FASTER power spectrum, which is absent in the MADCAP treatment.
The level of these residuals is much smaller than the statistical errors on the
full power spectrum, shown in the top panel.

Fig. 6.—Difference map power spectra derived using FASTER. Top:
ð1� s�1 � 2� s�1Þ=2 difference map results. Middle: Result found by differ-
ence maps made from left-going scans and right-going scans, ðL�RÞ=2.
Bottom: Map made by differencing maps made by two channel com-
binations, ½ðAþA2Þ � ðA1þ B2Þ�=2. While the latter two power spectra
are relatively consistent with zero contamination, near l � 200 the
ð1� s�1 � 2� s�1Þ=2 spectrum is not. This contamination is, however, much
smaller than the statistical errors on the full CMB power spectrum in this l
region. The �2 statistics of these spectra with respect to zero signal are given
in Table 1.
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quadrature to the diagonal elements, while leaving the
off-diagonal terms unmodified.

7. COMPARISON OF RESULTS

The discussion above leads us to believe that the larger
pixels and the single-beam approximation used by
MADCAP should not have a significant effect on the power
spectrum. In addition, we have learned of a small consis-
tency test failure over a small range of l in the FASTER
power spectrum and corrected the errors on the spectrum
accordingly.

We now turn to the comparison of the CMB power
spectra derived with FASTER and MADCAP, shown in
the top panel of Figure 5.

Despite the fact that they were derived from the same time
stream data, there are several reasons why these two power
spectra are not expected to be identical. Both the cross-
linked observing strategy and the lower frequency filtering
cutoff in the time stream allow MADCAP to recover some
modes that are missing from the FASTERmap.

At the level of the errors shown, the agreement between
these two estimates of the power spectrum is excellent.
However, there is some indication of a systematic ‘‘ tilt ’’
between the two spectra. The level of this tilt is not large;
modeling it as a difference in the beam window functions,
reducing the FWHM of the beam used by MADCAP by
one-quarter of our systematic beam uncertainty, visually
removes the apparent tilt. For this reason, and as is borne
out by the discussion below, this difference will not have
much effect on the cosmological parameter estimation
results.

However, we have investigated any known differences
that could lead to a systematic difference between these two
power estimation methods. We have shown (via the
FASTER consistency tests discussed above) that the larger
pixelization and single-beam assumption of MADCAP
should not produce such a tilt. Another potential effect is a
bias in the pixel window function, which MADCAP takes
to be the average HEALPix window function on the sphere.
The FASTER Monte Carlo procedures incorporate the
effects of the real pixel geometries; any bias induced by using
a single, isotropized approximation for the smoothing of
the HEALPix pixelization is corrected by Monte Carlo
estimation of the transfer function Fl. In effect the transfer
function ensures that the method is robust to any similar

approximations used in describing the effective pixelization
smoothing. However, the analytic arguments discussed
above, based on individual pixel window functions calcu-
lated for larger pixels, indicate that any such bias caused by
theMADCAP assumption should be very small.

Another potential bias could be introduced by the
destriping algorithms. We have used Monte Carlo
procedures to test for such effects in FASTER and have
found that any such bias is much smaller than the effect seen
here. The marginalization method used byMADCAP is not
expected to bias the power spectrum in any way, but Monte
Carlo tests to verify this are not practical given the greater
computational cost of that pipeline.

In principle, a tilt could also be induced by a difference in
the time stream noise statistics used by one of the methods;
however, the same noise power spectrum (or time-time noise
correlation function) is used by the two pipelines.

It is possible that the constant-declination striping is not
fully removed by one of the destriping algorithms, and this
leads to the difference in tilt. As can be seen in Figure 3, the
FASTER destriping does affect the power spectrum slightly
at high l. If this is the reason for the tilt discrepancy, residual
striping that is randomly phased with respect to the CMB
sky signal would increase the level of the power spectrum.

Figure 7 compares the Netterfield et al. (2002) result,
derived using FASTER on 1.9% of the sky at 70 pixelization,
with several new results. The top panel compares the
Netterfield et al. (2002) result with the final FASTER result
discussed above, on 2.9% of the sky at 3<5 resolution. The
middle panel shows a new MADCAP analysis of the same

TABLE 1

Consistency Test Results

Test Bins

Reduced

�2 P>

FASTER ðL�RÞ=2 ............................... All 1.15 0.29

1–6 0.96 0.45

FASTER ½ðAþA2Þ � ðA1þ B2Þ�=2 ...... All 1.18 0.26

1–6 1.25 0.28

FASTER ð1� s�1 � 2� s�1Þ=2.................. All 1.28 0.18

1–6 3.70 0.001

MADCAP ð1� s�1 � 2� s�1Þ=2 ............... All 1.34 0.14

1–6 1.11 0.35

Notes.—Presented are �2 statistics for the consistency tests described in
the text and plotted in Figs. 5 and 6. Results are reported for all l bins
(50 � l � 1000, 20 bins), as well as for the first six bins (50 � l � 350),
where the FASTER ð1� s�1 � 2� s�1Þ=2 test failure of Fig. 6 is evident.

Fig. 7.—Comparison of the FASTER results of Netterfield et al. (2002)
(black filled circles), derived from 1.9% of the sky at 70 pixelization, with
three new analyses (open blue squares). Top: FASTER results of this paper
(2.9% of the sky, 3<5 pixelization). Middle: New MADCAP analysis of the
Netterfield et al. (2002) sky cut (1.9% of the sky, 70 pixelization). Bottom:
MADCAP results of this paper (2.9% of the sky, 70 pixelization). The agree-
ment is generally very good, with the greatest variations at high l where
noise, rather than cosmic variance, dominates the errors. [See the electronic
edition of the Journal for a color version of this figure.]
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region as Netterfield et al. (2002), with the same resolution.
Finally, in the bottom panel the analysis of Netterfield et al.
(2002) is compared with the MADCAP analysis of the
larger cut analyzed in this paper, at 70 resolution. As
expected, the larger data set leads to smaller error bars
across the entire range of l. The MADCAP errors are
smaller than the FASTER errors at low l, as a result of the
preservation of lower frequencies in the time stream. The
FASTER results agree very well with one another, except in
the region near l � 800 where there are three 1 � and one 2 �
deviations. In the lower panels there is some evidence for
the same tilt bias between MADCAP and FASTER on the
Netterfield et al. (2002) cut (mentioned above), indicating
that this is not unique to the larger sky cut.

8. GALACTIC DUST

In Masi et al. (2001) we measured the angular power
spectrum of the BOOMERANG 410 GHz map in three
circles of 9� radius, centered at Galactic latitudes of
b ¼ �38�,�27�, and �17�. Correlating the lower frequency
BOOMERANG maps, which are dominated by CMB fluc-
tuations, with the 3000 GHz map of Finkbeiner, Davis, &
Schlegel (1999; model 8 of that paper) gave a measure of the
spectral ratios between that map and the BOOMERANG
bands; these ratios were used to scale the 410 GHz power
spectra to the lower frequencies.

In the region farthest from the Galactic plane, the 410
GHz map is consistent with noise and no dust power spec-
trum result is reported. Figure 8 shows the extracted power
spectrum of dust for the b ¼ �27� circle, taken directly from
Masi et al. (2001), along with the same calculation for the

b ¼ �17� circle of that paper. These results show that the
dust contribution to the total power spectrum is largest at
low l and is generally small (<100 lK2).

A proper estimate of the contribution of dust emission to
the measured power spectrum requires that the specific mor-
phology of the dust emission be taken into account. We
have done this by using theMADCAP analysis path to mar-
ginalize over templates of the galactic foregrounds. The
results are shown in Figure 9. Here we have used two tem-
plates, one of galactic synchrotron emission (Haslam et al.
1981; Jonas, Baart, & Nicolson 1998; D. Finkbeiner 2002,
private communication18), the other of galactic dust emis-
sion (Schlegel, Finkbeiner, & Davis 1998; D. Finkbeiner
2002, private communication). The power spectrum is very
stable to this process, with no significant change for l � 100.
There is a 1 � change in the power at l ¼ 50, consistent with
the expectation that the effects of dust contamination
should be largest at lowest l and generally small. We use the
galaxy template–marginalized MADCAP results in the
remainder of this paper. For the FASTER results, for which
the statistical errors at low l are substantially higher than
those of the MADCAP spectrum, the effects of dust
emission are negligible.

9. FINAL RESULTS

We have used FASTER and MADCAP to derive two
estimates of the angular power spectrum using the same
input time stream, sky coverage, and noise statistics. The
final FASTER results, derived from a 3<5 pixel map and

Fig. 8.—Angular power spectra of IRAS-correlated dust scaled to 150
GHz for two circles of radius 9� centered at Galactic latitudes of b ¼ �17�

(open squares) and �27� (open triangles). Details of this analysis can be
found in Masi et al. (2001). The FASTER CMB power spectrum ( filled
circles) is shown for reference. [See the electronic edition of the Journal for a
color version of this figure.]

Fig. 9.—Galactic marginalization. The filled red squares show the
results of the MADCAP analysis with marginalization over the constant-
declination modes (to remove constant-declination striping). The open blue
circles show the results after additional marginalization over two galactic
templates, one of galactic dust and the other of galactic synchrotron
emission. These lead to slight shifts in the power spectrum at low l, only
significant in the first bin.

18 Code available at http://astro.berkeley.edu/dust.
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corrected for the small ð1� s�1 � 2� s�1Þ=2 consistency test
failure, appear along with the final galaxy-marginalized
MADCAP results in Figure 10.

Our power spectrum results are characterized by a likeli-
hood function for the band power in each band (Cb). A good
approximation to this function is given by an offset log-
normal function (Bond et al. 1998) Zb ¼ lnðCb þ xbÞ of the
maximum likelihood values found in each band (Cb) and an
offset parameter for each band, xb. Given these, the
likelihood is found by

�b ¼
DCb

Cb þ xb
; ð6Þ

DZb ¼ ln Cb þ xbð Þ � lnðCb þ xbÞ ; ð7Þ
�2 lnLðCbÞ ¼

X
bb0

DZb�
�1
b Gbb0�

�1
b0 DZb0 ; ð8Þ

whereGbb0 is the band power correlation matrix, normalized
to unity on the diagonal. Table 2 gives the maximum likeli-
hood value Cb ¼ lðl þ 1ÞCl=2�, curvature error (DCb), and
offset parameter xb for each band for both the FASTER
andMADCAP results of Figure 10. The bin-bin correlation
matrices for these power spectra are given in Tables 3 and 4
for FASTER and MADCAP, respectively. These data, and
the window functions of Figure 12, are available on-line.19

One measure of the level of agreement between the
FASTER and MADCAP power spectra can be made by
treating the two power spectra as independent data sets
(which they are not) and using the curvature error bars
to calculate a �2 statistic. We find that �2 ¼ 8:54 for 20
degrees of freedom, which gives P> ¼ 0:988. This low �2

value indicates that the two analyses of the same data
vary by an amount much less than is expected for two
random realizations of the same measurement; that is,
the ‘‘ analysis variance ’’ is very small compared to the
statistical errors.

10. FEATURES IN THE POWER SPECTRUM

The cosmological parameter estimation procedure we
follow below is done in the context of inflation-motivated
models with adiabatic initial density perturbations. Thus,
it is both interesting and important to assess the evidence
in favor of these models. One of their generic predictions
is that there will be a series of peaks in the CMB power
spectrum, the exact positions and amplitudes of which
depend on the cosmological parameters. It is thus inter-
esting to search for such features in our power spectrum
and evaluate the statistical significance with which they
are detected.

To detect such features, we use the method applied to
the Netterfield et al. (2002) power spectrum in de Bernardis
et al. (2002), based on parabolic fits to the CMB power spec-
trum over a fixed number of bands. We fit the spectrum to

Fig. 10.—Final angular power spectrum results at 150 GHz, also given
in Table 2. In both panels, the MADCAP results are shown as red squares,
while the FASTER results are given as blue circles. The top panel shows
the data of Table 2, along with the best-fit model from the weak-prior
parameter estimation discussed below. In addition to the errors shown,
there is a 10% uncertainty in the temperature calibration (20% in the
temperature-squared units of this plot) and a beam uncertainty of 1<4 rms.
In the bottom panel we have rescaled the data by changing the beam
window function by 0.5 �. This gives much better visual agreement with the
model.

19 See http://cmb.phys.cwru.edu/boomerang or
http://oberon.roma1.infn.it/boomerang.

TABLE 2

Angular Power Spectra

FASTER MADCAP

llow
(1)

lhigh
(2)

Cb

(3)

DCb

(4)

xb
(5)

Cb

(6)

DCb

(7)

xb
(8)

26 75 1053 401 22 1423 313 341

76 125 3175 358 40 2609 279 34

126 175 4614 406 71 4823 384 50

176 225 5581 418 110 5139 349 81

226 275 5710 385 162 5365 321 124

276 325 4107 264 228 3953 222 180

326 375 2532 160 320 2445 137 249

376 425 1877 120 441 1822 105 337

426 475 2120 130 593 2092 116 467

476 525 2320 142 794 2456 132 638

526 575 2368 149 1054 2444 135 854

576 625 2141 147 1397 2216 133 1133

626 675 1923 149 1838 1994 136 1497

676 725 2066 170 2437 2186 157 2023

726 775 1738 184 3202 2008 172 2657

776 825 2551 239 4204 2581 217 3669

826 875 1647 252 5542 2229 245 4837

876 925 1976 312 7237 2253 296 6674

926 975 1087 352 9696 1156 334 8560

976 1025 1394 444 12878 1155 430 12324

Notes.—Angular power spectra of the CMB, derived using the
FASTER (cols. [3]–[5]) and MADCAP (cols. [6]–[8]) methods. The
FASTER power spectrum has been corrected for the ð1� s�1 � 2� s�1Þ=2
failure by the addition of a systematic error bar in quadrature with the
statistical one in the relevant l bins. The MADCAP power spectrum has
been marginalized over two galactic templates as discussed in the text. The
FASTER power spectrum is calculated for shaped bins, while the
MADCAP power spectrum is calculated for top-hat bins.
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the polynomial

Cl ¼ CA l � lp
� �2þCB ; ð9Þ

where lp is the peak position. In order to fit the measured
band powers CB, we average the model Cl over the bands
reported in Table 2, thus obtaining the theoretical band
powers CT

b . Using the covariance matrix G�1
bb0 of the

measured band powers, we compute

�2 ¼ ðCb � CT
b ÞG�1

bb0 ðCb0 � CT
b0 Þ ; ð10Þ

which we minimize by varying CA, CB, and lp. Errors on the

fit lp and CB are found by marginalization of the full likeli-
hood over CA. In order to evaluate the significance of the
detection of a feature, we study the likelihood of the
curvatureCAmarginalizing over the other two parameters.

When we compare different models, i.e., different values
of the two parameters lp andCB, the �

2 has 2 degrees of free-
dom. In order to show how other models compare to the
best-fit one, we plot in Figure 11 the contours corresponding
to D�2 ¼ 2:3, 6.17, and 11.8, i.e., 68.3%, 95.4%, and 99.7%
confidence, respectively.

Table 5 shows the results of this analysis for both the
MADCAP and the FASTER power spectra of Table 2.
The significance of the detections depends somewhat on the
range of bands over which the fit is done; the results in the
table are those that give the most significant detections.
Comparing the results to de Bernardis et al. (2002), we find
a general improvement in the precision with which the peaks
and valleys are located, particularly for the first and second
peaks and for the first valley. We obtain very similar results
in a variation of this method where a three-parameter quad-
ratic is fitted over a sliding five-band window, also described
in de Bernardis et al. (2002). The results are also very similar
when applied to a FASTER power spectrum derived for
bands of the same width (Dl ¼ 50) with band centers shifted
by l ¼ 25.

In order to investigate the level at which the detections of
different peaks are correlated, we have performed a simulta-
neous fit of all the spectral bins using a linear combination
of four Gaussians

Cl ¼
X4
i¼1

A2
i exp � l � lið Þ2

2�2
i

" #
; ð11Þ

which is sufficiently flexible to provide a good fit to any stan-
dard theoretical spectrum.We proceed using aMonte Carlo
Markov chain method, as in Christensen et al. (2001), Lewis
& Bridle (2002), and Odman et al. (2003), accounting for
calibration and beam uncertainties as in Bridle et al. (2002).
We find best-fit values for Ai and li that are in good agree-
ment with the results obtained above and point clearly
toward the presence of features in the power spectrum.

Using this simultaneous fit to all of the power spectrum
bins with a single phenomenological function allows us to
study the correlation between the different parameters.

Fig. 11.—D�2 contours for the position and amplitude of peaks and
valleys in the BOOMERANG MADCAP power spectrum. The contours
are at D�2 ¼ 2:3, 6.17, and 11.8, i.e., 68.3%, 95.4%, and 99.7% confidence.
The vertical dashed lines give the feature positions found using the cosmo-
logical database and as given in Table 5. Similar results are obtained using
the FASTER results. [See the electronic edition of the Journal for a color
version of this figure.]

TABLE 5

Peaks and Valleys in the CMB

MADCAP FASTER AdiabaticCDM

Feature

(1)

lRange

(2)

lp
(3)

Cp

(lK2)

(4)

Level

(�)

(5)

lp
(6)

Cp

(lK2)

(7)

Level

(�)

(8)

lp
(9)

Cp

(lK2)

(10)

Peak 1 ................. 100–300 216þ6
�5 5480þ1130

�1130 6.7 215þ5
�6 5690þ1200

�1200 4.8 223þ4
�4 6022þ394

�370

Valley 1 ............... 300–500 425þ4
�5 1820þ420

�410 6.3 430þ7
�5 1870þ420

�410 4.3 411þ17
�17 1881þ152

�141

Peak 2 ................. 400–650 536þ10
�10 2420þ620

�570 4.0 528þ14
�10 2330þ600

�550 3.1 539þ19
�19 2902þ248

�229

Valley 2 ............... 550–800 673þ18
�13 2030þ670

�560 2.6 681þ21
�21 1910þ630

�530 2.5 667þ28
�27 2122þ302

�265

Peak 3 ................. 750–950 825þ10
�13 2500þ1100

�840 3.2 820þ15
�22 2150þ1000

�720 2.2 812þ26
�25 3121þ497

�429

Notes.—Locations and amplitudes of peaks and valleys in the power spectrum of the CMB, obtained with polynomial fits.
The locations, amplitudes, and confidence levels of detection are listed for MADCAP (cols. [3]–[5]) and FASTER (cols. [6]–[8]).
The l range used in the parabolic analysis is reported in col. (2). Cols. (9) and (10) give the result of cosmological ‘‘ peak
parameter ’’ extraction (using theMADCAP data,COBE-DMRdata, and the ‘‘ weak cosmological prior ’’ discussed below) from
the set of adiabatic perturbation, cold dark matter models used in our cosmological parameter estimation. All the errors include
the effects of gain and beam calibration uncertainties.
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These are not negligible between the amplitudes of the peaks
that are near to each other [for example, RðA1;A2Þ ¼ 0:19,
RðA1;A3Þ ¼ 0:07, RðA2;A3Þ ¼ 0:27] and between ampli-
tudes and widths [RðA1; �1Þ ¼ 0:20], but the detections are
all confirmed.

As the table and figure show, we clearly detect multiple
features in the power spectrum. The next question is
whether the adiabatic perturbation, inflationary model set
can produce models with similar features.

Using the same methods discussed below for cosmologi-
cal parameter estimation, we use the data and our theoreti-
cally motivated database of Cl models to make Bayesian
estimates of the positions and amplitudes of peaks in the
power spectrum, for comparison with our model-independ-
ent fits. Columns (9) and (10) of Table 5 show the results of
this process (using the ‘‘ weak prior ’’ described below) and
give results that agree very well with the phenomenologi-
cally measured parameters of the various features. This
bolsters our confidence in the model set we use in the next
section, to estimate cosmological parameters.

11. COSMOLOGICAL PARAMETERS

Our measurement of the CMB angular power spectrum
can be used in conjunction with other cosmological infor-
mation to constrain several cosmological parameters. Our
method, described in detail in Lange et al. (2001), compares
the measured angular power spectrum with the predicted
power spectra from a family of theoretical models. We
choose to compare our measurements with inflation-
motivated adiabatic cold dark matter models, with the
seven cosmological parameters given in Table 6.

We take a Bayesian approach, calculating a likelihood of
each model given the data, in the discrete parameter data-
base of Table 6. We then marginalize over the continuous
parameters such as theory normalization (lnC10), calibra-
tion, and beam uncertainty for each model. To find confi-
dence intervals on any given parameter, we marginalize
over the other parameters by integrating through the
database, collapsing the n-dimensional likelihood to a
one-dimensional likelihood curve for that parameter.

In the comparison of the theoretical and measured power
spectra, one must convolve the predicted theory power

spectrum with the window function for each l bin of the
measurement. The flat-band average of a target model,
CT

l ¼ lðl þ 1ÞCT
l =2�, can be defined with respect to a

window functionWb
l for that band as

CT
b ¼

IðWb
l C

T
l Þ

IðWb
l Þ

; ð12Þ

with

I flð Þ ¼
X
l

ðl þ 1=2Þ
lðl þ 1Þ fl : ð13Þ

In the power spectrum estimation pipelines discussed
above, we can choose to use shaped bands rather than flat.
This will change the details of the window function, but the
prescription for calculating theoretical band averages
remains the same.

We have calculated the window functions for the
FASTER power spectrum bins, using SþN weighting on
the map. In Figure 12 we show the flat-band window
functions, to illustrate their l-space shapes and the level of
correlations between bands. Details on their derivation are
given in C. Contaldi et al. (2003, in preparation). For the
MADCAP comparison with theory, we use top-hat window
functions.

We can also apply a series of ‘‘ priors,’’ or prior prob-
abilities, to each model in the database, modifying the likeli-
hood of that model before marginalization. The priors we
choose include a ‘‘ weak prior,’’ which sets the likeli-
hood to zero if, for that model, the Hubble parameter
(H0 ¼ 100 h km s�1 Mpc�1) has a value outside the range
0:45 < h < 0:90, the current age of the universe is less than
10 Gyr, or the total matter content �M < 0:1. We also
investigate the effect of narrowing the prior on the Hubble
constant to h ¼ 0:72� 0:08, as measured by the Hubble
Key Project (Freedman et al. 2001).

We also examine the effect of a large-scale structure (LSS)
prior. This is a joint constraint on �2

8, the band power of (lin-
ear) density fluctuations on a scale corresponding to rich
clusters of galaxies (8 h�1 Mpc), and on a shape parameter
Ceff characterizing the (linear) density power spectrum. The
LSS prior probability distribution, described in detail in
Bond et al. (2003), is slightly modified over that used in

TABLE 6

Cosmological Parameter Database

Parameter Values

�k .............. �0.5,�0.3,�0.2,�0.15,�0.1,�0.05, 0, 0.05, 0.1, 0.15, 0.2, 0.3, 0.5, 0.7, 0.9

�� .............. 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1

!c ............... 0.03, 0.06, 0.08, 0.10, 0.12, 0.14, 0.17, 0.22, 0.27, 0.33, 0.40, 0.55, 0.8

!b ............... 0.003125, 0.00625, 0.0125, 0.0175, 0.020, 0.0225, 0.025, 0.030, 0.035, 0.04, 0.05, 0.075, 0.10, 0.15, 0.2

ns................ 0.5, 0.55, 0.6, 0.65, 0.7, 0.725, 0.75, 0.775, 0.8, 0.825, 0.85, 0.875, 0.9, 0.925, 0.95, 0.975, 1.0, 1.025, 1.05, 1.075, 1.1, 1.125, 1.15, 1.175, 1.2,

1.25, 1.3, 1.35, 1.4, 1.45, 1.5

�c ............... 0, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.7

lnC10 ......... Continuous

Notes.—The values of the cosmological parameters in our model space; while lnC10 is marginalized as a continuous variable, the rest are calculated on
a grid with the discrete parameter values given. The curvature �k is related to the overall density by �k ¼ 1� �total. The cold dark matter and baryon
physical densities !c and !b are given by !x ¼ �xh2, where h is the Hubble parameter in units of 100 km s�1 Mpc�1. The database is restricted to models
for which �M ¼ �c þ �b > 0:1. Parameter ns is the spectral index for primordial density fluctuations, where a value of 1.0 indicates scale invariance.
Reionization is parameterized by �c, the Thomson depth to the epoch when the universe reionized after photon decoupling. In addition to these
cosmological parameters, there are instrumental parameters describing the systematic gain and beam uncertainties. These are accounted for, by
marginalization, in all cosmological parameter estimates reported in this paper.
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Fig. 12.—Window functions derived from the FASTER analysis. These
window functions are used to relate a continuous theoretical model to the
expected experimental band powers, a crucial step in parameter extraction.
The functions are orthogonal, as a result of the top-hat binning assumed in
the theory. The window for the first band shows how all the information is
coming from the 50 < l < 76 region as a result of the sharp filtering applied
(in the FASTER pipeline) to the time stream.

 

Fig. 13.—Parameters extracted from our data plus the COBE DMR
results (Bennett et al. 1996), using two ‘‘ weak ’’ priors, 0:4 < h < 0:9 and
age > 10 Gyr. These likelihood curves are quite insensitive to variations in
the method or details of the analysis and show that our analysis methods
are quite robust. The green dashed curve shows the FASTER results of
Table 2, while the solid blue curve shows theMADCAP results of that same
table. The black dot-dashed curve shows the FASTER result with no cor-
rection for the ð1� s�1 � 2� s�1Þ=2 consistency test failure. The magenta
dotted curve shows the results upon degrading the FASTER analysis to 70

resolution. The cyan solid curve shows the (FASTER-derived) Netterfield
et al. (2002) results, using less time stream data and sky coverage as
discussed in the text.

Fig. 14.—Likelihood curves for six cosmological parameters, derived
from the FASTER power spectrum of Table 2 and COBE DMR, for a
series of applied priors described in the text. The solid blue curve is for the
‘‘ weak-prior ’’ case. The dot-dashed red line adds the LSS prior to the weak
prior. The cyan dot-dashed curve is for the ‘‘ weak-prior ’’ case with the
added assumption that the geometry is flat. The green dashed curve adds to
this the LSS prior. Three parameters, �k, �bh

2, and ns, are very well deter-
mined and unaffected by the choice of prior. �ch

2 is fairly well localized by
the weak and weak+flat cases, but it is much better determined when an
LSS prior is applied. Similarly, the limits on �c improve with the use of the
LSS prior. The data favor a nonzero �� in the weak and weak+flat cases;
the use of an LSS prior leads to a very solid detection. In all cases, the
observed parameters are consistent with a flat,�CDMcosmology.

Fig. 15.—Likelihood curves for six cosmological parameters, derived
from theMADCAP power spectrum of Table 2 andCOBEDMR, for a ser-
ies of applied priors described in the text. The curves are as in Fig. 14 and
lead to the same conclusions. The agreement of the curves in this figure with
those in Fig. 14 demonstrates the insensitivity of our analysis to the details
of the CMB angular power spectrum estimation pipeline.
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Lange et al. (2001) to agree better with weak-lensing and
clustering data. Here �8�

0:56
m ¼ 0:47þ0:02

�0:02
þ0:11
�0:08 is distributed

as a Gaussian (first error) convolved with a uniform (top-
hat) distribution (second error), centered about 0.47, and
�eff ¼ 0:21þ0:03

�0:03
þ0:08
�0:08 is a broad distribution over the 0.1–0.3

range. Here �eff ¼ �þ ðns � 1Þ=2, where

� � �mh expf��B½1þ ��1
m ð2hÞ1=2�g

is a function of our basic cosmological parameters.
Our final set of priors combines the weak and LSS

priors with the supernova data of Riess et al. (1998) and
Perlmutter et al. (1999) and the assumption that the geom-
etry of space is flat. In all cases, we use the COBE DMR
measurements (Bennett et al. 1996) to provide a valuable
low-l anchor for the power spectrum.

We are interested in the robustness of our parameter
extraction to the details of the input power spectrum.
Specifically, we would like to know if the small differences
between different variations of the FASTER analysis, or
between the final FASTER and MADCAP power spectra,
lead to significant differences in cosmological results. In
Figure 13 we show likelihood curves for six cosmological
parameters derived using only the weak-prior case, for sev-
eral input versions of our angular power spectrum results.
In all cases the likelihood curves are very similar, indicating
that the cosmological results are not very sensitive to the
details of our analysis.

Having demonstrated the stability of our results, we now
turn to extracting cosmological parameters from our angu-
lar power spectrum with the series of applied priors dis-
cussed above. Figures 14 and 15 show a set of one-
dimensional likelihood curves for six parameters, derived
from the data of Table 2, COBE DMR, and the priors
described above. Inspection of these figures shows that the
parameter likelihoods derived from the FASTER and

MADCAP results are very similar for each set of priors.
This again demonstrates the stability of the cosmological
results to the chosen analysis path. Numerical estimates of
parameters derived from these curves are given in Table 7,
where a similar comparison can be made.

12. CONCLUSIONS

In this paper we have presented an analysis of 50% more
data from the 1998 Antarctic flight of BOOMERANG than
previously treated. Our analysis is the most thorough to
date, using two very different power spectrum estimation
pipelines to derive the angular power spectrum of the CMB
radiation. The twomethods show good agreement and, with
the greater amount of data used, an increase in the precision
of measured power spectrum. In particular, features in the
power spectrum beyond the first peak (at l � 200) are
detected with greater confidence. Given that such features
are a natural consequence of standard cold dark matter–
dominated cosmological models with adiabatic initial den-
sity perturbations, their presence gives us greater confidence
in the validity of that model set.

Within the context of these models we have estimated the
values of cosmological parameters using the results from
both of our analysis methods. The resulting parameter
values are insensitive to the small differences between the
two results. At the increased precision with which we deter-
mine the cosmological parameters, we find that our results
remain completely consistent with a flat�CDM cosmology.

The BOOMERANG project has been supported by
NASA, NSF-OPP, and NERSC in the US, by PNRA,
Universitá ‘‘ La Sapienza,’’ and ASI in Italy, by PPARC in
the UK, and by the CIAR andNSERC in Canada.

REFERENCES

Balbi, A., et al. 2000, ApJ, 545, L1
Bennett, C. L., et al. 1996, ApJ, 464, L1
Bond, J. R., Jaffe, A. H., &Knox, L. 1998, Phys. Rev. D, 57, 2117
Bond, J. R., et al. 2003, ApJ, in press
Borrill, J. 1999, preprint (astro-ph/9911389)
Bridle, S. L., Crittenden, R. A., Melchiorri, M. P. H., Kneissl, R., &
Lasenby, A. N. 2002,MNRAS, 335, 1193

Christensen, N., Meyer, R., Knox, L., & Luey, B. 2001, Classical Quantum
Gravity, 18, 2677

Crill, B. P., et al. 2003, ApJS, 148, 527
Dawson, K. S., Holzapfel, W. L., Carlstrom, J. E., LaRoque, S. J., Miller,
A. D., Nagai, D., & Joy,M. 2002, BAAS, 34, 707

de Bernardis, P., et al. 2000, Nature, 404, 955
———. 2002, ApJ, 564, 559
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