Fine-structure Excitation of Atomic lons:

Astrophysical applications, status, and needs

Department of Physics and Astronomy Center for Simulational Physics University of Georgia

Phillip C. Stancil

UGA Theoretical Atomic and Molecular Astrophysics Group

Charge exchange
Molecular rovibrational excitation
Photodissociation
Radiative association
Molecular (diatomics) line lists
Applications: astrophysics, cold collisions, quantum simulation

Fine-Structure Excitation

Collision of an ion X of charge q (or a neutral) with e⁻ or heavy particle $X(nlLJ) + Y \to X(nlLJ') + Y$ Important in a variety of cool and molecular environments: Level populations (non-LTE emission spectra) Radiative cooling Temperature, density, radiation diagnostics Many lines observable by Spitzer, SOFIA, Herschel No comprehensive data compilation

Energy Diagram

Example Spectra

 Observed spectra of planetary nebula NGC 7027

Osterbrock & Ferland (2006)

Example Spectra

 Model spectra of a photodissociation region (Orion Nebula)

Osterbrock & Ferland (2006)

Example Spectra

 Observed spectra of a galaxy

Harwit et al., white paper (2010)

Key Fine-structure Diagnostics

 Diagnostic lines versus ionization potential for various environments

Harwit et al., white paper (2010)

Temperature-Density Diagnostic

 O²⁺ line ratios combined with forbidden lines
 Comparison to planetary nebulae observations

Osterbrock & Ferland (2006)

YSO Disks

van Dishoeck (2009)

HH 46 [O I]

Most of [O I] along outflow is in high-velocity jet

Databases?

!MOLECULE

1

12.0

8

C+ (atomic ion) !MOLECULAR WEIGHT

INUMBER OF ENERGY LEVELS

!LEVEL + ENERGIES(cm^-1) + WEIGHT + J

0.00000000 2.0 0.5 ! 2P

LAMDA

Leiden Atomic and Molecular Database

Atomic datafiles | Molecular datafiles | Data format | RADEX

nia datafil

Atomic datafiles				2 63.395087 4.0 1.5 ! 2P 3 43003.291 2.0 0.5 ! 4P			
			The aim of this project is to provide users of radiative transfer codes	4 43025.285 4.0 1.5 ! 4P			
	CI CII	OI	with the basic atomic and molecular data needed for the excitation	5 43053.568 6.0 2.5 ! 4P			
		<u></u>	calculation. Line data of a number of astrophysically interesting species	6 74930.074 6.0 2.5 ! 2D			
<u>M</u>	olecular da	<u>atafiles</u>	are summarized, including energy levels, statistical weights, Einstein A-	7 74932.608 4.0 1.5 ! 2D			
			coefficients and collisional rate coefficients. Available collisional data	8 96493.727 2.0 0.5 ! 25			
CO	CS	HCI	from quantum chemical calculations and experiments are in some cases	INUMBER OF RADIATIVE TRANSITIONS			
<u></u>	<u></u>	<u>ner</u>	extrapolated to higher energies.	14 !TRANS + UP + LOW + EINSTEINA(s^{-1}) + FREQ(GHz) + E u(K)			
OCS	<u>SO</u>	<u>SO2</u>		1 2 1 2.300E-06 1900.5369 91.21			
		-	Currently the database contains atomic data for 3 species and molecular	2 3 1 5.530E+01 1289206.2 61871.8			
SiO	SiS	SiCa	data for 29 different species. In addition, several isotopomers and	3 3 2 6.550E+01 1287305.7 61871.8			
010	010		deuterated versions are available. Work is currently underway to add	4 4 1 1.710E+00 1289865.6 61903.4			
maat	N: **+	The cost	more datafiles. We encourage comments from the users in order to	$5 4 2 5.240 \pm 00 1287965.1 61903.4$			
<u>HCO</u> ⁺	<u>N₂H⁺</u>	HCS ⁺	improve and extend the database.	6 4 3 2.390E-07 659.364 61903.4			
				$7 - 5 - 2 - 4 + 320 \pm 001 - 1288813 + 0 - 61944 + 1 $			
HC ₃ N	<u>HCN</u>	HNC	This database should form an important tool in analyzing observations	9 5 3 4 0.5 0.1			
			from current and future infrared and (sub)millimetre telescopes	10 7 1 2.393E+08 2246423.1 107810.6			
C ₃ H ₂	H ₂ O	H ₂ CO	Databases such as these rely heavily on the efforts by the chemical	11 7 2 4.773E+07 2244522.5 107810.6			
			physics community to provide the relevant stomic and melocular date	12 6 2 2.864E+08 2244476.5 107808.4			
ОН	СН-ОН	NH	We strength encourses further efforts in this direction so that the	13 8 1 7.643E+08 2892809.2 138832.1			
<u>011</u>	<u>engon</u>	<u></u>	we strongly encourage further errors in this direction, so that the	14 8 2 1.526E+09 2890908.6 138832.1			
			current extrapolations of collisional rate coefficients can be replaced by	INUMBER OF COLL PARTNERS			
<u>HDO</u>	<u>H₃O⁺</u>	<u>HNCO</u>	actual calculations in future releases.	4			
				COLLISIONS BETWEEN			
NO	CN	CH ₃ CN	RADEX, a computer program for performing statistical equilibrium	LNUMBER OF COLL TRANS			
			calculations is made publically available as part of the data base.	INUMBER OF COLL TRANS			
02	HF			INUMBER OF COLL TEMPS			
<u> </u>	<u></u>		NEWS (4 January 2011): Minor update of OH datafile.	6			
R	adiative tr	ansfer		COLL TEMPS			
			If you use the data files in your work please refer to the <u>publication</u> by	10.0 20.0 50.0 100.0 200.0 250.0			
RAL	DEX Bench	marking	Schöier, F.L., van der Tak, F.F.S., van Dishoeck E.F., Black, J.H.	!TRANS + UP + LOW + COLLRATES(cm^3 s^-1)			
			2005, A&A 432, 369-379 introducing this data base. When individual	1 2 1 3.0e-10 3.4e-10 3.9e-10 4.3e-10 4.6e-10 4.7e-10			
	D	4	molecules are considered, references to the original papers providing the	COLLISIONS BETWEEN			
	Developm	ent	spectroscopic and collisional data are encouraged	3 C+ + oH2 ! Flower & Launay (1977, JPB, 10, 3673)			
	Update his	tory_	speed sseeple and consistent data are cheodraged.	INUMBER OF COLL TRANS			
<u>Future upda</u>		<u>lates</u>	Fredrik Schöier, Floris van der Tak, Ewine van Dishoeck, John Black	INUMBER OF COLL TEMPS			
				6			
			This research is supported by the Netherlands Organization for	COLL TEMPS			
			Scientific Research (NWO) the Netherlands Research School for	10.0 20.0 50.0 100.0 200.0 250.0			
			Astronomy (NOVA) and the Swedish Pesearch Council	<pre>!TRANS + UP + LOW + COLLRATES(cm^3 s^-1)</pre>			
			Asironomy (110 VA) unu me sweatsh Research Councu.	1 2 1 4.4e-10 4.6e-10 4.9e-10 5.1e-10 5.6e-10 5.7e-10			

lon	e⁻	н	H ₂	He	H⁺	λ(µm)
Ο	Bell 1998	Abraham. 2007	Jaquet 1992	Monteiro 1987	Chambau 1980	63,145
O ²⁺	McLaugh. 1998					288
O ³⁺	Tayal 2006					26
С	Johnson 1987	Abraham. 2007	Schroed. 1991	Staemml. 1991	Roueff 1990	370
C+	Tayal 2008	Barinovs 2005	Launay 1977			158
N+	Hudson 2004					122, 205
N ²⁺	Blum 1992					57

lon	e⁻	Н	H_2	He	H⁺	λ(µm)
Ne+	Griffin 2001					12.8
Ne ²⁺	McLaugh. 2000					16, 36
Ne ⁴⁺	Griffin 2000					14, 24
Ne ⁵⁺	Mitnik 2001					7.6
Mg ³⁺	Witthoeft (2007)					4.5
Mg ⁴⁺	Butler 1994					5.6, 13.5
Mg ⁶⁺	Lennon 1994					5.5, 9

lon	e⁻	Н	H_2	He	H⁺	λ(µm)
Mg ⁷⁺	Zhang 1994					3.0
AI						89
Al ⁴⁺	Witthoeft (2006)					2.9
Si						25, 57
Si⁺	Tayal 2008	Barinovs 2005				35
Si ⁵⁺	Witthoeft (2007)					1.96
Si ⁶⁺	Butler 1994					2.5, 6.5

lon	e⁻	Н	H ₂	He	H⁺	λ(µm)
Si ⁸⁺	Lennon 1994					2.5, 3.9
Si ⁹⁺	Zhang 1994					1.43
P ⁺	Tayal 2003?					33, 61
P ²⁺	Krueger 1970					17.9
P ⁶⁺	Witthoeft (2007)					1.37
S	Tayal 2004					25, 57
S ²⁺	Tayal 1999					19, 34

lon	e⁻	Н	H ₂	He	H⁺	λ(µm)
S ³⁺	Tayal 2000					10.5
S ⁷⁺	Witthoeft (2007)					1
Ar+	Pelan 1995					6.98
Ar ²⁺	Munoz- 2009					9, 22
Ar ⁴⁺	Ludlow 2010					7.9, 13
Ar ⁵⁺	Ludlow 2010					4.53
Ca ³⁺	Pelan 1995					3.2

lon	e⁻	Н	H ₂	He	H⁺	λ(µm)
Ca ⁴⁺	Galavis 1995					4.1, 11.5
Fe	?					24, 34
Fe⁺	?					26,
Fe ²⁺	?					22.9,
Fe ⁴⁺	Ballance (2007?)					70,
Fe ⁵⁺	Ballance (2008?)					20,
Fe ⁶⁺	Witthoeft (2007)					9.5, 7.8

Fine-structure excitation: Needs

Summary - Needs

• Fine-structure excitation by electrons: Calculations for O and C need revisiting Neon ions look in good shape • Other possibilities: N²⁺, Ar²⁺, Al, and S ○ Further work on: Fe, Fe⁺, Fe²⁺???? Fine-structure excitation by heavy particles \bigcirc Calculations for O and C with H₂, He, H⁺ need revisiting $\odot O + H^+$ (later C + H⁺) in collaboration with David Schultz and Yong Wu ◦ C⁺ + H₂ should be revisited

Summary - Needs

Fine-structure excitation by heavy particles (cont'd):

- Calculations of H collisions needed for S, Si, Fe, Al, Ne⁺, N⁺, Fe⁺, Ne²⁺, O²⁺, Fe²⁺, S²⁺
- Calculations of He and H₂ collisions needed for S, Si, AI ,Fe, Ne⁺, N⁺, Fe⁺, Ne²⁺
- Calculations of H⁺ collisions needed for S and Fe
- Consideration of internuclear-dependent spin-orbit coupling
- Compilations needed
- Measurements needed

Acknowledgements

• Funding from NASA:

- Astronomy and Physics Research and Analysis (APRA)
- Origins of Solar Systems Program (OSS)
- Astrophysics Data Program (ADP)
- Astrophysics Theory Program (ATP)
- Contributions from collaborators and colleagues:
 - Gary Ferland, Mitch Pindzola, Ryan Porter, David Schultz, Yong Wu

Fine-structure excitation: Highlights

O: ³PJ**→**³PJ

 Larger by factors of 2-4 compared to previous calculations

O + H, C+H MOCC Calculations Abrahamsson et al. (2007)

C⁺ + e R-matrix calculations Tayal (2008)

Si⁺ + e R-matrix calculations Tayal (2008)