Combining Diverse Classifiers
[for astronomical transients]
{and in real-time}



* Colors and context info with BNs
e Lightcurves and GPRs
 Combining them



Transformations in astronomy

* Shallow to deep
 Small to large
e Sporadic to repeated



Towards digital movies ...

ROTSE, NEAT, DLS, FSVS, ...

DPQOSS, PQ, CSS, PTF, Pan-STARRS, LSST ...
(GALEX, Spitzer, FIRST, ..., SKA)

* Area covered

* Depth of coverage

* Number of wavelengths

e Baseline in time

* Number of epochs

Etendue (throughput) ~ dA * dm * dA * dt *dn



Synoptic skysurveys

Opened up new dimensions

Challenges besides data mining:
e Lots of follow-up observing

e Selecting candidates to follow
* |nreal-time



Bayesian Networks to the rescue

* BNs of various flavors can tackle these issues
(but there are many barriers to be crossed!)

e Data define network
* No “training” necessary



Colors for classification

* Magnitude as basic observation (flux)
* Color as flux ratio
* Color-color diagram as a diagnostic
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P60 follow-up of a CRTS transient

54771_1
(2008-11-01 UT)

http://www.astro.caltech.edu/P60FollowUp/

54771.1764189: 17.59 (0.04) USNO:
0

54771.1781076: 17.01 (0.15) USNO:
0

54771.1791001: 16.66 (0.11) USNO:
0

54771.1800937: 16.42 (0.05) USNO:
0

54773_1
(2008-11-03 UT)

54773.477629: 17.70 (0.14) USNO: 0

54773.4793165: 17.04 (0.08) USNO:

54773.4803113: 16.67 (0.06) USNO:

54773.4813055: 16.47 (0.15) USNO:



T812291070574110368

Class can be a function of time



DAG for variables like QMR-DT

Variables and observed properties



Phenomenology
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8% CV classified as SN, 60% of objects classified as CV are actually CV

3 colors, nogb CV (0.60) SN (0.73) BL (0.30) REST (0.22)
(WTA)

SN 042 o4 008 009

REST 0.32 0.13 0.34 0.21

3colors+gb  CV (0.65) SN (0.71) BL (0.33) REST (0.23)
ary

SN 023 o6 012 019

REST 0.34 0.18 0.21 0.26




3,y,W

2+y,wW

0.65

0.65

0.71

0.78

0.33

0.41

0.23

0.19




More context information will help
Heterogeneity

How to maintain uniformity [from the same
source]?

What when filters change?

Uniformity of priors?
* Number of objects

* Their magnitude range
e Spread over time

Ground truth?



Variability Tree
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Questions raised by the
Data paucity regime

How many classes?

Too few: probabilities incorrect (where do
objects belonging to unrepresented classes

go?)
Too many: overlaps increase (e.g. SN of

different types; variables of different types)
and probability splits into smaller fractions

What kind of winner?



 May be evaluate probability for each class
independently?

* With GPR something like that may be possible.



GPR schematic

= | magnitude

time

Given several epochs and corresponding magnitudes, estimate the likelihood of a
particular magnitude for a new epoch (using some covariance function)



Graph of a SN lightcurve ready to be fitted using GPR (using Squared
exponential covarience function from Matlab’s GPML).
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Graph of a SN lightcurve fitted using GPR (using Squared
exponential covarience function from Matlab’s GPML).
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Relative Fit
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(a) © g

® af M. Ebden

Figure 3: Estimation of y. (solid line) for a function with (a) short-term and long-term
dynamics, and (b) long-term dynamics and a periodic element. Observations are shown
as crosses.
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Graph of a Mira lightcurve fitted using GPR (using a
function that has a periodic component).

Graph of a mira star lightcurve fitted using GP Regression
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Relative fit

3.5

Mira star classifier results, sample_size=4, samples_per_graph=10
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* Mirastrs
% 2 RR Lwae

150
samples from file{every increment by 1 indicates a new file)

300



Question of normalization

* First epoch after detection (for SN, at
what distance from peak?)

* Number and frequency of epochs
* Periodic but non-constant periods



dmag for all points in Supernovae e la lightcurves

Using dMags and dT

Graph of expected data usmg fixed hyperparameters: (4.02,1.0,0.1)
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* Combining lightcurves + colors + contextual
info in the right proportion can be tricky (just
like the WTA, 50%, 40-10% classifications)



Fusion Module
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Follow-up (for missing values)

Such that it will help discriminate better

Serve probabilities so that consumers can
choose their types of transients

Widest possible models

(but we need a proper listing of all follow-up
resources)

(and they need to be uniformly connected and
talking to each other)



Choosing follow-up configs

Telescope 1: P(xA,yJ X,)
Updated P(y | x,, X,)

"!_ Bl -

Initial P(y | x,)

H=1.31
I--ll I Telescope 2: P(xg,y | x,) Updated P(y | X,, Xg)
H=1.82 | .
II
UL L l.-l. )

= /(7 H=1.79

r-i color, hi-z quasar, blue star



Summary questions

* Number of classes (may have to be
hierarchical)

* Normalization
 Combining diverse probabilities

Preprocessing + processing = incorporating
domain knowledge and knowledge about the
nature of data right into the DM/AI
methodologies



Classification based on minimal data ->
killer app.

Synoptic, panoramic surveys => Event discovery

Rapid follow-up and multi-A  => Keys to understanding
Early classification —> Selective follow-up

A very rich variety of astrophysical phenomena: from
asteroids to cosmology, from extrasolar planets to
extreme relativistic physics

All interesting things are outliers in some parameter space.
Event discovery is just a start: 99% of the astrophysics is in the
follow-up, and classification



