Homework Set 4

Due Thursday, March 5, 2020, by 5pm PST

1. Frequency of Interceptions in an Expanding Universe

Suppose we live in a universe with $\Omega_{m,0} = 0.3$, $\Omega_{\Lambda,0} = 0.7$, and $H_0 = 70$ km s⁻¹ Mpc⁻¹. If the mean effective cross-section $\sigma_{\rm gal}$ of galaxies is redshift-independent, and the co-moving space density of the galaxies Φ_* remains constant, show that the expected number of interceptions (arising from interception of any part of an intervening galaxy) in a line of sight between the observer at z = 0 and a source at redshift $z_{\rm s}$ is

$$N = \Phi^* \sigma_{\rm gal} \frac{c}{H_0} \int_0^{z_s} \frac{(1+z')^2}{E(z')} dz' \quad . \tag{1}$$

The line of sight to a typical quasar at $z_s = 2$ records ~ 5 independent interceptions of intervening galaxies; the galaxy redshifts can be measured from C⁺⁺⁺ absorption lines produced by gas in each galaxy, falling at observed wavelengths $1549 \times (1 + z_{\text{gal},i})$ Å, where 1549 Å is the rest wavelength of the C⁺⁺⁺ transition and $z_{\text{gal},i}$ is the redshift of the *i*th intervening galaxy. Numerically integrate equation 1 using $z_s = 2$ to calculate N in terms of Φ^* and σ_{gal} . Using a reasonable value for Φ^* , estimate the value of σ_{gal} required such that $N \simeq 5$. What is the implied physical size (i.e., radius in kpc) of the gas distribution around a typical galaxy to account for the number of interceptions? Is is reasonable to associate the C⁺⁺⁺ absorption lines with normal galaxies?

2. Galaxy Formation on the Back of an Envelope

Suppose that a dark matter halo of mass $10^{12} M_{\odot}$ has virialized at redshift z = 3, and that it has

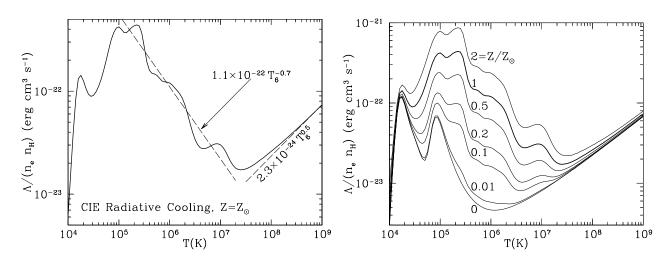


Figure 1: (Left) Cooling function vs. temperature for solar metallicity gas. (Right) Cooling function vs. metallicity.

the same baryon-to-dark matter ratio as the average in the universe (i.e., $M_b/M_{DM} \simeq 0.19$). You may assume that the baryons and dark matter in the halo just after virialization have constant density $\bar{\rho}_{coll}$, and that $\Omega_{m,0} \simeq 0.3$, $H_0 = 70$ km s⁻¹ Mpc⁻¹.

a) Using the model for spherical collapse in an expanding universe as discussed in class, calculate the "virial radius" $R_{\rm vir}$ of the halo immediately after it has collapsed at $t = t_{\rm coll} = 2t_{\rm ta}$, where $t_{\rm ta}$

is the time of "turnaround" for the perturbation. [hint: the mean density of the collapsed object $\bar{\rho}_{\text{coll}}$ is related to the mean density of the universe at $t = t_{\text{coll}}$, $\bar{\rho}(z = 3)$, which in turn is related to the matter density at z = 0, and $\bar{\rho}_{\text{coll}} = 3M_{\text{vir}}/4\pi R_{\text{vir}}^3$.]

- b) Calculate the "virial velocity" $\sigma_{\rm vir}$, for the halo, defined through $\sigma_{\rm vir}^2 = GM_{\rm vir}/R_{\rm vir}$. Use the value obtained to calculate the expected virial temperature $T_{\rm vir}$ for the baryons within $R_{\rm vir}$, and the dynamical time $t_{\rm d}$ for the collapsed halo.
- c) The cooling function for gas, $\Lambda(T)/n^2$, can be used to estimate the radiative cooling rate (the rate of energy loss from radiation) of the gas, as a function of T, shown in Figure 1. Use your estimated $T_{\rm vir}$ and the mean number density of baryons n to calculate the cooling rate per unit volume (i.e., $\Lambda(T)$ in ergs s⁻¹ cm⁻³) for the gas.
- d) From the cooling rate per unit volume and the thermal energy per unit volume associated with the baryons, estimate the timescale for gas to cool, $t_{\rm cool} \sim E_{\rm therm}/\Lambda(T)$. How does $t_{\rm cool}$ compare with the dynamical time $t_{\rm d}$?
- e) Finally, based on the righthand panel of the figure above, at approximately what gas-phase metallicity would the cooling rate slow to the point that $t_{cool} \sim t_d$?

3. Supermassive Black Holes in Garden-Variety Galaxies

The active nucleus of a particular low–luminosity Type I Seyfert galaxy is believed to be powered by gas accreting onto a black hole of mass 10^6 M_{\odot} .

- a) Evaluate the orbital period of gas in the accretion disk at a radius of 1 pc.
- b) Estimate the radius at which a star like the sun will be torn apart by tidal forces.
- c) The innermost radius at which gas can orbit the black hole is 3 Schwarzschild radii. Estimate the shortest orbital period in the accretion disk, and hence the minimum timescale on which you might expect the X-ray emission to vary.
- d) What is the average effective temperature of the accretion disk associated with the black hole? Where would you expect the thermal spectrum to peak (at what frequency or wavelength)?
- e) Suppose that the accretion disk is radiating at the Eddington limit. How long could that accretion rate be supported in a typical galaxy? What would be the corresponding lifetime of a luminous quasar with a black hole mass of 10^9 M_{\odot} , in years? How do both correspond to the typical age of a galaxy?