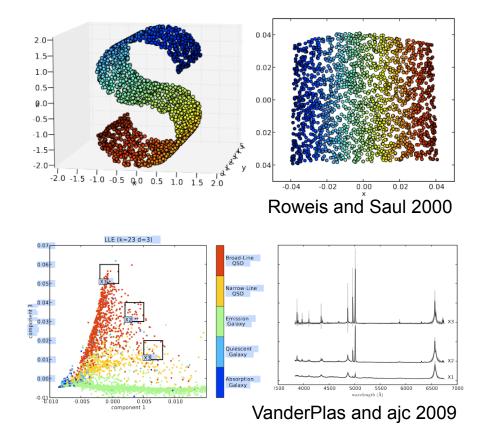


SCALING UP AND SCALING OUT

Andrew Connolly University of Washington

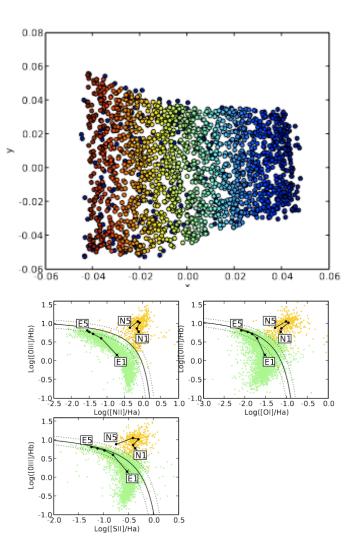
Scaling up to the Sky

- Size of data (LSST)
 - 30 TB of images per night
 - 10¹⁰ stars and galaxies
 - 10⁹ sources per night (10³ transients)
 - 1-10 PB in a database (catalogs)
- Dimensions
 - 100 attributes per source
 - Temporal information (1000 visits)
 - Variable sky (moving and transient)
 - Poorly defined basis functions for classification
 - Incomplete and noisy observations

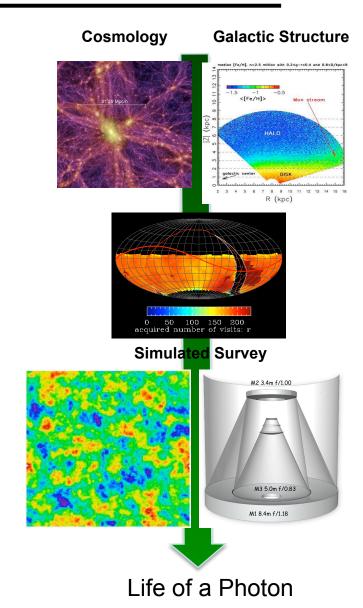


Looking for structure

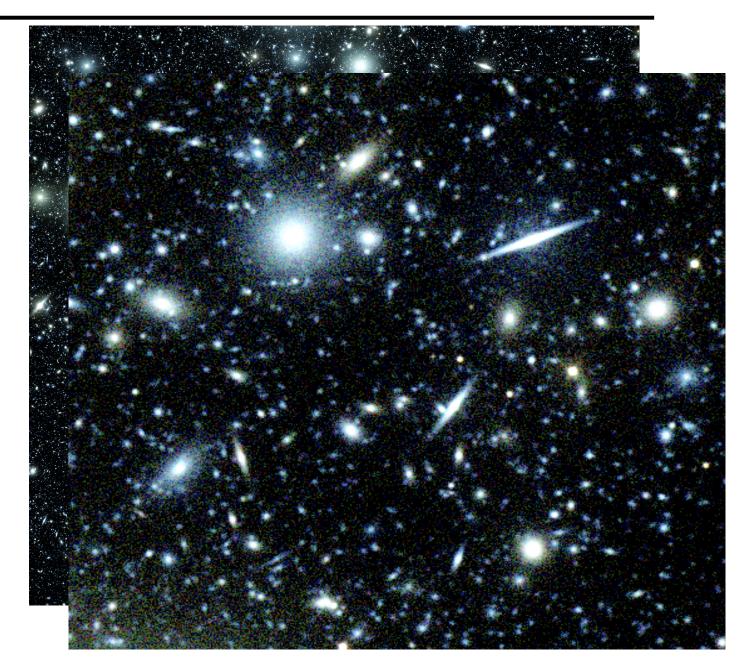
Reducing dimensionality


- Global and local measures
- PCA vs LLE
- Local structure within 4000 dimensional space of 100K spectra
- Learning structure
 - Controlled by neighbors and projected dimensionality
 - Without feature extraction outperforms SDSS pipelines
 - Learning the rules is slow

Cost of searching for structure

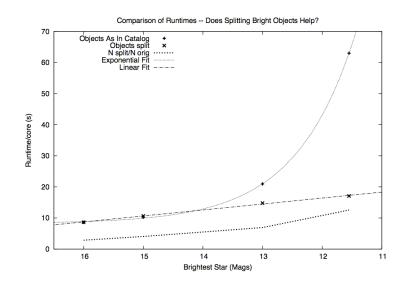

Slow aspects

- Searching for neighbors
 - Parallel/tree searches
- Presence of noise and missing data
- Numbers of dimensions
- Sampling strategies
 - How many sources is enough?
 - Brute force vs stratified sampling vs physical sampling
 - Sample based on variance of the local structure
 - 100-fold reduction in training sample
 - Many applications: classification, photometric redshift calibration, photometric calibration


Scaling up simulations of the sky

- Simulating the LSST
 - One LSST focal plane
 - 189 2Kx4K CCDs
 - 3.2 Gpixels (6.4 GB)
 - 10⁶ Sources (r<24)
 - 15 seconds
 - One simulated Focal plane
 - 10⁷ Sources (r<28)
 - Each source has a spectral energy distribution (λ effects)
 - 10¹¹ photons
 - 2000 CPU hrs

Simulating the universe


Scaling out with MapReduce/Hadoop

Simply parallel applications

- Metric is wall clock not cpu clock
- 1 CCD takes 10 hrs on a 1000 core cluster – so does 1000 CCDs
- Mapreduce approach to improve balance (adaptable granularity)
- Simulating a source at a time

Granularity of operations

- 10hrs to 20 mins (40 processors)
- Many levels of parallelization: Focal plane, CCD, amplifier, source, photon
- Trade off between overhead and cpu time

Future: simple scalable algorithms

• The real life 80-20 split

- Do I need all of my data I memory at the same time
 - Large memory machines or message passing
- Most astronomers live in the 80% regime
 - Simply parallel and simply scalable
 - Cosmology codes, npt statistics don't reside here
- Simple distributed processing paradigms work
 - Focus on serial applications
 - Allow the analysis to grow with the data
- Map reduce paradigm
 - Our bread and butter
 - Enables science not programming
 - Scales (?) to the next generation of surveys

But what do we teach.....

- IDL
- IDL
- IDL
- Oh and a little bit of Python....

