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Steering the future of computing
Computational power is surging thanks to insatiable consumers. Natural scientists should seize
opportunities to stimulate computer science, to help everybody cope with huge volumes of data.

Sometime in the 2010s, if all goes well, the Large Synoptic Sur-
vey Telescope (LSST) will start to bring a vision of the heavens
to Earth. Suspended between its vast mirrors will be a three-

billion-pixel sensor array, which on a clear winter night will produce
30 terabytes of data. In less than a week this remarkable telescope
will map the whole night sky with a greater speed and sensitivity
than could have been imagined more than a decade or so ago, reca-
pitulating with added detail the entire history of optical astronomy
from Galileo to the Palomar Sky Survey. 

And then the next week it will do the same again, looking for tran-
sient changes, adding new information and building up a database
of billions of objects and millions of billions of bytes. 

When looking at the future of scientific computing, as Nature does
this week in a selection of News Features and Commentaries (starting
on pages 398 and 409), it is easy to focus on the vast data architec-
tures necessary for projects such as the LSST or the Large Hadron
Collider at CERN, the European particle-physics laboratory near
Geneva. The truly amazing story, though, is of the distributed power
that ends up not in exceptional places such as the focal plane of a giant
telescope, but spread out across the world; the power that allows data
to be acquired from microfluidic chemistry sets and genome
sequencers in labs around the world at astonishing rates, and allows
the environment — or the human body — to be monitored in real
time by vast arrays of sensors. The fact that everyday computing is
getting exponentially cheaper promises to vastly increase data flows
of all sorts and to revolutionize the practice of science. 

It is this remarkable growth that has allowed projects such as the
LSST to be imagined — and which will surpass them before they are
very old. It is not driven by science, but it has been of immense use
to scientists, and will continue to be, if they can change the way 
science is done to make use of the great potential. 

Scientists will increasingly have to rely on automation to extract
useful knowledge from these vast data resources. As with computer-
aided proofs in mathematics, such automation challenges the

processes by which scientists gain insight and generate theories.
What’s more, science will increasingly be done directly in the data-
base, finding relationships among existing data while someone 
(or something) else performs the primary collecting role. And this
means that scientists will have to understand computer science in
much the same way as they previously had to understand math-
ematics, as a basic tool with which to do their jobs. 

But scientists can be more than just passive responders to change.
Although the great trends in computing are driven by economic and
technical forces external to the scientific world, science can provide
ideas and challenges that provoke the computer industry into moves
it might not have made so quickly on its own. The World Wide Web,
after all, grew out of the needs of
scientific data users. It was years
after Tim Berners-Lee had put
his vision of hypertext onto the
Internet that it revealed its
capacity to revolutionize fields
from bookselling to campaign
financing. 

The computer industry knows that scientists can come up 
with strange ideas and requirements that may well, in time, have
broader commercial application elsewhere. This is one of the 
reasons why Microsoft is engaging the scientific community with its 
new ‘Towards 2020 Science’ report on computers in science (see
http://research.microsoft.com/towards2020science). That report
inspired this week’s focus on computing in Nature. Microsoft is
sponsoring free web access to our articles on the subject, although,
as always, the content is exclusively Nature’s responsibility. 

As computing gets ever cheaper, quicker and more powerful, 
scientists would do well to remember that, by being a demanding
and stimulating ‘user community’ that engages the interest of com-
panies such as Microsoft, Google and Intel, they can influence the
development of the field, to everybody’s benefit. ■

A scramble for Africa
Large dams benefit contractors and corrupt
governments more than they aid the African people.

Towards the end of nineteenth century, Europe suddenly woke
up to the riches that lay in the vast unexplored continent to its
south, and the ‘scramble for Africa’ began. By the start of the

First World War, almost all of the continent had been taken by Euro-
pean powers. The rights of Africa’s own people, who lost land and
many lives during this process, drew scant attention.

Why recall this episode today? Fleetingly, last summer, Africa was
big news, when it became the central topic at a meeting in Scotland of
the leaders of the G8 group of top industrialized nations, chaired by
British prime minister Tony Blair. Yet the real action is being taken
by a donor nation that isn’t even a member of the G8: China.

The G8 nations — correctly, if belatedly — are considering how
best to invest in Africa, so that the previous misappropriation and
mismanagement can be avoided. China seems to have no such
qualms. Across the continent, from Zimbabwe to Sudan, China 
is winning friends by lending money to Africa’s most unsavoury
regimes without asking awkward questions.

As a News story on page 393 of this issue illustrates, scientists and

“Science can provide ideas
and challenges that
provoke the computer
industry into moves it
might not have made so
quickly on its own.”
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Five years ago, if you’d have
asked anyone working in
quantum computing how
long it would take to make a
genuinely useful machine,
they’d probably have said 
it was too far off even to

guess. But not any longer.
“A useful computer by 2020 is realistic,” says

Andrew Steane of the quantum-computing
group at the University of Oxford, UK. David
Deutsch, the Oxford physicist who more or
less came up with the idea of quantum compu-
tation, agrees. Given recent theoretical
advances, he is optimistic that a practical
quantum computer “may well be achieved
within the next decade”.

This excitement is, however, tempered by the
hurdles that have yet to be overcome. Building
a quantum computer is still very, very hard to

do. This is partly because it involves making
quantum systems do things that don’t come
naturally to them. “There is progress, but it’s
still very slow,” says physicist Chris Monroe of
the University of Michigan in Ann Arbor.

And even if we did have a working quantum
computer today, there are hardly any programs
that could run on it. In fact, it is likely that even
once the machines are available, quantum
computers are destined to remain niche prod-
ucts — excellent for certain tasks but not 
versatile devices like conventional personal
computers. “Quantum computers will almost
certainly never become general-purpose desk-
top machines,” concedes Isaac Chuang, a
quantum physicist at the Massachusetts Insti-
tute of Technology (MIT) in Cambridge.

Nevertheless, as a scientific research tool the
quantum computer could be revolutionary
because of its ability to simulate other quan-

tum systems. In conventional, or classical,
computers, information is stored as strings of
bits: binary digits each of which can take the
value of 0 or 1. The same is true for quantum
computers, except that this time the binary
digits — ‘qubits’ — are stored in the quantum
states of microscopic systems, such as the elec-
tronic state of an atom or ion. So by its very
nature, a quantum machine should be much
better suited to simulating quantum systems
than a classical computer.

A quantum simulator would describe and
predict the structure and reactivity of mol-
ecules and materials by accurately capturing
their fundamental quantum nature. This is the
sort of employment the early machines are
likely to find: doing calculations of interest to
chemists, materials scientists and possibly
molecular biologists, says Steane.

“Just a few dozen qubits may shed light on
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CHAMPING AT THE BITS
Despite some remaining hurdles, the mind-bending and frankly weird world of quantum computers is
surprisingly close. Philip Ball finds out how these unusual machines will earn their keep. 
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other physics problems that are
intractable with conventional com-
puters,” notes Monroe. “There are
models of high-temperature
superconductivity and other
condensed-matter systems
that might be approached in
such a quantum simulator.”

In a spin
In fact, quantum simu-
lations can already be
done using atoms and
molecules that store qubits in their
nuclear spin and can be probed and
manipulated using nuclear magnetic reso-
nance (NMR) techniques. In their own terms,
these ‘computers’ “run rings around any clas-
sical supercomputer”, says Seth Lloyd, a theo-
rist at MIT. He and his MIT colleague David
Cory have been using this technique to simu-
late a variety of quantum systems in crystals of
calcium fluoride and other materials. “As the
crystal contains a billion billion spins, these
simulations remain out of the reach of the
most powerful classical computers,” says
Lloyd. The approach remains limited in terms
of the different systems it can simulate,
although Lloyd anticipates that fully function-
ing simulators will be readily available by 2020.

The key to the potential success of quantum
computers is also the cause of the problems
within the field: the quantum nature of data
storage and manipulation. In classical com-
puters, bits have clearly defined values of 1 or
0, but the laws of quantum mechanics allow
qubits to exist in a ‘superposition’ of states — a
mixture of both 1 and 0 that would be impos-
sible in an everyday computer. This means that
a quantum computer has much greater capac-
ity for storing information.

A quantum processor can also compute with
more than one qubit at once by exploiting
another quantum property called entangle-
ment, which makes qubits interdependent. The
weird nature of the entangled state means that a
measurement on one qubit instantly affects
another, even though their previous individual
states were undefined until that moment.
Entangled states don’t readily exist in nature:
quantum engineers have to make them by
allowing qubits to interact with one another.

By exploiting superpositions, a single quan-
tum computer in effect mimics a whole suite of
classical computers running at once, and by
using entanglement these ‘parallel computers’
can be linked together. Unfortunately, this pow-
erful parallel processor has an Achilles’ heel. A
quantum superposition has to remain stable for
at least as long as it takes to do the computation.
But as soon as qubits interact with their envi-

ronment, the delicate
superposition becomes

unstable, a process known
as decoherence, which

causes information to leak
from the quantum computer.

Decoherence is especially prob-
lematic for entangled states,

because then the decoherence of
one qubit can affect the others too.
Preventing decoherence means

reducing uncontrolled interactions
with the environment. Cooling the quantum
system to very low temperatures helps — but it
may also be necessary to shield the qubits from
stray electromagnetic fields. In practice,
researchers have found it difficult to avoid
decoherence of specific qubits for longer than
a few seconds. But in principle it should be
possible. “For qubits encoded in trapped ions,
nobody really believes that we will ever be lim-
ited by coherence time,” says Monroe.

Despite the fact that qubits need to be iso-
lated from their environment to avoid deco-
herence, they must interact strongly with one
another, to perform computations. And it
must be possible for qubits in superposition to
interact strongly with the environment when
needed, so that the information can be read
out. It is an extraordinarily delicate balancing
act, which involves rules that defy intuition
and aren’t even completely understood.

An easy mistake to make
Decoherence also means that, as they process
qubits using logic gates, quantum computers
will inevitably incur errors at a much higher
rate than classical computers. “The modern
transistor has an error rate of less than 1 in 1014

or more switching events. In comparison, the
best quantum gates we currently imagine will
optimistically have an error rate of something
like 1 in 107,” says Chuang. Some researchers
thought at first that this would make quantum
computers too error-prone to be useful. But
thanks to quantum error-correcting codes
devised in the 1990s1,2, it is now possible to
correct error rates as high as 1 in 105. 

By 2002 the key principles behind a quan-
tum computer had been sketched out by theo-
rists (see ‘How to build a quantum computer’,
overleaf), but how best to implement them in
a real device remains a wide-open question.
Much of the current effort is focused on mak-
ing quantum computers using atoms or ions
that are held in a trap. In an ion-trap computer,
the qubits are encoded in the electronic states

Holding pen: this
circuit traps ions

above its electrodes.
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SCIENTIFIC 
COMPUTING    

1946 ENIAC, widely thought of as 
the first electronic digital computer, is 
formally unveiled. Designed to compute 
ballistics during the Second World War, 
it performs calculations in a variety of 
scientific fields including random- 
number studies, wind-tunnel design 
and weather prediction. Its first 24-hour 
forecast takes about 24 hours to do.

1951 Marvin Minsky, later of the 
Massachusetts Institute of Technology 
(MIT), builds SNARC, the first machine 
to mimic a network of neurons.

1954 John Backus and his team at 
IBM begin developing the scientific 
programming language Fortran.

1959 John Kendrew of the University 
of Cambridge, UK, uses computers 
to build an atomic model of myoglobin 
using crystallography data.

1956 Building on earlier experiments 
at the University of Manchester, UK, and 
elsewhere, MANIAC at the Los Alamos 
National Laboratory in New Mexico  
becomes the first computer to play a full 
game of chess. In 1996, IBM’s Deep Blue 
computer will defeat world chess 
champion Garry Kasparov.
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of ions that are confined by an electromagnetic
field. The ions interact with each other
through electrostatic repulsion, and can be
entangled by using laser beams to make them
jiggle in unison. The quantum states of the
ions can be read out by using other lasers to
excite fluorescence, the wavelength of which
depends on the ion’s electronic state.

But the more qubits there are, the harder it is
to read out their complex, collective vibra-
tional states. One way to get round this is to
hold most of the ions in a reservoir, and to per-
form each computational step using just a few
of them, transferred from the reservoir to a
processing chamber. This means that the ions
have to be shuttled around without their quan-
tum states being affected, so that they don’t
‘lose their memory’ on the journey.

Charging ahead
Solving these problems is not easy, but recent
progress has been encouraging. “Ion-trap
chips look well placed to create useful com-
puters before other methods,” says Steane. 
Last December, for example, Monroe’s team
reported an ion trap built on a semiconductor
chip using standard microfabrication tech-
niques3. The trap held individual cadmium ions
for more than an hour, while the researchers
were able to move the ions smoothly between
trapping sites.

David Wineland’s group at the National
Institute of Standards and Technology in Boul-
der, Colorado, is pursuing a similar idea in
which the ions are trapped above electrodes
etched into a chip’s surface4. “Both methods
have the advantage of using established fabri-
cation techniques,” says Wineland. “In the end,

They can be trapped by laser beams — and by
exploiting the interference pattern generated
between crossed laser beams, hundreds of
atoms can be held within an ‘optical lattice’,
rather like an egg box. To make the atoms inter-
act, the dimples in the egg box can be shifted
closer together by adjusting the trapping beams.

One way to perform quantum computing
with atoms is to create discrete clusters of
entangled atoms in a larger lattice. This was
first suggested in the late 1990s by Hans
Briegel, Ignacio Cirac, Peter Zoller and their
colleagues at the University of Innsbruck in
Austria. It is an approach to quantum compu-
tations that Deutsch describes as “far easier to
implement physically” than other methods for
handling qubits.

Unlike the standard approach, cluster com-
putation does not involve manipulating 
individual particles. Instead, before the com-
putation is run, several qubits are brought
together in a many-particle entangled state.
The answer is then read out at the same time as
the computation is actually performed, by
making a series of measurements on each
individual qubit in the cluster. Its ‘one-step’
nature makes this an appealing approach, but
Cirac, who is now based at the Max Planck
Institute for Quantum Optics in Garching,
Germany, admits that it requires many more
qubits than other methods, and that the error-
correction procedures are more elaborate.

Join the dots
There is no shortage of other ideas for building
a quantum computer. Some are based on super-
conducting devices, exploiting the fact that
superconductivity is itself a quantum phenom-
enon. Unlike the systems based on individual
particles, the qubits here are superconducting
circuits, which hold many-particle quantum
states of electrical charge or magnetic flux 
and can interact through classical electromag-
netic forces.

Others hope to create optical quantum com-
puters, encoding qubits into the quantum states
of photons, or to make qubits from tiny specks
of semiconducting material called quantum
dots. “I’ve been particularly impressed by the
advances made in quantum-dot systems and by
the superconductor-based approaches,” says
Chuang. Compared with ion-traps, he explains,
they may scale up more easily and are perhaps
easier to connect to traditional telecommunica-
tion systems for readout.

Quantum-dot systems may not produce the
first useful computer, says Steane, but they have
a naturally faster timescale — largely because
the qubits are encoded in electrons, which are
much lighter than ions — and so ultimately
should outperform other systems such as ion-

How to build a
quantum computer
The current US roadmap for the next decade of
quantum computing (http://qist.lanl.gov) lists
several requirements for a working machine8:

1. It must be scalable: it needs a set of qubits
that can be added to indefinitely.

2. It must be possible to set all of the qubits 
to a simple initial state, such as all 0.

3. The interactions between qubits must be
controllable enough to make quantum 
logic gates.

4. To perform operations using these gates,
the decoherence times must be much
longer than the gate-operation time
(typically milliseconds to seconds).

5. There must be some readout capability.
6. To ‘wire up’ the computer’s circuitry, it must

be possible to convert memory qubits into
processing qubits, and vice versa.

7. It must be possible to move processing qubits
accurately between specified locations.

the winner might be determined simply by
what is easier to fabricate.”

Despite his success so far, Monroe is cau-
tious about the long-term prospects. “Many
groups are racing to build complex ion-trap
chips,” he says. “But it’s less clear how trapped
ions will ultimately compare with other quan-
tum technologies.”

Instead of ions, some researchers are encod-
ing qubits using trapped neutral atoms. Atoms
have the advantage that they interact more
weakly with their environment than ions, but
they also interact more weakly with each other.

Light touch: Chris Monroe aligns laser beams ready to trap ions for a quantum computation.
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trap chips. But, he adds, “the area is still suffi-
ciently open that it is premature to slow efforts
on any of the major contenders”.

Because the hurdles in building the hard-
ware are substantial, it is often suggested that
the obstacles to making a quantum computer
come down to engineering. But there is a
bottleneck in theory too. So far, remarkably few
specific computational problems have been
translated into a form
that a quantum machine
could run and solve.

In fact, quantum com-
puters are currently little
more than two-trick
wonders. In 1994, Peter
Shor, now based at MIT,
devised an algorithm
that would allow quan-
tum computers to factor
numbers exponentially faster than conven-
tional computers. Factorization is important
in cryptography, where it is needed to make
and break keys. And in 1996, Lov Grover, who
is now at Lucent Technologies in Murray Hill,
New Jersey, unveiled a quantum algorithm
that can greatly speed up database searches.

Both of these algorithms have already been
run using the NMR and optical techniques,
but these methods are hard to scale up. At the
end of last year, Monroe’s group reported suc-
cess with a Grover-type search using two cad-
mium ions in a trap5. Admittedly this meant
looking through a database of just four entries
— hardly a demanding task — but Monroe
says the group plans to scale up to dozens of
qubits over the next few years.

“It is striking that ten years have passed

since Shor’s invention, and very few new quan-
tum algorithms have been developed,” says
Chuang. Among those that have appeared are
methods for solving problems in number 
theory, drawn up by Sean Hallgren at NEC
Laboratories in Princeton, New Jersey6. 

A major stumbling block for those trying to
dream up new algorithms is that they first have
to identify which problems will benefit most
from quantum-computing methods. Theorist
Michael Nielsen and his colleagues at the 
University of Queensland in Australia have
recently made progress in this direction by
showing that the general problem of finding
quantum algorithms can be made easier by
borrowing ideas from geometry7. 

In essence, the number of quantum opera-
tions, and thus the length of time, it takes to
run an algorithm can be calculated by finding
the shortest path between two points in a geo-
metric space defined by all the possible
sequences of quantum operations. “It really is
a cool idea that has no classical analogue,” says
Lloyd. “It opens up a variety of methods for
potentially creating new algorithms and for
optimizing existing algorithms.”

But not all quantum information processors
will need complex algorithms. Many will be
purpose-built tools that exploit quantum 
rules to improve on existing technologies 
such as atomic clocks and photonic technol-
ogy. “We’ll probably see rudimentary devices 

such as a ‘quantum
repeater’ that converts
photonic qubits to
atomic qubits for error
correction, and then
back to photons to send
them on their way down
a long length of optical
fibre,” Monroe says.

If that seems a far 
cry from the quantum

brains that are sometimes paraded as the next
big thing, we may just have to get used to it. But
Lloyd remains upbeat about the prospects. “I
agree that quantum computers tailored for spe-
cific applications are likely to be built before
general-purpose devices. But that doesn’t rule
out the possibility that we’ll all be playing quan-
tum Grand Theft Auto in the near future.” ■

Philip Ball is a consultant editor for Nature. 
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Caught in a trap: a single cadmium ion is held
between two electrodes on a semiconductor chip.

“Computers for specific
applications are likely to come

before general-purpose devices.
But that doesn’t rule out the

possibility that we’ll all be playing
quantum Grand Theft Auto in the

near future.” — Seth Lloyd
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1962 Charles Molnar and Wesley 
Clark at MIT’s Lincoln Laboratory 
design the Laboratory Instrument 
Computer (LINC) for researchers at the 
National Institutes of Health. It is the 
first lab-based computer to process 
data in real time.

1971 The Protein Data Bank is 
established at Brookhaven National 
Laboratory in Upton, New York.

1972 Hewlett Packard releases the 
HP-35, the first hand-held scientific 
calculator, rendering the engineer’s 
slide rule obsolete.

1971 Computing power shows its 
potential in medical imagery with a 
prototype of the first computerized 
tomography (CT) scanner.

1963 In California, the Rancho Arm 
becomes the first artificial robot arm 
to be controlled by a computer.

1966 Cyrus Levinthal at MIT designs 
the first program to represent and 
interpret protein structures.

1967 ARPANET — the predecessor 
of the Internet — is proposed by the 
US Department of Defense for 
research networking.

1969 Results of the first coupled 
ocean–atmosphere general 
circulation model are published by 
Syukuro Manabe and Kirk Bryan, paving 
the way for later climate simulations 
that become a powerful tool in research 
on global warming.
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Exceeding human limits
Scientists are turning to automated processes and technologies in a bid to cope with ever higher volumes of data.
But automation offers so much more to the future of science than just data handling, says Stephen H. Muggleton. 

The collection and curation
of data throughout the 
sciences is becoming increas-
ingly automated. For exam-
ple, a single high-throughput
experiment in biology can
easily generate more than a

gigabyte of data per day, and in astronomy
automatic data collection leads to more than a
terabyte of data per night. Throughout the sci-
ences the volumes of archived data are increas-
ing exponentially, supported not only by
low-cost digital storage but also by the growing
efficiency of automated instrumentation. It is
clear that the future of science involves the
expansion of automation in all its aspects: data
collection, storage of information, hypothesis
formation and experimentation (see table).
Future advances will have the ability to yield
powerful new forms of science that could blur
the boundaries between theory and experi-
ment. However, to reap the full benefits it is
essential that developments in high-speed
automation are not introduced at the expense
of human understanding and insight.

During the twenty-first century, it is clear
that computers will continue to play an increas-
ingly central role in supporting the testing, and
even formulation, of scientific hypotheses. This
traditionally human activity has already
become unsustainable in many sciences with-
out the aid of computers. This is not only
because of the scale of the data involved but
also because scientists are unable to conceptu-
alize the breadth and depth of the relationships
between relevant databases without computa-
tional support. The potential benefits to science
of such computerization are high — knowledge
derived from large-scale scientific data could
well pave the way to new technologies, ranging
from personalized medicines to methods for
dealing with and avoiding climate change1.

In the 1990s it took the international human
genome project a decade to determine the
sequence of a single human genome; but pro-

jected increases in the speed of gene sequenc-
ing imply that before 2050 it will be feasible to
determine the complete genome of every indi-
vidual human being on Earth. Owing to the
scale and rate of data generation, computa-
tional models of scientific data now require
automatic construction and modification. We
are seeing a range of techniques from mathe-
matics, statistics and computer science being
used to create scientific models from empirical
data in an increasingly automated way. For
instance, in meteorology and epidemiology,
large-scale empirical data are routinely used to
check the predictions of differential-equation
models concerning climate variation and the
spread of diseases. 

Meanwhile, machine-learning techniques
from computer science (including neural nets
and genetic algorithms) are being used to
automate the generation of scientific hypo-

theses from data. Some of the
more advanced forms of
machine learning enable new
hypotheses, in the form of log-
ical rules and principles, to be
extracted relative to predefined
background knowledge. This
background knowledge is for-

mulated and revised by human scientists, who
also judge the new hypotheses and may
attempt to refute them experimentally. For
example, within the past decade researchers in
my group have used inductive logic program-
ming (a subdiscipline of machine learning) to
discover key molecular substructures within a
class of potential cancer-producing agents2.
Building on the same techniques, we have
more recently been able to generate experi-
mentally testable claims about the toxic prop-
erties of hydrazine from experimental data —
in this instance, from analyses of metabolites
in rat urine following low doses of the toxin3.

Mixing maths
In other sciences, the reliance on computa-
tional modelling has arguably moved to a new
level. In systems biology, the need to account
for complex interactions within cells — in
gene transduction, signalling and metabolic
pathways — is requiring new and richer sys-
tems-level modelling. Traditional reductionist
approaches in this area concentrated on
understanding the functions of individual
genes in isolation. However, genome-wide
instrumentation, including microarray tech-
nologies, are leading to a system-level

Many aspects of science are already unsustainable without the aid of computers.

CHANGES TO TRADITIONAL SCIENCE WITH AUTOMATION

Machine-encoded logical hypotheses

Machine-encoded chemical algebra

Chemical Turing machine programs

Decision theory

Hypotheses

Chemical knowledge

Experiments

Experimental design

Automated scienceTraditional science
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“What are you doing in the
lab? Why aren’t you out
working in the field?” These
are not the sorts of question
you usually put to your com-
puter. But they should be,
according to the proponents

of a new type of information technology
sometimes known as ‘smart dust’.

In their current, mostly desktop, incarna-
tion, computers used for science usually come
into their own quite late in the process of
inquiry. Questions are asked, the data that
might answer them identified, that data gath-
ered — and only then does the computer start
to play a role. In the future, this set up could be
reversed. Computers could go from being
back-office number-crunchers to field opera-
tives. Twenty-four hours a day, year-in, year-
out, they could measure every conceivable
variable of an ecosystem or a human body, at

whatever scale might be appropriate, from the
nanometric to the continental. 

These new computers would take the form of
networks of sensors with data-processing and
transmission facilities built in. Millions or 
billions of tiny computers — called ‘motes’,
‘nodes’ or ‘pods’ — would be embedded into the
fabric of the real world. They would act in con-
cert, sharing the data that each of them gathers
so as to process them into meaningful digital
representations of the world. Researchers could
tap into these ‘sensor webs’ to ask new questions
or test hypotheses. Even when the scientists
were busy elsewhere, the webs would go on
analysing events autonomously, modifying

their behaviour to suit their changing experi-
ence of the world.

If this scenario sounds far fetched, imagine
the owner of a mainframe in the 1970s asking
why it wasn’t sitting on millions of desks and
laps worldwide. An absurd question — to
which the answer was “it’s just a matter of
time”. The world’s stock of computing power,
and the number of devices over which it is 
distributed, has increased exponentially since
then, as has the capacity of networking tech-
nology. These trends show no sign of slowing
down, and that makes pervasive sensor nets
not so much possible as inevitable. One does
not need to be a visionary to see that soon, tiny
devices with the power of today’s desktops will
be cheap enough to put everywhere. 

Gaetano Borriello, a computer scientist at
the University of Washington in Seattle, argues
that such widely distributed computing power
will trigger a paradigm shift as great as that
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EVERYTHING,EVERYWHERE
Tiny computers that constantly monitor ecosystems, buildings and even human bodies 

could turn science on its head. Declan Butler investigates.

“We will be getting real-time 
data from the physical world for 
the first time on a large scale.” 

— Gaetano Borriello 
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1980s>>

1990s>>

>>

>>

1976 At Los Alamos, Seymour Cray 
installs the first Cray supercomputer, 
which can process large amounts of 
data at fast speeds.

1983 Danny Hillis develops the 
Connection Machine, the first 
supercomputer to feature parallel 
processing. It is used for artificial 
intelligence and fluid-flow simulations.

1990 The widely used bioinformatics 
program Basic Local Alignment Search 
Tool (BLAST) is developed, enabling 
quick database searches for specific 
sequences of amino acids or 
base pairs.

1996 George Woltman combines 
disparate databases and launches the 
Great Internet Mersenne Prime Search. 
It has found nine of the largest known 
Mersenne prime numbers (of the form 
2n�1), including one that is 9,152,052 
digits long. 

1985 After receiving reports of a lack 
of high-end computing resources for 
academics, the US National Science 
Foundation establishes five national 
supercomputing centres.

1989 Tim Berners-Lee of the 
particle-physics laboratory CERN in 
Geneva develops the World Wide Web 
— to help physicists around the globe to 
collaborate on research.
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brought about by the development of experi-
mental science itself. “We will be getting real-
time data from the physical world for the first
time on a large scale.”

Instead of painstakingly collecting their
own data, researchers will be able to mine up-
to-the-minute databases on every aspect of the
environment — the understanding of diseases,
and the efficacy of treatments will be dissected
by ceaselessly monitoring huge clinical popu-
lations. “It will be a very different way of think-
ing, sifting through the data to find patterns,”
says Borriello, who works on integrating med-
ical sensors — such as continuous monitors of
heart rate and blood oxygen — with their sur-
roundings. “There will be a much more rapid
cycle of hypothesis generation and testing than
we have now.” 

Mallikarjun Shankar, who works on sensor
webs for military and homeland security at
Oak Ridge National Laboratory in Tennessee,
agrees. “If one looks at the landscape of com-
puting, this is where it will link with the phys-
ical world — where computing science hits
the tangible, the palpable world. It is the next
frontier.” 

From virtual to actual
Things don’t get much more palpable than the
experience of having an offshoot of Europe’s
biggest ice sheet grinding you into the granite
below.  That is the lot in life of the sensor web
that Kirk Martinez, of the University of
Southampton, UK, has been running for the
past few years. He is helping glaciologists 
to study the dynamics of the Briksdalsbreen
glacier in northwest Norway, part of the Joste-
dalsbreen ice field, in the hope of better under-
standing the impact of climate change and
weather patterns on the ice field1. 

Martinez’s team uses a hot-water ‘drill’ to
place pods — a dozen at any one time — at dif-
ferent locations deep under the ice. Each pod is
equipped with sensors that measure vari-
ables such as temperature, pressure, and
movement; the data collected are used
to work out the rate of flow of the glac-
ier and to model subglacial dynamics.
The sensor web can be programmed
in such a way that the individual pods
cooperate. “You can get the
pods talking to each other,
and deciding that nothing
much has happened rec-
ently as most of our readings
have been the same, so
lets the rest of us go to
sleep and save batteries,
with one waking us up if
something starts happen-
ing,” says Martinez.

Martinez himself is a computer scientist, not
a glaciologist. He was drawn to the task of
remotely monitoring a hostile environment
around the clock because he wanted the chal-
lenge of trying to bring together the various
different technologies such sensor webs need.
“This is very, very technologically tricky stuff,”
he says.

For non-computer scientists, it is even
trickier. Researchers can already buy pods the
size of cigarette packets or credit cards off the
shelf from a slew of new companies such as
CrossBow and Dust Networks (both based in
the Bay Area of California). But that’s only
the start. At present, creating a sensor web for
a specific scientific application requires
extensive customization, particularly in the
programming.

Katalin Szlavecz, an ecologist at Johns Hop-
kins University, in Baltimore, Maryland,
works on soil biodiversity and nutrient
cycling. She was driven to sensor webs by frus-
tration caused by trying to solve complex
problems with limited data. Soil is the most
complex layer in land ecosystems, but it is
poorly understood, because sampling is lim-
ited by the fact that technicians must collect
soil samples by hand, and analyse them back in
the laboratory. “Wireless sensor networks
could revolutionize soil ecology by providing
measurements at temporal and spatial granu-
larities previously impossible,” she says.

Data stream
Last September, Szlavecz deployed ten motes
along the edge of a little stream just outside the

university campus. Each mote measures soil
moisture and temperature every minute,

and the network transmits its data peri-
odically to a computer in her office. 

It sounds simple, but just to get the
pods up-and-running she had to create

a multidisplinary team, involving com-
puter scientists, physicists
and a small army of student
programmers. Szlavecz says
that she has “no doubt” that
pod networks will take off
widely, but that it won’t hap-
pen until they are easier to
deploy. And cheaper: “Each
unit costs around US$300,
but if you include all the
hours of student time, each

NATURE|Vol 440|23 March 2006 2020 COMPUTING NEWS FEATURE

Watchful eyes: tiny computers called
motes may one day be in everything. 

“This is where where computing
science hits the tangible, 

the palpable world. It is the 
next frontier.”

— Mallikarjun Shankar 
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works out closer to $1,000.” Despite this,
Szlavecz says, the Microsoft-funded pilot was a
success, revealing previously unobserved vari-
ations in soil microclimate, and showing how
rain affects wetting and drying cycles2. (Szla-
vecz’s colleague Alexander Szalay is an author of
the commentary on page 413).

Handful of dust
Difficulties like Szlavecz’s are all too common,
says Kris Pister, founder and chief technology
officer of Dust Networks. It was Pister who, at
the University of California, Berkeley, coined
the term smart dust to describe his vision of
sensors smaller than the eye could see joined
into networks larger than the mind could
comprehend. Pister built prototype sensor
webs with funding from the Defense Advanced
Projects Research Agency, which is interested in
the technology’s military applications. But he
says it was the desire to create more usable 
systems that led him to get the commercial
backing to create Dust Networks. “It was very
frustrating that while we could do spectacular
demos, we couldn’t give scientists something
off-the-shelf, to put in a tree or a river. What
people want is the ability to just put sensors out
in the environment and get data back.”

He likens the current stage of sensor-web
development to the early days of computing.
“There are a group of experts at the cutting
edge of sensor webs, who have the time and
expertise to go in and learn how to use the tools

and do all the neat stuff,” he says. “But for peo-
ple who are not experts it has been difficult to
get in and use it.” He predicts, however, that just
as the first web browser, Mosaic, and its succes-
sor, Netscape, sparked mass take-up of the
World Wide Web, so future, more user-friendly
sensor-web tools will generate interest. 

Although Pister is interested in scientific
applications, his key target is the lucrative
industrial market for control systems. He has
been contracted by the US Department of
Energy to help build ‘intelligent’ self-monitor-
ing lighting systems for factories, offices and
homes; the 600 billion kilowatt-hours of light-
ing used for this purpose account for 30% of
total building electricity use. “The next step is
about really getting some standards and com-
mercial adoption,” he says. “That will drive
cost down and performance up, and then sci-
entific uses will take off.” 

Even with today’s sensor-web technology,
applications for research are proliferating. The
Jet Propulsion Laboratory (JPL) in Pasadena,
California, which is responsible for most of
NASA’s planetary science, has been running

nine large sensor webs to study among other
things, flooding, pollution and microclimates,
in settings ranging from botanical gardens to
the Sevilleta National Wildlife Refuge in central
New Mexico. This month, Kevin Dellin, the
head of the JPL sensor-web programme, spun
it off into a company, Sensorware Systems.

They mote be giants
But sensor webs currently have major limita-
tions for people doing science in the field, says
Deborah Estrin, director of the Center for
Embedded Networked Sensing in Los Ange-
les, California, which operates a suite of land-
and sea-based monitoring projects in collab-
oration with university groups. Estrin says
that sensor webs alone are often not sufficient
for all monitoring needs, and that the cost of
sensors prohibits researchers from obtaining
the pod densities often needed for detailed
field experiments. 

Estrin sees the sensor-web revolution as an
important thread in a grander tapestry of
global monitoring, which involves billions of
dollars being poured into projects to monitor
the continents and oceans. The US National
Science Foundation’s Ocean Observatories
Initiative (OOI), for example, plans to spend
$300 million over the next six years on gigabit
‘backbones’ — fibre-optic carriers of data —
across the floor of the Pacific Ocean. On land,
the planned National Ecological Observatory
Network would enable research on terrestrial

Science of the future: researchers can keep a constant eye on the flow of a Norwegian glacier by tracking miniature sensors buried beneath the ice.

“We could do spectacular
demonstrations but we couldn’t 

give scientists something off-the-
shelf, to put in a tree or a river.” 

— Kris Pister
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>>

21st CENTURY>>

1996 Craig Venter develops the 
shotgun technique, which uses 
computers to piece together large 
fragments of DNA code and hastens the 
sequencing of the entire human genome.

1998 The first working quantum 
computers based on nuclear magnetic 
resonance are developed.

2001 The US National Institutes 
of Health launches the Biomedical 
Informatics Research Network (BIRN), 
a grid of supercomputers designed to 
let multiple institutions share data.

2001 The National Virtual 
Observatory project gets under way in 
the United States, developing methods 
for mining huge astronomical data sets.

2005 The IBM Blue Gene family 
of computers is expanded to include 
Blue Brain, an effort to model neural 
behaviour in the neocortex — the most 
complex part of the brain.

2007 CERN’s Large Hadron Collider in 
Switzerland, the world’s largest particle 
accelerator, is slated to come online. 
The flood of data it delivers will 
demand more processing power 
than ever before. 

2002 The Earth Simulator 
supercomputer comes online in 
Japan, performing more than 35 trillion 
calculations each second in its quest 
to model planetary processes.
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ecosystems at regional to continental scales in
real time. And underneath the surface, the
EarthScope project would explore the four-
dimensional structure of the North American
continent from crust to core. Integrating local
sensor webs and all these other networks is
one of the biggest challenges facing the devel-
opment of observational science, Estrin says. 

Such mega-observatories may seem very
different from Szlavecz’s handful of little sen-
sors alongside a stream in Baltimore. But the
principles behind them are strikingly similar:
to suck the best real-time data out of the envi-
ronment as possible. “Instead of handling
individual data files you will be handling con-
tinual streams of data”, says Robert Detrick,
chair of the OOI’s executive steering commit-
tee. “You will be combining inputs from dif-
ferent sensors interactively to construct virtual
observatories: sensors will be in everything.”

The OOI’s aim is to get around the fact that
oceanographers tend to see only what their
research vessels happen to be traversing at any
given time. Checking in on the ocean fibre-
optic backbone will be swarms of tiny
autonomous submarines. These will carry
sensors, go off on sampling missions and
return to the backbone to recharge their bat-
teries and upload data. “They can all commu-
nicate with one another acoustically,” Detrick
enthuses. “One can say, ‘Hey, I’ve found an
anomaly over here, so come on over’”. Static
sensors will monitor tectonic plates continu-
ously along their entire length. Episodic
events such as earthquakes, volcanic erup-
tions, and instabilities in ocean currents will

be captured in real time, something that is
impossible to do using ships.

The existence of such large networks
points to some major challenges down the
line, says Estrin. Sensor webs will frequently
be just single layers in a stack of data-collect-
ing systems. These will extract information at
different temporal and spatial scales, from
satellite remote-sensing data down to in situ
measurements. 

Managing these stacks will require massive
amounts of machine-to-machine communica-
tion, so a major challenge is to develop new
standards and operating systems that will allow
the various networks to understand each other.
Sensors and networks of sensors will need to be
able to communicate what their data are about,
how they captured and calibrated them, who is
allowed to see them, and how they should be
presented differently to users with different
needs. The lack of standards is not an insoluble
problem for sensor webs, says Shankar “but it is
slowing the field down by several years”.

Catching the moment
Despite the difficulties, the use of sensor webs
continues to grow. For all the trouble her first
ten pods caused her, Szlavecz is upgrading to
a network of 200. And experts see no funda-
mental obstacles to their eventual ubiquity.
“We are well on the road to getting there, and
I would argue that on many points we are
already there,” says Borriello. By 2020, says
Estrin, researchers using visualization tools
like Google Earth will be able to zoom in, not
just on an old satellite image, but on “multiple
in situ observations of the Earth in real time”. 

Data networks will have gone from being
the repositories of science to its starting
point. When researchers look back on the
days when computers were thought of only as
desktops and portables, our world may look
as strange to them as their envisaged one does
to us. Although we might imagine a science
based so much on computing as being dis-
tanced from life’s nitty gritty, future
researchers may look back on today’s world as
the one that is more abstracted. To them the
science practised now may, ironically, look
like a sort of virtual reality, constrained by the
artificialities of data selection and lab analysis:
a science not yet ready to capture the essence
of the real world. ■

Declan Butler is a senior reporter for Nature
based in Paris.

1. Martinez, K., Riddoch, A., Hart, J. & Ong, R. in Intelligent
Spaces (eds Stevenson, A. & Wright, S.) Ch. 9, 125–138
(Springer, 2006).

2. Musualoiu-E., R. et al. Life Under your Feet: A Wireless Soil
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Workshop on Embedded Networked Sensors (2006).

Ecologist Katalin Szlavecz’s mini computers tell her
about minute-by-minute changes in soil moisture.

23.3 News Feat Smart Dust jw  20/3/06  5:44 PM  Page 405

Nature  Publishing Group ©2006



© 2006 Nature Publishing Group 

 

COMMENTARY 2020 COMPUTING NATURE|Vol 440|23 March 2006

410

approach to biomolecules and pathways, and
to the formulation and testing of models that
describe the detailed behaviour of whole cells.
This is new territory for the natural sciences
and has resulted in multidisciplinary inter-
national projects such as the virtual E-Cell4.

One obstacle to rapid progress in systems
biology is the incompatibility of existing mod-
els. Often models that account for the shape 
and charge distribution of individual molecules
need to be integrated
with models describ-
ing the interdepen-
dency of chemical
reactions. However,
differences in the
mathematical under-
pinnings of, say, differential equations, bayesian
networks and logic programs make integrating
these various models virtually impossible.
Although hybrid models can be built by simply
patching two models together, the underlying
differences lead to unpredictable and error-
prone behaviour when changes are made. 

One encouraging development in this
respect is the emergence within computer sci-
ence of new formalisms5 that integrate, in a
sound fashion, two major branches of mathe-
matics: mathematical logic and probability cal-
culus. Mathematical logic provides a formal
foundation for logic programming languages
such as Prolog, whereas probability calculus
provides the basic axioms of probability for
statistical models, such as bayesian networks.
The resulting ‘probabilistic logic’ is a formal
language that supports statements of sound
inference, such as ‘The probability of A being
true if B is true is 0.7’. Pure forms of existing
probabilistic logic are unfortunately computa-
tionally intractable. However, an increasing
number of research groups have developed
machine-learning techniques that can handle
tractable subsets of probabilistic logic6.
Although it is early days, such research holds
the promise of sound integration of scientific
models from the statistical and computer-sci-
ence communities

Miniature roboscientists
Statistical and machine-learning approaches
to building and updating scientific models
typically use ‘open loop’ systems with no
direct link or feedback to the collection of
data. A robot-scientist project in which I was
involved offers an important exception7.
Here, laboratory robots conducted experi-
ments on yeast (Saccharomyces cerevisiae)
using a process known as ‘active learning’.
The aim was to determine the function of
several gene knockouts by varying the quan-
tities of nutrient provided to the yeast. The
robot used a form of inductive logic pro-
gramming to select experiments that would
discriminate between contending hypoth-
eses. Feedback on each experiment was pro-
vided by data reporting yeast survival or
death. The robot strategy that worked best

(lowest cost for a given accuracy of predic-
tion) not only outperformed two other auto-
mated strategies, based on cost and
random-experiment selection, but also out-
performed humans given the same task.

One exciting development that we might
expect in the next ten years is the construction
of the first microfluidic robot scientist, 
which would combine active learning and
autonomous experimentation with micro-

fluidic technology.
Scientists can already
build miniaturized
laboratories on a
chip using microflu-
idics8 controlled and
directed by a com-

puter. Such chips contain miniature reaction
chambers, ducts, gates, ionic pumps and
reagent stores, and allow for chemical synthe-
sis and testing at high speed. We can imagine
miniaturizing our robot-scientist technology in
this way, with the overall goal of reducing the
experimental cycle time from hours to mil-
liseconds. With microfluidic technology, each
chemical reaction not only requires less time to
complete, but also requires smaller quantities
of input materials, with a higher expected yield.
On such timescales it should become easier for
scientists to reproduce new experiments and
refute their hypotheses.

Today’s generation of microfluidic machines
is designed to carry out a specific series of
chemical reactions, but further flexibility
could be added to this tool kit by developing
what one might call 
a ‘chemical Turing
machine’. The universal
Turing machine, devised
in 1936 by Alan Turing,
was intended to mimic
the pencil-and-paper
operations of a mathematician. The chemical
Turing machine would be a universal proces-
sor capable of performing a broad range of
chemical operations on both the reagents
available to it at the start and those chemicals
it later generates. The machine would auto-
matically prepare and test chemical com-
pounds but it would also be programmable,
thus allowing much the same flexibility as a
real chemist has in the lab.

One can think of a chemical Turing
machine as an automaton connected to a con-
veyor belt containing a series of flasks: the
automaton can move the conveyor to obtain
distant flasks, and can mix and make tests on
local flasks. Just as Turing’s original machine
later formed the theoretical basis of modern
computation, so the programmability of a
chemical Turing machine would allow a
degree of flexibility far beyond the present
robot-scientist experiments, including com-
plex iterative behaviour. In the same way that
modern-day Turing machines (computers) are
constructed from integrated circuitry, thereby
combining the power of many components, a

universal robot scientist would be constructed
from a mixture of microfluidic machines and
integrated circuitry controllers. 

Human touch
This microfluidic Turing machine is not only
a good candidate for the next-generation robot
scientist, it may also make a good model for
simulating cellular metabolism. One can
imagine an artificial cell based on a chemical
Turing machine being used as an alternative to
in vivo drug testing. The program running this
machine would need to contain algorithms
both for controlling the experiment and for
conducting the cell simulation. It would repre-
sent a fundamental advance in the integration
of computation with its environment. 

Some may argue that in the context of biolog-
ical experimentation, the series of chemical
reactions is the computation itself. However,
one can imagine taking the integration between
experiment and environment even further. In
particular, by connecting the input and output
ducts of the microfluidic Turing machine to the
chemical environment of a living cell, one could
conduct experiments on cell function. Such lev-
els of close integration between computers, sci-
entific models and experimental materials are,
however, still a decade or more away from
becoming standard scientific practice.

Despite the potential benefits, there is a
severe danger that increases in speed and vol-
ume of data generation in science could lead to
decreases in comprehension of the results.
Academic studies on the development of effec-

tive human–computer
interfaces9 emphasize
the importance of cog-
nitive compatibility in
the form and quantity
of information pre-
sented to human

beings. This is particularly critical for tech-
nologies associated with hypothesis formation
and experimentation. After all, science is an
essentially human activity that requires clarity
both in the statement of hypotheses and their
clear and undeniable refutation through
experimentation. ■

Stephen H. Muggleton is in the Department of
Computing and the Centre for Integrative
Systems Biology at Imperial College London SW7
2BZ, UK.
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“Owing to the scale and rate of data
generation, computational models of
scientific data now require automatic

construction and modification.”

“There is a severe danger that
increases in speed and volume of

data generation could lead to
decreases in comprehensibility.”
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The creativity machine
What will emerge from using the Internet as a research tool? The answer, Vernor Vinge argues,
will be limited only by our imaginations. 

We humans have built a cre-
ativity machine. It’s the sum
of three things: a few hundred
million computers, a commu-
nication system connecting
those computers, and some
millions of human beings

using those computers and communications. 
This creativity machine is the Internet. It has

already changed the way we do science, most
importantly by enhancing collaboration
between researchers. The present-day Internet
provides convenient connections between
computerized labs, simulations and research
databases. It also represents an enormous
financial investment that is driven by the
demands of hundreds of millions of con-
sumers. As such, the total Internet software
and infrastructure investment dwarfs the bud-
gets of scientific research programmes and
even of many government defence pro-
grammes. And more than any megaproject of
the past, the essence of the Internet is to pro-
vide coordinated processing of information.
For researchers seeking resources, these are
facts worth considering. 

For some disciplines, the Internet itself has
become a research tool: grid computing has
been used to exploit the power of millions of
Internet-connected machines. Building on the
popularity of SETI@home — an experiment
that uses Internet-connected computers to
search for extraterrestrial intelligence — and
prime-number hunts, there are now physics,
medical and proteomics projects enlisting the
enthusiasm of people (and their computers)
across the world. For linguists1 and sociolo-
gists, new questions can be investigated simply
by observing what occurs on the publicly
available Internet. Even experimental sociol-
ogy is possible: in their study of social influ-
ence on music preference, Salganik et al.2

recruited more than 14,000 subjects through a
popular website, ran online trials on these sub-
jects, and then obtained results directly from
their experiment website. 

The possibilities do not end there. Even
online games are attracting academic interest.
Some games have millions of players.
MMORPGs (massively multiplayer online
role-playing games), such as World of Warcraft
and EverQuest, feature vivid three-dimen-
sional action involving both cooperation and

combat. Another genre of MMORPGs lack a
significant combat or quest element and are
more often called ‘virtual worlds’. For example,
the virtual world Second Life has the visual
realism of many MMORPGs, but it exists as a
venue for the participants rather than as a pre-
designed adventure. Second Life provides a
range of software tools, including a program-
ming language, that gives participants the
power to create artefacts according to their own
designs. Thus the game depends on the skill
and creativity of its participants to generate
content. Such virtual worlds have already been
used for educational projects, and are worthy of
psychological and social research. 

People power
The notion of enlisting users to create content
is widespread on the contemporary Internet.
Companies such as Google provide users with
tools to integrate search and mapping services
into their own websites. Interested users are
numerous and have their own resources. In the
1990s, we had an early
glimpse of the power of
this new creativity
machine: computers
plus networks plus
interested people
delivered free and
open-source software
(FOSS) products of the
highest quality, includ-
ing the GNU/Linux
operating system. FOSS
products provide low-
cost and flexible alter-
natives to proprietary
software. For example,
there is at least one open-source virtual-world
platform, Croquet3, which allows users to cus-
tomize and extend its architecture at all levels.
FOSS tools can be mixed and matched with
proprietary software to deal with an enormous
range of projects from quick, ad hoc combina-
tions of data harvested from multiple loca-
tions4 to large, long-duration experiments.

All this points to ways that science might
exploit the Internet in the near future. Beyond
that, we know that hardware will continue 
to improve. In 15 years, we are likely to have
processing power that is 1,000 times greater
than today, and an even larger increase in the

number of network-connected devices (such as
tiny sensors and effectors). Among other
things, these improvements will add a layer of
networking beneath what we have today, to
create a world come alive with trillions of tiny
devices that know what they are, where they are
and how to communicate with their near
neighbours, and thus, with anything in the
world. Much of the planetary sensing that is
part of the scientific enterprise will be implicit
in this new digital Gaia. The Internet will have
leaked out, to become coincident with Earth. 

How can we prepare for such a future? Per-
haps that is the most important research pro-
ject for our creativity machine. We need to
exploit the growing sensor/effector layer to
make the world itself a real-time database. In
the social, human layers of the Internet, we
need to devise and experiment with large-scale
architectures for collaboration. We need lin-
guists and artificial-intelligence researchers to
extend the capabilities of search engines and
social networks to produce services that can

bridge barriers cre-
ated by technical jar-
gon and forge links
between unrelated
specialties, bringing
research groups with
complementary prob-
lems and solutions
together — even
when those groups
have not noticed the
possibility of collabo-
ration. In the end,
computers plus net-
works plus people
add up to something

significantly greater than the parts. The
ensemble eventually grows beyond human
creativity. To become what? We can’t know
until we get there. ■

Vernor Vinge is an emeritus professor of
computer science at San Diego State University.
His novel Rainbows End (2006) considers the
Internet of 2025.

1. Kilgarriff, A. & Grefenstette, G. Comput. Linguist. 29,
333–347 (2003).

2. Salganik, M. J., Dodds, P. S. & Watts, D. W. Science 311,
854–856 (2006).

3. Croquet Project www.opencroquet.org
4. Butler, D. Avian Flu Maps in Google Earth

http://declanbutler.info/blog/?p=16

Participants in Second Life use software and
creativity to build their environment.
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Science in an exponential world
The amount of scientific data is doubling every year. Alexander Szalay and Jim Gray analyse how
scientific methods are evolving from paper notebooks to huge online databases. 

Scientists are trained early to
keep careful records in their
laboratory notebooks —
recording both experimental
procedures and observa-
tions, so that they can
analyse their results and so

that others can replicate what they have done.
Galileo did it, Mendel did it, Darwin did it, and
we are supposed to do it. This worked fine
when small amounts of data were entered into
notebooks and the analysis was computed
alongside them. But data volumes are dou-
bling every year in most areas of modern sci-
ence and the analysis is becoming more and
more complex, exceeding the capacity of the
paper notebook. With data correlated over
many dimensions and millions of points, none
of the old steps — do experiment, record
results, analyse and publish — is straightfor-
ward. Many predict dramatic changes to the
way science is done, and suspect that few tra-
ditional processes will survive in their current
form by 2020 (ref. 1).

Today, most scientists have replaced or
enhanced their notebooks with desktop com-
puters that record their results, provide a por-
tal to the scientific literature, and link them to
collaborators via e-mail. These computers also
perform data analysis; Matlab, Mathematica
and Excel are popular analysis tools. But none
of these programs scale up to handle millions
of data records — and they are primitive by
most standards. As data volumes grow, it is
increasingly arduous to extract knowledge.
Scientists must labour to organize, sort and
reduce the data, with each analysis step pro-
ducing smaller data sets that eventually lead to
the big picture. Analysing terabytes of data
(one terabyte is 1,000 gigabytes) is a challenge;
but petabyte data sets
(of more than 1,000
terabytes) are on the
horizon. One petabyte
is equivalent to the text
in one billion books, yet
many scientific instru-
ments, including the
Large Synoptic Survey
Telescope, will soon 
be generating several
petabytes annually. 

In response to this

data deluge, the systematic use of databases 
has become an integral part of the scientific
process. Databases provide tools to organize
large data sets, find objects that match certain
criteria, compute statistics about the data, and
analyse them to find patterns. Many experi-
ments today load their data into databases
before attempting to analyse them. But there
are few tools to properly visualize data across
multiple scales and data sets. If we can no
longer examine all the data on a single piece of
paper, how can we ‘see’ a new pattern or find a
data point that does not fit a hypothesis? For-
tunately there are database tools, such as data
cubes, that we believe can fulfil this role (see
‘Data cubes’ overleaf).

The same language
Experiments are themselves becoming elec-
tronic as computers become essential parts of
scientific instruments; they are used not only to
manage and analyse vast data sets, but also to
acquire them in the first place. Procedures
already involve instruments and software with
myriad parameters. It is difficult to capture all
the model numbers, software revisions, para-
meter settings and process steps in an enduring
format. For example, imagine a measurement
taken using a DNA-sequencing machine. The
output is cross-correlated with a sequence
archive (GenBank) and the results are analysed
with Matlab. Fully documenting these steps
would be arduous, and there is little chance that

someone could repeat the exact procedure 
20 years from now; both Matlab and GenBank
will change enormously in that time. As experi-
ments yield more data, and analysis becomes
more complex, data become increasingly diffi-
cult to document and reproduce.

One might argue that complex biological
experiments have always been difficult to
reproduce, as there are so many variables. But
we believe that with current trends it is nearly
impossible to reproduce experiments. We do
not have a solution for this problem, but it is
important to recognize it as such, and to do
what is possible to capture the workflows and
to develop protocols for documenting instru-
ments, procedures and measurements in ways
that will be usable in several decades’ time.

Increasingly, scientists are analysing com-
plex systems that require data to be combined
from several groups and even several disci-
plines. There are collaborations sharing data
across departments and time zones, and
important discoveries are made by scientists
and teams who combine different skill sets —
not just biologists, physicists and chemists,
but also computer scientists, statisticians and
data-visualization experts. It is important to
realize that today’s graduate students need
formal training in areas beyond their central
discipline: they need to know some data man-
agement, computational concepts and statis-
tical techniques.

A collaboration involving hundreds of Inter-

Automated systems will transform data collections, from astronomy (left) to sampling soil properties under our feet.
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net-connected scientists raises questions about
standards for data sharing. Too much effort is
wasted on converting from one proprietary data
format to another. Standards are essential at sev-
eral levels: in formatting, so that data written by
one group can be easily read and understood by
others; in semantics, so that a term used by one
group can be translated (often automatically) by
another without its meaning being distorted;
and in workflows, so that analysis steps can be
executed across the Internet and reproduced by
others at a later date. 

Standards for sharing data are crucial, for
example, in understanding soil ecosystems. We
are helping to build a system for measuring
long-term environmental trends that affect soil
biodiversity (www.lifeunderyourfeet.org; see
also News Feature, page 402). This system inte-
grates local environmental data from a sensor
network with regional data on hydrology, 
climate, biodiversity and biogeochemistry. For
these data to be useful to others, they must be
published using a controlled vocabulary and in
standard forms, and the instruments and mea-
surements must be well specified. Fully docu-
menting the sensors and data-collection
process is arduous, and there are few standards
for us to draw on.  

Data gold-mine
Multidisciplinary databases also provide a rich
environment for performing science; that is, a
scientist may collect new data, combine them
with data from other archives, and ultimately
deposit the summary data back into a com-
mon archive. Many scientists no longer ‘do’
experiments the old-fashioned way. Instead
they ‘mine’ available databases, looking for
new patterns and discoveries, without ever
picking up a pipette.

But this data-rich approach to science faces
challenges. The speed of the Internet has not
kept pace with the growth of scientific data
sets. And so large data archives are becoming
increasingly ‘isolated’ in the network sense —
one can copy gigabytes across the Internet
today, but not petabytes. In the future, working

with large data sets will typically mean sending
computations to the data, rather than copying
the data to your workstation. But the manage-
ment of distributed computations raises new
questions of security, free access to public data
and cost. Few data archives address these
issues today. 

Are we reaching the limits of what one scien-
tist, or one lab, can expect to achieve in data
handling and analysis? If so, this will have
implications for how we review and publish
our work. For example, a data-mining paper
needs to include the explicit description (data-
base query) of how the data that were analysed
in the paper were collected and filtered, but not
the data themselves. In this way, a reviewer
with access to public data could reproduce the
data sets and analysis procedures. For the
analysis to be repeatable in 20 years’ time
requires archiving both data and tools.

The publication process itself is increasingly
electronic, with new ways to disseminate scien-
tific information (such as the preprint reposi-
tory arXiv.org). But there is, as yet, no standard
for publishing large volumes of data. Paper
appendices cannot hold all the data needed to
reproduce the results. Some disciplines have
created their own data archives, such as Gen-
Bank; others just let data show up, and then dis-
appear, on individual scientists’ websites.
Astronomers created the International Virtual
Observatory Alliance (www.IVOA.net), inte-
grating most of the world’s medium and large
astronomy archives. This required new stan-
dards for data exchange, and a semantic dictio-
nary that offers a controlled vocabulary of
astronomy terms. 

To encourage data sharing, it should be
rewarded. Public data creators and publishers
should be given credit, and archives must be
able to automatically provide provenance
details. Current databases have a long way to
go to achieve this ideal.

For how long will this exponential growth in
scientific data continue? Desktop computers
today are as powerful as the super-computers
of 10 years ago. Similar progress is happening

with scientific instruments — they quickly
become obsolete and are replaced by better
and often cheaper ones. Likely computer-
performance improvements by 2011 include
tenfold more processing, storage and network
bandwidth per dollar. So we can expect ten
times more data. 

Smaller is faster
However, not all experiments will experience
exponential growth. There is reason to believe
that it will be the smaller experiments, not the
big multibillion-dollar facilities, that will grow
the fastest. Exponential growth occurs when a
new generation of instruments leapfrogs the
previous generation, which become obsolete.
There are two trends in science today, scaling
up and scaling out. Some scientists are build-
ing billion-dollar facilities, such as astronomy’s
Large Synoptic Survey Telescope or the Large
Hadron Collider, which are only affordable as
international collaborations. Such facilities are
not easily leapfrogged. And once these peta-
scale experiments are switched on they will
produce roughly the same amount of data each
year — merely linear growth. But in the scal-
ing-out model, experiments that deploy an
array of small instruments can exploit the
coming explosion in cheaper commodity tech-
nology. The wireless sensors that were US$300
a year ago are $100 today, and will be $30 next
year. A similar phenomenon occurred with
DNA chips and gene sequencers. It is impor-
tant to recognize this pattern; it is universal.
And so although some sub-disciplines may
reach a plateau in data generation, other tech-
nological innovations will take their place. Sci-
entists in 2020 will continue to work in an
exponential world. ■

Alexander Szalay is in the Department of Physics
and Astronomy, Johns Hopkins University,
Baltimore, Maryland 21218, USA.
Jim Gray is at Microsoft Research, San Francisco,
California 94105, USA.

1. Towards 2020 Science (Microsoft, 2006);
http://research.microsoft.com/towards2020science
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Traditional notebook
and analysis tools are
being challenged not
just by data volumes,
but also by data
complexity. For
example, the three-
dimensional structural
representation of a
complex protein is not
easily transcribed into 
a notebook. 

Complex scientific
data are often organ-
ized as a collection of
independent variables
and their dependent

measurements. 
For example,
meteorological data
(temperature, pressure,
humidity, wind velocity
and direction) are
collected at various
times and locations
(latitude, longitude and
altitude). These data
can be thought of as a
multidimensional cube
in which time and place
exist in four dimensions
and the measurements
are shown by vectors at
each point in the cube

(pictured right). 
A meteorologist 

may ask: show me the
minima, maxima and
average winds for
Australia aggregating
over times (hour, 
day, week, year) and
volumes (per square
kilometre of the
atmosphere). The data
cube makes it easy 
to express such user
queries and to compute
the answers, even to
seemingly complex
questions. 
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Can computers help to explain biology?
The road leading from computer formalisms to explaining biological function will be difficult, but 
Roger Brent and Jehoshua Bruck suggest three hopeful paths that could take us closer to this goal.

It doesn’t require vast
prophetic vision to identify
developments in computers
and information technology
that will greatly affect the
practice of biology. By 2020
we expect that biologists will

use computers, numerous ‘omic’ data types
(ref. 1) and a greatly expanded biological liter-
ature to design experiments, generate and
analyse new data, and think about their own
work. But we will leave forecasting about
PubMed and Google, metadata and the seman-
tic web to others. Instead, we wish to consider
some of the formalisms offered by computer
science2 that developed alongside computing
machines. The search for biologically relevant
formalisms has a chance to greatly affect the
understanding of biological function, in ways
we are just starting to imagine.

Today, by contrast with descriptions of the
physical world, the understanding of biologi-
cal systems is most often represented by 
natural-language stories codified in natural-
language papers and textbooks. This level of
understanding is adequate for many purposes
(including medicine and agriculture) and is
being extended by contemporary biologists
with great panache. But insofar as biologists
wish to attain deeper understanding (for
example, to predict the quantitative behaviour
of biological systems), they will need to pro-
duce biological knowledge and operate on it in
ways that natural language does not allow.

Living computers
We begin with what we know in 2006: the 
trajectory of living systems through develop-
mental time and space is highly determined by
the actions and interactions of functional 
molecules encoded by their genomes. These
encoded molecules are further influenced by
external perturbations. Because the dynamic
behaviour of biological systems is highly deter-
mined by a central stored program, living 
systems differ profoundly from all other natu-
rally occurring, time-evolving systems. The
weather has no genome.

Some aspects of biological systems, such as
the sequence of encoded proteins (which
determines their structure), arise directly from
the genome. But others, including most bio-
logical functions, arise from the genome by

considerably more complex routes, with the
consequence that function typically occurs
simultaneously at multiple levels3,4. These lev-
els include the biochemical activity of an indi-
vidual protein, the function of that protein in
cellular processes involving other proteins,
and the developmental trajectory of those
processes within a multicellular organism4,5.
None of these levels is more true or funda-
mental than the other.

If biology and information science continue
with business as usual, then, by 2020, most of
the natural-language stories of 2006 about bio-
logical function will be subsumed into more
sophisticated narratives, which will be better
organized and accessed by computers. But the
outlines of most of these stories will probably
remain unchanged. Here, however, we imag-
ine ways that formalisms from computer 
science might contribute to a deeper under-
standing of biological function. These
approaches will not bear fruit without deliber-
ate and difficult work.

The development of computer science
required both new formalisms to capture rea-
soning in natural languages and ways to imple-
ment those formalisms in physical devices6. In
2006, it seems reasonable to compare living
systems to ‘von Neumann’, or stored-program,
computers, with processing systems (here
encoded by the stored program), various exter-
nal and internal inputs, and outputs in the form
of execution. In this view, the biological system
is not primarily a factory or a chemical plant
but an assemblage that takes information,
processes it, decides and executes. 

As yet there is no theory that can specify  the

meaning or purpose of a string of computer
code, but Sussman has suggested how ele-
ments of such theory might arise7. He points
out that mathematics had its roots in a worka-
day human activity, that of Egyptian surveyors
redefining the boundaries of fields after the
Nile floods receded. Rigorous thinking about
this activity led eventually to mathematics:
geometry, trigonometry, algebra and beyond.
In the same way, a workaday activity — the
design and use of procedural imperative lan-
guages to write code (‘do this, now, do that, if
such a thing happens, then do this!’) to pro-
gram computers — may lead to new for-
malisms describing information processing
and eventually to new mathematics.

Blurred boundaries
In biological systems it seems reasonable to
view the DNA script in the genome as exe-
cutable code, code that could have been speci-
fied by a set of commands in a procedural
imperative language. And in the same spirit,
we can view any signal-transduction pathway
as a collection of protein machines that takes
inputs from inside and outside the cell, per-
forms processing operations on those inputs to
arrive at decisions, and communicates those
decisions to an apparatus that executes it. 

However, to make the analogy between bio-
logical systems and von Neumann computers
is to reveal important differences between
them (Fig. 1). At the level of cells and organ-
isms, biological systems differ from computers
in many ways, including (but not limited to):
lack of modularity and boundaries in code;
lack of fixed order of execution in code; self-

Biology needs to move
beyond natural-language
descriptions of
biomolecules and
pathways. Adopting 
new formalisms from
computing may lead to
greater insight than 
even graphical displays
(such as this wall chart)
can offer.

A
RG

O
N

N
E 

N
A

T
L 

U
N

IV
.

23.3 Commentary brent jw  20/3/06  6:18 PM  Page 416

Nature  Publishing Group ©2006



© 2006 Nature Publishing Group 

 

NATURE|Vol 440|23 March 2006 2020 COMPUTING COMMENTARY

417

assembly of encoded components; lack of
intelligible sentient design; and lack of crisp
boundaries between memory, processor, input
and output components.

Most importantly, biological systems usu-
ally lack a clear boundary between processing
apparatus and output. This distinction arises
because function in biology is a consequence
of selection, and selection usually acts at many
different levels. Thus, the simplest human
question ‘what does the system do?’ (which
translates into ‘what was the system selected
for?’) usually has simultaneous multiple cor-
rect answers. This fact will continue to frus-
trate analyses of biological systems in terms of
the ‘objective functions’ they are ‘optimized’ to
‘execute’. Because of this difference, it is
unlikely that even a mature theory of stored-
program machines will be adequate to explain
biological systems. However, even in the
absence of grand theory, one can work on
intermediate steps. Here we describe three
avenues worth exploring. 

One fruitful approach formalizes cause-and-
effect relationships between named proteins
and regulatory sites by translating these into
defined chemical reactions undergone by
defined molecular species. These reactions can
be modelled as differential equations con-
strained by the rules of chemical kinetics, more
formally codified as the ‘chemical master equa-
tion’8. In biology, differential-equation models
have a mixed history; they were vital for under-
standing transmission of the nerve impulse9

and for helping to identify reaction types before
the channel molecules were discovered, but
were less successful in circadian-rhythm
research until biologists identified molecular
entities and relevant reactions.

Measure of meaning
For most biological narratives, the resulting
sets of differential equations are too complex
to be analytically tractable. But their dynamic
behaviour can be approached down a second
path — by simulating approximate numerical
and stochastic methods10. These simulations
already constitute ‘theory’, in the narrow sense
that they can generate hypotheses that can
then be tested by direct experiment. Equally
important, they have inspired mathematicians

and computer scientists to apply existing
means to reduce complexity and seek new
ones. For example, biological reaction net-
works do not have an order of execution, but
probabilistic methods can be used to explore
the most likely chains of reactions executed by
a given network (M. Riedel and J. Bruck, per-
sonal communication).

A third path to better understanding of func-
tion begins with deeper analysis of the natural
language now used to describe it. The cause-
and-effect stories of function of proteins and
regulatory sites use an impoverished vocabu-
lary: many proper nouns, few verbs and some
prepositional phrases denoting location. Like
information in Geographi-
cal Information Systems,
which also have a limited
vocabulary, biological nar-
ratives of cause and effect
are readily systematizable
by computers. There are at
least four commercial
companies working to provide such systemati-
zations, which are already providing some
insight11.

But for biological function, just beyond
cause-and-effect narratives and before the
ultimate truths of fitness and selection, there
lies a muddy patch of ground known as 
‘teleology’. Teleology is hard to avoid: it is dif-
ficult to explain why the lens of the eye is
transparent without at some point mention-
ing that the eye is ‘for’ seeing. But in that mud
there may be hope. 

The twentieth-century architects of infor-
mation theory6 deliberately restricted their
concept of information because they were
limited by their ability to define and measure
it. Information theorists wanted to build a 
theory that involved the meaning (the seman-
tic content) of messages, but could not mea-
sure meaning in sender, recipient or at any
point in between. Instead, they chose a mean-
ing for information that was restricted to 
the carrying capacity of communications
channels such as telephone lines — the infor-
mation technology of their era. 

Similarly, biologists would like to cast their
descriptions in terms of meaning and pur-
pose, but are limited in their ability to mea-

sure those things. As we have said, biology
does offer a clear definition of meaning (‘it
was selected’), but the multiple levels at which
selection acts means that meaning is always
difficult to determine. 

Deeper understanding
Happily, there is considerable interest in want-
ing to build one element of biological seman-
tics — the passage of time — into information
theory. Formalizations of information pro-
cessing that embodied this and other seman-
tic concepts relevant to biology might help
biologists to go beyond quantifying reaction
rates and molecular species of biological sys-
tems to understand their dynamic behaviour.
They might also help to suggest new experi-
ments — perhaps on synthetic biological sys-
tems engineered to have a crisper division
between process and output, which could
then be evolved by artificial selection. This
approach might bring a deeper understanding
of function at its most fundamental level of
fitness and selection.

However marvellous developments in com-
putation are by 2020, if their impact is limited
to information generation, handling, visual-
ization and integration, it will mean that their
potential contribution to a more predictive
understanding of biological function will have
failed. By laying out three paths from current

computer science that
might lead to deeper
insights, we at least hope to
stir things up. But we also
observe growing frustra-
tion with business as usual. 
If we knew better how bio-
logical systems worked, we

could better perturb existing ones (such as
ours, for human medicine) and we could
design and build better ones. The fact that
both possibilities and frustrations are now
starkly evident should make the next 16 years
interesting indeed. ■
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“We imagine ways that
formalisms from computer

science might contribute to a
deeper understanding of

biological function.”

Figure 1 | Biological
systems (right)
have similarities
and differences to
von Neumann
computers (left).
In biological
systems there is no
distinction between
processor and
output, as function,
phenotype and
selection act at
many levels.
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A growing number of sciences,
from atmospheric modelling
to genomics, would not exist
in their current form if it were
not for computers. A simplis-
tic analysis of this relationship
focuses on hardware, and sees

science as largely a passive beneficiary of the
computing industry’s relentless innovation,
acquiring and applying to its own ends the
fastest computers, largest disks and most capa-
ble sequencing machines. In this view, science
and computing (as an intellectual discipline)
have little to say to each other: it is the computer
industry that drives the advances that have an
impact on science. 

A more sophisticated narrative says that sci-
ence is increasingly about information: its col-
lection, organization and transformation. And
if we view computer science as “the systematic
study of algorithmic processes that describe
and transform information”1, then computing
underpins science in a far more fundamental
way. One can argue, as has George Djorgovski,
that “applied computer science is now playing
the role which mathematics did from the sev-
enteenth through the twentieth centuries: pro-
viding an orderly, formal framework and
exploratory apparatus for other sciences.”2

Information overload
Why this shift? Of course, there is more infor-
mation, as technology allows us to collect,
store and share vastly more data than before.
Equally significant is that science is becoming
less reductionist and more integrative, as
researchers attempt to study the collective
behaviour of larger systems. To quote Richard
Dawkins: “If you want to understand life, don’t
think about vibrant, throbbing gels and oozes,
think about information technology.”3

Such system-level approaches are emerging
in fields as diverse as biology, climate and seis-
mology. A frequent goal is to develop high-
fidelity computer simulations as tools for
studying system-level behaviour. Computer
science, as the ‘science of complexity’, has
much to say about how such simulations —
which can be considered a new class of exper-
imental apparatus — should be constructed,
and how their output should be analysed and
compared with experiment4. Similarly, infor-
mation theory provides formidable insight

into how biological systems encode, transform
and transmit information.

Both the data deluge and system-level sci-
ence demand computing technology in all its
forms — hardware, software, algorithms and
theory. The growing importance of computing
has several implications for the science of
2020, of which I explore three here. 

First, the scientist of 2020 will be adept in
computing: not only will they know how to pro-
gram, but they will have a solid grounding in,
for example, the principles and techniques by
which information is managed; the possibilities
and limitations of numerical simulation; and
the concepts and tools by which large software
systems are constructed, tested and evolved.
This knowledge has been picked up on the job
by many pioneering scientists and will hope-
fully be instilled in the next generation by more
formal training. The idea that you can be a com-
petent scientist without such training will soon
seem as odd as the notion that you need not
have a solid grounding in seventeenth-century
mathematics (such as algebra).

Fruitful partnerships
Second, successful science collaborations of
2020 will include computer scientists as key
members. All scientists will be adept at apply-
ing existing computational techniques, but
they will also understand that progress in their
fields will require innovation in computing
technology. So they will work with computer
scientists to identify computational problems,
much as today’s experimentalists and theorists
understand the strengths and weaknesses 
of their favoured methods and know to part-
ner with others when new techniques 
are needed. Indeed, this fruitful interplay is

A two-way street to science’s future
To view the relationship between computing and science as a one-way street is mostly untrue today, argues
Ian Foster, and will be even less true by 2020.

already occurring: for example, the communi-
cation challenges inherent in far-flung physics
collaborations inspired the development of the
World Wide Web, and the need for efficient
indexing of terabytes of digital astronomy data
has spurred new approaches to organizing
spatial data in relational databases5. Elsewhere,
the scientific opportunities that arise from
using wireless sensor networks for, say, contin-
uous habitat monitoring are driving innova-
tions in network protocols and algorithms.

Third, the scientific disciplines and institu-
tions of 2020 will need to train, attract and
reward researchers whose focus is on produc-
ing the computing innovations required for
science to advance: what we might term
‘applied computing’. Thus, we see new organi-
zational structures, such as the Computation
Institute at the University of Chicago and
Argonne National Laboratory (for which I
work) and Harvard’s Institute for Innovative
Computing, that aim to bridge the distinct con-
cerns of computer science and other sciences.
Academic departments are hiring faculty with
strong computational inclinations. National
laboratories have established computational
directorates. It will be interesting to see which
of these interdisciplinary structures work best.

The growing importance of applied comput-
ing also has implications for computer science.
Indeed, just as during the early days of the sci-
ences, scientific concerns drove mathematics
forward (think of the origins of the calculus), 
so the many challenging problems posed by
modern science can help to focus and motivate
research in computing. In my view, it is no acci-
dent that some of the most vibrant areas in
computing today are those  tightly coupled to
scientific problems. These dynamics occur in
fields as diverse as sensor networks, data inte-
gration and grid computing. It’s a two-way
street, and always has been. ■

Ian Foster is director of the Computation Institute
at the University of Chicago and Argonne
National Laboratory, Illinois, USA.
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The sciences rely on computers, but the benefits are
two-way; each is driving the other forwards.
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When computers take over
What if the current exponential increase in information-processing power could continue unabated?

The Singularity is Near: When Humans
Transcend Biology
by Ray Kurzweil
Viking/Duckworth: 2005. 672 pp.
$29.95/£14.99

Paul Davies
I recall reading a statistic from my student days
to the effect that if physics journals continued
to grow at the same rate, then by the end of the
twentieth century, library bookshelves would
have to expand at the speed of light to accom-
modate them. This absurdity is an illustration
of what one might call the exponential-growth
fallacy. Examples drawn from technology are
legion. The Moon landing in 1969 was widely
touted as the first small step on an escalator to
the stars, with Arthur C. Clarke predicting
huge lunar bases and a Jupiter expedition by
2001. The rapid uptake of robotics in the man-
ufacturing industry after the Second World
War led to predictions of cyborg servants and
android armies within a few decades. In the
event, these technologies became stuck or
even slid backwards.

The key point about exponential growth is
that it never lasts. The conditions for runaway
expansion are always peculiar and temporary
(with the possible exception of the expanding
Universe). But this sobering fact has not
stopped futurologist and author Ray Kurzweil
from invoking exponential, and even hyper-
exponential, growth in the realm of infor-
mation processing. There is no doubt that the
rise and rise in computing power has dazzled
us all. Gordon Moore, co-founder of Intel,
famously predicted about 30 years ago that
computer processing power would double
every 18 months, and so far his prediction has
come true. Kurzweil invokes ‘Moore’s law’ as if
it were a law of nature, and extrapolates from it
into a not-so-distant future in which burgeon-
ing information processing transforms and
transcends life as we know it. He refers to his
culmination point, at which familiar human
culture is obliterated by a tidal wave of unre-
strained computation, as the ‘singularity’. The
word is loosely analogous to the mathemati-
cian’s singularity, at which the rate of change of
a quantity becomes infinite.

If the sky’s the limit when it comes to pro-
cessing information, it isn’t hard to think of
startling applications. Tired of deciding what
to eat? Let a swarm of sensors patrol your

innards and order the right nutrients automat-
ically through your personal wireless network.
Concerned about dying? Then achieve
immortality by flooding your body with smart
nanobots to monitor and maintain your failing
biosystems. Or better yet, ‘upload’ your mind
into cyberspace, where you can have more fun,
untrammelled by a material body.

The question is not whether these wild ideas
should be taken seriously, but whether the
premise on which they are founded —
unbounded exponential growth in informa-
tion-processing power — somehow escapes the
strictures that eventually curtail all other cases
of headlong expansion. One obvious reason
why accelerating growth in computation might
stall concerns the availability of resources. What
happens when the Earth’s entire surface has
been converted into a gigantic information-
garnering, bit-churning system? Kurzweil is
ready with the answer: we move into space.
(“We” here is a generic term. The sentient
beings that will soon wrest control from
humans, and which are destined to supervise
the cosmic phase of development, will be some
sort of superdupercomputers.) But by the
remorseless logic of exponentiation, pretty soon
thereafter the resource-hungry system will find
itself spreading across the galaxy so fast it hits
the speed of light. Like the physics journals on

the bookshelves, exponential growth stops here.
Or does it? Kurzweil toys with the idea that the
speed-of-light barrier is there to be broken,
which opens up the giddy prospect of the entire
Universe being taken over by an omniscient
superintelligence within just a few centuries. 

Such exhilarating speculation is great fun to
read, but needs to be taken with a huge dose of
salt. The biggest lacuna in Kurzweil’s argument
is the tacit assumption that if we liberate
enough information-processing power, then
nature will succumb to all our desires. Control
the Solar System? Just double the bit rate a few
times and it will be within our grasp. Create
life? Simulate consciousness? It all boils down
to making a cheaper, faster processor. Unfor-
tunately, the laws of physics may well dictate
otherwise. Technology can harness physical
laws but it can’t bend them. No amount of
information processing will suspend the law of
gravity or create perpetual-motion machines.

When it comes to discussing the physics
that underpins his predictions, Kurzweil is apt
to be vague or even misinformed. The stupen-
dous power demands implied by the rampant
growth in computation and nanotechnology
will be met by a concomitant ‘law of accelerat-
ing returns’ in power-generation technologies,
such as fuel cells and high-temperature super-
conductors. And if these run into technical

A giant leap: will increased computing power allow machines to take over, as in films like The Matrix?
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problems, well, just send in the nanobots to sort
them out. “All technologies,” claims Kurzweil,
“will essentially become information technol-
ogies, including energy.” 

On the vexed issue of the speed of light,
Kurzweil cites evidence that the fine-structure
constant, which expresses the strength of the
electromagnetic force and contains the speed
of light as a factor, may have increased very
slightly over the past 6 billion years. The pri-
mary evidence comes from an analysis of
quasar spectral lines by John Webb of the Uni-
versity of New South Wales in Australia and
his collaborators, not from a study of the Oklo
natural nuclear reactor in Gabon, as Kurzweil
states. Furthermore, even if the observations
opened the way to manipulating the value of
the fine-structure constant, that is not the same
as increasing the speed of light and leaving

everything else unchanged. Indeed, the manip-
ulation would involve a reduction of the fine-
structure constant, which would slow the rate
of information processing at the atomic level,
and so prove self-defeating.

These technical hiccups are irritating, but 
the book should not be read as a scientific 
treatise. Rather, it is a futuristic and somewhat
breathless romp across the outer reaches of
technological possibility, limited only by
human imagination. Kurzweil coins the horri-
ble term ‘singularitarian’ for someone who
embraces his vision with alacrity. If Kurzweil 
is to be believed, we will all be singularitarians 
in just 29 years’ time. Hang in there. ■

Paul Davies is at the Australian Centre for
Astrobiology, Macquarie University, Sydney, 
New South Wales 2109, Australia. His latest book
is How to Build a Time Machine.

weary way to the butchers, and thence to din-
ner tables. Many would have been especially
weary, having been driven hundreds of miles to
urban markets. If they couldn’t make it under
their own steam, they were not permitted to be
sold. Those that could walk the last mile would
be inspected, slaughtered and consumed
quickly. The idea of allowing meat to age after
slaughter is a recent luxury. So is the tendency
to eat younger animals, rather than those past
their capacity to provide milk or wool.

Ferrières also considers other foodstuffs,
notably fruit, vegetables and grain. These
invoked their own fears, especially unripe fruit
and mouldy bread, but most legislation
revolved around meat, which was a central
part of diets half-a-millennium ago. Economic
circumstance determined whether one ate
tripe or rotten meat with one’s bread, not
whether vegetable stew was the main dish. The

poor were often given, or sold cheaply, animals
deemed unfit for commercial consumption. 

Social fears often generate fantasies of a
golden age, when football hooliganism was
unknown, crime was low, nuclear families
feasted on wholesome food, and everyone got
on well with their neighbours. There is none 
of that in this volume: the poor struggled, ate
badly and died young. Ferrières argues con-
vincingly, I think, that the nineteenth century
created the modern food dilemma. Canning,
transportation and, eventually, refrigeration
extended the food chain. People who would
traditionally have seen, touched and smelled
the food they were buying now needed only to
read the labels. Instead of trusting themselves,
they had to trust others. Food inspection
declined as political and economic liberalism
grew. At the same time, more widespread
affluence put a premium on taste, often at the
expense of safety. Miasmatic theories of dis-
ease and bourgeois sensibilities ensured that
the slaughtering was done outside the city 
centres. Animals no longer had to be able to
walk to their destinies.

Ferrières concentrates primarily on France,
although there are insights into other cultural
experiences, including the persisting British
policy of stamping out disease using wholesale
slaughter, which is a clumsy tool of disease
control. She has a fine sense of the dramatic,
faithfully conveyed in the translation, which is
sometimes literal at the expense of easy flu-
ency. Away from France, some of the details
become fuzzy: a London suburb appears as
Issington, rather than Islington, and George
Barker has transmuted into someone called
Thomas Halwek. 

This book is not for the squeamish, but those
interested in the culture of the table, or the 
historical intersections of health, taste and diet, 
will find plenty here to satisfy their appetites. ■

W. F. Bynum is at the Wellcome Trust Centre for
the History of Medicine, University College
London, London NW1 2BE, UK.

A taste of a rotten past
Sacred Cow, Mad Cow: A History of 
Food Fears
by Madeleine Ferrières
Columbia University Press: 2005. 416 pp.
$29.50

W. F. Bynum
Among the formidable list of modern anxi-
eties, those related to food safety loom large.
Mad cow disease, genetically modified crops,
factory farming, residual pesticides, additives
— we read about them daily and are reminded
of them when we shop by labels assuring us
that we don’t need to worry when buying this
particular product. We are, after all, what we
eat; or more to the point, we are defined by
what we do not eat.

All these contemporary concerns give
Madeleine Ferrières’ monograph a powerful
topicality. To her credit, she never panders to
the worried well, but sticks to a rich and well-
exploited range of historical sources: advice
manuals, legal records, statutes, court cases,
medical textbooks and imaginative literature.
Her running theme is boldly stated: food fears
are perennial, although they take different
forms depending on the cultural milieu. But
the subsidiary theme is also amply demon-
strated: fear about food quality varies inversely
with fear about food quantity, both temporally
and through social strata. If your belly is
empty, you don’t worry too much about addi-
tives or saturated fatty acids.

The title of the original French edition high-
lights the book’s chronological coverage, which
ranges from the Middle Ages to the beginning
of the twentieth century. So there is nothing
about mad cow disease here, despite the allu-
sion in the title of the English version. Instead,
in earlier generations, domestic animals with
tuberculosis, trichinosis, foot-and-mouth dis-
ease and a variety of other ailments made their Food to die for? Good food was available to previous generations, but not all of it reached this standard.
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