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Key problems

• How do you fit a model to data?
– How do you choose weights and thresholds?

– How do you incorporate prior knowledge?

– How do you merge multiple sources of info?

– How do you model uncertainty?

Bayesian reasoning provides solutions



Bayesian reasoning is …

Probability, statistics, data-fitting



Applications
• Data mining
• Robotics
• Signal processing
• Document Analysis
• Marketing 
• Bioinformatics
• Astronomy, etc

In fact, it applies to all data-driven fields



Benjamin DisraeliMark Twain

There are 3 types of lies:
1.Lies
2.Damned lies 
3.and Statistics ! 

���������	

��

“… two researchers at the University of Girona in Spain, have 
found that 38% of a [random] sample of papers in Nature
contained one or more statistical errors …”

�
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Statistics: A Bad Rap



Evolution of Inference



Bayesian vs. Frequentist
• Frequentist Statistics

– a.k.a. “orthodox statistics” (“classical theory”)
– Probability as frequency of occurrences in � # of trials
– Historically arose from study of populations
– Based on repeated trials and future datasets
– p-values, t-tests, ANOVA, etc. (a cookbook of hacks!)

• This debate has been long & acrimonious

• 18th – 19th century was mostly (already) Bayesian, the 
20th century was dominated by Frequentists, and now 
looks like the 21st is back to Bayesics!



Bayesian vs. Frequentist
“In academia, the Bayesian revolution is on the 

verge of becoming the majority viewpoint, which 
would have been unthinkable 10 years ago.”

from The New York Times, January 20th 2004

- Bradley P. Carlin, 
Mayo Professor of Public Health
Head of Division of Biostatistics
University of Minnesota



Bayesian vs. Frequentist

• Pathologies of Freq Statistics are 
finally being acknowledged

• Tests of statistical significance are 
now increasingly Bayesian

• Many journals discourage p-values
• American J. of  Public Health
• Medical J. of  Australia
• The British Heart Journal
• The Lancet
• and even more generally by the Int’l 

Committee of Medical Journal Editors



Herodotus
(c. 500 BC)

“A decision was wise, even though it led 
to disastrous consequences,   if the 
evidence at hand indicated that it was 
the best one to make

And a decision was foolish, even though it 
led to the happiest possible consequences, 
if it was unreasonable to expect those 
consequences”

The Earliest “Bayesian” ?



“Frustra fit per plura, quod fieri
potest per pauciora.”

“It is vain to do with more what can 
be done with less.”

Occam’s Razor :William of Occam
(1288 – 1348 AD)

Everything else being equal, one should 

favour the simpler model

A Pre-Bayesian Minimalist

Bayesian model selection automatically implements a form of 
Occam’s Razor   (i.e. automatic complexity control)



The Founding Founders
Blaise Pascal

(1623-1662, France)
Pierre Fermat

(1601-1665, France)

They laid the foundations of  Probability Theory 
in a correspondence about a game of dice.



The Reverend Bayes
Thomas Bayes
(1702 - 1761, UK)

His manuscript  “An essay towards 
solving a problem in The Doctrine of 
Chances” was found by a friend after 
his death and (given due special 
consideration)  was published in the 
Philosophical Transactions of the Royal 
Society of London in 1764.

• Bayes was first to tackle Inverse Probability :
going from effects (observations) 
to their causes (models/parameters)

* The Doctrine of Chances: A Method for 
Calculating Probability of Events in Play
is a book by Abraham de Moivre (1718)



“Probability theory is nothing but common sense 
reduced to calculation”

Pierre-Simon Laplace
(1749 – 1827)

The Prince of Probability

• Mathematical Physicist & Astronomer

• A shrewd self-promoter (but truly gifted)

• Independently discovered Bayes’ rule  (but he 
later acknowledged Bayes’ role)

• Laplace argued in favor of uniform priors

• Solved many applied inverse-probability
problems in physics and astronomy

• The term Bayesian may very well be replaced 
by Laplacian, in Statistics



The Father of Orthodoxy
Ronald Fisher 
(1890 – 1962)

Cambridge Geneticist & Biologist
(also a key proponent of eugenics in the 1930s)

• Fisher misunderstood Laplace’s work

• He found Bayesian integrals /math too hard
• Re-invented statistical inference as being solely 
likelihood-based (and called it “fiducial”)

• By most accounts Fisher was a harsh, rigid, egotistical 
and vindictive man [Jaynes 2003]

“So long as you avoided a handful of subjects like inverse 
probability that would turn Fisher in the briefest possible 
moment from extreme urbanity into a boiling cauldron of 
wrath, you got by …”

– Fred Hoyle,  Cambridge Astronomer



“ What the use of the p-value [significance level] implies, therefore, is that a 
hypothesis that may be true may be rejected because it has not predicted observable 
results that have not occurred. “

— Harold Jeffreys, Theory of Probability (1939) 

Harold Jeffreys
(1891 – 1989)

The Gentle Revivalist

• Mathematician, Statistician, Astronomer

• A contemporary of Fisher, who had more than a 
few disagreements with Fisher

• Revived Bayes-Laplace style of inference

• Derived invariant uninformative priors

• Pointed out some fallacies of Frequentists



“This may seem like an inflexible, cavalier attitude; [however] I am convinced that 
nothing short of it can ever remove the ambiguity of  [the problem] that has plagued 
probability theory for two centuries“

— Ed Jaynes, Probability Theory: The Logic of Science (2003) 

Edwin Jaynes
(1922 – 1998)

The Hardcore Crusader
• Physicist, Statistician

• Modern proselytizer of Bayes-Laplace view

• Probability Theory as Extended Logic

• Statistical Mechanics & Information Theory

• Devised “Maximum-Entropy” (MaxEnt) priors

• Pointed out endless flaws of Orthodox Statistics



" The trouble is that what we [statisticians] call modern [orthodox] 
statistics was developed under strong pressure on the part of biologists.  As 
a result, there is practically nothing done by us which is directly applicable 
to problems of astronomy."  -- Jerzy Neyman (years later)

• Founder of Hypothesis Testing

• Co-Inventor of Confidence Intervals

• Inventor of Random Sampling

• Emphasis on repeated randomized trials 

• Neyman-Pearson Lemma (with his advisor)

A Frequentist’s Mea Culpa
Jerzy Neyman
(1894 – 1981)



Bayesian vs. Frequentist

So leave these assumptions behind:

• “A probability is a frequency”

• “Probability theory only applies to large    
populations”

• “Probability theory is arcane and boring”



Fundamentals



What is Reasoning?

• How do we infer properties of the world?
– we want inductive reasoning

– we must account for all uncertainty

• due to our own ignorance (about the world)

• inherent “noise/chance” (intrinsic to the world)

• How should computers do it?



Aristotelian (Deductive) Logic

• If A is true, then B is true
• A is true
• Therefore, B is true

A: patient has AIDS
B: patient is HIV +

Note: if-then is not always causation



Real-World is Uncertain

Problems with pure (Boolean) logic:
• Don’t have perfect information
• Don’t really know the model
• Pure logic is deterministic

– No way to have “chance” outcomes
– No way to capture noise, uncertainty, etc

So let’s build a logic of uncertainty!



Beliefs

Let    bel(A) = “belief that A is true”
bel(¬A) = “belief that A is false”

e.g.,  A = “Mars has microbial life”
bel(A) = “belief in Martian microbial life”



Reasoning with Beliefs
Cox Axioms [Cox 1946]
1. Ordering exists

– e.g., bel(A) > bel(B) > bel(C)
2. Negation function exists

– bel(¬A) =  f( bel(A) )  for some function f
3. Product function exists

– bel(A ∧ Y)  =  g(bel(A|Y) , bel(Y) )
for some function g

This is all we need!



The 3 Cox Axioms uniquely define a 
complete system of reasoning

which is … Probability Theory !

* Any other framework will therefore have to 
be incomplete, incoherent and/or   sub-optimal
and can lead to paradoxes

Reasoning with Beliefs



“Probability theory is nothing more than 
common sense reduced to calculation.”

-- Laplace (1814)

Principle #1:



Definitions

P(A) = “probability A is true”
=  bel(A) =  “belief A is true”

P(A)  is a real value in [0,1]
P(A) = 1  iff “A is true”
P(A) = 0  iff “A is false”

P(A|B) = “probability of A if we knew B”
P(A, B) = “probability of A and B”



Examples

A: “patient has a concussion”
B: “patient has a headache”

P(A) = 0.11
P(B) = 0.53

P(B | A) = 0.92
P(A | B) = 0.05



Sum rule:

P(A) + P(¬A) = 1

Basic Rules

Example:

A: “spacecraft will survive EDL”
P(A) = 0.9    thus     P(¬A) = 0.1



Sum rule:

����i P(Ai) = 1

Basic Rules

when exactly one of the Ai must be true



Product rule: 

P(A,B) = P(A|B) P(B)
= P(B|A) P(A)

Basic Rules



Basic Rules

Conditioning

����i P(Ai) = 1 ����i P(Ai|B) = 1

P(A, B) = P(A|B) P(B)

P(A, B|C) = P(A|B,C) P(B|C)

Sum Rule

Product Rule



Basic Rules

Product rule

Sum rule

All derivable from Cox axioms; 
obey rules of common sense

From these we can derive new rules

P(A,B) = P(A|B) P(B)

����i P(Ai) = 1



Example

A = “patient loses weight over the next 2 weeks”
B = “patient watches diet and does exercise”

¬B = “patient takes some OTC weight-loss pill”

Model: P(B) = 0.7
P(A|B) = 0.8

P(A|¬B) = 0.5

what is P(A) ?



Example, continued

Model: P(B) = 0.7,  P(A|B) = 0.8,  P(A|¬B) = 0.5

1 = P(B) + P(¬B)
1 = P(B|A) + P(¬B|A)
P(A) = P(B|A)P(A) + P(¬B|A)P(A)

= P(A,B) + P(A,¬B)

= P(A|B)P(B) +  P(A|¬B)P(¬B)

=   0.8  x 0.7    +  0.5  x (1 - 0.7)    =   0.71

Sum rule

Conditioning

Product rule

Product rule



Basic Rules

Marginalizing

P(A) = ����i P(A, Bi)
for mutually-exclusive Bi

for example,

P(A) = P(A,B) + P(A, ¬B)



Syllogisms Revisited

A -> B
A
Therefore B

P(B|A) = 1
P(A) = 1
P(B) = P(B,A) + P(B, ¬A)

= P(B|A)P(A) + P(B|¬A)P(¬A)
= 1



1. Knowing P(A,B,C ) is equivalent to:
– P(A,B|C ) P(C )

– P(A|C ) P(B|A,C )

– P(B|C ) P(A|B,C )

(Cox’s Theorem)

More than 2 Variables



Given a complete model, we can derive any 
other probability

The joint probability of all the unknowns is the “full 
recipe” or description of our model.

All inferential goals derive from that joint  
probability, using the Sum/Product rules

Principle #2:



Model: P(B) = 0.7,  P(A|B) = 0.8,  P(A|¬B) = 0.5
Given observation A  (patient lost some weight)

what is P(B|A)?    (patient did diet/exercise)

Inference

P(A,B) = P(A|B) P(B)  =  P(B|A) P(A)   Product Rule

this is the controversial Bayes’ Rule !

P(B|A) =
P(A|B) P(B)

P(A)

(0.8)(0.7)
(0.71) 

= 0.79=



Inference

Bayes Rule

P(θθθθ|D) = P(D|θθθθ) P(θθθθ)
P(D)

Posterior

Likelihood
Prior

Frequentists accept this formula (it’s irrefutable!) 
But they object to using priors (as being subjective)



Setup your model of the world and then 
compute probabilities of the unknowns 

given the observations

Principle #3:

P ( parameters | data) estimation
P ( new data | data) prediction
P ( model | data) model selection
P( H0 | data , model) hypothesis tests

One unified framework for multiple tasks!



Use Bayes’ Rule to infer the 
unknown X from the observed O

Principle #3a:

P(X|O) = P(O|X) P(X)
P(O)

Likelihood

Prior

Posterior



Independence

Definition:
A and B are independent iff

P(A,B) = P(A) P(B)



Example: Diagnosis

Jo takes a blood test for a certain disease
Test result is either “positive” (T) or “negative” (¬T) 
The test is 95% reliable
1% of people in Jo’s demographic have the disease

If the test result is “positive” (T) 
does Jo have the disease? [MacKay 2003]



Example: Diagnosis

Model:  P(D) = 0.01          P(T|D) = 0.95                   
P(¬T|¬D) = 0.95

P(D|T)  =
P(T|D) P(D)

P(T)
� 0.16  or 16 %

since  P(T)  =  P(T|D) P(D)  +  P(T|¬D) P(¬D)

=    0.95 x 0.01   +  (1 - 0.95) x 0.99    = 0.059



Example: Diagnosis

What if we tried different tests ?

99.9% reliable test gives   P(D|T2 )  � 91 %

70% reliable test gives      P(D|T3 )  � 2 %

The posterior combines all available information – so 

could use multiple tests, e.g., P(D|T2 ,T3) 



Discrete Variables

Probabilities over discrete variables

C � { Heads, Tails }

P(C = Heads) = 0.5   (but why ? )

Sum Rule:
P(C = Heads) + P(C = Tails) =  1



Continuous Variables
Probability Density Function (PDF)

measures concentration of probability “mass”

p(x)

x

Notation:
P(x) is probability distribution
function (cumulative) whereas p(x) 
is local probability density 
so Prob(x = 2) is zero !



Continuous Variables



Uniform Distribution

x0 x1

p(x)



Gaussian Distributions

x ~ N(µ ,σ 2 )

p(x|µ,σ 2) =

µµµµ

σσσσ



Gaussian Parameters (µµµµ ,σσσσ)

X

f(X)

CA

B



Why use Gaussians?

• Convenient analytic properties
• Central Limit Theorem
• Infinite Divisibilty
• Works well in practice
• Not for everything, but good approx
• For more theoretical reasons, see 

[Bishop 1995, Jaynes 2003]



Why use Gaussians?



Rules for Continuous PDFs



Multivariate distributions

Uniform:  x ~ U(domain) Normal: x ~ N(µ, Σ )



Inference

How to reason about the world from observations?

Three important sets of variables:
1. Observations (known, given, ”clamped”)
2. Unknowns (parameters, missing data, submodels)
3. Auxiliary (“nuisance”) variables 

– Any left over variables we don’t care about but must account for

Given the observed (known) data, 
what are the probabilities of the unknowns?



Inference
Coin-flipping : Bernoulli trials

P(C = Heads|θ ) = θ
p(θ ) = Uniform(0,1)     (Bayes & Laplace)

Suppose we flip the coin 1000 times 
and get 750 heads.  What is θ ?

Intuitive answer : 750/1000 = 75%



What is θθθθ ?
p(θ ) = Uniform(0,1)
P(Ci = h|θ ) = θ ,   P(Ci = t|θ ) = 1 - θ
P(C1:1000|θ )  =  ∏i P(Ci = h |θ )

p(θ |C1:1000 ) =  P(C1:1000|θ ) p(θ )
P(C1:1000)

Bayes’
Rule

H = 750
T = 250



What is θθθθ ?

θ

p(θ | C1:1000 )

The posterior distribution tells us everything 
(our revised belief about θθθθ after seeing data)



Bayesian Prediction

What is the probability of another head?

P(CN+1 = h|C1:N ) = � P(C = h, θ | C1:N ) dθ

= � P(C = h|θ ) p(θ | C1:N ) dθ

= � θ p(θ |C1:N ) dθ

= (H + 1)/(N + 2)

* Note: we never computed an estimate of θθθθ



Parameter Estimation

• What if we want an estimate of θθθθ ?

• Maximum A Posteriori (MAP):
θ * =  arg maxθ p(θ |C1, … , CN )

=  H / N 
=  750 / 1000 =  75%

Note: with a flat prior on θ
MAP and ML mode estimates
are the same in this problem



A Problem ?

Suppose we had flipped coin just once
What is P(C2 = h | C1 = h) ?

ML estimate: θ * = H / N = 1  
But that’s absurd!

Bayesian prediction: 
P(C2 = h | C1 = h ) =  (H + 1) / (N + 2) =  2/3



So what went wrong?
p(θ | C1 ) p(θ | C1:1000)  

Bayes integrates over the posterior mass

ML/MAP estimate finds the posterior peak



Over-Fitting

• A model that fits the (current) data well but 
does not generalize (future)

• Occurs when a point-estimate is obtained 
from “spread-out” posterior

• Important to ask the right question: should 
we estimate CN+1 or θθθθ ?



Parameter estimation 
is not Bayesian. 

It leads to errors, 
such as over-fitting.

Principle #4:



Bayesian prediction

p(x|D ) =  � p(x, θ | D ) dθ
=  � p(x|θ ) p(θ |D ) dθ

training
data

data 
vector

model
parameters

Note “model averaging”



p(x|D ) = � p( x, θ | D ) dθ

Advantages of Estimation

Bayesian prediction is usually difficult and/or 
expensive

Frequentists use “plug-in” estimates
(this ignores the uncertainty in estimates)



Q: When is Estimation Safe ?

A: When the posterior is “peaked”

• The posterior “looks like” a spike 

• Since often we have more data than parameters

• But this is not a guarantee 
(e.g., fitting a line to 100 identical data points)

• In practice,  use error bars (posterior variance)



Parameter estimation is easier than 
prediction. It works well when the 

posterior is “peaked.”

Principle #4a:



p(
θθ θθ

|I
 )

θθθθ

Flat (uniform) prior 
:  all values of θθθθ are 
deemed equally 
probable

Normal prior :
peak at θθθθ = 0.5

Different Priors  p(θ )



After  N = 0  flips
p(

θθ θθ
| d

at
a,

 I 
)

θθθθ



After  N = 1  flips :  H

θθθθ

p(
θθ θθ

| d
at

a,
 I 

)



After  N = 2  flips :  H + H

θθθθ

p(
θθ θθ

| d
at

a,
 I 

)



After  N = 3  flips :  H + H + T

θθθθ

p(
θθ θθ

| d
at

a,
 I 

)



After  N = 4  flips :  H + H + T + T

θθθθ

p(
θθ θθ
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)



After  N = 5  flips :  H + H + T + T + T

θθθθ

p(
θθ θθ
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 I 

)



After  N = 10  flips :  5 H + 5 T

θθθθ

p(
θθ θθ
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)



After  N = 20  flips :  7 H + 13 T

θθθθ

p(
θθ θθ
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a,
 I 

)



After  N = 50  flips :  17 H + 33 T

θθθθ

p(
θθ θθ
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)



After  N = 100  flips :  32 H + 68 T

θθθθ

p(
θθ θθ
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a,
 I 

)



85

After  N = 200  flips :  59 H + 141 T

θθθθ

p(
θθ θθ

| d
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a,
 I 

)



After  N = 500  flips :  126 H + 374 T

θθθθ

p(
θθ θθ

| d
at

a,
 I 

)



After  N = 1000  flips :  232 H + 768 T

θθθθ

p(
θθ θθ

| d
at

a,
 I 

)



• As data improves (and/or sample size increases), the posterior 
narrows and is less sensitive to choice of prior

• The posterior conveys our (evolving) degree of belief in all 
different values of θ , in the light of the observed data

• If we want to express our result as a  single number we could use 
the posterior mean, median, or mode

• We can use the variance (or entropy) of the posterior to quantify 
the uncertainty of our belief in θ

• It is straightforward to define credible intervals (CI)

Bayesian Inference



p(
θθ θθ

| d
at

a,
 I 

)

θθθθ

95% of 
area under 
PDF 

θθθθ 1 θθθθ 2

We are 95% sure that
lies between          andθθθθ 1 θθθθ 2

θθθθ

Bayesian Credible Intervals



Summary of Principles

1. Probability theory is common sense reduced to 
calculation.

2. Given a model, we can derive any probability

3. Describe a model of the world, and then 
compute the probabilities of the unknowns with 
Bayes’ Rule



Problems with Bayesian methods

• Best solution is usually intractable
• often requires numerical computation

• But it’s still far better to understand the real problem, 

be principled, and then approximate

• need to choose approximations carefully



2. Some complicated math needed
• Models are simple, but algorithms can be 

complicated
• But may still be worth it
• Bayesian toolboxes are out there

(e.g., BUGS, VIBES, Intel OpenPNL)

Problems with Bayesian methods



Problems with Bayesian methods

3. Complex models sometimes impede 
creativity

• Sometimes it’s easier to tune (hack)

• Still, can hack first, be principled later
• Probabilistic models give insight that actually 

helps with hacking solutions



Benefits of Bayesian Approach

1. Principled modeling of noise/uncertainty

2. Unified model for learning and synthesis

3. We can learn all parameters

4. Can have more parameters than data

5. Good results from simple models

6. Especially good when data is scarce

7. Lots of new research and algorithms



Finally, some things to remember

“Probability does not exist”
– Bruno de Finetti

“All models are wrong. But some are useful”
– George E. P. Box

(son in law of Ronald Fisher)



The EndThe End
this is the end, my friend


