A Knowledge Discovery Workflow for Blazars

Raffaele D’Abrusco

Harvard-Smithsonian Center for Astrophysics
A Knowledge Discovery - *KD* - workflow is a sequence of analysis steps accomplished through distinct *KD* techniques to extract the most knowledge out of (usually) large amount of complex data.

Goals

- **Discovery**
 - Find new complex correlations;
 - Expand known correlations to more dimensions;
 - Find new simple correlations, so far overlooked;

- **Using the discovery**
 - Insight into astrophysics;
 - Classification, regression, new ways to look at things...
 - Optimized use of astronomical archival data;
An example: clustering & Quasars

Priori knowledge (spectroscopic quasars) and Unsupervised Clustering can be used to determine efficient ways to extract candidate quasars from optical datasets and to optimize the training of regressors (like neural networks) for the determination of photometric redshifts of extragalactic sources (Weak Gated Expert - WGE).

- The UC method splits the color space distribution of the sources into homogeneous aggregations;
- Multiple distinct experts (neural networks) are trained on different regions of the features space;
- The gate combines the outputs of the experts to maximize the accuracy of the redshift reconstruction and minimize the bias.
A question

What if the goal is not the improvement of the accuracy of a quantity obtained by regression (z_{phot}) or the classifications of sources (star vs quasars)?

What if the goal is to find out whether any pattern happens to occur in a generics feature space using unsupervised clustering techniques?

The tenet

The clusters in the feature space reflect similarities shared by cluster members.

Anisotropies in the distribution of clusters populations relative to other observables reflect the existence of significant patterns.
The CLaSPS method

Clustering-Labels-Scores Patterns Spotter (CLaSPS)

1. A UC algorithm is used to produce clusterings in the parameter space generated by any subset of the observables (the features);
2. Other observables not employed for the clustering (the labels), are used as tags to identify interesting set of clusters using the score;
3. The patterns in the selected set of clusters are selected and studied.
The choice of the clustering(s)

The degree of correlation between the distribution of cluster members in the *feature* space and their distribution in the *labels* space can be quantified using the *score*:

\[
S_{tot} = \frac{1}{N_{clust}} \cdot \sum_{i=1}^{N_{clust}} S_i = \frac{1}{N_{clust}} \sum_{i=1}^{N_{clust}} \left(\sum_{j=1}^{M(i)} ||f_{ij} - f_{i(j+1)}|| \right)
\]

where \(f_{ij} \) is the fraction of members of the \(i \)-th cluster with values of the *label* in the \(j \)-th class.
An interesting finding

CLaSPS has been applied on a sample of AGNs with multi-wavelength observations spanning from radio to γ-rays to characterize their SEDs in the colors space.

Three clusters mostly populated by blazars had large values of the *scores* using AGNs classification, the γ-ray detection and FSRQs-BL Lacs spectral classification for blazars as *labels*. **Such pattern depends on the peculiar WISE colors of blazars.**

<table>
<thead>
<tr>
<th>Dataset</th>
<th>AGNs catalog</th>
</tr>
</thead>
<tbody>
<tr>
<td>Features</td>
<td>UV(Galex) + Optical(SDSS)+ NIR(UKIDSS) + IR(WISE)</td>
</tr>
<tr>
<td>Labels</td>
<td>AGNs class., blazars spectral class. γ-ray emission</td>
</tr>
</tbody>
</table>
The WISE blazars locus

The blazars occupy a peculiar region of the mid-Infrared color space generated by WISE magnitudes. ***This pattern had been overlooked so far***.
A first *WISE* blazars *locus* modelization

The first modelization of the WISE blazars *locus* was created by determining the boundaries for each color-color plane projection to contain a minimum fraction of total sources (95%). Regions mostly occupied by BL Lacs and FSRQs have been modeled separately.

BZB population: [3.4]-[4.6]-[12] projection

- $P_1 (2.01, 0.37)$
- $P_2 (3.30, 1.17)$
- $P_3 (2.59, 1.20)$
- $P_4 (1.52, 0.51)$

The strip parameter s_{12} association

- $w_{12} = (\alpha_1 \alpha_2)^{d_{12}}$
- $s_{12} = d_{12} w_{12}$

Raffaele D’Abrusco (CfA)
Unidentified *Fermi* γ-ray sources

Out of 313 “clean” 2FGL Unidentified γ-ray sources within the *WISE* Preliminary Release footprint (∼55% of the sky), we have associated 156 to *WISE* candidate blazars.
A better modelization

The WISE blazars *locus* can be also thought as a *classifier* whose parameters can be optimized by *supervised learning*, just like a *neural network*.

This systematic approach provides:

- A quantitative criterion to pick the “best” model of the *locus* in terms of:
 - Accuracy of the reconstruction of the *locus*;
 - Completeness vs efficiency of the classification;
 - Complexity of the geometrical model;
- Extensibility (adding new constraints from other wavelengths/features);
- Easily updatability (new version of blazars catalog, WISE photometric dataset, release, etc.);
The new model

Best model: cylinder(s) in the Principal Component space.

Regions are separated according to the distribution of the spectral classification of the WGS sources (the *training set*) coaxial with the PC1.

The radii of the three regions (BL Lacs, FSRQ-dominated and mixed) are determined based on the radial distribution of the WGS sources (the *training set*).

Discrete protoscore

\[p_{\text{disc}} = \frac{1}{n_{\text{extr}}} \]

where \(n_{\text{extr}} \) is the number of extremal points inside the region (for each region of the *locus*).

Normalized continuos protoscore

\[p_{\text{cont}} = \frac{1}{6^n \cdot p_{\text{disc}}^n} \]

where \(n \) is an index used to tweak the efficiency and completeness of the association process.

Final score

\[s = p_{\text{cont}} \cdot w_V \]

where \(w_V = ||V_{\text{err.ellips}} - V_{\text{reg}}|| / V_{\text{reg}} \) weights according to the volume of the error ellipsoid of the source.
The new model can be also used to perform “not spatially constrained” extraction of WISE candidate blazars from the WISE photometric catalog.
Can we find new blazars?

\(\gamma\)-ray sources in the 2FGL catalog have \((TS \geq 25)\). Due to their extreme variability, many blazars might not have made into the catalog (where data were integrated over 2 years timespan).

The extraction of \textit{WISE} candidate blazars can be used to select \textit{Fermi} blazars below the \textit{TS} threshold and to search for blazars in the positions where \(\gamma\)-ray transients were observed.

\(^1\) (Courtesy of G. Migliori)
Other projects

1. Characterization of the globular clusters-LMXBs connection in the optical/X-rays/spatial feature space (NGC4649 and other galaxies);

2. Application to a sample of X-ray selected AGNs with wide-band multi-\(\lambda\) photometry, with already known correlations found by CLaSPS.
2.8 Ms exposure time on Chandra were just awarded (P.I. F. Civano) to observe 2 deg2 containing the original Chandra-COSMOS field. Expected to detect 4500 X-ray sources to $F_{\text{lim}} \sim 2 \cdot 10^{-16}$ cgs in [0.5, 2] keV energy band.

- Unparalleled multi-wavelength coverage: 47 wide and narrow bands from X-ray to radio.
- Suited to characterize the SEDs of AGNs and constrain the dependence of SMBHs on their environment as function of the host galaxies properties.
- A rich, complex and large dataset!
CLaSPS development

Handling upper-limits and NaN’s (regardless of their origins) becomes crucial with observationally rich complex samples.

- Observations or upper-limits in a band can be translated into a binary labels and used to characterize the clustering in the feature space...
- ...but still, discarding sources of the sample with not-measured features can drastically reduce the size and richness of the dataset and, potentially, throw away valuable information.
- Comparison with the results on similar datasets features-wise to check robustness, assess variance, validate outliers, etc.

Exploring the application of Feature-Distributed Clustering (FDC) and Object-Distributed Clustering (ODC) methods, borrowed from consensus clustering.
The discovery of the *WISE* blazars *locus* with CLaSPS and its application as a tool for the classification and extraction of candidate blazars is an example of astronomical *KD* workflow involving unsupervised and supervised methods.

- **Archival data** can be re-used and interpreted from a fresh point of view;
- **Variability**: how does variability fit into this scenario? Do mid-infrared and \(\gamma\)-ray/X-ray variability affect the blazars *locus*? If so, how and why?

- A few examples of *KD* workflows giving interesting results raise awareness of these new “integrated methods in the astronomical community;
- Like already happened in many other fields, *KD* will become (is becoming) the only chance to make sense out of the overwhelming amount of data from observations.
Acknowledgements

G. Fabbiano (CfA)
O. Laurino (CfA)
G. Longo (Univ. of Naples)
F. Massaro (SLAC)

- UC & Classification/Regression →