A Modern Scientific Discovery Process

Data Gathering (e.g., from sensor networks, telescopes…)

Data Farming:
- Storage/Archiving
- Indexing, Searchability
- Data Fusion, Interoperability

\{ Database Technologies \}

Data Mining (or Knowledge Discovery in Databases):
- Pattern or correlation search
- Clustering analysis, automated classification
- Outlier / anomaly searches
- Hyperdimensional visualization

Data Understanding

New Knowledge

Key Technical Challenges

Key Methodological Challenges

+feedback
Information Technology ➔ New Science

- The information volume grows exponentially

 Most data will never be seen by humans

 The need for data storage, network, database-related technologies, standards, etc.

- Information **complexity** is also increasing greatly

 Most data (and data constructs) cannot be comprehended by humans directly

 The need for data mining, KDD, data understanding technologies, hyperdimensional visualization, AI/Machine-assisted discovery …

- We need to create **a new scientific methodology** to do the 21st century, computationally enabled, data-rich science…

- ML and AI will be essential components of the new scientific toolkit

The Key Challenge: Data Complexity

Or: The Curse of Hyper-Dimensionality

1. **Data mining algorithms scale very poorly:**

 \[N = \text{data vectors}, \sim 10^8 - 10^9, D = \text{dimension}, \sim 10^2 - 10^3 \]

 - Clustering \(\sim N \log N \rightarrow N^2, \sim D^2 \)

 - Correlations \(\sim N \log N \rightarrow N^2, \sim D^k \ (k \geq 1) \)

 - Likelihood, Bayesian \(\sim N^m \ (m \geq 3), \sim D^k \ (k \geq 1) \)

2. **Visualization in >> 3 dimensions**

 - The complexity of data sets and interesting, meaningful constructs in them is *exceeding the cognitive capacity of the human brain*

 - We are biologically limited to perceiving \(D \sim 3 - 10(?) \)

 - Visualization is a bridge between data and human intuition/understanding
We got this done fairly well …

… but not yet much of that!

Virtual Observatory framework today is a data grid of astronomy – but it needs to become also the discovery space

KDD / ML / AI tools are essential if the VO is to fulfill its scientific potential and its intended role

The Roles for Machine Learning and Machine Intelligence in CyberScience:

- **Data processing:**
 - Object / event / pattern classification
 - Automated data quality control (glitch/fault detection and repair)

- **Data mining, analysis, and understanding:**
 - Clustering, classification, outlier / anomaly detection
 - Pattern recognition, hidden correlation search
 - Assisted dimensionality reduction for hyperdim. Visualisation
 - (Adaptive) workflow control in Grid/Cloud-based apps
 - Human-computer interface / collaboration / synergy

- **Data farming and data discovery:** semantic web, and beyond

- **Code design and implementation:** from art to science?
About This Workshop:

• Discussion is the main thing – don’t be shy!
• Problems, challenges, new ideas – not a recap of the past results (except sparingly, as an illustration)
• We can change the agenda as needed, responding to the flow of ideas, discussions
• Initiating new collaborations and projects would be great

Some logistics:

• Dinner tonight
• Proceedings?