Gamma-Ray Bursts as Tracers of High-Redshift Star Formation: *Promises and Perils*

Daniel Perley (Caltech)

Collaborators: Nial Tanvir, Andrew Levan, Brad Cenko, Jens Hjorth, Daniele Malesani, Steve Schulze, Thomas Kruehler, Andy Fruchter

Animation of GRB990123 superimposed on its (very luminous) host galaxy Courtesy A. Fruchter, STSCI

Cosmic Star-Formation History

Cosmic Star-Formation Sites

2013-03-05

Daniel Perley

GRBs as Tracers of Cosmic Star Formation

Hubble Fellow Symposium3

Usual strategy: add up the UV emission from all galaxies combined and convert to a star-formation rate.

from CANDELS blog

Limitations of Field Surveys

Dust Correction

- ~80% of UV light is absorbed by dust at z~2
- UV dust corrections are empirical (is Calzetti prescription universal? It fails for ULIRGs.)
- UV energy can be "recovered" at 8µm / FIR / submm, but these wavelengths have poor sensitivity to faint galaxies

Missing galaxies

Faint galaxies (<0.1 L*) require extrapolation from bright end Redshift measurement imposes further biases

These problems are particularly limiting at z>3

(Long) GRBs: Massive Stellar Core-Collapse

2013-03-05

Daniel Perley

Advantages of GRB Selection

Inexpensive

Optical afterglow redshifts are cheap (Host follow-up not as cheap, but still doable.)

Dust-Unbiased, in principle Gamma-ray burst and X-ray/radio afterglows unimpeded by dust

Sensitive to sub-threshold SFR

Host nondetections give a direct constraint on importance of undetectable galaxies

Extendable to **z>8** and potentially higher

No Cosmic Variance GRB satellites see (close to) the whole sky

9

A Biased Tracer?

2013-03-05

Daniel Perley

A Biased Tracer?

2013-03-05 Daniel Perley GRBs as Tracers of Cosmic Star Formation Hubble Fellow Symposium 13

Dark GRBs

~25% of GRBs are dark:

e.g,Groot et al. 1998, Djorgovski et al. 2001, Cenko et al. 2009 No optical afterglow, even with early follow-up.

Can't identify host without X-ray or radio follow-up.

• Can't measure redshift without large ground-based telescopes.

Most are **dust-obscured**

Perley et al. 2009, Greiner et al. 2011

These hosts were not routinely followed in previous work: bias?

Palomar 60-inch follow-up of GRB 061222A ~10 minutes after burst

2013-03-05

Dust and Star Formation

Dusty galaxies become vastly more prevalent at z>1: are dark GRBs concealing an entire class of host galaxies?

Or, is this just a product of patchy dust / geometry?

A Biased Tracer?

Only the most metal-poor galaxies today seem to routinely produce GRBs...

2013-03-05

Daniel PerleyGRBs as Tracers of Cosmic Star FormationHubble Fellow Symposium16

A Biased Tracer?

Only the most metal-poor galaxies today seem to routinely produce GRBs...

But *most* galaxies at z>2-3 are similarly metalpoor.

2013-03-05

Daniel Perley

- Do dust-obscured hosts differ from ordinary hosts?
- How does this affect the overall population, and the link between GRBs and SFR?
- What does this imply about dust distributions in high-redshift star-forming galaxies?
- Is metallicity actually the sole cause of the low-redshift discrepancies?
- Can we understand its nature and correct for it?
- Do GRB hosts become more like "typical" star-forming galaxies at higher redshift?
- Is there a redshift range where GRBs are unbiased SFRtracers (*e.g.* high-z, where we need them most?)

Completing the Host Sample

HST IR Snapshot program

VLT Optically Unbiased Host Project ("TOUGH"), known-z Hjorth et al. 2012

Pre-Swift hosts from literature

grbhosts.org

Dustobscured sample

Perley et al. 2013 arXiv/1301.5903

Selecting a Dusty-GRB Host Sample

Selection: *Every* Swift-era burst with clear indication of Av > 1 mag 23 events from 2005-2009 - only 2 with optical afterglow redshift

Observing a Dusty-GRB Host Sample

Keck: Optical photometry & UV star-formation rates. Photometric & spectroscopic redshifts.

Gemini: NIR photometry for photo-z's, stellar masses.

Spitzer: Rest-frame NIR photometry for stellar masses.

HST: NIR photometry, especially of faint targets.

VLT: R- and K-band photometry, spectroscopy for southern sources (part of TOUGH project, Hjorth et al. 2012)

Optical Host Mosaic

Near-IR Host Mosaic

Spitzer Host Mosaic

Detection Statistics

All 23 hosts detected in all three bands

(2 not observed with IRAC yet.)

No "ultra-faint" hosts – every host galaxy would have been detected in a deep survey. (This is *not* true of unobscured GRBs.)

Redshift Measurement

Redshift Distribution

23 / 23 successful redshifts!

18 spectroscopic, 5 photometric

Broadly similar to overall GRB redshift distribution (possibly more strongly concentrated at z~2 – not yet significant, and sample-selection biases could matter)

SED Fitting

SED Fitting

Obscured vs. Unobscured GRB hosts

Dust-obscured GRB hosts are a diverse population – but *on average*, obscured-GRB hosts are more massive, star-forming, and dusty.

Daniel Perley

Obscured vs. Unobscured GRB hosts

GRB and host extinction correlate:

Dust in high-z galaxies is fairly homogeneous, with a few dramatic exceptions.

Obscured vs. Unobscured GRB hosts

Dust-obscured GRB hosts are a diverse population – but *on average*, obscured-GRB hosts are more massive, star-forming, and dusty.

GRBs as Tracers of Cosmic Star Formation

2013-03-05

Daniel Perley

Hubble Fellow Symposium 33

Properties look "consistent" with field galaxy number distributions...

Combined sample versus field galaxies:

Grey points: field galaxies from MOIRCS deep survey (Kajisawa et al. 2011), omitting AGN (hard X-ray detection).

2013-03-05

But need to weight by SFR!

2013-03-05

Daniel Perley

Calculated *predicted quartile boundaries* of a SFR-weighted galaxy distribution as a function of redshift. If $R_{GRB} \propto SFR$ then GRBs should distribute evenly among the 4 quartiles (modulo statistics.)

2013-03-05

Daniel Perley

2013-03-05 D

Daniel Perley

GRBs as Tracers of Cosmic Star Formation

Hubble Fellow Symposium 37

Origins of GRB Rate Variations

2013-03-05

GRBs are poor tracers of (at least) 50-75% of star-formation at $z\sim1$.

GRB rate *per unit SFR* is strongly depends (factor of ~5) on stellar mass (metallicity, chemical effects), but is not clearly dependent on SFR (UV intensity, gas temperature)*.

* But it is dependent on specific SFR – may be related to metallicity dependence also (under investigation).

Moving beyond z>1.5

Are GRBs unbiased tracers of star-formation at...

$$\sum_{x \to 1?} z \sim 1?$$

 $\sum_{x \to 2?} z \sim 2?$
 $\sum_{x \to 3?} z \sim 3?$

Moving beyond z>1.5

Moving beyond z>1.5

Use magnitudes and colors as substitutes for formal SED modeling.

Dark + pre-Swift + Snapshot + VLT H-band magnitude (mass proxy) R-K color (age+dust proxy) 20 Apparent F160W magnitude (AB) 20 R-K_s color (AB) 3 22 (Vega) Vega) 24 24 26 0.5 2.0 2.5 3.0 1.0 1.5 2.5 1.0 1.5 0.5 2.0 3.0 Redshift Redshift 2013-03-05 **Daniel Perley GRBs as Tracers of Cosmic Star Formation** Hubble Fellow Symposium 43

Use magnitudes and colors as substitutes for formal SED modeling.

Dark + pre-Swift + Snapshot + VLT R-K color (age+dust proxy) H-band magnitude (mass proxy) 20 Apparent F160W magnitude (AB) 20 R-K_s color (AB) 3 22 (Vega) (Vega) 24 Δ Survey threshold – ignore all 24 GRBs and SFR below this line 26 0.5 2.5 3.0 1.0 1.5 2.5 1.0 1.5 2.0 0.5 2.0 3.0 Redshift Redshift 2013-03-05 **Daniel Perley GRBs as Tracers of Cosmic Star Formation** Hubble Fellow Symposium 44

GRB hosts can probe down to faint galaxies not accounted for in field surveys – simply throw these out to keep comparison fair.

Divide by star-formation quartiles, repeating analysis at $z\sim1$ first:

Are GRBs unbiased tracers of star-formation at...

Is There Hope for High Redshift?

UV luminosity distribution at z~3.5

UV luminosity distribution at z~3.5

1

UV luminosity distribution at z~3.5

UV luminosity distribution at z~2

Are GRBs unbiased tracers of star-formation at...

Conclusions

Dust-obscured GRB hosts: diverse, massive, luminous.

No dusty GRBs in lowest-mass galaxies. Dust distribution more homogeneous than heterogeneous.

GRBs at z<2 are not unbiased tracers of star-formation.

GRB rate vs. SFR in low-mass galaxies = ~10x rate in high-mass galaxies at z~1 ~4x rate in high-mass galaxies at z~2

Consistent with metallicity dependence. Possible secondary effect in high-sSFR galaxies? Consolation prize – tracing metal-poor SFR?

GRB hosts at z~3.5 also differ from SFR predictions.

Based on 10 galaxies; not expected from lower-z results Apparently worse tracers than at $z \sim 2$? Small sample? Dust bias? Luminosity functions in error?

Clearly more work to do to understand the cause and implications! Cycle 9 Spitzer program: observations of 130 uniformly-selected hosts

2013-03-05 **Daniel Perley**