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Review of Fundamentals of Noise Theory

A Few Fourier Transform Relations

We’ll use the following as our Fourier transforms. Our “analytic” case will consist of an
infinitely long timestream that is sampled at infinite frequency, with Fourier transforms

g̃(f ) =

Z ∞
−∞

dt g(t) e−jωt (1.1)

g(t) =

Z ∞
−∞

df g̃(f ) e jωt (1.2)

For a timestream from t = 0 to t = T with an even number N samples at frequency
2 fnyq = N/T where fnyq is the Nyquist frequency, the transforms are

g̃n =
1

T

N−1X
k=0

gke−jωntk ∆t =
1

N

N−1X
k=0

gke−jωntk (1.3)

gk ≡ g(tk ) =

N
2
−1X

n=− N
2

g̃ne
jωntk (1.4)

with ∆t =
1

2 fnyq
∆f =

1

T
=

2 fnyq

N
tk = k ∆t fn = n ∆f ωn = 2 π fn

(1.5)
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Review of Fundamentals of Noise Theory (cont.)

Note that the units of g̃(f ) and g̃n are different, the first has a 1/Hz in it. One can
construct something like the former from the latter by defining

g̃(fn) =
g̃n

∆f
(1.6)

If one is translating from analytic formulae for Fourier transforms to the discrete
coefficients to put into a calculational routine, this is a useful relation.

We note that IDL, in its usual perverse fashion, considers the one Fourier coefficient
at the Nyquist frequency to be at positive fnyq rather than −fnyq . One can eliminate
this ambiguity by using an odd number of samples, but the FFT algorithm is much
faster for an even number of samples.
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Review of Fundamentals of Noise Theory (cont.)

Random noise in the timestream is characterized by its autocorrelation function. For
the analytic case, this is

R(τ) = 〈g(t) g(t + τ)〉 = lim
T→∞

1

T

Z T

0
dt g(t) g(t + τ) (1.7)

For the discrete case, this is

Rm = R(tm) =
1

N

N−1X
k=0

gkgk+m (1.8)

where the subscript is assumed to wrap around (k + m is taken modulo N). The
argument of R is called the lag. R(0) is the timestream variance. Notice that the
noise depends on more than just its variance; the shape of R describes how correlated
the noise is with itself in time, hence the name “autocorrelation function.” The
autocorrelation function has units of (timestream units)2.
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Review of Fundamentals of Noise Theory (cont.)

It is conventional to define the (noise) power spectral density by the Fourier transform
of the autocorrelation function:

J(f ) =

Z ∞
−∞

dt R(t) e−jωt (1.9)

Jn = J(fn) =
1

N

N−1X
k=0

Rk e−jωntk (1.10)

The convolution theorem tells us that the Fourier transform of a correlation function
of the type calculated for R is the product of the Fourier transforms of the two
functions being correlated (actually, the product of one with the complex conjugate of
the other.) Using this, we find

J(f ) = lim
T→∞

1

T
|g̃(f )|2 (1.11)

Jn = J(fn) =
1

T
|g̃(fn)|2 = ∆f |g̃(fn)|2 = T |g̃n|2 =

1

∆f
|g̃n|2 (1.12)
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Review of Fundamentals of Noise Theory (cont.)

Note that Jn and J(fn) are the same, unlike g̃n and g̃(fn). The power spectral density
has units of (timestream units)2/Hz. The power spectral density characterizes the
shape of the noise in frequency space. This is of course intimately connected to the
autocorrelation function. Noise that has a constant power spectral density — equal
noise at all frequencies — has a δ-function-like timestream autocorrelation function
(no autocorrelation except at zero lag). Noise that decreases at high frequency has an
autocorrelation function that is large at small lag and falls off at larger lag.
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Review of Fundamentals of Noise Theory (cont.)

Parseval’s Theorem states that

Z ∞
−∞

dt |g(t)|2 =

Z ∞
−∞

df |g̃(f )|2
1

N

N−1X
k=0

|gk |2 =

N
2
−1X

n=− N
2

|g̃n|2 (1.13)

A very important corollary of Parseval’s theorem relates the timestream variance to
the power spectral density:

R(0) =

Z ∞
−∞

df J(f ) R0 = R(0 ∆t) =

N
2
−1X

n=− N
2

∆f Jn =

N
2
−1X

n=− N
2

∆f J(fn) (1.14)

The utility of defining J to have units of 1/Hz now becomes clear — integrate J over
frequency and you get your timestream noise variance! The naming of J is now
obvious: it is literally the noise variance per unit frequency, and it can be simply added
up over all frequencies to get the total timestream noise variance.

Because the timestream is real in the case of real measurements, g̃(−f ) = g̃∗(f ) and
g̃−n = g̃∗n , so J(−f ) = J(f ) and J−n = Jn. Therefore, it is standard practice to
consider only the positive frequencies and include a 2 in front so that J(f ) gives you
the sum of the noise power at f and −f . If one then integrates or sums J over only
positive frequencies, one again recovers the timestream noise variance.
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Review of Fundamentals of Noise Theory (cont.)

Aside: one will frequently see
√

J plotted and called the “power spectral density”.
This is wrong. J is the power spectral density.

√
J is a convenience. Note that

√
J

has units of (timestream units)/
√

Hz, which is infinitely confusing to first-year
graduate students because it gives the impression of being something that is directly
related to timestream noise, but carries a bizarre 1/

√
Hz.
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Review of Fundamentals of Noise Theory (cont.)

What is the use of having J? Consider a linear system, which, by definition, is one
whose behavior is characterized by differential equations that are linear in time
derivatives. The Fourier transform of the mth-order time derivative (d/dt)mg(t) is
just (j ω)ng̃(f ). Hence, if you Fourier transform a linear differential equation in time,
one gets an algebraic equation in frequency space that may have multiple powers of ω
but does not have different ω’s.
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Review of Fundamentals of Noise Theory (cont.)

A simple example is the response of a thermal system with a thermal heat capacity C
and conductance G to a power input P(t). Conservation of energy tells us

C
d

dt
δT (t) =

dU

dt
= P(t)− G δT (t) (1.15)

where G is the thermal conductance across the link from the heat capacity C to a
fixed-temperature bath. The left side relates the rate of change in energy content U of
the system to the power flowing in, P(t), and the power flowing out via the link,
G δT (t). The above is a linear differential equation. Its Fourier transform is

j ω C fδT (f ) = eP(f )− G fδT (f ) (1.16)

with solution

fδT (f ) =
1

G

eP(f )

1 + j ω τ
(1.17)

where τ = C/G . The behavior of the temperature response at frequency f depends
only on the power input at frequency f . If one has a random noise power (e.g., photon
noise) coming in at frequency f , then we can calculate the resulting temperature noise
at the frequency without reference to any other frequency. This is a result of the
linearity of the original differential equation.
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Review of Fundamentals of Noise Theory (cont.)

Another obvious example of interest to us are the fluctuations in the cosmic
microwave background, which are broken down using the Fourier transform on the
sphere rather than for a one-dimensional timestream. But the principle is the same.
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Review of Fundamentals of Noise Theory (cont.)

Simple Derivation of Shot Noise for a Generic Flow

Another basic derivation we will find useful is the noise on a flow that consists of a set
of discrete carriers each transporting some quantum of the flowing quantity. For
electrical current flowing through a tunnel barrier, for example, the carriers are
individual electrons that tunnel at some average rate Γ resulting in an electrical
current I = e Γ. For power flowing through a thermal link, you can think of it as a
spectrum of phonons with typical energy k T flowing through a thermal link at a
typical rate Γ, yielding a power flow P = k T Γ. What is the noise on this kind of flow
due to the discrete nature of the carriers and assuming their flow is not autocorrelated
aside from the overall constraint that the average flow be known?

Let’s first consider a situation in which we have carriers of fixed quantum size q
flowing at an average rate Γ to obtain a current Q̇(t) with 〈Q̇〉 = q Γ. Let’s write the
current as a sum of events occurring at random times tp :

Q̇(t) = lim
T→∞

Γ T/2X
p≈−Γ T/2

q δ(t − tp) (1.18)

where the limits of the sum indicate that approximately Γ T flow events happen in the
time T , which we will take to infinity in the end. Recall that a δ-function has units of
the inverse of its argument, so the right side indeed has units of q/time.
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Review of Fundamentals of Noise Theory (cont.)

The analytic Fourier transform of the above is

ėQ(f ) =

Γ T/2X
p≈−Γ T/2

q e−jωp t (1.19)

The noise power spectral density (PSD) is given by (considering only positive
frequencies and therefore including the factor of 2 discussed before)

J(f ) = lim
T→∞

2

T
| ėQ(f )|2 = lim

T→∞

2

T

˛̨̨̨
˛̨ Γ T/2X
p≈−Γ T/2

q e−jωtp

˛̨̨̨
˛̨
2

(1.20)
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Review of Fundamentals of Noise Theory (cont.)

There are three kinds of terms to consider in the squaring. The first term consists of
the multiplication of each term with its conjugate. This just yields q2 for each such
term. The second term consists of the sum of all the cross-terms of the form
q2 e−j ω (tp−ts ) with p 6= s. Since the events are uncorrelated, the time differences
tp − ts will take on all values with equal probability, resulting in phases ω (tp − ts) that
are uniformly distributed between 0 and 2 π. The resulting complex numbers
e−j ω (tp−ts ) will thus be uniformly distributed on the unit circle in the complex plane.
Averaging together an infinite set of such numbers yields zero for ω 6= 0. For ω = 0
the averaging does not happen and one just ends up with an infinity of terms. The
result is

J(f 6= 0) = lim
T→∞

2

T
q2

Γ T/2X
p≈−Γ T/2

1 = lim
T→∞

2

T
q2Γ T = 2 q2 Γ = 2 q 〈Q̇〉 (1.21)

J(f = 0) = lim
T→∞

1

T
q2

24 Γ T/2X
p≈−Γ T/2

1 +

Γ T/2X
p≈−Γ T/2

Γ T/2X
s≈−Γ T/2

1

35
= q2 Γ + q2 Γ2 lim

T→∞
T = q 〈Q̇〉+ 〈Q̇〉2δ(f ) = q 〈Q̇〉+ 〈Q̇〉2δ(f ) (1.22)

where we have used the fact that the sum over flow events gives Γ T on average by
the way the sum’s limits are defined, that this average becomes exact in the limit
T →∞, and that δ(f ) = limT→∞ T .
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Review of Fundamentals of Noise Theory (cont.)

For later reference, note that
PΓ T/2

p≈−Γ T/2
1 arises from the sum of the squares of the

quantum in each flow event. That is, it is really more like a variance than an average.
In this case, that quantum was always q because we assumed a simple Poisson shot
noise process, where each event consisted of zero or one uncorrelated quanta flowing.
There is thus no difference between the sum of quanta and the sum of the squares of
the quanta. We will return to this term later for photon noise, for which that is not
true.

The expression for J(f 6= 0) gives the power spectral density of the noise for such flow
processes. The expression for J(f = 0) is different because it also include the mean
flow as the δ(f ) term. That piece should be ignored for the purposes of calculating
noise. Note that J(f = 0) includes no factor of 2 for positive and negative frequencies
because there is a single f = 0 frequency.

One might be worried by the fact that the noise PSD is constant and thus, integrated
over infinite frequency, it would given an infinite timestream noise variance. This
makes sense. Because we have modeled the current as being an infinite number of
δ-function events, the variance of the timestream, which would end up as a sum over
the products of δ functions, would be infinite. In practice, the way this is circumvented
is that the flow events are not truly δ-function-like — they take some finite time —
and they cannot be spaced an infinitely small time apart. This results in a falloff of
the noise PSD at some high frequency, making the timestream noise variance finite.
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Review of Fundamentals of Noise Theory (cont.)

Examples of Application of Shot Noise Power Spectral Density

Shot noise of a tunnel barrier: Given a tunnel barrier with a current I consisting of
charges flowing in one direction, the noise power spectral density is

J(f 6= 0) = 2 e I (1.23)

If the current I is the difference of two currents going in opposite directions,
I = I→ − I←, then the noises on those two currents should be considered
independently and added in quadrature. This gives

J(f 6= 0) = 2 e (I→ + I←) (1.24)
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Review of Fundamentals of Noise Theory (cont.)

Phonon noise in an isothermal weak thermal link: As before, let’s suppose that we
have heat capacity C linked to a thermal bath by a conductance G , with C having the
same temperature as the bath. There is no net power flow in this case. However, to
maintain the absorber in thermal equilibrium with the bath, there are two power flows
P = G T in opposite directions maintaining this. The form is obtained by simply
noting that the average energy of a phonon emitted by the absorber or the bath will
be k T because they sit at temperature T (assuming T � Debye temperature) and
that G characterizes the rate at which energy flows through the link. The above
expression is the only combination of G and T with the right units. The average
carrier energy is k T , so the noise PSD is

J(f 6= 0) = 2 k T (G T + G T ) = 4 k T 2G (1.25)

This was a bit of a handwavy calculation, but one can show that it is correct by
integrating over the emission rate as a function of energy, using the usual shot noise
expression at each energy and adding the contributions at different energies and in the
two directions in quadrature.

When C and the bath are not at the same temperature, there is a correction factor in
the front of order unity. Mather calculates this factor for a continuous weak link G . It
can be calculated for discrete weak links (e.g., electron-phonon decoupling), too. On
dimensional grounds, one always ends up with a formula of the above kind.
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Review of Fundamentals of Noise Theory (cont.)

Photon shot noise: Consider an incoming optical power Q in a narrow frequency band
centered around nu. The shot noise formula gives

J(f 6= 0) = 2 (h ν) Q (1.26)

because h ν is the energy of the photons and Q/h ν is their arrival rate. For a
broadband optical power, we add the contributions at different frequencies in
quadrature:

J(f 6= 0) = 2

Z ν2

ν1

dν (h ν)
dQ

dν
= 2 h 〈ν〉Q (1.27)

where dQ/dν is the power per unit spectral bandwidth, Q =
R ν2

ν1
dν (dQ/dν), and 〈ν〉

is the spectrum-weighted mean spectral frequency. This is the standard result,
neglecting the “Bose term”, which we will come to shortly.
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Photon Noise

Derivation of Noise-Equivalent Power

Let’s use the above kind of formalism to derive the full result for photon noise. We
neglect optical efficiency to begin with.

Because photons are bosons, quantum mechanics tells us that the variance on the
number of photons occupying a given spatial and spectral mode is

〈(δN)2〉 = N(N + 1) = N + N2 (2.1)
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Photon Noise (cont.)

One can show that N gives the arrival rate of photons per unit spectral bandwidth.
For a quick derivation, consider the Planck blackbody law:

B(ν, T ) =

„
2 h ν3

c2

«
1

ehν/kT − 1
=

2

λ2

h ν

ehν/kT − 1
(2.2)

which gives the brightness in W/m2/ster/Hz. For a single spectral mode, the
throughput (area × solid angle) is λ2 and the energy is h ν. Also, the above includes
both polarizations. So the photon arrival rate per unit spectral bandwidth and per
polarization is

Γ(ν, T ) = B(ν, T )
λ2

2 h ν
=

1

ehν/kT − 1
(2.3)

This is just the occupancy function at frequency ν for photons, which we denoted
above as N. The units work out because we are left with (W/J)/Hz, which is unitless.
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Photon Noise (cont.)

Let’s consider photons arriving over a time T . This defines the spectral bandwidth of
a “mode” as δν = 1/T : in a measurement that takes a time T , we cannot distinguish
photons with spectral frequencies separated by less than 1/T . The power in one
polarization and one spectral mode is

Qν = h ν Γ(ν, T ) δν = N h ν δν (2.4)

(Recall, Γ(ν, T ) is an arrival rate per unit spectral bandwidth.) Now, let’s calculate
the variance on Qν over this time T :

〈(δQν)2〉 = (h ν δν)2 〈(δN)2〉 = (h ν δν)2
`
N + N2

´
= h ν δν Qν + Q2

ν (2.5)

To get the total variance over a spectral band in one polarization, we sum:

〈(δQ)2〉 =
X

ν

〈(δQν)2〉 =
X

ν

(h ν Qνδν) +
X

ν

Q2
ν (2.6)
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Photon Noise (cont.)

Let’s define dQ/dν = Qν/δν to be the power per unit spectral bandwidth. Then we
have

〈(δQ)2〉 = δν

"X
ν

h ν δν
dQ

dν
+

X
ν

δν

„
dQ

dν

«2
#

(2.7)

〈(δQ)2〉
δν

=

Z ν2

ν1

dν h ν
dQ

dν
+

Z ν2

ν1

dν

„
dQ

dν

«2

(2.8)

〈(δQ)2〉
δν

≈ h 〈ν〉Q +
Q2

∆ν
(2.9)

where we converted the sums to integrals in the second line and where ∆ν = ν2 − ν1

is the spectral bandwidth that is accepted by the system. In the last step, we have
made the approximation that dQ/dν is constant and takes on value Q/∆ν; obviously,
if it is not, the appropriate integral needs to be done. Clearly, though, the above result
carries the main features of the noise.
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Photon Noise (cont.)

Let’s rewrite the last equation using the fact that δν = 1/T is not just the spectral
bin width, it is also the frequency bin width for the Fourier transform of a
measurement taken over a time T :

J(f = 0) =
〈(δQ)2〉

∆f
≈ h 〈ν〉Q +

Q2

∆ν
(2.10)

That is, we recover the noise spectral density at f = 0. Now, we recall from our
generic shot noise derivation that the DC bin gets half the noise power that the other
bins do because there is only one DC bin but there are bins at f and −f for other
non-DC frequencies. So we may infer

NEP2
γ = J(f 6= 0) = 2 J(f = 0) ≈ 2 h 〈ν〉Q + 2

Q2

∆ν
(2.11)

where in the last line we have defined the noise-equivalent power, NEP, to be the
square root of the noise spectral density derived from the variance on the incoming
power.
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Photon Noise (cont.)

The above result is modified for a system that is insensitive to polarization: the same
optical power is split into twice as many modes. One can carry that factor of 2
through the whole derivation to find

NEP2
γ ≈ 2 h 〈ν〉Q +

Q2

2∆ν
(2.12)

where the critical differences are that now 〈(δQ)2〉 = 2
P

ν〈(δQν)2〉 and

Q = 2
R ν2

ν1
dν dQν

dν
where we maintain (δQν) and dQν/dν as single-polarization

powers.
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Photon Noise (cont.)

An alternative derivation takes a short cut by using our generic shot noise derivation
along with the photon “flow rate”. We need to recognize that, where previously we

had
PΓ T/2

p≈−Γ T/2
1 = Γ T , the sum of the squares of the quantum in each flow event,

now we should have ΓT + (ΓT )2 because photons have Bose statistics, not Poisson
statistics. That is, a flow event need not have 0 or 1 quantum, but can have 2 or more
because photons like to clump into the same mode. This is expressed by the N2 term
in the occupation number variance. Making that ansatz, we have

J(f 6= 0) = lim
T→∞

2

T
(h ν)2(ΓT + Γ2T 2) (2.13)

= 2 (h ν)2Γ + 2 T (h ν Γ)2 (2.14)

= 2 h ν Qν + 2
Q2

ν

1/T
(2.15)

= 2 h ν Qν + 2
Q2

ν

δν
(2.16)

where, as above, 1/T = δν. Clearly, this is of the same form as our result derived in
the other way, and one can check that it is identically the same when the same
integral over spectral band is done.
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Photon Noise (cont.)

When optical efficiency — the fact that the system only lets a fraction of photons
through and that they have less than unity probability of being absorbed — is taken
into account, the relation between the occupancy number N and the power absorbed
in a given spectral bin Qν changes to

Qν = η N h ν δν (2.17)

Carrying this factor through the calculation yields (for a single polarization)

NEP2
γ ≈ 2 η h 〈ν〉Q + 2

Q2

∆ν
(2.18)

Now, recognize that this NEP is the noise on the absorbed power — after the factor η
— not on the incident power. One would need to divide both sides by η2 to get the
latter.

It may seem counterintuitive that the first term decreases — the noise gets smaller —
as the optical efficiency decreases. This is because the above equation is for the NEP2

on the absorbed power. If one divides by η2 to get the NEP2 on the incident power,
one will see that both terms degrade as η decreases.
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Photon Noise (cont.)

Noise Temperature and Coherent vs. Incoherent Detector Photon Noise Limits

It is interesting to convert the above formula into a noise equivalent temperature for
the purpose of comparing with coherent detectors. Let’s use Rayleigh-Jeans
temperature, as the conversion from RJ to thermodynamic temperature fluctuations is
just a function of frequency and does not care about the type of detector. Recall that
the Rayleigh-Jeans brightness function for a single polarization is

B(ν, T ) =
k T

λ2
(2.19)

The power in a single mode in a spectral bandwidth ∆ν is

Q(ν, T ) = B(ν, T ) λ2∆ν = k T ∆ν (2.20)

We assume the detector is subject to optical loading Q that corresponds to a
Rayleigh-Jeans temperature Tload by the above equation.
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Photon Noise (cont.)

We can relate NEP to noise-equivalent temperature (NET) via dQ/dT = k ∆ν (we
again neglect optical efficiency to start with):

NET2 =
NEP2

(dQ/dT )2
=

NEP2

(k ∆ν)2
=

2 h ν Q

(k ∆ν)2
+

2

(k ∆ν)2
Q2

∆ν
= 2

Tload (TQ + Tload )

k ∆ν
(2.21)

where TQ = h nu/k and Q = k Tload ∆ν, or

NETγ =
√

2

p
Tload (TQ + Tload )

√
∆ν

(2.22)

(units of K/
√

Hz).
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Photon Noise (cont.)

The Dicke radiometer equation for coherent detectors is

NETDicke =
√

2
Tsys√
∆ν

=
√

2
ξTQ + Tload√

∆ν
(2.23)

where ξTQ is the coherent detector’s noise temperature, with ξ indicating the
degradation relative to the quantum limit TQ . Note that NET is frequently quoted in

K
√

s, which requires dividing the above formulae by
√

2 (for reasons we won’t go into
here...).

In addition to our comparison of NET’s above, we can present Tsys for incoherent and
coherent detectors:

T incoh
sys =

q
Tload (TQ + Tload ) T coh

sys = ξTQ + Tload (2.24)
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Photon Noise (cont.)

Let’s recalculate taking into account optical efficiency, η. The optical efficiency
modifies the relation between power and load temperature to be

Q = η k Tload ∆ν (2.25)

A consequence of the above is that, when η is included, NEP is calculated at the
detector (noise on the absorbed power) while NET is calculated at the input to the
instrument (noise on the incident power). No additional correction is needed, we
simply need to remember that η is now included in dQ/dT . Thus, we have

NETγ =
√

2

p
Tload (TQ + ηTload )

√
η ∆ν

(2.26)

which shows that the NET scales as 1/
√

η — larger η is better — unless one is in the
high-loading regime where the second term dominates.
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Photon Noise (cont.)

For a coherent system, the efficiency-corrected version is

NETDicke =
√

2

ξ
η
TQ + Tload
√

∆ν
(2.27)

under the assumption that the amplifier noise has been specified at its input, not at
the input to the instrument. In practice, η ≈ 1 for coherent systems because essentially
no optical filtering is needed; such filtering is what degrades η for bolometric systems.

The corresponding system temperatures are

T incoh
sys =

s
Tload

ηincoh
(TQ + ηincoh Tload ) T coh

sys =
ξ

ηcoh
TQ + Tload (2.28)

A clear advantage of incoherent systems is that the minimum possible system
temperature is

p
TloadTQ/ηincoh whereas for coherent systems it is

(ξ/ηincoh)TQ + Tload . The former is in general lower as one goes into space where
Tload can be reduced to < 3 K and η can be substantially increased relative to a
ground-based instrument that must operate in a 300 K thermal environment. On the
other hand, ξ TQ is a fundamental limit for coherent systems.
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Photon Noise (cont.)

All of our calculations including optical efficiency assume that the atmosphere itself is
highly transparent so that, while it may be the dominant load, it does not reduce η
appreciably from unity. One can trivially include a separate atmospheric transtmission
ηatm and divide the right sides by it to project the NET to above the atmosphere.

Section 2.1 Photon Noise: Page 35



Section 3
“G”-Noise in Various Systems

Page 36



“G”-Noise in Various Systems

Introduction

“G”-noise, or the noise due to the thermal conductance from a detector to the bath, is
well known for bolometers. It is fundamental in that there must always be a
connection between the absorber and thermal bath to remove the optical power being
absorbed. It can be usually reduced to the point where it is lower than the photon
noise. It is interesting to show how there is an equivalent noise in pair-breaking
detectors and to present the two in a unified form.
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“G”-Noise in Various Systems (cont.)

Rewriting G -Noise for Bolometers

The standard form for G -noise in bolometers was calculated earlier and is

NEP2
G = 4 γ k T 2 G (3.1)

where G is the thermal conductance to the bath and γ is a factor of order unity to
absorb corrections mentioned earlier. Now, it holds that Q = G ∆T where
∆T = Tabs − Tbath is the temperature difference between the absorbing material and
the bath. Thus, we can write the above as

NEP2
G = 4 γ k T 2 Q

∆T
= 4 γ Q k T

T

∆T
(3.2)

That is, the G -noise is simply related to the optical load, the operating temperature,
and the ratio of the temperature to the temperature difference.
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“G”-Noise in Various Systems (cont.)

G -Noise for Pair-Breaking Detectors

Pair-breaking detectors such as MKIDs or superconducting tunnel junctions suffer
from a similar effect due to quasiparticle generation-recombination noise. The
incoming optical power breaks Cooper pairs, creating quasiparticles. The Cooper pairs
have binding energy 2∆ where ∆ is the superconducting gap parameters. Those
quasiparticles must decay, however, and emit the absorbed energy as phonons that
escape into the bath in order for the absorber to sit at some quiescent temperature.
Therefore, there is a quasiparticle balance equation

Q

∆
=

Nqp

τqp
=

R

V
N2

qp (3.3)

where the rate at which quasiparticles are created by incoming photons on the left side
is balanced by the rate at which quasiparticles decay on the right side. In the second
step, we have assumed that this decay time is set by pair-recombination, not an
intrinsic lifetime τ0, though we will carry the calculation through for both cases. The
quasiparticle recombination rate, 1/τqp , is given by R Nqp/V where R is the
quasiparticle recombination constant (a materials parameter, like ∆) and V is the
superconductor’s volume. Note that, while it takes energy 2∆ to break a Cooper pair,
each pair-breaking produces two quasiparticles, so the factors of 2 in the numerator
and denominator of the left-hand side cancel. For the moment, we assume none of the
incoming energy is lost in breaking Cooper pairs; such a loss could be included as an
efficiency factor η in front of Q.
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“G”-Noise in Various Systems (cont.)

Noise arises because there is shot noise on the quasiparticle population: the above
equation gives the mean quasiparticle density, but the number fluctuates randomly due
to generation and recombination. These fluctuations directly translate into
fluctuations on the inferred incoming power via the above equation. Thus, we can
calculate the power variance if we know the quasiparticle variance, which we assume is
simple Poissonian, 〈(δNqp)2〉 = Nqp :

〈(δQ)2〉 =

˛̨̨̨
dQ

dNqp

˛̨̨̨2
〈(δNqp)

2〉 =

8<:
“
2 R ∆

V
Nqp

”2
Nqp pair-recombination limited“

∆
τqp

”2
Nqp intrinsic lifetime limited

(3.4)

=

(
4 Q R ∆

V
Nqp pair-recombination limited

Q ∆
τqp

intrinsic lifetime limited
(3.5)

=

(
4 Q ∆

τqp
pair-recombination limited

Q ∆
τqp

intrinsic lifetime limited
(3.6)

where we have used 1/τqp = R Nqp/V in the pair-recombination limited case.
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“G”-Noise in Various Systems (cont.)

To convert this to a NEP, we need to divide the left side by a bandwidth. In contrast
to our photon noise derivation, there is no measurement time involved. Quasiparticles
appear and disappear on the timescale τqp — for times short compared to τqp , the
quasiparticle number is constant. The noise thus is spread across a bandwidth 1/τqp .
We may thus divide both sides by 1/τqp to obtain a NEP. We do not need to throw in
a factor of 2 because we have already accounted for it by saying the bandwidth that
the noise is distributed over is 1/τqp rather than 2/τqp . Also, there is a factor of order
unity that has been ignored to go from this approximate bandwidth to the precise
noise bandwidth. Thus, we have

NEP2
G ≈

〈(δQ)2〉
1/τqp

=


4 Q ∆ pair-recombination limited
Q ∆ intrinsic lifetime limited

(3.7)

=

(
4 Q k T ∆/k

T
pair-recombination limited

Q k T ∆/k
T

intrinsic lifetime limited
(3.8)

where, in the last line, we have rewritten in a form similar to the G -noise for
bolometers up to factors of order unity and the replacement of T/∆T for bolometers
by (∆/k)/T for pair-breaking detectors. (Note that the ∆ in ∆T has nothing to do
with the superconducting gap parameter ∆.) Note also the extremely simple
intermediate form NEP2

G = α Q ∆ with α = 1 or 4.

A more careful calculation would take into account the distribution function of the
quasiparticles, their energy-dependent decay rate, and the blocking of final states, but
to first order the above result will be correct.
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