Best Programming Practices

Ashish Mahabal, Caltech
Ay/Bi 199b
31 Mar 2011

The zen of bug-free programming

* [f debugging is the process of removing bugs,
programming must be the process of
introducing them.

- Edsger W. Dijkstra (1930-2002) ©

Don’t program!

Obfuscated programming contests

* touch selfreproducingprogram.c
* makefile:

e cp selfreproducingprogram.c a.out
* chmod 755 a.out

LR

e ./a.out

* Programming style
* Programming tools

My own experience/mistakes

The Pragmatic Programmer
By Andrew Hunt and David Thomas %
g

5 N
. »
o '
| '

Perl *
Best Practices

Perl Best Practices
By Damian Conway

The scene keeps changing

* Drupal http://drupal.org/node/287350
* Django http://www.djangoproject.com/

* iphone apps
http://mashable.com/2009/06/10/build-iphone-app/
* Android apps:

http://developer.android.com/guide/webapps/best-
practices.html

 Chrome extensions: http://blog.chromium.org/
2010/06/making-chrome-more-accessible-with.html

... and yet the basics stay the same

Coding by instinct

Variable names (caps, underscores, ...)
Types of loops (for, while, ...)
Formatting

— Indents, brackets, braces, semicolons

Procedural versus object oriented approach

Conscious and consistent programming style

Necessary ingredients

* Robustness
e Efficiency
* Maintainability

Robustness

Introducing errors
— checking for existence (uniform style)

Edge cases

—0? 1? last?

Error handling

— exceptions? Verifying terminal input
Reporting failure

— Traces? Errors don’t get quietly ignored

Efficiency

Working with strength
Proper data structures

Avoiding weaknesses

Dealing with version changes (back’r
compatibility)

Maintainability

More time than writing
You don’t understand your own code

You yourself will maintain it

Consistent practices

— Braces, brackets, spaces

— Semicolon (after last statement)
— Trailing , in lists

— Linelengths, tabs, blank lines

cb, bcpp, perltidy, jacobe, Jxbeauty

* my @countries=(* my @countries =

USA, USA,
UK, UK,
UAE, UAE,

Ukraine Ukraine,

););

* every piece of code splits the uni

ossibilities.
C&hich future are you coding for?

In two

Some simple recommendations

Use underscores

— Stax_form rather than StaxForm
Don’t use abbrvs

— don’t drop all vowels if you do

Don’t use single letter variable names
— Except perhaps in trivial small loops
Don’t use too common words as variable names
— e.g. no, yes, count, left, okay

Empty strings: name and use them

— my Sempty_string = “ “;

Constants: use Readonly

— my READONLY SPI = 3;

easy development versus easy maintenance
— projects live much longer than intended

— adopt more complex and readable language
check requirements

design, implement, integrate

validate

* Don’t trust the work of others
— Validate data (humbers, chars etc.)
— Put constraints (-90 <= dec <= 90)

— Check consistency

* Don’t trust the work of others
— Validate data
— Put constraints
— Check consistency

* Don’t trust yourself

— Do all the above to your code too

Design by contract (Eiffel, Meyer '97)

* Preconditions
e Postconditions
e Class invariants

Be strict in what you accept
Promise as little as possible
Be lazy

Inheritance and polymorphism result

* Crash early
— Sgrt of negative numbers (require, ensure, NaN)

 Crash, don’t trash
— Die
— Croak (blaming the caller)
— Confess (more details)
— Try/catch (own error handlers e.g. HTML 404)

* Exceptions —when to raise them
— should it have existed?
— Don’t know?

sub locate _and_open {
open my Sfh,’<’,”filename”;
return Sth;
}

sub load_header_from {
TRY TO READ HEADER HERE

}

my Sfh = locate_and _open(Sfilename);
my Shead = load _header from(Sfh);

sub locate_and open {
open my Sfh,’<‘,”filename” or croak “cant”;
return Sth;
}

my Sfh = locate_and_open(Sfilename);

my Shead = load_header_from(Sfh);

If(my Sfh = eval { locate_and_open(Sfilename)}){
my Shead = load header from(Sfh);
}

else{
carp “Couldn’t access Sfilename.\n”;

J

Tests
Comments
Arguments

Debugging

Tests

Test against contract
— Sqgrt: negative, zero, string
— Testvalue(0,0)
— Testvalue(4,2)
— Testvalue(-4,0)
— Testvalue(1.e12,1000000)

Test harness
— Standardize logs and errors

TeSt te m p I ates http://ib.ptb.de/8/85/851/sps/swq/graphix
Werite tests that fail

All software will be tested

* |f not by you, by other users!
— perl Makefile.pl
— MakKe
— Mmake test

— make install

* Don’t use code you do not understand

Source Code
Control =i

* SVN
— Checkin
— Checkout
— Comment

— |V| er ge step 4 & 8: SVn commit

SVN commit - This will
take all the files men-

tioned with the commit
to the repo and will do

the action as labeled at

Git, google docs, wiki, trac)

http://img.idealwebtools.com/blog/svn.gif

Step -1: SVNadmin create (admin

Repository needs to do it once, use fsfs for

bigger project/ Berekely DB is also
ood.

this is a local copy of
the project

Step 1: Svn checkout

Step 5: SVN update
(gets all the changes to local copy)

Step 2 & 6: Doing the modifi-
cation to the local copy.

Labeling some files with
SVN Add / SVN mkdir
SVN Del

SVN Move / SVN Copy

Step 3 & 7: Checking the

SVN Status
SVN revert
SVN diff

(here it compares with
the last local copy, may
not be the latest)

step 2b & 6b

(optional)
Do a SVN update to pull
the latest code to see the
latest changes and con-
flicts else it will prompt -
“out of date”

Modification cycle

write test

run and make sure it fails

Checkout

change, comment, edit readme etc.
Compile

run: make sure test passes

checkin

Comments

If it was difficult to write, it must be difficult to
understand

bad code requires more comments
tying documentation and code
use Euclid;

Documentation/comments in code

List of functions exported
Revision history

List of other files used
Name of the file

Documentation

e Algorithmic:

full line comments to explain the algorithm
* Elucidating: # end of line comments

* Defensive: # Has puzzled me before. Do this.
* Indicative: # This should rather be rewritten
* Discursive: # Details in POD

Arguments

Don’t let your subroutines have too many
arguments

— universe(G,e,h,c,phi,nu)
Look for missing arguments
Set default argument values

Use explicit return values

Needing/demanding arguments

e unless(@ARGV==4){exit;}
* my (53a,5b,5¢,5d) = @ARGV;

use GEtOpt"EUC||d; # not just demands arguments

but provides constraints

PROMPT> pg_images.pl
Missing required arguments:
-r[a] [=] <RA>
-d[ec] [=] <Dec>
(Try: pg_images.pl --help)
PROMPT>

PROMPT> pg_images.pl --help
Usage:
pg_images.pl -r <RA> -d <Dec> [options]

Required arguments:
-r[a] [=] <RA>
Specify RA in degrees [0 <= RA <= 360]

-d[ec] [=] <Dec>
Specify Dec in degrees [PQ: -25 <= Dec <= 25]

Options:
-i[d] [=] <id> [string]
ID of the object

-c[leanup] [=] <cleanup>
Level of cleanup after the program is done [default: 2] 0: Do not
remove anything 1: Remove everything except individual mosiacs (and
final product) 2: Leave only final coadded image

-V
--verbose
Print all warnings

--version
--usage
--help
--man
Print the usual program information
PROMPT>

PROMPT>pg_images.pl --man
AUTHOR
Ashish Mahabal <aam@astro.caltech.edu>

BUGS
There are undoubtedly serious bugs lurking somewhere in this code. Bug
reports and other feedback are most welcome.

COPYRIGHT
Copyright (c) 2007, Ashish Mahabal. All Rights Reserved. This module is
free software. It may be used, redistributed and/or modified under the
terms of the Perl Artistic License (see
http://www.perl.com/perl/misc/Artistic.html)

use Getopt::Euclid;

=headl REQUIRED ARGUMENTS
=over
=item -r[a] [=] <RA>
Specify RA in degrees [0 <= RA <= 360]
=for Euclid:
RA.type: number >=0
RA.type: number <= 360
=item -d[ec] [=] <Dec>
Specify Dec in degrees [PQ: -25 <= Dec <= 25]
=for Euclid:
Dec.type: number >=-25
Dec.type: number <= 25
=back

Debugging

there will be bugs!

the only bugfree program is one that does not
do anything

tests: write unit tests first

make sure the program compiles without
warnings (perl -c)

make bugs reproducible (with a single
command)

visualize the data

ddd or perl -d
Breakpoints

use Smart::Comments;

http://www.gnu.org/software/ddd/
plots.png

use Smart::Comments;

#itt seeing: Sseeing
##t# calcmag: Scmag
##t# calcmag2: Scmag2;

When you find a bug ...

check boundary conditions
— first and last elements of lists

describe the problem to someone else

why wasn't it caught before

could it be lurking elsewhere (orthogonality!)
if tests ran fine, are the tests bad?

* (non)Duplication
* Orthogonality
* Refactoring

= \

Duplication

* Don't repeat yourself
* Impatience
* Reinventing wheels

Orthogonality

Decouple routines

Make them independent

Change in one should not affect the other
Changes are localizec
Unit testing is easy
Reuse is easy

If requirements change for one function, how
many modules should be affected? 1

Configurable

sub line{
my (Sstartpoint, Sendpoint, Slength);

Choose a template

Choose a custom
look for your blog.

You can easily

ﬂ change the
template later, or

even create your

own custom

template design

m - oo — kel b‘cg o

up.

preview template preview template

if while entertaining libraries you need to
write/handle special code, it is not good.

avoid global data
avoid similar functions

even if you are coding for a particular flavor of
a particular OS, be flexible

Refactoring

Early and often

— Duplication

— Non-orthogonal design
— Outdated knowledge
— Performance

Don’t add functionality at the same time
Good tests
Short deliberate steps

Portfolio building

learn general tools, invest in different ones

— plain text
» easier to test (config files, for instance)

— Shells

* find, sed, awk, grep, locate
* .tcshrc, .Xdefaults

— learn different (types of) languages

— Editor
* if you know emacs, learn just a little bit of vi

* Configurable, extensible, programmable (cheat sheet)
— syntax highlighting
— auto completion
— auto indentation
— Boilerplates
— built-in help

* Text manipulation
— perl and ruby are very powerful

Metaprogramming

* Configure

* Abstraction in code, details in metadata
— Decode design
— Pod files (plain old documentation)

* Code generators

— make files, config files, shell scripts., ...

* Active code generator:

— Skyalert (streams)
* new transient
e obtain new data
* incorporate it

* if certain conditions met,
— run other programs
— or raise alerts
— drive other telescopes
— and obtain feedback

Workflow

* Improving concurrency
* Unified Modeling Language (UML) diagrams
* Architecture

— Action =

: : 2 © @
— Synchronization al | @8-
— Connect actions lal [=5 . ® v

new various VO

PQ/SDSS
transient tools

coadds

ensure it is

get :
not artifact

cutouts

get other info

seeif
alert condition
13 met

subscribers
in wait

alert
issued

Publish-subscribe rather than push

* Allow people to subscribe
e Let them subselect
* Allows separate view of model

Skyalert http://www.skyalert.org

subscriber 2

subscriber 1

Skyalert

(publisher)
subscribe -
subscribe HOHLY g
notfy subscribe -
- notify
unsubscribe -

stream 2

Before the project

Dig for requirements
Document requirements
Make use case diagrams
Maintain a glossary
document

Don’t optimize code — benchmark it

Don’t optimize data structures — measure
them

Cache data when you can — use Memoize
Benchmark caching strategies

Don’t optimize applications — profile them
(find where they spend most time)

use Benchmark gw(cmpthese);
my @sqrt_of = map {sqrt S_} 0..255;

cmpthese -30, {
recompute =>q{ for my Sn (0..255) {

my Sres=sqrtSn }},
look_up_array => q{ for my Sn (0..255) {

my Sres = Ssqrt_of[Sn] } },

Summarizing ...

e Software entropy

— Fix broken windows

* Know when to stop
— Don’t overperfect

 Widen knowledge portfolio
— Hotjava
— Postscript

— vi/emacs

* Languages/tools/OSes/editors

— 99 bottles of beer
— Programming shootout
— Project Euler

e Python

* Perl

*)

* Haskell

Whats the lesson?

Chain as weak as its weakest link
Comment! For others and for yourself
Tests!

Orthogonality

Don’t duplicate

Designing by contract

Know the features

Review/balance

— Public forums
* Ask specific things
* Check FAQs, webresults etc.

— Maintain your own bookmarks
Use wikis

Use SVN, trac

CHECK REPOSITORIES (like CPAN)

 Law 1: Every program can be optimized to be
smaller.

* Law 2: There's always one more bug.

* Corollary: Every program can be reduced to a
one-line bug.

From a Bug’s life

