Wide Binaries in the Sloan Digital Sky Survey

Branimir Sesar and Željko Ivezčć, University of Washington, and Mario Jurić, Institute for Advanced Study

Abstrac

We present a novel approach to photometric parallax callibration based on samples of candidate wide binaries (semi-major axis a 10100 AU). The constriaint on the photometric paraliax relations are obtained by minimizing the residuals between the
difiference of prediciced absolute magnitudes and the difiference of measured apparet magnitudes. The estimated best-fit relations agree with Jurí et al. (2008) photometric parallax at the 0.13 mag level (root-mean-square). We construct a sample with $\sim 20,000$
likely binaries, and use it to study the distribution of wide binaries semi-maior axis. The Ikely binaries, and use it to study the distribution of wide binaries semi-major axis.
observed distribution is well described by the Opik cistribution $\uparrow\left((a) \propto 1 /\right.$, for $a<a_{b}$ where $a_{\text {oead }}$ increases linearly with the height above the Galacic plane, Z. The $a_{\text {oeex }}$ also correateses with the local number density of stars as $a_{\text {peex }} \propto \rho^{-12}$. The number density of wide binary systems closely follows the overall number density if stars at 1% level in the
$Z=0.2$. preference for similiar-mass M dwarf $-M$ dwarf systems. We find that $\sim 77 \%$ of wide
binaries may have an unresolved binary as one of the components.

Photometric Parallax Calibration Using Wide Binaries We can reasonably assume that two stars in a binary system have similar distance oduli, i.e. $m_{1}-M_{1}=m_{2}-M_{2}$ where this relation can be rewritten a
$\left.M=M_{2}-M_{2}-M_{i}\right)-\left(m_{2}-M_{i}\right)=0$. The diferecce in absolute magnitudes, $\Delta M=M_{2}-M_{1}$, can be calculated from an adopted photometric parallax relation and
should agree with the measured difierence of their apparent magnitudes, $\Delta m=m_{2}-m$ the stars are on the main sequence, and if the shape of the adopted photometric parallax relation is correct. The $\Delta M=\Delta m$ equality for binaries must be valid irrespective of color. Aso, he cistribution of the c
narrow and centered on zero.

Using two independent samples of candidate binaries selected as i) pairs of unresolved
sources with angular separation in the $3^{\prime \prime}-4^{\prime \prime}$ range, and ii) as common proper motion sources with angular separailion in the $3^{\prime \prime}-4$ range, and in) as common proper m pairs with $5^{\prime \prime}-30^{\prime \prime}$ angular separation, we obtain two best-ift photometric parallax
relations. These relations are similar to each other, and to the urric et al. (2008) photometric parallax relations, agreeing at the 0.13 mag level (rms) and with a maximu difiference of 0.25 mag.

Unresolved Multiplicity in Wide Binaries
The distribution of $\delta=\left(M_{2}-M_{1}\right)-\left(m_{2}-m_{1}\right)$ values for wide binaries (yellow dashed line can be modeled as a sum of two Gaussians. The narrow Gaussian (0.12 mag wide,
dotted line) is due to single star - single star wide binary systems. The wide Gaussian
 Onresolved binary, or multiple, systems. We find that $\sim 77 \%$ of wide binaries are such
und unresoived
systems.

Color Distribution of Wide Binaries
The color of a main sequence star can be used as a proxy for stellar mass. The color-
color distribution of wide binaries can, therefore, show the distribution of stellar masses in color distribution of
wide binary systems.

Above: The conditional probability density of having a star with $(g-)_{8}$ color in a wide bin
system, if the other star in the system has $g-i=(g-)_{\text {I }}$. The flat probability density in the stars in wide binary systems are equally likel associated with red or bue companions, while for $g-i>2.0$ stars, redder companions are
more likely than blue ones, as shown in the bottom panel.
Right: The $g-i$ color distribution of stars in the $0.7<d / \mathrm{kpc}<1.0$ volume-complete wide binary sample (top), and of all stars in the same
volume (midddle. The probability density for volume ((i icolle). The probability density for
finding a star with $g-i$ color in a wide binary inding a star with $g-i$ coior in a wide binary
system, $P_{\text {meib binax }}(b o t t o m$), is given as a aratio of the two distributions normalized to an area
The K 3 to $\mathrm{M} 2(1.3<g-i<2.2)$ stars are slighty more likely to be in a wide binar

Spatial Distribution of Wide Binaries
Below left: The local number density of binaries (dots) decreases exponentially in the
same manner as the local number density of stars (circles). The density of stars is here same manner as the local number density of stars scircies). The density of stars is here
normalized to match the density ot binaries at 1 kpc. Below right The traction of bincie normalized to match the density of binaries at 1 kpc . Below right: The fraction of binaries
relative to the total number of stars decreases from 1.2% at 250 pc to 0.4% at 1800 pc.

Distribution of Semi-major Axes
The distribution of semi-major axes of binary stars is a fossil record of the conditions at star formation, as well as of the processses of dynamical evolution, such as the disisuption of wide binaries by molecular clouds or passing stars.

bove: The cumulative distributions of $\log (a)$ (yellow dashed lines) in dififerent Z (height
 angular separations is given for each panel.

Below left: The dependence of $\log \left(a_{\text {soeen }}\right)$ values on $\log (Z)$ is modeled as $\log \left(a_{\text {oveex }}\right)=k$ $\mathrm{og}(Z)+l$, where $k=0.95 \pm 0.05$ and $l=1.1 \pm 0.2$, or approximately, a ser $[\mathrm{AU}]=10 \mathrm{Zpc}]$

Below right: The dependence of $\log \left(a_{\text {beex }}\right)$ on $\log (\rho)$, where ρ is the local number density of stars, is modeled as $\log \left(a_{\text {oeen }}\right)=k \log (\rho)+1$, where $k=-0.50 \pm 0.02$ and $l=3.30 \pm 0.04$.

References and Acknowledgments

Jurí, M. et al. 2008, ApJ, 673, 864
 -Sesar. B. et al. 2008 , in preparation

[^0]
[^0]: Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan
 Foundation, the Participating Insstilutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautits and Space Administration, the U.Sapanes

