Object	β ₅ (pc)	$\Sigma_s \left(\frac{\text{stars}}{\text{pc}^2} \right)$	$\Sigma_{s}'\left(\frac{\mathcal{M}_{\odot}}{\mathrm{pc}^{2}}\right)$
O stars	50	1.5×10^{-6}	10-4
Classical Cepheids	50	7.5×10^{-6}	5×10^{-5}
B stars	60	6×10^{-3}	6×10^{-2}
Galactic clusters	80	-	_
Interstellar dust and gas	120	-	
A stars	120	6×10^{-2}	0.1
F stars	190	0.6	0.6
Planetary nebulae	260	-	-
gK stars	270	1.2×10^{-3}	3×10^{-2}
Novae	300		-
dG stars	340	2	2
dK stars	350	3.5	2.5
dM stars	350	20	9
gG stars	400	6×10^{-2}	1.6×10^{-1}
White dwarfs	500	12.5	10
Long-period variables (M5-M8)	700		
RR Lyrae variables ($P < 0.5$)	900		
Long-period variables (M0-M4)	1000		
RR Lyrae variables ($P > 0.45$)	2000		
W Virginis variables (spheroidal-	2000		
Subdwarfe	2000		
Globular clusters	2000		
Oloquial clusters	5000		

Table 4-16. Scale Heights β_s in the Direction Perpendicular to the Galactic · Plane and Surface Density Σ_s for Various Objects

SOURCE: Adapted from (A1, 247), (A1, 249), and (A1, 251), by permission

Planck All Sky Image of Dust Emission in the Milky Way

Planck Map of CO Emission in the Milky Way

Dame et al 1987 ApJ 322, 706

UV observations of the Galactic sky

<u>Covering fraction</u>: 60% – 85% of sky covered at $N(H^+) \ge 10^{18} \text{ cm}^{-2}$ (for SMC metallicity)

High-velocity clouds are clouds moving at fast speed

HVCs exhibit H I 21cm emission that covers ~18% HI covering factor at at $N_{HI} > 2 \times 10^{18}$ cm⁻² (Wakker 1991).

Milky Way Ionized Gas from the Wisconsin Halpha Mapper (WHIM)