Basics of Bayesian Formalism



Advantages of Bayesian Networks

Handling of incomplete data
— Real-world cases

Learning causal connections
— What variable caused what
Incorporating domain knowledge

— Experts can weight in at different points

Memorizing (aka overfitting) avoided
— No holdout necessary
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Ambitious Outline

Basic astronomy classification trivia
Time and place for Bayesian techniques
Basic concepts related to belief

Logic and probability theory

The inversion formula

Application to astronomy



Astronomical Classification and the

time domain
* Moving objects (asteroids, TNOs, KBOs)

* SNe (cosmological standard candles, endpoints of stellar
evolution)

* GRB orphan afterglows (constraining beaming models)
e Variable stars (stellar astrophysics, galactic structure)

* AGN (QSOs, fuelling mechanisms, lifetimes)
e Blazars, Cosmic Rays, ...

Rapid follow-up = keys to understanding
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Basic astronomy classification trivia
Colors

Magnitude as basic observation (flux)
Color as flux ratio
Color-color diagram as a diagnostic

Ambiguity
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Basic astronomy classification trivia

e Attach probabilities through priors to various
classes and determine what class a newly
looked at object belongs to

e Bayesian techniques allow us to do this in a
rational manner even when some of the data
IS uncertain or missing
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Bayesian techniques

* Bayesian methods provide a formalism for
reasoning about partial beliefs under conditions
of uncertainty

Belief is going to be a crucial word

A: World will end in 2012

p(A|K) = belief about A given a body of
knowledge K. Often written simply as p(A).



* p(NOT A) =» belief that A will not happen

* When K changes, p(A) and p(NOT A) change
accordingly

* |n general:
e 0<p(A)<1
* p(sure proposition) =1
* p(A or B) = p(A) + p(B) when A and B are mutually
exclusive



* p(A)+p(NOTA)=1

* p(A) = p(A,B) + p(A, NOT B)
— p(A,B) == p(A and B)
In general:

— For Bi = B1, B2, B3, ...Bn mutually exclusive
p(A) =2 p(A,Bi) = p(A,B1) + p(A,B2) + .. + p(A,Bn)

We will revisit these later. Catchword: Belief



An example

A: outcome of 2 dice is equal
B1l: 2" dieis 1
B2 .. B6: 2" die is 2..6
Bi = B1 .. B6 form a partition (are exhaustive)
p(A) = 2p(A,Bi) = p(A,B1) + .. + p(A,B6)
=1/36+..+1/36
=1/6 &



About belief

Rules have exceptions
gnoring exceptions leads to uncertainty

f we consider all exceptions, we may not be
able to proceed

Middle way is to summarize exceptions

That’s where Bayes formalism leads us to



An example

Suppose | have a bird
What can be said about its ability to fly?

Birds fly. So the bird under question should be able
to fly

y



An example

Suppose | have a bird

What can be said about its ability to fly?
Birds fly. So the bird under question should be able to fly

What if it’s a penguin?

* Dead? i
* With wings cut? _
e Made of paper? . O\d/—%

Summary: Most birds can fly. Need to make it
guantitative



Logical approach?

* Assign numerical values to uncertainty and
combine them like truth values *

* But sources of uncertainty are not
independent and it is not easy to evaluate
effect of additional evidence e.g. in the last
example, if we are told that the said bird has
existed for 1 year, how do we take that into
consideration?



What is p(B|A)?

* Not “Given A, the probability that B is true”

That is true only if B does not (also) depend on
anything else. Because if we knew other things,
may be the probability will be different.

If of 10000 species 10 can’t fly, then:
p(cant fly | bird) = 1/1000 (blanket statement)

That does not indicate if we know anything else
(here, e.g. that the bird has existed for 1 year).

Verification of irrelevancy is crucial



* Rule: What goes up must come down
— A: foo comes down N—

minimum kinetic energy

— B: foo goes up &
— P(A|B) =1 &

Maximum kinetic energy,
minimum potential energy



* Rule: What goes up must come down
— A: foo comes down ey B
— B: foo goes up
—P(A|B) =1
|s that really true?

eeeeeeeee

What if upward velocity > escape velocity?
Where did escape velocity come from?
Escape velocity was always there



Intentional v. extensional

* These rule based systems are computationally
convenient, but semantically inconvenient.

* The opposite is true of Bayes formalism: its
declarative and model based

P(B|A)=m =>

In all worlds that satisfy A,
those also satisfying B are a
fraction m



Partitioned Conditionals and Marginals
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A bit more about logical systems

* A: The grass is wet
* B: It rained

A gives credibility to B. In a rule based system,
that weight increases irrevocably.

If, later, C: The sprinkler was on,
And D: The neighbor’s grass is dry
It is difficult to connect A and C ™



e |t rained e Sprinklers e Neighbor’s
on sprinklers
off
g ;\ ¢ ) (N ¥ )
e Wet grass e Neighbor’s
grass dry

If anything, C becomes less credible once we know A to be true




Chaining?

* Logic: If Athen B and if Bthen C=>if AthenC

* In plausible reasoning, it can lead to problems:
— If the ground is wet, then it rained
— If the sprinklers are on, the grass is wet
Does that mean: if sprinklers are on, it rained?

If anything, it takes away support for such a
suggestion.



A system of rules produces coherent updates if
and only if rules form a directed tree i.e. no
two rules may stem from the same premise.
Wet grass here points to two possible
explanations.

“r.u .ol goiL||-i




Why networks?

To make p(B|A) meaningful, we have to show:

& Other items in knowledge base are irrelevant
toB

@ Better still, make unignorable quickly
identifiable and accessible

Neighboring nodes in a graph allow that. What is
not local does not matter!



Networks are also used in Al etc. but BN have clear
semantics. Most features can be derived from the
knowledge base.

These play central role in uncertainty formalisms
BN

 causal nets

 influence diagrams

 Constraint networks




More important terms

* Likelihood: in blackjack the likelihood of getting 10 is
higher (because it can be 10, J, Q or K)

* Conditioning:

= >1‘t'\"u:~’.'i“f~z A7
P(A[C) = p(A,C)/p(C) W
Dy ﬁp’
Belicf knowledge/  P(Mv(a)| bird(a)) = HIGH |
context P(fly(a) | bird(a),sick(a)) = LOW (non-zero!)
Conditioning (retraction possible)
bar

P(fl| bird) = a *p(fl| bird,sick) + (1-a)*p(fly(bird, NOT sick) 0O<a<1

* Relevance: potential change in belief due to change in
knowledge



e Causation: Once falling is observed
its irrelevant why the
pavement was wet

sprinkler

rain

Wet
pavement

Banana
peel

Fall due to
slipping



Case study: college plans
(Heckerman, 1995, MSR-TR-95-06)

Sex (SEX: M, F)

Socioeconomic Status (SES: L, M, U, H)
1Q(IQ: L, M, U, H)

Parental encouragement (PE: L, H)
College plans: (CP: Y, N)

SEX SEX

_ SES
/ LAgs } / e /
Y S

' ' -
4 I

\_l/ <

.': CP ;.
log p(DIS") = 45653 log p(DIS;’) - 45699
p(SHD) =10 p(SH1D) =12x107"

Figure 10: The a posteriori most likely network structures without hidden variables.



Hidden variable

PE ' p(IQ=highlPE H)
low 0 0.098
low 1 0.22
high 0 0.21
high 1 0.49
SES SEX p(PE=highlSES SEX)
low male 032
low fernale 0.166
high male 086
high female 081

pH=0) = 0.63
pH=1) =037
H  p(SES=highlH)
p(male) =048 low 0.088
high 0.51
SES IQ PE  p(CP=yesISESIQ.PE)
low low low 0011
low low high 0.170
low high low 0.124
o low  high  high 053
high low low 0093
high low high 0.39
log p(S"1D) = -45629 high  high low 0.24
high high high 0.84




Using the terms just explained we can use
probability for describing qualitative
phenomena.

One can see if refinements, extensions are
possible. If it is based on theory, we can
understand exactly what adjustments need to
be made.



The inversion formula

p(H[e) = p(e|H)*p(H)/p(e)
Posterior=likelihood*prior/normalizing constant

p(e) = p(e|H)*p(H) + p(e| NOT H)*p(NOT H)

The formula seems to come from:
p(A|B) = p(A,B)/p(B) and p(B|A) = p(A,B)/p(A)



Assesing p(H|e)

In a gambling room someone calls 12

Is it from a pair of dice, or from a roulette
wheel?

i Voisins du Zero

% X @  Ormhelins
S 4 Orphelins




* For dice: p(e|H) =p(12|dice) =1/36
* For roulette: p(e|H) = p(12]|roulette) = 1/38

Thus if there are more than 38/36 roulette
wheels in the room, p(roulette) is more likely

Talking about p(roulette|12) would have been
much more difficult.



3 prisoner problem

1 prisoner. 3 doors. 2 lead to death, 1 to escape. S/He is asked to choose
one. Once he has indicated his choice, one of the other doors is
indicated to be leading to death. He is given a chance to switch to the

third door. Should he?



What if there are 1000 doors (999 leading to
death)? Should he switch?



The Bayesian twist

Of three prisoners A, B, C only one is going to be
hanged and the other two pardoned.

A says to guard: Give this letter to one of the
pardoned ones.

An hour later, A asks the guard: tell me who did
you give it to?
The guard answers “B”.

A reasons: So either C will be hanged, or | will
be. Prob. That | will be is 50%. Is he right?



p(G_A|I_B) = p(I_B|G_A)*p(G_A)/p(I_B)
=1%(1/3)/(2/3) =%
So, applying Bayesian logic incorrectly leads to false

results. The error here is misinterpreting the
context.

Rather than: |_B = B will be released,
I”_B = Guard said B will be released.

p(G_A|I'_B) =p('_B|G_A)*p(G_A)/p(I’_B)
=(1/2)*(1/3)/(1/2) = 1/3



Case of 10007

* 1000 prisoners of which 1 is to be put to death

A finds a list of 998 to be released without his
name on it

e What should our belief be that he will be the
one being put to death?



Case of 10007

e List of 998 to be released

* Query associated with the printout: 998 right
handers

e Ais left-handed
77

Difficult to treat such ignorance in general.



Multivalued hypothesis
Uncertain evidence

Virtual (intangible) evidence
Predicting future events
Multiple causes, explaining away
Patterns of plausible reasoning



Nalve Bayes

P(y=klx)=P(x1y=k)Pk)/P(x)x P(k)P(x|y=k)= P(A)H:=:P(.\'h ly =k)

e x: feature vector of event parameters
e y:object class that gives rise to x (1<y<k)
 Certain features of x known:
— Position
— Flux at observed wavelength
e Others will be unknown

— Color
— Change in mag/flux over time baselines



Naive Bayes (contd.)

P(y=klx)=P(x1y=KkPK)/P(x)x PK)P(x |y =k) = P(L)Hill’(.\'b ly=k)

 Assumption: based on vy, x is decomposable into
B distinct independent classes (labeled x,)

* This helps with the curse of dimensionality

 Also allows us to deal with missing values

 Alternate parallel supplemental supervised
classification
— Automated Neural Networks (ANN)
— Support Vector Machines (SVM)



Input: N\I@
Sparse and contextual %%
heterogeneous information
event data T l )

P(SNIa) = ...
m, (t), my(t),... :{> Classification I:> P(CV) _
o, 8,1, ... Engine P(dM) = ...
image shape... i T

al )
Expert and ML generated priors Output:
Assigned
{ \ probabilities
of physical

etc.

event classes



Follow-up (for missing values)

* Such that it will help discriminate better

 Serve probabilities so that consumers can
choose their types of transients

* Widest possible models



Choosing follow-up configs

Telescope 1: P(xA,yJ X,)
Updated P(y | x,, X,)

"!_ Bl -

Initial P(y | x,)

H=1.31
I--ll I Telescope 2: P(xg,y | x,) Updated P(y | X,, Xg)
H=1.82 | .
II
UL L l.-l. )

= /(7 H=1.79

r-i color, hi-z quasar, blue star



Transient classification mantra

Obtain a couple of epochs in one or more filters
Assigns probabilities for different classes

Choose observations (filters, wavelengths) for best
discrimination

Feed the new observations back in

Revise probabilities, choose observations, ...

Based on confirmed class (how?) revise priors



Summary

Modeling is all important (to predict/explore/
explain)

Local dependencies, irrelevancies to be
evaluated

Priors, likelihoods to be obtained
Directed Acyclic Graph to be constructed
Data define network

No “training” necessary



Bayesian Network Toolbox
http://bnt.googlecode.com



A Bayesian Network

‘ Cloudy
Sprinkler
Wet




Creating a DAG

To specify this directed acyclic graph (dag), we create an adjacency matrix:

N = 4;
dag = zeros(N,N);
C=1; S = 2; R= 3; W= 4;

dag(C,[R S]) = 1;
dag(R,W) = 1;
dag(S,W)=1;



Multivalued nodes

discrete nodes = 1:N;
node sizes = 2*ones(1l,N);

If the nodes were not binary, you could type e.g.,

node _sizes = [4 2 3 5];



Making the bnet

bnet = mk bnet(dag, node sizes, 'discrete', discrete nodes);
By default, all nodes are assumed to be discrete, so we can also just write

bnet = mk bnet(dag, node sizes);



Naming parameters

It is possible to associate names with nodes, as follows:
bnet = mk_bnet(dag, node_sizes, 'names', {'cloudy','S','R','W'}, ‘'discrete', 1:4);

You can then refer to a node by its name:

C = bnet.names('cloudy'); % bnet.names is an associative array
bnet.CPD{C} = tabular CPD(bnet, C, [0.5 0.5));



Conditional probability distribution

bnet.CPD{C} = tabular CPD(bnet, C, [0.5 0.5]);

bnet.CPD{R} = tabular CPD(bnet, R, [0.8B 0.2 0.2 0.8)]);

bnet.CPD{S} = tabular CPD(bnet, S, [0.5 0.9 0.5 0.1]);

bnet.CPD{W} = tabular CPD(bnet, W, [1 0.1 0.1 0.01 0 0.9 0.9 0.99)]);



Entering evidence

evidence = cell(1l,N);
evidence{W} = 2;
engine = enter evidence(engine, evidence);
m = marginal nodes(engine, W);
m.T
ans =
1



The Catalina Realtime Transient Survey

CRTS is a search for transients being done at Caltech
piggybacking on the data from the search for near-Earth,
potentially hazardous asteroids (this later is led by S.
Larson, E. Beshore, et al. at UAz LPL). The survey uses
the 24-inch Schmidt on Mt. Bigellow, and a single,
unfiltered 4kx4k CCD (and also telescopes at Mt.
Lemmon and Siding Spring). Coverage of well over
1000 deg?/night

Catalina Survey Fast Transient (a flare star), 02 Nov 2007 UT:

4 individual exposures, separated by 10 min Baseline coadd:
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Basic astronomy classification trivia
context based information

e (Galactic latitude — Galacticness
* Proximity to a galaxy — SN



Phenomenology
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CV, SN,
Blazars, Rest

spectra

' \
560 o0 OT
Other observed
parameters
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%

Phenomenology

A
N

Colors

-4 -> 4 (10 bins each)

lightcurves



N=5

Dag = zeroes(N,N)
C=1;g=2;c1=3;c2=4;c3=5;
Dag(c,[g,c1,c2,c3])=1
Discrete_nodes(1:N)

Node sizes=[4,10,10,10,10]
Bnet=mk_bnet(dag,node_sizes,names,

)

{'class’/galactic_latitude’,/g-r’,/r-i’)i-z’},/discrete’,
1:5)



Advantages of Bayesian Networks

Handling of incomplete data
— Real-world cases

Learning causal connections
— What variable caused what
Incorporating domain knowledge

— Experts can weight in at different points

Memorizing (aka overfitting) avoided
— No holdout necessary



