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Massive amounts of data collected in astronomical surveys.

Typically, High dimensions (p), Huge data sets (n).  Complex 
and noisy data.
THE QUESTION IS: how do we extract useful information 
and make reliable predictions and estimates?

Visualization, outlier detection, density estimation
Regression/classification

“Curse of dimensionality” (computational/statistical)

High-Dimensional Inference for Large Data Sets
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High Dimensional Inference: 
Two Important Considerations

1. To find a good initial basis or set of attributes.
E.g. Construct ON basis. Dimensionality reduction by projection

2. To find a parameterization and metric that reflects the 
underlying geometry of the data.  

Natural occurring data often have a low intrinsic dimensionality.
Underlying dimension, underlying basis functions?

Tk : Rp → Rk, x→ Tkx = (x · w1, x · w2, . . . , x · wk)



Minimize δ =
∑

i,j(d
2
ij − d̂2

ij), where d2
ij = ‖xi − xj‖2
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PCA Example

Elements of Statistical Learning,
Hastie, Tibshirani, and Friedman, pg. 488

ADA Presentation 04/25/08 – p.9

Principal Component Maps =
 Classical Multi-Dimensional Scaling (MDS)

How about more complex data structures?
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Starting points: set of objects and 
similarity measure that makes sense 
locally (flexibility), e.g

Basic idea: Integrate local information 
from overlapping neighborhoods into 
global representation

(Diffusion Maps, Euclidean Commute Time Maps and other metric-based random 
walk formulations of spectral kernel methods)

 Non-Linear Dimension Reduction and Data 
Parameterization via Spectral Connectivity Analysis 

X = {x1, x2, . . . , xn} s(xi, xj) = ‖xi − xj‖
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m(x, z) = ‖pm(x, ·)− pm(z, ·)‖2
1/φ0

 Non-Linear Dimension Reduction and Data 
Parameterization via Spectral Connectivity Analysis 

Integrates all paths of 
length t connecting x 
and y. Extremely 
robust to noise!

Create a distance d(x,y) that measures “connectivity” or how easy 
information “flows” from x to y (Markov chain on your data)
Find x’=f(x) and y’=f(y) so that 
Use only the first few components of x’ and y’ --- eigenvectors of Markov 
transition matrix

d(x, y) ≈ ‖x′ − y′‖
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Example: Hour-glass surface

Courtesy of S. Lafon
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Use underlying basis functions for visualization, clustering, 
regression, sampling strategies, quick searches in large 
databases, etc.

Unraveling the underlying structure by SCA

Next: Examples for astrophysical problems
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Red Shift Estimation from SDSS spectra
[J. Richards et al, 2009]

Embedding of a sample of 2793 SDSS spectra 
with SDSS z CL>0.99. Color codes for 
log(1+z).

Adaptive regression using orthogonal eigenfunctions: r(x) =
∑

j βjψj(x)
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Photometric Redshift Estimation
[P. Freeman et al, 2009]

Top: predictions for MSG validation set.

Train orthogonal series model on 9749 
randomly selected objects. Estimate  
redshifts and basis functions for another 
340,989 galaxies using the Nystrom 
extension

Adaptive regression using orthogonal eigenfunctions: r(x) =
∑

j βjψj(x)
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Estimation of Star Formation History Using 
Galaxy Spectra [Cid Fernandes et al. 2004; J. Richards et al, 2009]

Population synthesis: Model galaxy spectra as linear combinations of 
observable data from K simple stellar populations (SSPs)
Cid Fernandes et al: “Elements of the base should span the range of 
spectral properties observed in sample galaxies and provide enough 
resolution in age (t) and metallicity (Z) to address the desired questions”
Sampling strategy? How do we choose a grid of t and Z?
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SUMMARY. Exploiting non-linear sparse structure in 
astronomical data

Natural data often have low-dimensional structure
In complex settings, linear methods may not be adequate.
SCA learns the underlying non-linear geometry (basis functions). Can 
greatly improve data understanding, visualization, high-dimensional 
inference, sampling strategies and guide prior beliefs

Open questions: 
How useful are these techniques for astronomy?
Are they viable for immense data sets (billions of objects)?  
Semi-supervised learning --- small set of labeled data; improved prediction 
by learning geometry from a large amount of unlabeled data (guide prior 
beliefs)


