Tests of CPT Invariance

Michael Kolodrubetz
Ph 135c
29 May 2007

Outline

- Theory behind CPT invariance
 - CPT theorem
 - Lorentz Invariance
- Standard Model Extension
- Predictions of Lorentz-Violating Theories

- Experimental tests
 - Atomic Clock
 - Particle Oscillations
 - Electrodynamics
 - g-2
 - Muonium
 - Polarized Electrons
 - Hydrogen Maser
 - EDM
 - Neutrino Astronomy

CPT Invariance

- CPT Invariance was originally proved theoretically by Pauli in 1954, and simultaneously by Luders and Bell
- Stronger symmetry (CP) was thought to be good, but it's violated in weak force

Connection to Lorentz Invariance (CPT=>Lorentz)

- The CPT theorem states that for local QFTs with Lorentz invariance, the field theory will have CPT symmetry
- Standard Model & SUSY all satisfy these properties
- Most experiments seek Lorentz violation rather than CPT violation

CPT and Lorentz-Violating Theories

- Most theoretical models are specifically designed to incorporate CPT symmetry
 - Standard Model
 - SUSY
- In 1998, Lorentz-violating extension to the standard model was proposed (SME)
 - Contains gauge-invariance, energy conservation, renormalizability
 - Symmetric under Lorentz transformations of observer
 - Breaks symmetry in boosts and rotations of particle

CPT and Lorentz-Violating Theories cont'd...

- Converse of CPT theorem has been shown:
 If CPT is violated, Lorentz invariance is too
- SUSY can be extended in a similar manner to allow for Lorentz violation
- String theory has small-scale CPT violations
 - Theorists claim to have shown that string theory reduces in some limits to the Standard Model Extension

Manifestations of Lorentz Invariance

- Give inherent spacetime "directionality"
- Lorentz violations may result in:
 - Quantum Gravity
 - Baryogenesis
 - Photons via Nambu-Goldstone modes

Experiments

- Many different experiments for CPT invariance
 - Atomic clock (nuclear)
 - Particle oscillations, g-2 (particle)
 - Photon sector measurements (E&M)
- Experiments set limits on different parameters in the SME
- There is no absolute scale for SME parameters

Experiment 1: Particle Oscillations

- Searching for different particle oscillations
 - B mesons BABAR, OPAL, Belle
 - Charm (D) mesons FOCUS
 - Kaons KTeV
 - Neutrinos LSND
- Based on rotation of Earth compared to background
 - Sidereal day = 23.93 hours
 - Time for Earth to rotate 360°

Experiment 1: Particle Oscillations

- Neutral meson oscillations
 - B-meson (physical states on left):

$$\begin{array}{rcl} |B_L\rangle & = & p\sqrt{1-\mathbf{z}}|B^0\rangle + q\sqrt{1+\mathbf{z}}|\overline{B}^0\rangle \\ |B_H\rangle & = & p\sqrt{1+\mathbf{z}}|B^0\rangle - q\sqrt{1-\mathbf{z}}|\overline{B}^0\rangle \end{array}$$

$${\sf z} pprox rac{eta^{\mu} \Delta a_{\mu}}{\Delta m - i \Delta \Gamma/2}.$$

- β^μ has sidereal time dependence
- Δa_μ is LV assymetry
- Mesons produced in B-B decays

Experiment 1: Particle Oscillations

- Neutrino Oscillations
 - LSND
 - Often cited as evidence for sterile neutrinos
 - SME describes neutrino oscillations without requiring sterile neutrino
 - LSND group looked for sidereal dependence (similar to meson oscillations) - found none
 - Also possible to get bounds on parameters of SME from neutrino oscillations
 - LSND paper suggests Planck scale observations

Experiment 2: Neutrino Astronomy

 SME gives energy dependence to ratios of neutrino flavors

Experiment 3: Atomic Clock

- Cs clock based on F = 3 to F = 4 transitions
- Frequency of clock transition:

Lorentz-Violating

$$\delta\nu = \frac{m_F}{14h} \sum_{w=p,e} \left(\beta_w \tilde{b}_3^w - \delta_w \tilde{d}_3^w + \kappa_w \tilde{g}_d^w \right) - \frac{m_F^2}{14h} \left(\gamma_p \tilde{c}_q^p \right)$$

$$+ m_F K_Z^{(1)} B + \left(1 - \frac{m_F^2}{16} \right) K_Z^{(2)} B^2$$
(1)

Experiment 3: Atomic Clock

Experiment 3: Atomic Clock

 Measure combined observable that removes first order Zeeman

$$\nu_c \equiv \nu_{+3} + \nu_{-3} - 2\nu_0$$

$$\nu_c = \frac{1}{7h} K_p \tilde{c}_q^p - \frac{9}{8} K_Z^{(2)} B^2$$

Experiment 4: Hydrogen Maser

- Very similar to Cs clock uses stimulated emission from state transitions
- Unlike Cs, uses atomic transitions

Experiment 5: Muonium

- Again, SME changes energy levels and causes sidereal time-dependence
- Involve muon spin flip
- Possible more sensitive in secondgeneration lepton regime

Experiment 6: Electrodynamics

SME gives new Maxwell's equations:

$$\nabla .D=0$$

$$\nabla .B=0$$

$$\nabla \times E + \frac{\partial B}{\partial t} = 0$$

$$\nabla \times H - \frac{\partial D}{\partial t} = 0$$

$$\nabla.D=0
\nabla.B = 0
\nabla \times E + \frac{\partial B}{\partial t} = 0
\nabla \times H - \frac{\partial D}{\partial t} = 0$$

$$\begin{bmatrix}
D \\
H
\end{bmatrix} = \begin{bmatrix}
\varepsilon_0(\ddot{\varepsilon}_r + \kappa_{DE}) & \sqrt{\frac{\varepsilon_0}{\mu_0}} \kappa_{DB} \\
\sqrt{\frac{\varepsilon_0}{\mu_0}} \kappa_{HE} & \mu_0^{-1}(\ddot{\mu}_r^{-1} + \kappa_{HB})
\end{bmatrix} \begin{bmatrix} E \\ B \end{bmatrix}$$

Changes Doppler Shift (in Li ions)

$$\frac{v_p v_a}{v_0^2} = 1 + \varepsilon_{LV}(t)$$

Experiment 7: Electron g-2

- Actually looks at CPT violation
 - CPT symmetry gives same mass and lifetime for particle and anti-particle
 - g-2 experiments can provide limits on mass difference between electron and positron
 - Looks at frequency difference of electron and positron in Penning traps

Experiment 7: Electron g-2

Experiment Sensitivities

Experiment	Parameter Constraints (GeV)
Particle oscillations	a _L ~10 ⁻¹⁹ (neutrino), ∆a < 9.2x10 ⁻²² (kaon)
Atomic Clock	c < 10 ⁻²⁵ (multiple bounds, see paper)
Maser	$b_{\epsilon} < 10^{-29}, b_{L} < 2 \times 10^{-27}$
Neutrino Astronomy	Not yet complete
Electrodynamics	κ _{Tr} < 2.2x10 ⁻⁷ (unitless)
Kaon scattering	$ m_{Kaon} - m_{Antikaon} / m_{Kaon} < 10^{-18}$
g-2	$ \Delta a \hbar\omega_c/2m_0c^2 = 3\pm 12 \times 10^{-22}$
Muonium	$b^{\mu} < 2x10^{-23}$
Polarized Electrons	b _ε < 5x10 ⁻³⁰
EDM	Not complete, expected to improve on pol. elec.

- Basic idea
 - Torsional pendulum
 - Polarized electrons in the pendulum
 - CP and CPT violating fields create torque on the torsional pendulum
 - Measure the torque
- The problems
 - Separating potentials
 - Designing proper spin pendulum

- 3 Forces to consider
 - CPT violating potential

$$V_e = \boldsymbol{\sigma}_e \cdot \tilde{\boldsymbol{b}}^e$$

 CP violating potentials (from hypothetical spin-0 particles)

$$V_{eA}(r) = g_{\rm P}^e g_{\rm S}^A \frac{\hbar}{8\pi m_e c} \boldsymbol{\sigma}_e \cdot \left[\hat{\boldsymbol{r}} \left(\frac{1}{r\lambda} + \frac{1}{r^2} \right) e^{-r/\lambda} \right]$$

$$V_{eN}(r) = \boldsymbol{\sigma}_e \cdot \left[A_{\perp} \frac{\hbar}{c} \frac{(\tilde{\boldsymbol{v}} \times \hat{\boldsymbol{r}})}{m_e} \left(\frac{1}{r\lambda} + \frac{1}{r^2} \right) + A_v \frac{\tilde{\boldsymbol{v}}}{r} \right] e^{-r/\lambda}$$

- Alnico
 - Magnetization caused by electron spin
- SmCo₅
 - Electron spin in Co, weak field from Sm
- Co cancelsAlcino

- Preparation of system
 - Alcino and SmCo₅ magnetized via temporarily positioned coils
 - Pendulum suspended on tungsten fiber $f_0 = 2.57 \text{ mHz}$, $\kappa = .118 \text{ dyne-cm/rad}$
 - Connected to turntable, spun at frequency f between 3f₀/29 and 3f₀/20
 - Turntable placed on "feet-back" system to keep vertical to within 10 nrad

Measurements

- Net spin
 - X-ray scattering gave Co to Sm spin moment ratio of -.23±.04
 - Neutron scattering gave μ_{Sm} = 0.04 μ_{B} and μ_{Co} = 7.8 μ_{B}
 - Gives $N_p = 6x10^{22}$
- Torque
 - Pendulum rotation measured at 4 angles along it's path
 - Torque extrapolated

- Experiment sensitive to $β_x$ and $β_y$, which are in the normal plane to the Earth's rotation axis
 - $\beta_x = (0.1\pm 2.4)x10^{-22} \text{ eV}$
 - $\beta_{v} = (-1.7 \pm 2.5) \times 10^{-22} \text{ eV}$
 - $\beta_z = (-29\pm39)x10^{-22} \text{ eV}$
 - Compare to $m_e^2/M_{planck} = 2x10^{-17} eV$

Experiment Sensitivities

Experiment	Parameter Constraints (GeV)
Particle oscillations	a _L ~10 ⁻¹⁹ (neutrino), ∆a < 9.2x10 ⁻²² (kaon)
Atomic Clock	c < 10 ⁻²⁵ (multiple bounds, see paper)
Maser	$b_{\epsilon} < 10^{-29}, b_{L} < 2x10^{-27}$
Neutrino Astronomy	Not yet complete
Electrodynamics	κ_{Tr} < 2.2x10 ⁻⁷ (unitless)
Kaon scattering	$ m_{Kaon} - m_{Antikaon} / m_{Kaon} < 10^{-18}$
g-2	$ \Delta a \hbar\omega_c/2m_0c^2 = 3\pm 12 \times 10^{-22}$
Muonium	b ^μ < 2x10 ⁻²³
Polarized Electrons	$b_{\epsilon} < 5x10^{-30}$
EDM	Not complete, expected to improve on pol. elec.

Future Experiments

- EDM measurements
 - Require high-precision magnetometry
 - Difficult to distinguish from CP
- Neutrino Astronomy
- Kaon scattering at CERN
- Most experiments designed to test string theories

Conclusions

We still have no idea if CPT is a good symmetry of nature

References

- Kolstelecky, A. "Background Information on Lorentz/CPT violation." Available online at http://www.physics.indiana.edu/~kostelec/faq.html#0, May 27, 2007.
- 2. Colladay, D and Kostelecky, A. "Lorentz-violating extension of the standard model." Phys Rev D, issue 11 (1998), 116002
- Horvath, D. "The deepest symmetries of nature: CPT and SUSY." Available at www.rmki.kfki.hu/~horvath/RIPNP-GRID/CPT05cikk.pdf.
- 4. Altschul, B. "Asymptotically Free Lorentz- and CPT-Violating Scalar Field Theories." hep-th/0407173v1.
- 5. O.W. Greenberg, Phys Rev Lett 89, 231602 (2002)
- Heckel, B.R., Cramer, C.E., Cook, T.S., Adelberger, E.G., Schlamminger, S, and Schmidt, U. "New CP-violation and preferred-frame tests with polarized electrons. Phys Rev Lett, 97 (2006), 021603.