Flavour of Languages

Ashish Mahabal
aam(@astro.caltech.edu
Caltech, 7 Apr 2011
Ay199/B1 199b

o Shell?
* Perl?

* Python?
« HTML?
« SQL?

Quick survey

The language you use influences

how you think (about problems)
Types of languages
Features of languages
Internal 1ssues
Extendibility, domain specific languages
Available help, practical 1ssues
Architecture/compilation etc.
Wider 1ssues(?)

Exercise

How to shoot yourself 1n the foot

(http://www-users.cs.york.ac.uk/~susan/joke/foot.htm)

* C: You shoot yourself 1n the foot

e C++: You accidently create a dozen instances of
yourself and shoot them all in the foot. Providing
emergency medical care 1s impossible since you
can't tell which are bitwise copies and which are

jﬂst pointing at others and saying, "That's me over
there."

« FORTRAN: You shoot yourself in each toe,
iteratively, until you run out of toes, then you read
in the next foot and repeat. If you run out of
bullets, you continue anyway because you have no
exception handling ability.

If languages were religions

(http://www.aegisub.net/2008/12/if-programming-languages-were-religions.html)

* C would be Judaism - 1t's old and restrictive, but
most of the world 1s familiar with 1ts laws and
respects them. ...

* C++ would be Islam - It takes C and not only
keeps all 1its laws, but adds a very complex new set
of laws on top of it. ...

* Lisp would be Zen Buddhism
* Perl would be Voodoo
* Python would be Humanism

Types of languages
(its difficult to put a single label actually)

Imperative (e.g. C, Java, ...)

Functional (e.g. LISP, Haskell, perl, python, ...)
Logical (e.g. prolog)

Formatting/markup (e.g. HTML, XML, KML, ...)
Database (e.g. SQL and 1ts flavours)

Shells (e.g. tcsh, bash, ksh, ...)

Characteristic

Programmer
focus

State changes

Order of
execution

Primary flow
control

Primary
manipulation
unit

Imperative approach

How to perform tasks (algorithms) and
how to track changes in state.

Important.

Important.

Loops, conditionals, and function (method)
calls.

Instances of structures or classes.

Functional approach

What information is desired and what
transformations are required.

Non-existent.

Low importance.

Function calls, including recursion.

Functions as first-class objects and data
collections.

logic programming contributes non-determinism, inversion and
partial data structures, whereas functional programming

contributes efficient evaluation and infinite data structures.
(http://web.cecs.pdx.edu/~antoy/research/flp/index.html)

Imperative(C, Java)

« Computation as statements that change
program state
e 1=0;
o 1++;
n=10;
=1
ofor(1=2;1<=n;++1) {j*=1;}

Procedural (perl, python)

* Method of executing imperative language
programs (imperative + subprograms)

sub fact_rec { # recursive
my $n = shift;

return undef if $n < O;
return 1 if $n <= 1;
return $n * fact_rec($n-1);

(Could have 1ssues 1n list mode).

Functional (Haskell, LISP)

e computation as the evaluation of
mathematical functions. No state.

» Effected through lambda calculus,
composition of functions

Devtopics.com

let rec fact = lambda n. if n=0 then 1 else n*fact(n-1)
in fact 10

Logical (Prolog)

* Define “what” 1s to be computed rather than
“how” (declarative: properties of correct
answers)

factorial(0,1).

factorial(A,B) :-
A >0,
C 1is A-1,
factorial(C,D),
B is A*D.

?- factorial(10,What).
What=3628800

markup/database

SGML/HTML/XML — stylized rendering (XML to be
covered in other talks)

— Tags used for formatting
— Somelext
— <mytag>lalala</mytag>
KML — Keyhole Markup Language
— Convert points for Google Earth/sky locations

SQLs e.g. my, ms, pg, ... (SQL and databases will also be
covered 1n detail in other talks)

— For talking to databases
— Select * from TableX where Y=2

File Edit View Took Add Help

Y Search

|

D

Ursa MaJ'}or)

)

s
I DB

A 4
L_Tlaaun-@-unnn@

Corona Borealis
Canes Venatici

Bootes
A ” / Leo Minor

Coma,Berenices
AR] -

- Sexians
Layers

View: I Core I

* Primary Database
¥ Constellations

A Backyard Astronomy
Hubble Showcase
o The Moon

)

% The Planets

© Users Guis to Gahaxiss Image_© 2007 SDSS

; Image © 2007-DSS Corisortium : ®2007 l ™
Life of a Star < 8 e

Antlia

C]

Pointer Dec 16°15'52.68" RA 12h02m33.73s, Streaming |||||l|||] 100%

shells

* bsh/bash/csh/ksh/tcsh ... are languages 1n
their own right

— awk/sed/grep

— History “Imv; Isep:p; “my"ny”
— Loops

* foreach f (*.jpg)
» convert $f $f:rpng
e end

— Redirections “(myprog < myin > myout) >& myerr &’
— Scripts “at now + 24 hours < foo.csh”

For Matlab buffs

http://www.datatool.com/downloads/matlab style guidelines.pdf

Optimization

The Computer Language

Benchmarks Game

http://shootout.alioth.debian.org

Benchmarking programming languages?
How can we benchmark a programming language?
We can't - we benchmark programming language implementations.

How can we benchmark language implementations?
We can't - we measure particular programs.

Full CPU Time
Memory Use
GZip Bytes
benchmark
binary-trees
chameneos
cheap-concurrency
fannkuch
fasta
k-nucleotide
mandelbrot
meteor-contest
n-body
nsieve
nsieve-bits

partial-sums

weight

[HREENEENER NN

sub fact_rec { # recursive
my $n = shift;

return undef if $n < O0;
return 1 if $n <= 1;
return $n * fact_rec($n-1);

sub fact_loop { # looping
my $n = shift;

return undef if $n < O;
return 1 if $n <= 1;

my $prod = my $k = 1;
$prod *= ++%$k while $k < $n;

return $prod;

¥
my @fact_cache = (1);
sub fact_cache { # cache results of looping
my $n = shift;
return undef if $n < 0;

return $fact_cache[$n] if $n <= $#fact_cache;

my $prod = $fact_cache[-1];

push(@fact_cache, $prod *= $#fact_cache)
while $#fact_cache < $n;

return $prod;

And then there 1s built-in memoizing

Features of Languages

strong/weak/no typing; datatypes
safe/unsafe typing

dynamic/static datatype conversions
side effects/monads

concurrency

distributedness

strong/weak typing

o #include <stdio.h> main()
{int fill; fill=42; printf(“%s\n " fiil);}

strong/weak typing

o #include <stdio.h> main()
{int fill; fill=42; printf(“%s\n " fiil);}
— This will not compile for at least two reasons:

« fi1l (mistyped) 1s not declared
» Even if that is corrected, it is not a string

strong/weak typing

o #include <stdio.h> main()
{int fill; fill=42; printf(“%s\n " fiil);}

— This will not compile for at least two reasons:

« fi1l (mistyped) 1s not declared
» Even if that is corrected, it is not a string

* #!/usr/bin/perl
Sfill=42,printf(“%s\n ", $fiil),

strong/weak typing

o #include <stdio.h> main()
{int fill; fill=42; printf(“%s\n " fiil);}
— This will not compile for at least two reasons:

« fi1l (mistyped) 1s not declared
» Even if that is corrected, it is not a string

* #!/usr/bin/perl
Sfill=42,printf(“%s\n ", $fiil),

 This also fails, but silently. No error 1s announced

» Change ful to fill (Ieaving it as %s) and you get the
correct result (by coincidence)

o #!/usr/bin/perl -w

° use Strict;

A language 1s only as rigid or flexible as
your understanding of it.

Grammers: (Extended) Bachus-Nour form

n=<>" "] {}

Partial grammer for C

<multiplicative-expression> <cast-expression>

| <multiplicative-expression> * <cast-expression>
I
|

<multiplicative-expression> / <cast-expression>
<multiplicative-expression> % <cast-expression>

<cast-expression> ::= <unary-expression>
| (<type-name>) <cast-expression>

= <postfix-expression>
| ++ <unary-expression>
| -- <unary-expression>
|

<unary-expression>

<unary-operator> <cast-expression>
sizeof <unary-expression>
sizeof <type-name>

Extendibility

* With other languages
— Perl through C
— C through perl
» Packages for particular domains and their
extensibility (e.g. matlab/irat/idl)
— Domain specific core functionality

— Can be extended further using packages

* Domain specific languages
— Define terms/keywords close to the domain

— Overload terms 1n domain appropriate way

—select RA,Dec from PO where mag > 15
join radio > 1Jy

Other esoteric sounding but important stuff

* syntactic sugar

— afi] rather than *(a+i)

— afi][j] rather than *(*(a+i)+j)
* side effects/monads

parL -+ Float -> Float -> Float par :: Float -> Float -> Maybe Float
par xyv=1/((1/x)+ @/ V) par xyv=1// (1 //x)+@// V)

Avoid the pitfall of division by 0 by returning a “maybe”
monad of value “nothing”

» Lazy evaluation (delayed until needed)

« x=f(y) will remain as 1s until x 1s needed
» Possible to define infinite lists
e Control structure: a==b?c:d

*Haskell’s implementation of Fibonacci numbers

fibs = 0 : 1 : zipWith (+) fibs (tail fibs)

constant folding/argumentless functions

(evaluating constants at compile time)

int £ (void) int f (void)
{ {

return 3 + 5; return 8;

¥ }

Help Available

* debugging tools
— Internal debuggers

— External/graphical debuggers

 perl —c checks syntax
 perl —d default die handler

 ddd debugger (works with most language
debuggers)

* Macro editing modes

— Emacs, vim (autotab, headers, brace matching)

ﬁ—w DDD: /public/source/programming/ddd-3.2.1/ddd/cxxtest.C s E] G F4=ul DDD: /public/source/programming/ddd-3.2/ddd/cxxtest.C

File Edit View Program Commands Status Source Data Help File Edit View Program Commands Status Source Data Help |

- O X - - = - - S - S -
4] |1r; ‘ 0:| “info all-registers ¢ © @ @ X 2 2 Ay E& \Zol cot
L File Edit View Plot Scale Contour Help | Lookup Find>» Break Watch Print Display Plot Hidet = Botates Set. Undisy
. 1UU- . . : " i 'i{nt main(int /* 5 VAT X gﬁﬂ |k
%0 int 1 = 42; ([N |
80- D tree_test(); DEGBIER Interrupt
20- Lo . eax: 0x401a2db8 1075457464 ‘
[F sl pcx: 0x8043c34 134519956 step | Stepi || |
60 - Tl : - edx: 0x401a1234 1075450420]
o Next | nexti || |
) 0. fesSrestl ebx: Dx401a41b4 1075462580 ﬂ =1
€ P string_test: esp: Oxbfffef30 —1073746128 Unti | Firish || |
static int ir[100]; 40= 1+h; ebp: Oxbfffefas —1073746104 cont | ki |||
20- p]ot_test().‘ esi: Oxbfffef94 —1073746028 '—‘—J__'J §
;| = = O L I s ; e oo
F File Edit view pio 20" Eype—testi eip: 0x8043cal 134513969 Undo| Feco || |
= = = = . g < eflags: 0x286 IOPL: O - :
10 cin_cout_tes: Edit | Make || |
0 return 0; ﬂags. PF SF IF
o 10 20 30 40 S0 60 70 80 90 1007 | OUELEERE (AT =l
{ G5t 0%23 35 i
. Dawn| = T S
d Rerdn —_—
. Plot 3o gigg:ggg? :: 4 Integer registers + All registers s
£ Points 3 0x8049¢a6 <
i 0x8049cag «<r
Lines B Ux8049ca? < e Help
: 0x8049caf <« I |
@ ¢ W\ *2-DLines 0x8043ch0 < ht)>
Points and Lines 0x8043¢hS & — . E—
P i & 0x8049cb8 <main+36>: incl OxFFFFFffci%ebp)
Impulses 4 0x8049cbb <main+39>: call 0x8049428 <array_test(void)>
:-f 0x8049¢c0 <main+dd>: incl oxfffffffc{%sebp)
Dots 0x8049¢c3 <main+d?>: call 0x8049404 <string_test(void)>
Break \ steps
({gdb) 2
{gdb) Boxes {gdb) T
({gdb) vk am—
17 A
A Displ [~] e — i B

Practical Issues

OS support
— perl/c supported on practically all platforms

case of learning (how to shoot your foot ...)
— Functional/logical may seem non-intutive initially
— So do java and C++

readability across teams

— Structure of syntax e.g. tabs in python

Speed, scalability, reusability

Wider 1ssues

* We have scratched only the surface

— Did not even mention entities like

 Postscript

 Tcl
PostScript Language

* Text processing Reference Manual

SECONI

* Non-Von Neumann computers

setlinewidth
newpath moveto
lineto

lineto

4 lineto

setgray

troke

B W N e

Larry Wall 1n ‘State of the Onion’ (2006)
(http://www.perl.com/pub/a/2007/12/06/soto-11.html)

» Early/late binding

* Single/multiple dispatch

» Eager/lazy typology

* Limited/rich structures

* Symbolic/wordy

* Immutable/mutable classes
* Scopes (various kinds)

Perligata (Damian Conway)

Table 1: Perligata variables

Perligata |Number, Case, and Declension Perl Role
nextum accusative singular 2nd Snext scalar data
nexta accusative plural 2nd €next array data
nextus accusative plural 4th $next hash data
nexto dative singular 2nd \Snext scalar target
nextis dative plural 2nd \@next array target
nextibus dative plural 4th \$next hash target
nexti genitive singular 2nd [$Snext] [indexed scalar
nextorum genitive plural 2nd $Snext[] |indexed array
nextuum genitive plural 4th $next{} |indexed hash

Von Neumann architecture

instructions and data are
distinguished only implicitly
through usage Memory

A ks

memory 1s a single memory,

A 4

sequentially addressed T
memory is one-dimensional Control [901
meaning of the data is not stored) Jp——
with 1t =
Things looking better with Virtual / \

Input Output

machines and multi-core
Processors

Things we have left out

Interpreters/compilers and the vagueness in
between

memory management
garbage collection
bytecode

virtual machines

Many core (parallelism)

Slides from Budavari

New Programming Paradigm

512 cores & 16x1536 ~25k threads per GPU
Running a billion threads a second

Forget the fancy old algorithms

Built on wrong assumptions

Today ALU is free, RAM is slow ¢
GPU has >150GB/s bandwidth :
Still difficult to occupy the cores

03/16/2011

37

Ashish Mahabal March 23, 2011

o Slides from Budavari

C for CUDA N

nVvIiDIA

Clean and simple

int main{()

ernel definition

global void VecAdd(flcat* A, float* B, flcat* ()

int 1 = threadldx.x;
C[i] = A[i] + B[i]:

STS«<l

38

\Ao Ashish Mahabal March 23, 2011

o Slides from Budavari

Currently Available

SDK w/examples
Nsight debugger!

Imaging routines
Python w/ PyCUDA
High-level C++ programming with

STScl 03/16/2011

39

\m Ashish Mahabal March 23, 2011

o Slides from Budavari

Projects on CUDA Zone

CUDA ZONE WHATSNEW WHATISCUDA? CUDAGPUs DEVELOPERS

STS«l 03/16/2011

40

\m Ashish Mahabal March 23, 2011

o Slides from Budavari

Cross-matching

C for CUDA prototype
No smart 1/O, RAM limit

NVIDIA GTX 480 1.5GB

5” search with 5” zones
29Mx29M in 11 seconds!

STS«<l

o Ashish Mahabal

C:\>Cukrat

by

Led=t]
[enr]
[tor]
[tar)
[tnr]
T |
[enr]

[dat]
[tnr]
[tar]
[=nr]
IR |
fznr]

Llnr]

L]

<£'m]

[ear}=szch.

IR

Lres]

n_

1

-cad
Cupy
Sort
-Tts
Fuck

oFaT

i
~vad
Capy
S0t
wl s

uvack
i

cop?
Mich

Hu'n

ch.exe dr/.bin 23020202 dr/.bin 23020202 5 5 4

vewa: 129562

& |

12776202
A, 4520060
Z.605020
[s)
Q.47
B, H921020

18, 296262
a.453pae
2. 83205020
A.AMAM0
o ATERYe
A5G

i
i
o

a. 5710w
18. 598008
ML 2o
47.27ER0R

SUFPEILII 5145150601 DU E217F51451500]

SRTPIT1?TIIASISTAT SRTIITI77H14A515797

SUFSEILSFS1A001I0N0 UL 1 F51A0010U0

03/16/2011

41

March 23, 2011

Horses for courses

* Don't marry a particular language

 Know one well, but do sample many other
» Use a language close to your domain

* Use tools which aid during programming

Snake

A snake that follows your cursor.

Snake

N,

L 8

Hamming (regular) numbers

« 21% 3] % 5k (int 1,j,k>=0)
¢ 1,2,3,4,5,6,8,9,10,12, 15, 16, 18, ...
* Merge these lists:

—1;

- 2,4,8, 16, ...;

-3,9,27,81,...;

— 5,25, 125, ...

— Is 7 1n the list? 10? 333?

let rec

merge = lambda a. lambda b.
if hd a < hd b then (hd a)::(merge tl a b)
else if hd b < hd a then (hd b)::(merge a tl b)
else (hd a)::(merge tl a tl1 b),

mul = lambda n. lambda 1. (n* hd 1)::(mul n t1 1)

in let rec
hamm = 1 :: (merge (mul 2 hamm)
(merge (mul 3 hamm)
(mul 5 hamm)))

/
1234568,

L.Allison, Dept. Coraputey Science, Monash University

Exercise

* Write a program to generate Hamming
numbers 1n at least 3 different (types?) of
languages

* Compare them against each other in a few
different ways (speed, memory, typing
requirements)

* Use a debugger during the exercise and when
testing it

InJ: hamming=: {. (/i~@~.@],23 5 * {)/ @ (1x,~1.@-)
hamming 20

