Astrophysics of Stars and Planets Jim Fuller

Caltech

Tools

My Group

Students:

Emily Hu

Linhao Ma

Nicholas Rui

Peter Scherbak

Samantha Wu

Postdocs:

Ilaria Caiazzo

Daichi Tsuna

1/5/2024 JIM FULLER

Models to determine WD birth conditions

- Model white dwarf cooling
- Determine orbital period at birth
- Constrain common envelope event

WDs binaries born at short periods

- Tidal heating cannot account for high temperatures
- Systems must be born at orbital periods under an hour

ASTEROSEISMOLOGY

INTERNAL STRUCTURE

Merger remnants have unique core/envelope structure

Nicholas Rui

Rui & Fuller 2021

MODE PROPAGATION

JIM FULLER

Rui & Fuller 2021

IDENTIFYING MERGER CANDIDATES

Data from Vrard et al. (2016)

Rui & Fuller 2021 Seter also Deheuvels+ 2021

PRE-SUPERNOVA OUTBURSTS

Late Stage Stellar Expansion

JIM FULLER 1/5/2024

Extreme Pre-SN Expansion

Low-mass
 Helium stars
 shrink and re expand on ~1 yr
 time scale during
 Ne/O Burning

Wu & Fuller 2023

 Promising scenario to produce type Ibn supernovae and CSM in ultrastripped supernovae

EXOPLANET MIGRATION

 Most exoplanets orbit faster than star spins, so tides cause orbital decay

Exoplanets migrate inwards via tides

Linhao Ma

STARS HAVE DENSE MODE SPECTRA

INWARD MIGRATION VIA RESONANCE LOCKING

PLANETARY MIGRATION HISTORY

CONSISTENT WITH EMPIRICAL CONSTRAINTS?

Resonance locking predicts

$$Q'_{\rm RL} \simeq 2 \times 10^6$$

$$\times \left(\frac{M_{\rm p}}{M_{\rm J}}\right) \left(\frac{M_*}{M_{\odot}}\right)^{-8/3} \left(\frac{R_*}{R_{\odot}}\right)^5 \left(\frac{t_{\alpha}}{5 \text{ Gyr}}\right) \left(\frac{P_{\rm orb}}{2 \text{ days}}\right)^{-13/3}$$

 Similar trend expected if host star age estimates are incorrect

Fuller & Ma, 2021

Wu & Fuller, 2024

JIM FULLER 1/5/2024

Wu & Fuller, 2024

Wu & Fuller, 2024

SUPER SLOWLY SPINNING STARS

Name	${f M_1} \ ({f M}_{\odot})$	${f M_2} \ ({f M}_{\odot})$	${f R} \ ({f R}_{\odot})$	$\mathbf{P_{orb}}$ (\mathbf{d})	$\mathbf{P_{rot}}$ (\mathbf{d})
KIC 4480321	$1.5^{+0.3}_{-0.2}$	$1.5^{+0.3}_{-0.2}$	$1.9^{+0.5}_{-0.5}$	9.166^{+6e-05}_{-6e-05}	$121.0^{+4.0}_{-4.0}$
KIC 8197761	$1.384^{+0.281}_{-0.276}$	0.28^{+7e-01}_{-0e+00}	$1.717^{+0.858}_{-0.41}$	9.869^{+3e-07}_{-3e-07}	$301.0^{+3.0}_{-3.0}$
·KIC 4142768	$2.05^{+0.03}_{-0.03}$	$2.05^{+0.03}_{-0.03}$	$2.96^{+0.04}_{-0.04}$	13.996^{+6e-05}_{-6e-05}	$2702.7^{+1300.0}_{-662.0}$
KIC 8429450	$1.68^{+0.2}_{-0.13}$	$1.462^{+0.174}_{-0.113}$	$2.438^{+0.083}_{-0.081}$	2.705^{+2e-07}_{-2e-07}	$38.0^{+128.0}_{-17.0}$
HD 201433	$3.05^{+0.025}_{-0.025}$	$0.7^{+0.3}_{-0.3}$	$2.6^{+0.2}_{-0.2}$	3.313^{+5e-04}_{-5e-04}	$292.0_{-76.0}^{+76.0}$
KIC 9850387	$1.47^{+0.14}_{-0.14}$	$0.79^{+0.08}_{-0.08}$	$2.04^{+0.06}_{-0.06}$	2.749^{+5e-06}_{-5e-06}	$188.68^{+74.5}_{-41.6}$
HD 126516	$1.34^{+0.2}_{-0.2}$	$0.28^{+0.03}_{-0.03}$	$1.66^{+0.08}_{-0.08}$	2.124^{+1e-07}_{-1e-07}	$18.3^{+2.8}_{-7.7}$

CASSINI STATES

- Complex spin-orbit dynamics induced by tertiary companion
- Spin axis precession due to centrifugal distortion
- Orbital precession induced by tertiary
- Tidal alignment and synchronization

JIM FULLER 1/5/2024

CASSINI STATE 1

Nearly aligned and synchronous rotation

Cassini State 2

Nearly orthogonal and very slow rotation

$$\cos \theta_{\rm eq} \simeq \sqrt{\eta_{\rm sync} \cos I/2}$$

$$\Omega_{s, eq} \simeq \sqrt{2\eta_{sync}\cos I}$$

$$\eta_{\text{sync}} = \frac{3k}{k_2} \frac{M_{\text{out}} M_1}{M_2 (M_1 + M_2)} \left(\frac{a_{\text{in}}}{R}\right)^3 \left(\frac{a_{\text{in}}}{a_{\text{out}}}\right)^3 \cos I$$

$$\Omega_{s, \text{eq}} \simeq \sqrt{2\eta_{\text{sync}}\cos I}$$

$$\Omega_{s,\text{eq}} \simeq \mp \frac{4n}{X_{10} \sin^2 I \cos I}$$

Obliquity Equilibrium CS2 1.5 1.0 Spin Equilibrium 0.5 CS₁ Ω_s/n 0.2 0.4 0.6 0.8

$$\Omega_{s, \text{eq}} \simeq \sqrt{2\eta_{\text{sync}} \cos I}$$

$$\Omega_{s,\text{eq}} \simeq \mp \frac{4n}{X_{10} \sin^2 I \cos I}$$

$$\Omega_{s, \text{eq}} \simeq \sqrt{2\eta_{\text{sync}} \cos I}$$

$$\Omega_{s, \mathrm{eq}} \simeq \mp rac{4n}{X_{10} \sin^2 I \cos I}$$

THE SEARCH FOR STARS IN CS2

Lurie+ 2017

1/5/2024

CSM AND MASS LOSS FROM RED SUPERGIANTS

PROJECTS!

- Chromospheres and mass loss of red supergiants
 - Perform Athena++ sims of red supergiants
 - Very computational

Projects!

- Giant planet seismology and moon migration
 - Make evolving planetary models
 - Calculate evolving oscillation mode frequencies
 - Compute moon migration rates
 - Computational/analytical

Projects!

- Asymmetry of crusts in moons subject to tidal heating
 - Thinner part of crust flexed more, heated more, melts and gets thinner
 - May explain why the thickness of crust varies in Moon, Enceladus, etc.
 - Analytical

Projects!

- Constrain structure of exoplanets
 - Tidal Qs disappation appears to be very small in super-Earths
 - May require liquid silicate cores/crusts
 - Analytical