
Flavour of Languages

Ashish Mahabal
aam@astro.caltech.edu

Caltech, 7 Apr 2011
Ay199/Bi 199b

Quick survey

•  C?
•  Shell?
•  Perl?
•  Python?
•  HTML?
•  SQL?

The language you use influences
how you think (about problems)

•  Types of languages
•  Features of languages
•  Internal issues
•  Extendibility, domain specific languages
•  Available help, practical issues
•  Architecture/compilation etc.
•  Wider issues(?)
•  Exercise

How to shoot yourself in the foot
(http://www-users.cs.york.ac.uk/~susan/joke/foot.htm)

•  C: You shoot yourself in the foot
•  C++: You accidently create a dozen instances of

yourself and shoot them all in the foot. Providing
emergency medical care is impossible since you
can't tell which are bitwise copies and which are
just pointing at others and saying, "That's me over
there."

•  FORTRAN: You shoot yourself in each toe,
iteratively, until you run out of toes, then you read
in the next foot and repeat. If you run out of
bullets, you continue anyway because you have no
exception handling ability.

If languages were religions
(http://www.aegisub.net/2008/12/if-programming-languages-were-religions.html)
•  C would be Judaism - it's old and restrictive, but

most of the world is familiar with its laws and
respects them. …

•  C++ would be Islam - It takes C and not only
keeps all its laws, but adds a very complex new set
of laws on top of it. …

•  Lisp would be Zen Buddhism
•  Perl would be Voodoo
•  Python would be Humanism
•  ….

Types of languages
(its difficult to put a single label actually)

•  Imperative (e.g. C, Java, …)
•  Functional (e.g. LISP, Haskell, perl, python, …)
•  Logical (e.g. prolog)
•  ...
•  Formatting/markup (e.g. HTML, XML, KML, …)
•  ...
•  Database (e.g. SQL and its flavours)
•  ...
•  Shells (e.g. tcsh, bash, ksh, …)

logic programming contributes non-determinism, inversion and
partial data structures, whereas functional programming
contributes efficient evaluation and infinite data structures.
(http://web.cecs.pdx.edu/~antoy/research/flp/index.html)

Imperative(C, Java)

•  Computation as statements that change
program state

•  i = 0;
•  i++;

• n=10;
• j=1;
• for(i=2;i<=n;++i){j*=i;}

Procedural (perl, python)

•  Method of executing imperative language
programs (imperative + subprograms)

(Could have issues in list mode).

Functional (Haskell, LISP)

•  computation as the evaluation of
mathematical functions. No state.

•  Effected through lambda calculus,
composition of functions

Devtopics.com

Logical (Prolog)

•  Define “what” is to be computed rather than
“how” (declarative: properties of correct
answers)

markup/database
•  SGML/HTML/XML – stylized rendering (XML to be

covered in other talks)
–  Tags used for formatting
–  SomeText
–  <mytag>lalala</mytag>

•  KML – Keyhole Markup Language
–  Convert points for Google Earth/sky locations

•  SQLs e.g. my, ms, pg, ... (SQL and databases will also be
covered in detail in other talks)
–  For talking to databases
–  Select * from TableX where Y=Z

shells
•  bsh/bash/csh/ksh/tcsh ... are languages in

their own right
–  awk/sed/grep
– History “!mv; !scp:p; ^my^ny”
– Loops

•  foreach f (*.jpg)
•  convert $f $f:r.png
•  end

– Redirections “(myprog < myin > myout) >& myerr &”

– Scripts “at now + 24 hours < foo.csh”

For Matlab buffs

http://www.datatool.com/downloads/matlab_style_guidelines.pdf

Optimization

http://shootout.alioth.debian.org

And then there is built-in memoizing

Features of Languages

•  strong/weak/no typing; datatypes
•  safe/unsafe typing
•  dynamic/static datatype conversions
•  side effects/monads
•  concurrency
•  distributedness

strong/weak typing
•  #include <stdio.h> main()

{int fill; fill=42; printf(“%s\n”,fiil);}

strong/weak typing
•  #include <stdio.h> main()

{int fill; fill=42; printf(“%s\n”,fiil);}
– This will not compile for at least two reasons:

•  fiil (mistyped) is not declared
•  Even if that is corrected, it is not a string

strong/weak typing
•  #include <stdio.h> main()

{int fill; fill=42; printf(“%s\n”,fiil);}
– This will not compile for at least two reasons:

•  fiil (mistyped) is not declared
•  Even if that is corrected, it is not a string

•  #!/usr/bin/perl
$fill=42;printf(“%s\n”,$fiil);

strong/weak typing
•  #include <stdio.h> main()

{int fill; fill=42; printf(“%s\n”,fiil);}
– This will not compile for at least two reasons:

•  fiil (mistyped) is not declared
•  Even if that is corrected, it is not a string

•  #!/usr/bin/perl
$fill=42;printf(“%s\n”,$fiil);

•  This also fails, but silently. No error is announced
•  Change fiil to fill (leaving it as %s) and you get the

correct result (by coincidence)

•  #!/usr/bin/perl -w
•  use strict;

 A language is only as rigid or flexible as
your understanding of it.

 Grammers: (Extended) Bachus-Nour form

Partial grammer for C

Extendibility

•  With other languages
– Perl through C
– C through perl

•  Packages for particular domains and their
extensibility (e.g. matlab/iraf/idl)
– Domain specific core functionality
– Can be extended further using packages

•  Domain specific languages
– Define terms/keywords close to the domain
– Overload terms in domain appropriate way

– select RA,Dec from PQ where mag > 15
join radio > 1Jy

Other esoteric sounding but important stuff

•  syntactic sugar
–  a[i] rather than *(a+i)
–  a[i][j] rather than *(*(a+i)+j)

•  side effects/monads

Avoid the pitfall of division by 0 by returning a “maybe”
monad of value “nothing”

•  Lazy evaluation (delayed until needed)
•  x=f(y) will remain as is until x is needed
•  Possible to define infinite lists
•  Control structure: a==b?c:d

• Haskell’s implementation of Fibonacci numbers

• constant folding/argumentless functions
(evaluating constants at compile time)

Help Available

•  debugging tools
–  Internal debuggers
– External/graphical debuggers

•  perl –c checks syntax
•  perl –d default die handler
•  ddd debugger (works with most language

debuggers)

•  Macro editing modes
– Emacs, vim (autotab, headers, brace matching)

ddd

Practical Issues

•  OS support
–  perl/c supported on practically all platforms

•  ease of learning (how to shoot your foot ...)
–  Functional/logical may seem non-intutive initially
–  So do java and C++

•  readability across teams
– Structure of syntax e.g. tabs in python

•  Speed, scalability, reusability

Wider issues

•  We have scratched only the surface
– Did not even mention entities like

•  Postscript
•  Tcl

•  Text processing

•  Non-Von Neumann computers

Larry Wall in ‘State of the Onion’ (2006)
(http://www.perl.com/pub/a/2007/12/06/soto-11.html)

•  Early/late binding
•  Single/multiple dispatch
•  Eager/lazy typology
•  Limited/rich structures
•  Symbolic/wordy
•  Immutable/mutable classes
•  Scopes (various kinds)

Perligata (Damian Conway)

Von Neumann architecture

•  instructions and data are
distinguished only implicitly
through usage

•  memory is a single memory,
sequentially addressed

•  memory is one-dimensional
•  meaning of the data is not stored

with it
•  Things looking better with Virtual

machines and multi-core
processors

Things we have left out

•  Interpreters/compilers and the vagueness in
between

•  memory management
•  garbage collection
•  bytecode
•  virtual machines
•  Many core (parallelism)

March 23, 2011 Ashish Mahabal

Slides from Budavari

37

March 23, 2011 Ashish Mahabal

Slides from Budavari

38

March 23, 2011 Ashish Mahabal

Slides from Budavari

39

March 23, 2011 Ashish Mahabal

Slides from Budavari

40

March 23, 2011 Ashish Mahabal

Slides from Budavari

41

Horses for courses
•  Don't marry a particular language
•  Know one well, but do sample many other
•  Use a language close to your domain
•  Use tools which aid during programming

Hamming (regular) numbers

•  2i * 3j * 5k (int i,j,k>=0)
•  1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, ...
•  Merge these lists:

–  1;
–  2, 4, 8, 16, ...;
–  3, 9, 27, 81,...;
–  5, 25, 125, ...
–  Is 7 in the list? 10? 333?

Exercise

•  Write a program to generate Hamming
numbers in at least 3 different (types?) of
languages

•  Compare them against each other in a few
different ways (speed, memory, typing
requirements)

•  Use a debugger during the exercise and when
testing it

In J: hamming=: {. (/:~@~.@], 2 3 5 * {)/ @ (1x,~i.@-)
hamming 20

