First Results from the XENON10 Dark Matter Search at Gran Sasso

Elena Aprile - Columbia University for the XENON Collaboration
The XENON10 Collaboration

Columbia University
Elena Aprile (Spokesperson), Karl-Ludwig Giboni, Maria Elena Monzani, Guillaume Plante, Roberto Santorelli and Masaki Yamashita

RWTH Aachen University
Laura Baudis, Jesse Angle, Alfredo Ferella, Alexander Kish, Aaron Manalaysay and Stephan Schulte

Brown University
Richard Gaitskell, Simon Fiorucci, Peter Sorensen and Luiz DeViveiros

University of Coimbra
Jose Matias Lopes, Luis Coelho, Luis Fernandes and Joaquin Santos

CWRU
Tom Shutt, Peter Brusov, Eric Dahl, John Kwong and Alexander Bolozdynya

Livermore National Laboratory
Adam Bernstein, Norm Madden and Celeste Winant

Rice University
Uwe Oberlack, Roman Gomez, Christopher Olsen and Peter Shagin

Yale University
Daniel McKinsey, Louis Kastens, Angel Manzur and Kaixuan Ni

Laboratori Nazionali del Gran Sasso
Francesco Arneodo and Serena Fattori
Why Liquid Xenon for Dark Matter Direct Detection

- Large A (~ 131): the best for SI ($\sigma \sim A^2$) if low NR threshold
- $\sim 50\%$ odd isotopes (129Xe, 131Xe): very good for SD
- No long-lived radioisotopes. Kr85 to ppt level proven
- High stopping power for compact, self-shielding geometry
 - Fiducial Volume with very low activity
- ‘Easy’ cryogenics at -100 C
- Efficient scintillator (80% of NaI) with fast time response
- Nuclear vs Electron Recoil Discrimination:
 - Ionization/Scintillation Ratio
 - 3D Event Imaging in a TPC
- High Purity (<< 1ppb) for TPC Operation achieved
- Availability and Cost allow to reach the goal of a very large fiducial mass detector as required to reach $\sigma \sim 10^{-46}$ cm2 or 1 event/100 kg/year
The XENON Project: Overview and Goals

- R&D for XENON was approved by NSF in 2002. The proposed experiment is to detect Galactic WIMPS through their interactions with Xe nuclei in a 1-ton scale liquid xenon detector (XENON1T) placed deep underground, with a sensitivity to spin independent WIMP-nucleon $\sigma \sim 10^{-46}$ cm2.

- The liquid target is distributed in 10 identical modules (XENON100), each a dual phase (liquid/gas) TPC with 100 kg active mass. Event-by-event discrimination (>99.5%) is provided by the simultaneous measurement of ionization and scintillation in the liquid, down to a threshold of 16 keVr. 3D event localization and appropriate γ and n-shielding are used to further reduce the background.

- Performance/capabilities of dual phase TPC established with prototypes of ~kg scale. A 15 kg detector (XENON10) was developed and installed underground at the LNGS in early 2006. Physics program started Sep 2006.

- Primary goal of the XENON10 experiment was to validate the low energy threshold and background rejection of the proposed concept, paving the way to the XENON100 module. Current plan is to have a 100kg LXe dark matter experiment taking data in 2009.

XENON is supported by NSF and DOE.
The XENON Detector Concept
A two-phase Time Projection Chamber with 3-D Event Imaging

event-by-event discrimination (>99.5%) against dominant background (γ,e,α) by:

- Simultaneous Detection of scintillation (S1) and ionization (S2)
- 3D Event Localization

APS_2007
Elena Aprile
XENON10 Development: a very fast Timeline

- **December 05 - February 06**: detector assembled at Columbia Nevis Laboratory

- **March 2006**: XENON10 moved to LNGS and commissioned underground

- **April-July 2006**: test/optimize detector response with gamma sources

- **December 05 - July 06**: design/build Pb+Poly shield structure underground

- **July-August 2006**: commission XENON10 into shielded configuration

- **August 24, 2006 – Feb 14, 2007**: WIMP search runs plus periodic gamma calib

- **December 1, 2006**: in situ neutron calibration with AmBe source
The XENON10 Detector

The XENON10 Detector uses a Pulse Tube cryocooler and a re-condenser to cool the detector to -95°C. It is filled with 22 kg of ultra pure LXe, commercially purified to < 10 ppb of Kr-85~200 mdr. High purity (> 2 ms electron lifetime) is achieved with continuous gas circulation through a hot getter. Custom designed HV feedthroughs are used for low radioactivity (700V/cm drift field with good uniformity). SS vessels and vacuum cryostats are used to contain the LXe. The detector consists of 89 PMTs (R8520-06-AL): 48 in GXe and 41 in LXe. Gain calibration is done by a blue LED mounted in the detector. The light response (S1) is 2.25 pe/keV at 662 keV; 3.0 pe/keV at 122 keV (with field) → 5 keV threshold. The X-Y position is determined from the PMTs hit pattern; σ_x-y ≈ 2 mm. The Z-position is determined from ∆t_drift (v_d, e- ≈ 2 mm/µs), σ_Z ≈ 1 mm. The detector uses a Pulse Tube refrigerator for stable operation at -95°C. Optical and mass models are created with GEANT4 MC. (see Gomez and Angle Talk)
The XENON10 Photomultipliers

- Hamamatsu R8520 1”x3.5 cm
- bialkali-photocathode Rb-Cs-Sb,
- Metal Channel; 10 dynodes
- Quartz window; at -100°C and 5 bar
- Low Radioactivity: U/Th/K/Co measured as $0.17\pm0.04/0.20\pm0.09/10\pm1/0.56\pm0.05$ mBq/PMT
- Quantum efficiency > 20% @ 178 nm
XENON10 at the Gran Sasso

~3600 m.w.e; muon flux ≈ 1 m² h⁻¹
Shielding from γ and n backgrounds:
20 cm inner Poly and 20 cm outer Pb
No muon veto required
XENON10 Underground: Stability of Running

Detector operation and performance shows excellent stability over 9 months.

- Pressure: $\Delta P < \pm 0.006$ atm
- Temperature: $\Delta T < \pm 0.005$ °C
- PMTs gain $< \pm 2\%$

Start of Blind WIMP Search: 2006
End of Blind WIMP Search: 2007
Typical XENON10 Low-Energy Event

4 keV$_{ee}$ event; S1: 8 p.e. \Rightarrow 2 p.e./keV

Hit pattern of top PMTs
Drift time = 31.3 us
S1 energy = 24 keVee
charge = 490 electrons
log10(S2/S1) = 2.56
=> event type = gamma

Drift time (peak)
S1 energy: 14 MeV
charge 1: 3,6 MeV
charge 2: 12,6 MeV
log10(S2/S1) = 1.6
=> multiple gamma

Drift time = 2.8 us
S1 energy = 6.3 MeV (alpha)
S2 charge = 7,400 electrons
log10(S2/S1) = 0.91
=> particle type: alpha
XENON10 WIMP Search

- XENON10 initial WIMP search results from data accumulated between October, 06 and February 07.

- Blind analysis: data on low S2/S1 events from WIMP search run `in the box’ until cut definitions completed. Cuts defined on data from calibration (gamma and neutron) and unblinded data.

- Two independent analyses were performed. Both analyses aim at maximizing the signal efficiency and minimizing background in the energy window of interest.

- Analyses based on: different algorithms to extract the physical parameters from the digitized signal waveforms; different position reconstruction algorithms; and different selection & cuts.

- The primary analysis was chosen based on: the more sophisticated pulse finding algorithm to reject multi-scatter events; the more accurate Neural Network position reconstruction algorithm; efficiency and simplicity of cuts to reject anomalous events while keeping high NR acceptance.

- The box was opened on April 8, 2007. Results from primary analysis are presented.
XENON10 Live-Time / Dark Matter Run
Stability

XENON10 -- Running Days vs. Live-Days

Unblinded
Blind
Neutron (x10)

Blind WIMP Search Data + Periodic Calib 92% Live

WIMP Search Data
Neutron Calib.

WIMP Search Data

XENON10 Gamma Calibration with Radioactive Sources

$^{57}\text{Co}, {}^{137}\text{Cs}$ Gamma Sources introduced in shield

- Determine electron lifetime: $(1.8\pm0.4)\text{ ms} \Rightarrow << 1\text{ ppb (O}_2\text{ equiv.) purity}$
- Determine energy scale from primary light: $2.25\text{ p.e./keV at 662 keV and 3.0 p.e./keV}$
 (see K. Ni’talk)
- Test XY position reconstruction algorithms and vertex resolution:
 (see R. Santorelli’talk)
- Determine (μ, σ) of Electron Recoil band → Background Rejection
 (see G. Plante’talk)

reconstructed source position

^{137}Cs

XENON10 Energy Scale
XENON10 Gamma Calibration with n-activated Xe

~200 g Xe gas irradiated with 2 weeks by 5×10^6 n/s introduced to LXe volume

- Measure the energy scale from light yield of gammas uniformly distributed in volume
- Validate position reconstruction of events in full volume. Use data to infer position dependence for S1 and S2 signals.
- Position-dependent corrections improve

(K. Ni talk)
XENON10 Neutron Calibration

AmBe-n R< 80.0 mm Single Elastic

Data
- MC

Count rate [dru]

Log10(S2/S1)

(see Manzur’ talk)

2.2 keVr from primary light (S1)

~ 10 electrons signal

Elen crítica
XENON10 Background Rejection Power

AmBe Neutron Calibration (NR-band)
In-situ Dec 1, 2006 (12 hours)
Source (~3.7MBq) in the shield
~99.5% rejection power (improves to 99.9% at low energy!!!)

Cs-137 Gamma Calibration (ER-band)
In-situ Weekly calibration
Source (~1kBq) in the shield

(see Plante Talk)
(see Manalaysay and Dahl Talks)
XENON10 Blind Analysis Cuts

Energy Window: 2-12 keVee (based on 2.2 pe/keVee)

- Basic Quality Cuts (QC0): remove noisy and uninteresting events
- Fiducial Volume Cuts (QC1): capitalize on LXe self-shielding (see Plante Talk)
- High Level Cuts (QC2): remove anomalous events (S1 light pattern)

Fiducial Volume chosen by both Analyses:
15 < dt < 65 us, r < 80 mm

Fiducial Mass = 5.4 kg (reconstructed radius is algorithm dependent)

Overall Background in Fiducial Volume ~0.6 event/(kg d keVee)
Performance of QC2 Cut (S1 RMS Cut) on Cs Data

137Cs Data

\[
S1\text{RMS} = \sqrt{\frac{1}{n} \sum_{i} (S1_i - \bar{S1})^2}
\]

• 137Cs data (1.3 x WIMP search data) + Not Blind WIMP search data used to optimize QC2 cuts.
• Define S1-RMS parameter to reject “Events with Anomalous S1 light pattern” : events with most S1 signal localized in a few adjacent bottom PMTs are likely to have scattered first in the LXe layer above bottom PMTs and below cathode grids, or other “dead” LXe regions.
• S1-RMS for bottom PMTs array: events with high S1-RMS parameter coincide with the non-Gaussian events from the ER-band distribution.
• Lowest delta log10(S2/S1) for Cs data shows one event with a 12% probability of being consistent with Gaussian distribution of ER background events.
WIMP Search Data: Trigger by Sum of S2 signal from Top PMTs
S2 threshold is 300 photoelectron (~ 20 ionization electrons)
A gas gain of a few hundred allows 100% S2 trigger efficiency
The S1 signal associated with an S2 signal is searched for in the off-line analysis
The coincidence of 2 PMT hits is used in Primary Analysis and the S1 energy threshold is set to 4.4 photoelectrons. Its efficiency is ~ 100% at 2keVee
The QC2 cuts efficiency varies between 95% and 80% in the 2-12 keVee energy window.
XENON10 WIMP Search Data with Blind Cuts

136 kg-days Exposure = 58.6 live days x 5.4 kg x 0.86 (ε) x 0.50 (50% NR)

- WIMP “Box” defined at ~50% acceptance of Nuclear Recoils (blue lines): [Mean, -3σ]
- 10 events in the “box” after all cuts in Primary Analysis
- 6.9 events expected from γ Calibration
- NR energy scale based on 19% constant QF

(see Manzur Talk)
Performance of QC2 Cut (S1 RMS Cut) on Search Data

WS003+WS004 (58days)

- 5 “non-Gaussian” events remain after all QC2 cuts on the WIMP search data.
- 3 of these non-Gaussian events are removed by the more sophisticated QC2 GammaX cut of the Secondary Analysis. The very low energy event at edge of energy window and is also cut by Secondary Analysis (see De ViveirosTalk)
- 1 of the 5 “non-Gaussian” events survives both analyses cuts (>15 keVr, S2/S1 far from NR centroid). Event S1RMS parameter is typical of “good events” and event location is in the center of FD. In secondary analysis is very marginal (close to cut)
In total 13 events are removed from box by Primary Analysis QC2 Cuts (•)
XENON10 Experimental Upper Limits

- Upper limits on the WIMP-nucleon cross section derived with Yellin Maximal Gap Method (PRD 66 (2002))
- For a WIMP of mass 100 GeV/c²:
 - 9.0×10^{-44} cm² Max Gap (4.5-15.5 keVr)
 - 5.5×10^{-44} cm² including known Back
- Factor of 6 below best previous limit
- XENON10 is testing SUSY models. With a phased approach towards ton scale, XENON aims at maximizing discovery potential at every phase (see Gaitskell Talk)

Elena Aprile
On behalf of the entire XENON10 Collaboration

We thank

NSF and DOE

and

Laboratori Nazionali del Gran Sasso and its Staff
Multiple scattering γ

Drift time (peak1): 32 us
Drift time (peak2): 68 us
S1 energy: 142 keVee
charge 1: 3,600 electrons
charge 2: 12,790 electrons
$\log_{10}(S2/S1) = 2.87$

\Rightarrow multiple gamma event

Very low energy neutron

Drift time = 22.6 us
S1 energy = 11 keVr
charge = 31 electrons
$\log_{10}(S2/S1) = 1.97$

\Rightarrow event type: neutron

Several MeV α

Drift time = 2.8 us
S1 energy = 6.3 MeV (alpha)
S2 charge = 7,400 electrons
$\log_{10}(S2/S1) = 0.91$

\Rightarrow particle type: alpha