
Chapter 4

Contacting lenses for

Antenna-coupled bolometers

4.1 Introduction

The transition from NTD-Ge bolometers to TES bolometers was arguably the key inno-

vation in bolometric receivers over the last decade. The greatest advancement of this decade

will likely be remembered as integrating lithographed transmission lines between the anten-

nas and bolometers. Several up-coming CMB experiments, including Berkeley’s Polarbear,

will use this technology. This chapter begins by contrasting the emerging antenna-coupled

devices with more traditional schemes for coupling radiation onto the bolometers. We

describe simulations of Polarbear’s crossed doubled-slot antenna performed with both Agi-

lent’s ADS-momentum and Ansoft’s HFSS. These simulations are important for subsequent

chapters since the sinuous-antenna design draws it’s inspiration from the crossed-double

slot antenna. The meat of this chapter is a description of a raytracing script that accounts

for the contacting lens in our simulations. This algorithm is well known and has been used

by several researchers in the field, but the literature lacks a detailed explanation that this

chapter tries to remedy.

All references to measured results in this chapter come from Mike Myers and Kam
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Arnold. As previously noted in the acknowledgments, I owe a special thanks to Jen Edwards

who pointed out that we must include image currents in the diffraction integral.

4.2 Antenna coupling vs traditional coupling schemes

4.2.1 Horn-Coupled Bolometers

Traditionally, bolometers have coupled to incident radiation with a horn (Chattopadhyay

et al. [2003]). Often, low-pass “metal mesh” filters on the sky-side of the horns define the

upper band edge while waveguide in the back of the horns defines the lower edge. A ther-

mally dissipating structure, such as a spiderweb or PSB (Polarization Sensitive Bolometer),

sits a quarter-wavelength above a backshort that maximizes coupling to the detector. A

thermistor, such as a TES or NTD-Ge crystal, sits on this released structure to measure

the power. Collectively, the thermistor and released structure form the bolometer. Modern

CMB experiments that have used this design include QUAD, BICEP-1, APEX-SZ, and

SPT.

4.2.2 NIST’s Horn-couped Bolometers

NIST has developed a platelette horn-coupled bolometer that replaces the absorbing

spiderweb with an orthomode-transducer in the back of the horn (Yoon et al. [2009]). The

orthomode transducer separates the power into two linear polarizations and couples it onto

two separate superconducting microstrip transmission lines. However, before reaching the

bolometers, the millimeter waves pass through in-line microstrip band-defining filters which

obviate some of the bulky optical filtering that would otherwise be needed in the telescope.

This simplifies the required filter stack and helps eliminate ghosting effects often associated

with unwanted reflections off the optical filters. Compared to other designs (see sections

4.2.3 and 4.3) that integrate transmission lines between the antenna and bolometers, NIST’s

is the most traditional because of their choice of a horn antenna.
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4.2.3 Caltech/JPL’s Array-coupled bolometers

Caltech/JPL has produced an alternative design that replaces the horn with a 12x12

array of slot antennas fed by microstrip lines (Chattopadhyay et al. [2007]). Slot antennas are

preferred to classic wire dipole antennas because the continuous ground plane can provide

RF shielding and also allow for easy integration with microstrip transmission lines. The

detectors’ beam forming is done entirely in the lithographed antenna array, so the bulky

horns with high heat capacity are no longer needed. Aside from this significant difference,

the design is otherwise similar to NIST’s: the pixels are dual-polarized and integrate band-

defining filters between the antennas and detectors.

4.3 Crossed Double-Slot Antenna

At Berkeley, we have developed a design similar to Caltech/JPL’s, but with only a

2 element array per polarization in a Crossed-Double-slot Antenna shown in Figure 4.1

(Myers et al. [2005]). The first season of Polarbear will deploy a telescope with bolometers

coupled to these antennas centered at 150 GHz (Lee et al. [2008]). These detectors have

667 µm long slots carved into a 3000Å thick layer of Niobium. Like the competing designs

described above, these detectors are also dual polarized with in-line band defining filters.

However, to achieve comparable gain to the NIST and Caltech/JPL designs, we have to use

a contacting lens that is discussed at length in section 4.4.

4.3.1 Impedance

We simulated the antenna’s impedance and beam characteristics in Agilent’s Advanced

Design Suite (ADS) Momentum. The antenna was drawn as magnetically conducting slots

carved into a perfectly conducting ground plane. This plane was at the interface between

an infinite half-space of silicon with �r = 11.8 (on which we fabricate the real detectors)

and vacuum. ADS Momentum is a frequency-domain simulator that partitions 2-D planar

geometries into tessellating cells called a mesh. It then solves for electric currents in metal
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Figure 4.1. Photograph of a Polarbear pixel. The antenna is the “tic-tac-toe” shaped slots
in the ground plane at left that couple power to a microstrip transmission line. Similar
Bolometers to this one are discussed at length in Chapter 3 and the filter is discussed in
Chapter 6

and fictitious magnetic currents in slots by imposing the requirement that electric fields

must be normal to a perfect electric conductor and magnetic fields must be normal to

magnetic conductors (slots) (Agilent [2006]).

One of the primary functions of Momentum and similar simulation packages is to cal-

culate the scattering parameters

Sij =
V −
i

V +
j

Sij quantifies what outgoing voltage V −
i

is produced at a port i if a voltage V +
j

is

applied to port j (Pozar [2004]). By convention, this definition presumes that each port is

normalized to 50 Ω if not otherwise specified. In our simulation, the ports connect to short

pieces of microstrip transmission lines that cross the slots and short to the ground-plane on

the interior square of the antenna. This is similar to how we couple transmission lines to

the slots in our real devices.
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The impedance matrix Zij quantifies what voltage results on a port i when a current

flows through port j. The impedance matrix is related to the scattering parameters by:

Zij = (1 + Sij)(1− Sij)
−1

where 1 is an identity matrix (Pozar [2004]). This definition assumes that all other

ports are open, but in practice, we attach the other ports to transmission lines of matched

impedance. The actual input impedance looking into any one port is the ratio of the sum

of voltages at that port to the current there. For the crossed-double slot antenna, the input

impedance seen looking into port one is:

Zin = Z11 +
I2
I1
Z12 +

I3
I1
Z13 +

I4
I1
Z14

= Z11 − Z13

where the last three terms represent leakage of power from the other three ports to the

first. In practice, little power couples between the two polarizations (|S12| < −20dB) and

the second and fourth terms can be ignored. The two parallel slots must be driven in phase

to construct the proper beam, which means that I3 = −I1. The simulated input impedance

is plotted in Figure 4.2.

This antenna is resonant and has a real impedance near the band center (see Figure 4.2).

We operate at the second resonance where the input resistance is a manageable 26 Ω and

the total impedance is changing much more slowly than at the first resonance at 71 GHz.

The stable impedance provides a 39% fractional bandwidth when matched to an ideal 26 Ω

transmission line, in close agreement with other studies on this antenna (Chattopadhyay and

Zmuidzinas [1998]). The impedances of millimeter wave devices are notoriously difficult to

measure, and we have made no attempts to explicitly do so. However, the measured optical

throughput of the entire test cryostat with these devices is ∼ 50% over a 30% bandwidth

when matched to transmission lines designed for 30Ω impedance. From this success, we

suspect that the antenna’s actual impedance is close to simulation.
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Figure 4.2. ADS simulation of input impedance vs Frequency for the Crossed double-slot
antenna. The vertical dashed lines show where the reflection between the antenna and a 26
Ω transmission line rises above -10dB.

4.3.2 Beam Characteristics

Viewed in a time-reversed broadcasting sense, the current in each cell of the surface

mesh radiates and the far-field beam pattern is simply the interference pattern from all

cells. Thanks to the time-reversal symmetry of Maxwell’s equations, the angular sensitivity

of the antenna while receiving is identical to this broadcasting beam-pattern.

Figure 4.3 shows the results of this beam simulation. Note that the cross-polarized

power as defined in Ludwig’s Third Definition (Ludwig [1973]), vanishes on axis and only

climbs to 1% outside the 10dB edge of the beam. We discuss the beam properites in more

detail in Section 4.6 after the contacting lens has been acounted for.

4.3.3 Backlobe Power

If operated in free space, planar antennas have a bi-directional beam pattern with

identical power radiated into both directions. However, it is energetically favorable for the

antenna on a substrate to radiate predominantly into the substrate side. Depending on
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Figure 4.3. ADS simulation of the Crossed Double Slot antenna without a lens. The Solid
contours are co-polarized power, the dashed are cross-polarized, and the power is on a linear
scale normalized to the peak power on boresight.

the antenna geometry, this varies between �1/2 and �3/2, where � is the substrate’s relative

permittivity.

Part of this effect arises simply because the antenna is driving power into two media in

parallel with impedances proportional to �−1/2
r , so the ratio of power into the silicon versus

vacuum is
√
�
r
:1. As a result, the Caltech/JPL antenna radiates only 75-80% of it’s beam

into the forward direction and the lost sensitivity must be recovered with a λ/4 back-short.

However, the crossed double-slot antennas and sinuous antennas described in later chap-

ters have an even larger power-ratio thanks to the localized currents in the antenna’s plane.

The electric fields across the slots in the antenna’s plane E(r) will have a Fourier Trans-

form Ẽ(kxy), where kxy resides in the antenna plane. The antenna will radiate waves with

wavevectors

k2z = �rω
2/c2 − k2xy (4.1)

For these waves to propagate, kxy <
√
�rω/c; otherwise, the wave exponentially decays

with distance (Goodman [1968]). The power radiated is

P ∝
�

dk2xy|E(kxy)|2
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Figure 4.4. Rays leaving the antenna at F1 strike the lens surface at P and travel to points
on the directrix plane Σ. If the eccentricity � = 1/n, then the refracted rays will be parallel
to the optic axis.

where from Equation 4.1, the area of integration is proportional to �. For a large slot

array antenna, the fields are distributed over a wide physical area, so the Fourier transform

E(kxy) is highly localized and vanishes over most of the integral. However, antennas with

wide beams radiating uniformly into a half space do not vanish. As a result, the integral

adds an extra factor of � to the power ratio, �3/2r : 1 and only 3% power is in the back-lobe.

In practice, ADS momentum simulations of the double-slot antenna show a beam with a

53o -3dB full-width, 71o at -10dB, and 9% power in the backlobe. This is slightly more than

the ideal case, but sufficiently low that we have not worried about installing a back-short.

4.4 Lens Coupling

The Polarbear optics have an f/1.9 and hence need detectors with 30o wide beams at

-10dB. The crossed double-slot antenna will not match these optics on it’s own. To meet

this requirement, we modify our detector beams with a contacting extended hemispherical

lens.
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An ellipsoidal piece of silicon with the antenna located at one of the foci is an ideal

lens for this application (See Figure 4.4). A broadcasting antenna will most efficiently use

it’s cross-sectional area if the lens transforms the outgoing spherical wavefronts from the

antenna within the lens into planar-waves outside the lens. It will accomplish this task if

the optical path-length from the antenna at the focus F1 to any point on the directrix plane

Σ is a constant through every point P on the ellipse. Ellipses have the property that the

distance F2P from the upper focus F2 to any point P on the curve is equal to the ellipse

eccentricity � time the distance PS from that point P to the directrix Σ (Apsotle [1967]).

But the sum of the distances from any point on the ellipse to the two foci is a constant, so

const = F1P + F2P

= F1P + �PS (4.2)

If we choose the eccentricity to be the reciprocal of the index of refraction n (� = 1/n),

then Equation 4.2 becomes

const = nF1P + PS

which shows that the total optical path length from antenna to a plane beyond the tip

of the lens is indeed a constant.

In practice, it is difficult and costly to machine a true ellipsoid, so instead we make lenses

from extended silicon hemispheres where the antenna is offset from the hemisphere’s center

by a silicon extension of thickness Lext. The choice Lext/R = 0.39 provides an optimal fit to

the ellipse with eccentricity �=1/n=0.29 for silicon (n=3.43) (Filipovic et al. [1993]). This

geometry is commonly known as a synthesized ellipse and is shown in Figure 4.5.

If a ray strikes a point on the hemisphere at an angle θ from boresight as measured at

the spherical center, then it would have departed from the antenna at an angle

θ� = arctan

�
R sin θ

Lext +R cos θ

�
(4.3)
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Figure 4.5. The extended hemispherical lens has a radius R and extension Lext. A ray
leaving the antenna at θ� from boresight strikes the lens surface at location θ from boresight
measured from the lens center. It is refracted into a ray that propagates at an angle Ψ
relative to the optic axis.

The refracted ray will propagate away at an angle

Ψ = θ − arcsin

�
ng sin θ�

1 + 2g cos θ + g2

�
(4.4)

where g ≡ R/Lext. Figure 4.6 shows a plot of refracted vs initially radiated angles for

different values of Lext/R. For an ideal ellipsoid, this would be a flat line Ψ = 0. The choice

of Lext/R = 0.39 minimizes deviations of Ψ from zero for all angles out to 47o where total

internal reflection starts.

4.5 Raytracing Script

The effects of the lens over the simple crossed double-slot antenna can be simulated

with a full 3-D simulator such as Ansoft’s frequency-domain High Frequency Structural

Simulator (HFSS). HFSS partitions the 3-D space surrounding an antenna into a mesh of

cells and directly solves for the electric and magnetic fields in each cell by minimizing the

the action associated with those fields. It uses an adaptive-mesh algorithm that iteratively

refines the mesh in regions where the field is changing rapidly with each adaptation until

the fields satisfy a user-provided convergence criterion.

HFSS simulations of the Polarbear antenna with the lens required roughly 5GB RAM
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Figure 4.6. Refraction angle Ψ (Equation 4.4) is plotted against angle of radiation measured
at the antenna θ� (Equation 4.3) for different lens geometries. Note that an ellipsoidal lens
would have Ψ = 0 for all θ�, so the synthesized ellipse Lext/R = 0.39 is a good fit to this
ideal

.

to converge. However, the more complicated antennas described in subsequent chapters

required a denser mesh in the space surrounding the antenna than the cross-double slot

needs. Because of this, the simulations need more RAM than our computer had (32GB).

Since these memory requirements cannot be practically met, we instead simulated the log-

periodic antennas in ADS where the memory requirements for a 2-D mesh were much lighter.

We then accounted for the presence of the lens with a home-made raytracing script (Filipovic

et al. [1993]) printed in Appendix 1. The following subsections describe the physics behind

this algorithm.

Our software assumes that the lens is in the antenna’s far field and invokes standard

optics principles at that interface. The script exploits time-reversal and calculates beam-

patterns as if the antenna were radiating back to the sky. In the far field (Fraunhofer)

range, the wavevectors from different radiative elements on the antenna are assumed to

be parallel, with phase errors associated with non-parallel rays not exceeding π/8. This

typically begins at a distance of
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rff =
2D2

λ

=
2λ

Ω

where in the D2 is the effective area of the antenna and the antenna theorem for a single-

moded antenna has been invoked in the second line (Collin [1985]). Waves at 150GHz in

silicon have λ = 0.58mm, so the far field for Polarbear’s crossed double-slot antenna begins

at rff = 1.99mm. Since the equator of the 6.35mm diameter lens hemisphere is 3.4mm

away from the antenna (for a synthesized ellipse), the lens surface is safely within the far-

field and our algorithm is justified. The measurements and simulations of the log-periodic

antennas in subsequent chapters used a lens with a 14mm diameter, so the algorithm was

also justified for them as well, even at frequencies as low as 70GHz.

4.5.1 Refraction at the lens surface

Our code partitions the lens surface into a tessellating mesh of surface patches and

interpolates the ADS-simulated fields at the patches’ angular locations (θ�, φ) measured at

the antenna . If the lens’s hemispherical surface has unit normal vectors n̂ and the outgoing

rays strike with incident unit wavevectors k̂, then the refracted field’s unit wavevectors

(outside the lens) k̂
t are simply a rotation of the incident within the Plane Of Incidence

(POI) by an angle of

Ψ = arcsin(nlens sin(k̂ · n̂))− k̂ · n̂

towards boresight. The vectors ρ̂⊥ ≡ n̂ × k̂ and ρ̂� ≡ ρ̂⊥ × k̂ are respectively perpen-

dicular to and within the POI and form a local basis with the vector k̂. The refracted

wavevector in this basis is:

k̂
t = cos(Ψ)k̂+ sin(Ψ)ρ̂�
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The incident fields can also be written in this basis, where the field components normal to

the plane of incidence (E · ρ̂⊥)ρ̂⊥ and (H · ρ̂⊥)ρ̂⊥ are eigenvectors of refraction, only modified

in magnitude by their respective transmission coefficients τ⊥ and τ�. The transmitted field

components within the POI are

E�
t = ηH⊥

t × k̂
t

= τ�E
o

�(cos(Ψ)ρ̂� − sin(Ψ)k̂)

H�
t =

1

η
k̂
t ×E⊥

t

= −τ⊥H
o

�(cos(Ψ)ρ̂� − sin(Ψ)k̂)

where η is the impedance of free space. These components rotate by Ψ around the ρ̂⊥

axis, much like k̂.

For a lens without a coating, the transmission coefficients are given by the Fresnel

Equations that require the tangential components of the electric and magnetic fields to be

continuous across the interface:

τ⊥ =
2 cos θi sin θt
sin(θi + θt)

τ� =
2 cos θi sin θt

cos(θi − θt) sin(θi + θt)

4.5.2 Anti-reflection Coating

For a lens with an anti-reflection coating, the tangential field components must be

continuous at both the inner and outer interfaces of that film. Assuming that the film is

roughly planar, these requirements result in a set of equations relating the fields just inside

the lens [EoHo] to those just outside [EtHt] through the transfer matrix M:




Eo

Ho



 =




cos(koh) i sin(koh)/Υar

iΥar sin(koh) cos(koh)








Et

Ht



 ≡ M




Et

Ht



 (4.5)
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where h = nd cos(θar) is related to the film with thickness d and angle of incidence θar

and the admittance Υar depends on the polarization of the mode under consideration

Υar =
nar

η






cos(θar) for TE modes

sec(θar) for TM modes

An elementary description of the lens would sum the fields associated with multiple rays

reflecting through the coating. However, this approach would be an onerous when consid-

ering the multilayer films discussed in Section 7.5. The transfer-matrix formulation is more

powerful because multiple coatings can be modeled by simply multiplying transfer matrices

to produce one effective matrix (Born and Wolf [1999]). The electric field transmission

coefficient is

τ =
2Υo

ΥoM11 +ΥoΥlensM12 +M21 +ΥlensM22
(4.6)

where the admittance for the free space and lens materials are defined in a similar way

as above, but independent of polarization:

Υlens,0 =
nlens,o

η
cos(θ�,t)

The wavevector and fields within the plane of incidence will still rotate by the angle

given above despite the extra film layer(s), so that part of the algorithm from uncoated

lenses carries over for lenses with a coating.

4.5.3 Deviations from an ideal anti-reflection coating

Our software assumes that the coatings are planar and of uniform thickness across the

hemisphere. However, the coatings are not planar, which can give rise to field alignment

errors. Additionally, the coatings should be tapered in thickness because a uniform thickness

creates phase errors in the film off boresight that can degrade it’s properties. In the following

two subsections, I argue that these are not practical concerns for our application.
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Figure 4.7. Cross sectional Cartoon of the lens with a single layer coating with an exag-
gerated thickness. The two reflected rays Ray 1 and Ray 2 must destructively interfere for
the coating to work. However, the rays are not parallel; one is rotated with respect to the
other by α. On boresight, Ray 2 will have a 90o phase shift relative to Ray 1 from it’s extra
travel of 2d through the film. But off boresight, Ray 2 travels an extra 2d(sec θt − 1) while
Ray 1 travels an extra t = 4d tan θt sin θt

Field Alignment Errors

For radiation normally incident on a flat AR-film, a λ/4 thickness will ensure that

the multiple rays reflected from the interface will be 180o out of phase and destructively

interfere. Additionally, a film index that is the geometric mean of the inner and outer

media’s will ensure the ray’s powers are matched in order to maximize this interference.

But this cancellation happens because the reflected fields from the beams are parallel.

While this is guaranteed for a flat coating where the two surfaces are parallel planes, it

is not always the case when the two surfaces are concentric spheres. The reflected beams

will still make the same angle with respect to the local normal vectors at the inner surface.

However, those radial normal vectors themselves are not parallel, so the second beam will

be rotated from the first by an angle of

α ≈ 2 arcsin
d

R

nlens

nar

sin θ�
1 + 2R/Lext cos θ + (R/Lext)2
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Figure 4.8. Ideal AR-coating thickness vs angle on the hemisphere. This would compensate
for phase errors between the reflected beams off boresight. It is unlikely that we could
actually make this compensation since the film thickness varies by less than 2 mils while a
highly skilled machinist will often achieves 1 mil tolerances.

.

where d is the film thickness, R the inner radius, and θ the angle at the surface relative

to the hemispherical center. For the polarbear detectors, this angle is no greater than 6.6o,

which means that the power of the mis-aligned field components in the plane of incidence

is 0.004% of the total field power at the beam’s -10dB contour. This error is negligable.

Phase Errors

We have only fabricated AR-coating films of uniform thickness. On boresight, the λ/4

thick film generates a π/2 phase delay between the first and second beams in Figure 4.7.

Off axis, the second ray is delayed by 2nard sec θt because it must travel further. However,

the first ray also experiences an additional delay of 4nlensd tan θt sin θt. Surprisingly, the

first ray’s phase-delay is longer than the second ray’s and to compensate, the film must be

made thicker at large angles from boresight.

For a stycast coating with n = 2, this coating must be 9.84 mils thick. However, the film

thickness is only 11.3 mils at the angles where Total-internal reflection starts (see Figure

4.8), which is likely within the machine tolerances of any AR coating that we attempt to

mold.
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4.5.4 Diffraction through the lens

The antenna beam also diffracts through the lens. A vectorial diffraction theory is

needed in this case to properly account for the polarization properties of the antenna-lens

system. The vector Kirchhoff integral relation follows from a simple application of Green’s

Second Identity:

E(x) =

�

S�
[iω(n �× Bt)G+ (n �× Et)×∇�G+ (n �· Et)∇�G]da� (4.7)

This equation quantifies Huygen’s wavelet principle; it describes how a set of fields Et

and Bt with known values on the closed surface S� (which has a normal vector n�) interfere

to created a diffracted field E(x) (Jackson [1998]). All of the information relevant to the

far field is contained in the fields on the surface, regardless of what currents are interior to

that surface. The subscript t is a reminder that fields are those transmitted through the

lens surface as determined by the refraction equations of the previous subsection.

At an observation point x far from the lens surface, the Greens function is

G(x,x�) =
eikr

4πr
e−ik·x�

and it’s gradient is ∇�G = −ik G. Inserting this into Equation 4.7 and replacing the

magnetic induction B with the magnetic field µH yields

E(x) =
ikeikr

4πr

�

S�
e−ik·x�

[η(n �× Ht)− r̂ × (n �× Et)− r̂(n �· Et)]da
� (4.8)

where η is impedance of free space and the wavevector k was assumed to be propagating

radially outward.

Engineers often substitute fictitious electric and magnetic surface currents and charges

over the surface S� into this equation:
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JE = n
�× Ht (4.9)

JM = −n
�× Et (4.10)

ρE = �on �· Et (4.11)

(Collin [1985]). In addition to beautifying otherwise ugly equations, these aid intu-

ition by acting as tangible sources that re-radiate into a scattered wave. The spherical

components of the far-field diffracted wave in Equation 4.8 are:

Er =
ikeikr

4πr

�

S�
e−ik·x�

[ηr̂ · JE − ρE/�o]da
� (4.12)

Eθ =
ikeikr

4πr

�

S�
e−ik·x�

[ηθ̂ · JE + φ̂ · JM ]da� (4.13)

Eφ =
ikeikr

4πr

�

S�
e−ik·x�

[ηφ̂ · JE − θ̂ · JM ]da� (4.14)

The first term is identical to the second in the brackets of 4.12, so Er vanishes as

expected for a transverse traveling wave. The remaining components (Equations 4.13 and

4.14) can be written in terms of electric and magnetic vector potentials (N and L):

Eθ ∝ ηN · θ̂ + L · φ̂

Eφ ∝ ηN · φ̂− L · θ̂

where

N ≡
�

S�
e−ik·x�

JEda
�

L ≡
�

S�
e−ik·x�

JMda�

The integral must be performed over a closed surface, and our code closes this surface

by including an image hemisphere below the ground plane with image currents on that
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imaginary-surface. To ensure that all electric fields at the perfectly conducting ground

plane remain normal to that surface, the electric-current image components perpendicular

to ground must be the in the same direction as the original, while the components parallel

to ground must be in the opposite direction (see Figure 4.9(a)). The opposite is true for the

magnetic-current images to ensure that magnetic-fields are tangential to the ground-plane

(see Figure 4.9(b)). The code does not integrate over the cylindrical extension surface since

it starts 69o from boresight in a synthesized ellipse, and the bare antenna power is well

below 1% of that at boresight in that region.

(a) Electric Image Currents (b) Magnetic Image Currents

Figure 4.9. Boundary conditions for image current construction. Real and image currents
are black vectors, green curves and arrows are electric fields E, and orange curves and
arrows are magnetic fields H. The field contours are for far-field dipole radiation; any
antenna’s far-field is the superposition of these fields. The components of the fields at a
point on the ground plane are broken into components parallel and perpendicular to ground
to make clear how the choice of image current guarantees that the tangential electric fields
and normal magnetic fields vanish there.

4.6 Comparison to HFSS simulations

To vet our algorithm, we compared the results of computations against HFSS’s full 3-D

simulations, the geometry of which can be seen in Figure 4.10. The slot antenna is located

near the origin on the x-y plane and has a geometry identical to the one described in the

ADS simulations. We excited the slot parallel to the x-axis with a lumped voltage across

the slot on a line along the y-axis. The lens models the ones to be used in the Polarbear
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Figure 4.10. Layout for HFSS simulation. The yz-plane (facing the viewer) is a “Perfect-H”
symmetry plane, while the xz-plane facing left is a “Perfect-E”. All other external surfaces
are perfect radiation absorbers.

experiment. It is silicon with a relative permittivity of 11.8, a diameter of 6.35mm (1/4

inch), and an elliptical extension of 1.24mm. The AR-coating (shown in green) is a 0.25mm

film of stycast-2850, with a relative permittivity of 4. It is a quarter-wavelength thick at

150GHz.

To reduce the memory requirements of the simulation, we only simulated 1/4 of the

antenna in HFSS and exploited the four-fold symmetry of the antenna by use of symmetry

planes. The x-z plane is a “perfect-E” symmetry plane that force the electric fields there

to be normal. This symmetry plane also ensures that there will be an image-source with

opposite polarity across the image slot parallel to the x-axis. Similarly, the y-z plane is a

“perfect-H” symmetry plane that forces Electric fields there to be tangential to that plane.

The fields would have these properties in a simulation of the entire lens, but with this

geometry, only 8Gb of RAM were required and our computer completed a simulation of a

single frequency in under 20 minutes.

The beams from the two simulations are shown separately in the side-by-side contour

plots in Figure 4.12. The beams are also co-plotted as cuts in Figure 4.11. The E-plane is
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Figure 4.11. Cuts of HFSS and ADS-lensed simulations. Solid and Dashed lines are co
and cross polarized power from HFSS. Points marked ’o’ and ’x’ are co and cross polarized
power from ADS and raytracing.

the axis parallel to the polarization, H-plane is perpendicular, and the D-plane is at a 45o

between them. The two simulations produce beams with comparable features at high powers

(above -10dB), but diverge at lower powers. In particular, the ADS-raytracing calculates

significantly lower side-lobe and cross-pol levels than HFSS.

Table 4.1 summarizes the beam properties from the two simulations. In addition to the

parameters already discussed, it also cites ellipticity, gain, and beam waist. The ellipticity

is defined as

e =
a− b

a+ b
(4.15)

where a and b are the angular widths of the semi-major and semi-minor axis at a contour

of a specific power. Gain is the ratio of antenna power on boresight to that from isotropic

radiator; it quantifies how focused the beam is. The beam waist is the radius of the 1/e2

power contours where the beam is most narrow. We infer it from the 1/e2 half-angle angle

in the far field:

wo =
λ

πθFF

(4.16)
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The beam waists are roughly 70-80% of the lens radius, as our UCSD collaborators have

previously measured for a synthesized ellipse. For comparison, a uniformally illuminated

aperature of 6.35mm diameter would have it’s first Airy-ring diffraction minimum at an

angular diameter of 45o.

Table 4.1. Antenna Beam Properties

Parameter ADS-Raytrace HFSS

E-plane -3dB Width [Deg] 19.7o 18.0o

H-plane -3dB Width [Deg] 19.9o 18.6o

E-plane -10dB Width [Deg] 34.5o 31.5o

H-plane -10dB Width [Deg] 34.7o 34.9o

E-plane Beam Waist [mm] 2.24 2.47
H-plane Beam Waist [mm] 2.22 2.25
Peak Side-lobe Levels [dB] (E-plane) -22.0 -17.3
Peak cross-pol [dB] (D-plane) -19.1 -17.6
Gain [dB] 13.7 15.4
Ellipticity 0.5% 1.6%

(a) ADS-Raytracing Script Beam (b) HFSS Beam

Figure 4.12. Contour plots of ADS simulation modified with the raytracing script (left)
and from HFSS simulations (right). Solid lines are co-polarized power, dashed are cross-
polarized, and the power is on a linear scale. They agree in many of their course features,
but not in the fine details (See table ). Notice that these are half as wide as the un-lensed
beam in Figure 4.3.
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4.7 Conclusions

We described the double-slot antenna in detail since it motivates the antenna devel-

opment in subsequent chapters and because it is an established yet simple design that we

used to test our raytracing script. We have also motivated the use of contacting lenses

to boost the gain of a detector’s antenna so we can match it to a telescope’s optics. Our

raytracing algorithm seems to produce lens-coupled antenna beams that agree with the

industry-standard HFSS at the 10% level, but differs in the finer details. We consider

these differences in later chapters when we compare results from this model against our

measurements.
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