TeV Gamma-Ray Astronomy

Ph 135c
Chelsea Sharon
Topics

• Sources
 • Supernova remnants, galactic center, blazars
• Detectors
 • Cherenkov radiation and a few others
• WIMP Annihilation
Causes of VHE Gamma-Rays

- **Inverse Compton Scattering (IC)**
 - Low energy photons scatter off relativistic electrons, gaining energy

- **Synchrotron Self-Compton Scattering (SSC)**
 - Synchrotron radiation (radiation emitted by relativistic particles accelerated by magnetic fields) scattering off relativistic electrons, gaining energy

- **Pion Decay:** $\pi^0 \rightarrow 2\gamma$
 - Relativistic hadronic material reacts creating pions (among other stuff) which decay into photons
Supernova Remnants: Plerions (Pulsar Wind Nebula)

- Type II Supernova -> pulsar in synchrotron nebula
- Crab nebula (SSC), Vela & PSR1706-44 (IC)
- Crab nebula- constant source TeV radiation
 - Important for calibration of future instrumentation
 - First recognized supernova (observable day and night for two years starting in 1054 by Chinese and Arab astronomers)
- $B = 160 \mu G$
- $E_{e-\text{max}} \sim 10^{16} \text{ eV}$
Supernova Remnants: Pulsars

- Gamma-rays produced by SSC scattering
- Where are the gamma rays made?
 - Polar cap
 - Outer Magnetosphere
- No TeV pulses -> not in magnetosphere
Shell-type Supernova Remnants (SNRs)

- Possible source for hadronic cosmic rays?
 - Only galactic objects capable of supplying the power required for cosmic ray energy densities observed in our galaxy.
 - Diffuse shock acceleration theory produces a power law spectrum consistent with observed local cosmic ray spectrum.
SNRs contd.

- If true, then the VHE spectrum would reflect the distribution of particles near the SNR that accelerated and collided w/ the ISM to produce the gamma-rays.
- Complicated by IC scattering of background radiation creating TeV radiation.
SNRs contd.

- Observations: inconclusive
 - Most measurements need higher resolution to see bump from pion emission above background radiation sources
 - Some TeV observation correspond to X-ray emission, indicating a similar source (IC)
Galactic Center

- Definite source of VHE gamma-rays
- Corresponds with central black hole and a supernova
- Also several unknown sources
- Considerable more study is required
Other Galactic Sources

- Microquasar- normal star accreting onto compact object
- Binary pulsar- pulsar orbiting a very massive star with a disk, pulsar’s relativistic wind sweeps up particles
- Previously Unidentified- 5 sources, no x-ray flux detected, ???
Blazars

- Blazars are AGN with jets pointed towards us
- Includes violent variable quasars, highly polarized quasars, and BL Lacertae objects
- Brightness of relativistic jets further enhanced by 4th power Doppler factor
- Brighter than Crab Nebula in VHE
Blazars cont.

• Markarian 421-highly variable
 • Increased in brightness by a factor of 50 in a period of 2 hours (max = 10 Crabs) and decay time of 15 minutes
 • Area of emission 1-10 light hours in diameter, corresponds to $10\, R_s$ for 10^8 solar mass BH
• All possible sources of TeV gamma-rays have been postulated
• Need better time resolution and multiwavelength observations
Gamma-ray Bursts?

- Likely the most energetic explosions observed in the universe, makes for a good source of VHE photons
- But haven’t actually seen any TeV emission
- A function of their very short lifetime?
TeV Detector Types

- Atmospheric Cherenkov telescope
 - Imaging vs. Wavefront sampling detectors
- Air Shower Arrays
- Satellite Instruments
Cherenkov Radiation

- Produced when particles pass through an insulator at speeds greater than the local speed of light
- Air shower created when gamma-ray interacts with atmosphere to make e^-e^+ pairs, which interact via Bremsstrahlung and Compton scattering, creating more photons, etc.
- Local atoms are polarized by the fields of the passing particles, and they emit a faint blue glow as a result
Cherenkov Imagers

- Light is focused from large mirrors onto photomultiplier tubes and very fast electronics record the signal.
- Shape of incoming detected light and arrival time is used to screen out cosmic ray contamination.
Ex. VERITAS

- 4, 12m telescopes
- 499 photomultiplier tubes each
- Stereoscopic imaging
- 50 GeV - 50 TeV
- Flux sensitivity to 0.5% of Crab nebula extends search to 2/3 of galaxy
- Angular resolution at 100 GeV is less than 0.1°
Water Cherenkov Detector MILAGRO

- Why water?
 - About 1400 times more photons are produced per unit track length
 - Cherenkov angle in water is 41° vs 1° for air, spreading the “image” for better resolution
Other Air Shower Arrays
Tibet AS-gamma Experiment

- 697 scintillators with photomultiplier tubes (PMTs) covering 50,400 m²
- Subsets of array have fast-timing PMTs and wide dynamic range PMTs
Other Air Shower Arrays
ARGO-YBJ

- Resistive Plate Chambers- space and time resolution (~1ns)
- Sensitivity increase by going to very high altitudes (Tibet), and very large surface areas (~10,000 m²)
Other Gamma-ray Telescopes

- Space telescopes like GLAST
 - Mostly for below TeV observations
 - Wide field of view for complete sky survey
 - Pixel-like layout of layers of Si-strip tracker and Pb converter planes for directionality, and CsI calorimeters

- Wavefront Analysis of Atmospheric Cherenkov Radiation like HAGAR (proposed)
WIMP Annihilation

- Popular form of WIMP, dark matter: neutralino
- Neutralino annihilation can result in the creation of any number of particle pairs, most relevant to this lecture being fermion anti-fermion pairs
- Hadronization of these quarks would result in a shower of gamma-rays
- Despite that WIMPs practically by definition do not couple to radiation, it is also possible that through loop diagrams, for two WIMPs to directly annihilate into gamma-rays
WIMP Gamma-rays

- When produced during hadronization, the resulting gamma-rays have a very broad energy spectrum around 1/10 WIMP mass -> blend into background
- Only hope of detection is from direct annihilation into gamma-rays in either the halo or galactic center
- But, the slow velocity of WIMPs in the halo means that gamma-rays produced in this method would have a broad energy spectrum as well -> blends into the gamma-rays made by hadronization
WIMP Gamma-Rays from the Galactic Center

- Density enhancement of DM at the core by ~10 over halo could result in detectable monochromatic gamma-rays
- If included contributions from all relevant diagrams, a 10^4 m² atmospheric Cherenkov telescope observing for a few years should be able to detect this
Summary

- TeV astronomical sources are few and poorly understood
- Improvements in detectors are needed
- Improved observations could also lead to better understanding of dark matter
Sources

• Assorted Telescope Websites
• Bertone, G. A&SS to be printed (sub. 2006)
• Lorenz, E. Presentation at 2nd Workshop on TeV Particle Astrophysics, 2006
• Ong, R. Reporter Talk from ICRC 2005