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ABSTRACT

We report the most complete analysis to date of observations of the Cosmic Microwave
Background (CMB) obtained during the 1998 flight of Boomerang. We use two quite different
methods to determine the angular power spectrum of the CMB in 20 bands centered at ` = 50
to 1000, applying them to ∼ 50% more data than has previously been analyzed. The power
spectra produced by the two methods are in good agreement with each other, and constitute
the most sensitive measurements to date over the range 300 < ` < 1000. The increased precision
of the power spectrum yields more precise determinations of several cosmological parameters
than previous analyses of Boomerang data. The results continue to support an inflationary
paradigm for the origin of the universe, being well fit by a ∼ 13.5 Gyr old, flat universe composed
of approximately 5% baryonic matter, 30% cold dark matter, and 65% dark energy, with a
spectral index of initial density perturbations ns ∼ 1.

Subject headings: Cosmic Microwave Background Anisotropy, Cosmology
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1. Introduction

Measurements of anisotropies in the cosmic mi-
crowave background (CMB) radiation now tightly
constrain the nature and composition of our uni-
verse. High signal-to-noise detections of primor-
dial anisotropies have been made at angular scales
ranging from the quadrupole (Bennett et al. 1996)
to as small as several arcminutes (Mason et al.
2002; Pearson et al. 2002; Dawson et al. 2002).
The power spectrum of temperature fluctuations
shows a peak at spherical harmonic multipole ` ∼
200 which has been detected with very high signal-
to-noise by several teams (de Bernardis et al. 2000;
Hanany et al. 2000; Halverson et al. 2001; Scott
et al. 2002), and strong indications of peaks at
higher ` have also been found (Halverson et al.
2001; Netterfield et al. 2002; de Bernardis et al.
2002).

Within the context of models with adiabatic ini-
tial perturbations, as are generally predicted by
inflation, these measurements have been used in
combination with various other cosmological con-
straints to estimate the values of many important
cosmological parameters. Combining their CMB
data with weak cosmological constraints such as a
very loose prior on the Hubble constant, various
teams have made robust determinations of several
parameters, including the total energy density of
the universe Ωtotal, the density of baryons Ωb, and
the value of the density perturbation power spec-
tral index, ns (Lange et al. 2001; Balbi et al.
2000; Pryke et al. 2001; Netterfield et al. 2002).
Many other parameters are tightly constrained
when stronger constraints on cosmology are as-
sumed.

We report here new results from the 1998
Antarctic flight of the Boomerang experiment.
Previous results from this flight using less data
than included here were published in de Bernardis
et al. (2000) (hereafter B00) and Netterfield et al.
(2002) (hereafter B02). Here we use the two very
different analysis methods of B00 and B02, and
apply them over a larger fraction of the dataset
to make an improved measurement of the CMB
angular power spectrum.

2. Instrument and Observations

Boomerang is a balloon-borne instrument,
designed to measure the anisotropies of the CMB

at sub-degree angular scales. The instrument con-
sists of a bolometric mm-wave receiver mounted at
the focus of an off-axis telescope, borne aloft on an
altitude-azimuth pointed balloon gondola. Details
of the instrument as it was configured for the 1998
Antarctic flight, and its performance during that
flight, are given in Crill et al. (2002).

The receiver consists of 16 bolometers, optically
coupled to the telescope through a variety of cryo-
genic filters, feedhorns, and reimaging optics. We
report here results from four of the six 150 GHz
detectors in the focal plane, the same four ana-
lyzed in B02. The other two 150 GHz detectors
exhibited non-stationary noise properties and are
not used in the analysis.

The telescope has a 1.2 m diameter pri-
mary mirror and two cryogenic reimaging mirrors
mounted to the 2K surface of the receiver cryostat.
These optics produce (9.2′,9.7′,9.4′,9.5′) FWHM
beams at 150 GHz in the four channels used here.
The measured beams are nearly symmetric Gaus-
sians; the beamshapes are estimated by a physi-
cal optics calculation, and calibrated by measure-
ments on the ground prior to flight. Uncertainty
in the pointing solution (2.5′ rms) is estimated to
smear the resolution of these physical beams to
an effective resolution of (10.9′,11.4′,11.1′,11.2′)
FWHM respectively. Based on the scatter of our
various beam measures, and combined with our
uncertainty in the smearing due to the pointing
solution errors, we assign a 1-σ uncertainty in the
FWHM beamwidth of 1.4′ in all channels. This
introduces an uncertainty in the measured ampli-
tude of the power spectrum that grows exponen-
tially with ` and that is correlated between all
bands. This effect reaches a maximum of ±40%
in our highest bin (` = 1000), and is illustrated in
Figure 2 of B02.

The payload was launched from McMurdo Sta-
tion, Antarctica on 29 December 1998 and circum-
navigated the continent in 10.5 days at an approx-
imately constant latitude of -78 degrees. During
the flight, 247 hours of data were taken, most of
them on a “CMB region” that was chosen for its
very low dust contrast seen in the IRAS 100µ maps
of this region (Moshir et al. 1992).

The field observed in CMB scan mode is shown
in Figure 1. We analyze a subset of this sky cov-
erage here, chosen to be a contiguous region that
is both sufficiently far from the galactic plane and
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well-covered by our observations. Figure 1 shows
the boundary of the region that we analyze in this
paper. This region covers 2.94% of the sky, and is
defined as the intersection of:

• an ellipse centered on RA = 88◦, δ = −47◦,
with semiaxes a = 25◦ and b = 19◦, where
the short axis lies along the local celestial
meridian,

• the strip bounded by −59◦ < δ < −29.5◦,

• and the region with galactic latitude b <
−10◦.

This contour includes the best observed area of
the survey, while remaining far enough from the
galactic disk to minimize galactic dust contamina-
tion. It also does not have any small scale features
(such as sharp corners) that could induce exces-
sive ringing in the power spectrum extracted using
one of our two methods (FASTER) discussed be-
low. This contour also excludes most of the scan
turnarounds, where the scan speed is reduced and
the low frequency noise can contaminate the an-
gular scales of interest.

The vast majority of our observations of this
region were made by fixing the elevation of the
telescope and scanning azimuthally by ±30◦, typ-
ically centered roughly 30◦ from the anti-solar az-
imuth. Also used were the “CMB region” portions
of infrequently made (∼ 1 per hour) wider scans
designed to traverse the Galactic plane as well.

CMB observations were made by scanning at
three elevations (45◦, 50◦ and 55◦), and at two
azimuthal scan speeds (1 degree/second and 2
degrees/second, hereafter 1dps and 2dps respec-
tively). The rising, setting and rotation of the sky
observed from −78◦ latitude causes these fixed el-
evation scans to fill out the coverage of a two di-
mensional map. The color coding in our sky cover-
age map (Figure 1) gives the errors per pixel after
coadding the data from the four 150 GHz detec-
tors.

The raw detector timestreams are cleaned, fil-
tered and calibrated before being fed to the map-
ping and power spectrum estimation pipelines de-
scribed below. The cleaning and filtering used in
this analysis is identical to that described in B02
and is also described in Crill et al. (2002); we give
the most relevant details here.

Bolometers are sensitive to any input that
changes the detector temperature, including cos-
mic ray interactions in the detector itself, ra-
diofrequency interference (RFI), and thermal fluc-
tuations of the baseplate heatsink temperature.
After deconvolving the raw bolometer data with
the filter response of the detector and associated
electronics, RFI, cosmic rays, and thermal events
are found by a variety of pattern-matching and
map-based iterative techniques. Bad data are
then flagged and replaced by a constrained re-
alization of the noise so that nearby data can
be used. In the four channels used here, approxi-
mately 4.8% is flagged. The tails of thermal events
are fit to an exponential and corrected, and the
data are used in the subsequent analysis. Finally,
a very low frequency high-pass filter is applied
in the Fourier domain, with a transfer function
F (f) = 0.5(1 − cos(πf/0.01Hz)) for f ≤ 0.01 Hz,
F (f) = 1 for f > 0.01 Hz.

Fig. 1.— The sky covered by CMB observations;
the color scale indicates the depth of coverage (diag-
onal component of the noise covariance matrix) in a
7′ Healpix pixel, in the map produced by the MAD-
CAP analysis described below. The region enclosed by
the solid line is that used for the power spectrum esti-
mation. The three circles show the locations of three
bright known quasars; data within a 0.5◦ radius of the
quasars is not used in the power spectrum estimation.
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3. Data Analysis Methods

This paper reports our third analysis of data
from the 1998 flight. In B00 we reported the angu-
lar power spectrum found by analyzing data from
a single detector covering 1.0% of the sky, using
roughly one detector-day of integration. In B02
we reported results from four 150 GHz detectors,
using 17 detector-days of integration on 1.9% of
the sky. Here we report new results using 50%
more data from those same four detectors, using
over 24 detector-days of integration on 2.9% of the
celestial sphere.

The results reported here use the same time-
stream cleaning and pointing solutions described
in B02. In addition to the larger sky cut, here
we use two independent and very different analy-
sis methods which derive the angular power spec-
trum of the CMB from those timestream inputs.
One, using the MADCAP CMB analysis software
suite (Borrill 1999), creates a maximum likelihood
map and pixel-pixel covariance matrix from the
input detector timestreams and measured detec-
tor noise properties. The power spectrum is de-
rived from the map and its covariance matrix;
this was the method used in B00. The other
method, based on the MASTER/FASTER algo-
rithms described in Hivon et al. (2002) and Con-
taldi et al. (2002), relies on a spherical harmonic
transform of a filtered, simply binned map created
from those timestreams; the angular power spec-
trum in the filtered map is related to the full-sky
unfiltered angular power spectrum through cor-
rections derived from Monte-Carlos of the input
detector timestream and model CMB sky signals.
In the FASTER procedure, the best fit angular
power spectrum is then obtained by using an iter-
ative quadratic estimator analogous to that used
in conventional maximum likelihood procedures.
This method was used in B02.

A theme of this paper is the comparison of
the results from these two very different analysis
paths, and the stability of the cosmological results
to any differences in the derived power spectra.

3.1. Detector noise estimation

Both MADCAP and FASTER require an accu-
rate estimate of the detector noise properties in
order to determine the angular power spectrum.
We estimate these noise properties from the data

themselves, using an iterative method to create an
optimal, maximum likelihood map of the sky sig-
nal. We then remove this signal from the detector
timestream prior to calculating the noise statis-
tics. This method is described in both B02 and
Prunet et al. (2001).

For bolometer i and iteration j, di,Ai, n
(j)
i ,

N
(j)
i , and ∆(j) are respectively the data, pointing

matrix, noise timestream, noise timestream cor-
relation matrix, and sky map. The sky map and
noise timestream correlation matrices are found by
iteration:

1. Given the data timestream and estimated
map, solve for the noise-only timestream

with n
(j)
i = di − Ai∆

(j)

2. Use n
(j)
i to construct the noise timestream

correlation matrix, N
(j)
i = 〈n

(j)
i n

(j)†
i 〉

3. Solve for a new version of the map using

∆(j+1) = (
∑
i

A
†
iN

(j)−1
i Ai)

−1
∑
i

A
†
iN

(j)−1
i di

4. Return to step 1, using the new version of
the map, and repeat. Iterate until the map
∆ and the noise correlation matrices Ni are
stable.

For stationary noise Ni is diagonal in Fourier
space, with the diagonal elements equal to the
power spectrum of the noise. We also assume,
and check in practice, that the noise correlation
between channels is negligible.

The noise correlation matrix Ni is computed
in Fourier space from the noise timestream ni

with a simple periodogram estimator. The maxi-
mum likelihood map of the combined bolometers,
∆, is computed using a conjugate gradient ap-
proach (Doré et al. 2001), which improves the re-
covery of large scale modes in the map.

Solving for all channels in a combined way takes
advantage of the redundant observations of the
sky, therefore offering the best possible separation
between signal and noise in the time streams for
each bolometer. The noise power spectrum es-
timation is well-converged after a few iterations,
typically three or four.

In this iterative procedure, we find a single
maximum-likelihood map using all the data from
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all detectors. In practice a separate noise covari-
ance is solved for in each of the 78 contiguous data
“chunks”, bordered by elevations moves or other
timestream disturbances. Thus, very slowly vary-
ing noise properties (eg a drift in the instrument
noise) will not affect the analysis. Additionally, a
line is evident in the noise power spectrum of the
timestream data, varying slowly between 8 and 9
Hz over the course of the flight. We remove the
effects of this non-stationary source of noise by re-
moving information in the timestream between 8
and 9 Hz. These frequencies correspond to angular
scales ` > 1000, outside the range that we report
here, for all scan speeds.

3.2. The MADCAP Analysis Path

Given a pixel-pointed time-ordered dataset d

with piecewise stationary Gaussian random noise,
the maximum likelihood pixel map ∆ and pixel-
pixel noise correlation matrix CN are (Wright
1996; Tegmark 1997; Ferreira & Jaffe 2000)

∆ = (A†N−1A)−1A†N−1d

CN = (A†N−1A)−1 (1)

where, as before, A is the pointing matrix and N

is the block-Toeplitz time-time noise correlation
matrix.

Assuming that the CMB signal is Gaussian and
azimuthally symmetric, the maximum likelihood
angular power spectrum Cl is that which maxi-
mizes the log-likelihood of the derived map given
that spectrum (Gorski 1994; Bond et al. 1998),

L(d|C`) = −
1

2

(
d† C−1 d − Tr [lnC]

)
, (2)

where C is the full pixel-pixel covariance matrix.
The CMB signal and the detector noise are un-
correlated, so C is just the sum of the CN found
above, and the theory pixel-pixel covariance ma-
trix CT derived for a particular set of C`’s.

In the MADCAP analysis path (Borrill 1999)
we solve these equations exactly, calculating the
closed form solution for the map, using quasi
Newton-Raphson iteration to find the set of C`’s
that maximizes the log-likelihood (Bond et al.
1998). Because the pixel-pixel correlation matri-
ces are dense, the operation count scales as the
cube, and the memory requirement as the square,

of the number of pixels in the map. This im-
poses serious practical constraints on the size of
the problems we can tackle; by optimizing our al-
gorithms to minimize the scaling prefactors, and
using massively parallel computers, we have been
able to solve systems with up to O(105) pixels -
sufficient to analyze this dataset at 7′ pixelization.

There are two analyses that we want to perform
on this dataset, each of which involve both map-
making and power-spectrum estimation. First, we
want to analyze the full dataset including all four
channels at both scan speeds, to solve for the CMB
angular power spectrum. Second, we want to per-
form a systematic test of the self-consistency of
the data, differencing two halves of the data and
checking that the sky signal disappears.

For the first of these, we construct a time-
ordered dataset by concatenating the data from
all four channels at both scan speeds, and solve
for the map using the eight associated time-time
noise correlation functions. This timestream con-
sists of 163,726,965 observations of 160,805 pixels.
Using 400 processors on NERSC’s 3000-processor
IBM SP3, the associated map and pixel-pixel noise
correlation matrix can be calculated from equation
1 in about 4 hours. Pixels not included in the cut
being analyzed here are removed from the map,
and the corresponding rows and columns of the
pixel-pixel noise correlation matrix are excised,
equivalent to marginalizing over them. The result-
ing map contains 92251 pixels, and the associated
noise correlation matrix fills 70 Gb of memory at
8-byte precision.

For the second analysis, we construct two time-
ordered datasets, each containing the data from
all four channels but at only one of the two
scan speeds. The 2dps time-ordered data con-
tains 74,879,196 observations over 124,257 pixels,
while at 1dps we have 88,832,768 observations over
151,654 pixels. Having made the maps and pixel-
pixel noise correlation matrices from each time-
stream we apply our cut as above, and in addition
remove any pixels within the cut that are not ob-
served in both halves of the flight. This results
in two maps (∆A and ∆B) and their associated
noise correlation matrices each covering an iden-
tical subset of 88,407 pixels. We then extract the
power spectrum of the map ∆J = (∆A −∆B)/2,
taking the noise correlation matrix of ∆J to be
the appropriately weighted sum of those for the
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component maps, CJ
N = (CA

N + CB
N )/4. This as-

sumes the 2dps and 1dps noise are uncorrelated.
In the power spectrum estimation process we as-
sume a CMB-like theory correlation matrix when
calculating the C`’s.

The finite extent of our maps creates finite
correlation between our estimates of the power
in nearby multipoles. However, we can reduce
these correlations to small levels by calculat-
ing the power in tophat bins of sufficient width.
We choose bins of width ∆` = 50, centered on
` = 50, 100, 150, ...1000, together with additional
“junk” bins below ` = 25 and above ` = 1025,
which are included to prevent very low-` and very
high-` power from being aliased into the range of
interest. This binning reduces the correlations be-
tween adjacent bins to to less than ∼ 13% between
neighboring bands.

The power in a multipole bin is related to the
power in the individual multipoles in that bin
through a shape function: C` = CbC

shape
` . Al-

though we are free to choose any spectral shape
within each bin, experience shows that for rel-
atively narrow bins the particular choice makes
very little difference. We can explicitly account
for the assumed spectral shape in our cosmologi-
cal parameter extraction; here we use a flat shape
function such that `(` + 1)Cshape

` = constant.

The maps derived from the time-ordered data
have been smoothed by both the detector beams
and the common pixelization. For constant, circu-
larly symmetric beams and pixels we can account
for this exactly by incorporating the appropriate
multipole window function in the pixel-pixel signal
correlation matrix, CT .

The fact that each detector has a different beam
means that ideally we should construct individual
maps and noise correlation matrices for each chan-
nel and solve for the maximum likelihood power
spectrum of all four maps (each convolved with its
own beam) simultaneously. However, this would
give a 4-fold increase in the number of pixels, and
a 64-fold increase in the compute time. Instead,
we analyze the single all-channel map assuming a
noise-weighted average beam; this approximation
is quantitatively justified by tests done with the
FASTER pipeline, below.

We use the HEALPIX pixelization (Górski
et al. 1998); in this scheme, the pixels have

equal area but are asymmetric and have vary-
ing shapes. These slightly different shapes lead to
pixel-specific window functions. Calculating all of
the individual pixel window functions at our res-
olution is not feasible; instead, we use the all-sky
average HEALPIX window function appropriate
for our resolution.

By comparing individual pixel window func-
tions at lower resolution, we can set an upper limit
on the errors that may be induced by this approx-
imation. Scaling to 27′ pixels (a factor of 4 larger)
we find maximum deviations of 5% in temperature
(ie, 10% in power) in the ratio of actual pixel win-
dow functions to the average pixel window func-
tion on the whole celestial sphere, at the corre-
spondingly scaled ` of 1024/4 = 256. Thus, the
pixel window function employed cannot be more
than 5% (corresponding to an error in C` of 10%)
off the true value at our highest `. In fact, since
the field incorporates pixels of many geometries,
averaging will make the error much smaller, real-
istically less than 1% in temperature.

Thus far we have assumed that the time-
ordered data is comprised of CMB signal and sta-
tionary Gaussian noise only. However, we know
that in our data there are systematics that lead to
residual constant-declination stripes in the map.
Failure to account for these residuals leads to the
detection of a signal in the (1dps-2dps)/2 dif-
ference maps, which should be pure noise maps.
In the MADCAP approach we account for these
residuals by marginalizing over the contaminated
modes when deriving the power spectrum from
the map (Borrill et al. 2002). Specifically, to give
zero weight to a particular pixel-template we add
infinite noise in that mode to the pixel-pixel cor-
relation matrix

C−1 → limσ→∞

(
C + σ2M†M

)−1
(3)

where M is the matrix of orthogonal templates,
one of each mode to be marginalized over. Ap-
plying the Sherman-Morrison-Woodbury formula
this reduces to

C−1 → C−1 − C−1M
(
M†C−1M

)−1
M†C−1,

(4)
yielding a readily calculable correction - requiring
computationally inexpensive matrix-vector oper-
ations only – to the inverse correlation matrix.
Now whenever we multiply by C−1 in estimating
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the power spectrum we simply add the appropri-
ate correction term. For the residual constant-
declination stripes in this dataset we construct a
sine and cosine template along each line of pixels
of constant declination for all modes with wave-
lengths longer than 32 pixels (about 4 degrees).

Once the iterative power spectrum estimation
has converged, the error bars on each bin are esti-
mated from the initial (zero signal) and final bin-
bin Fisher information matrices using the offset
lognormal approximation (Bond et al. 1998).

3.3. The FASTER Analysis Path

The FASTER pipeline is based on the MAS-
TER technique described in Hivon et al. (2002).
MASTER allows fast and accurate determination
of C` without performing the time consuming
matrix-matrix manipulations that characterize ex-
act methods such as MADCAP (Borrill 1999).

As in MADCAP, there are two separate steps in
the FASTER path; mapmaking, and power spec-
trum estimation from that map. In our current
implementation of FASTER, we make a map from
the data by naively binning the timestream into
pixels on the sky. To reduce the effects of 1/f noise
on this naively binned map, a brick-wall highpass
Fourier filter is first applied to the timestream at a
frequency of 0.1 Hz for the 1dps data, and 0.2 Hz
for the 2dps data.

The spherical harmonic transform of this
naively binned map is calculated using a fast

O(N
1/2
pix `) method based on the Healpix tessel-

lation of the sphere (Górski et al. 1998). The
angular power in a noisy map, C̃`, can be related
to the true angular power spectrum on the full sky,
C`, by the effect of finite sky coverage (M``′), time
and spatial filtering of the maps (F`), the finite
beam size of the instrument (B`), and instrument
noise (N`) as

〈
C̃`

〉
=

∑

`′

M``′F`′B
2
`′ 〈C`′〉 +

〈
Ñ`

〉
. (5)

The coupling matrix M``′ is computed analyti-
cally. B` is determined by the measured beam and
the pixel window function assuming here that the
pixel has a circular symmetry. F` is determined
from Monte-Carlo simulations of signal-only time
streams, and N` from noise-only simulations of the
time streams.

The simulated time streams are created using
the actual flight pointing and transient flagging.
The signal component of these time streams is
generated from simulated CMB maps, while the
noise component is from realizations of the mea-
sured detector noise n(f). In both cases the same
high pass filtering (0.1 Hz at 1dps and 0.2 Hz at
2dps) and notch filtering (between 8 and 9 Hz, to
eliminate the previously mentioned non-stationary
spectral line in the timestream data) is applied to
the simulated TOD as to the real one. F` and
N` are determined by averaging over 600 and 750
realizations respectively. Once all of these compo-
nents are known the power spectrum estimation is
carried out as follows.

A suitable quadratic estimator of the full sky

spectrum in the cut sky variables C̃` together with
its Fisher matrix is constructed via the coupling
matrix M``′ and the transfer function F` (Bond
et al. 1998; Netterfield et al. 2002). The underly-
ing power is recovered through the iterative con-
vergence of the quadratic estimator onto the max-
imum likelihood value as in standard maximum
likelihood techniques. A great simplification and
speed-up is obtained due to the diagonality of all
the quantities involved, effectively avoiding the
O(N3) large matrix inversion problem of the gen-
eral maximum likelihood method. The extension
of the quadratic estimator formalism to Monte-
Carlo techniques such as MASTER have the added
advantage that the Fisher matrix characterizing
the uncertainty in the estimator is recovered di-
rectly in the iterative solution and does not rely
on any potentially biased signal+noise simulation
ensembles. A detailed discussion of the FASTER
extension to the MASTER procedure can be found
in Contaldi et al. (2002).

A drawback of using naively binned maps in
the pipeline is that the aggressive time filtering
completely suppresses the power in the maps be-
low a critical scale `c ≈ 50 (Hivon et al. 2002).
This results in one or more bands in the power
spectrum running over modes with no power and
which are thus unconstrainable. In practice we
deal with this by binning the power so that many
of the degenerate modes lie within the first band
2 < ` ≤ 25. The power in the degenerate band
can then be regularized to zero power or a level
consistent with the DMR large scale results. Reg-
ularizing with a non-zero value carries the disad-
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vantage that the second band 25 < ` ≤ 75 will be
non-trivially correlated with power which carries a
theoretical bias. Regularizing with zero power re-
sults in no correlations between the first two bands
and is more consistent with the filtering done on
the Monte-Carlo maps which sets the signal in the
affected modes to zero identically below `c. We
adopt the latter approach in this analysis to re-
cover a useful band which we label as 25 < ` ≤ 75.
However, as the window functions will show below
(Figure 12), most of the information in this band
comes from 50 < ` ≤ 75.

The FASTER pipeline allows the use of non-
uniform masks applied to the observed patch of
sky. We have experimented with a number of
such weighting schemes for our patch including to-
tal variance weighting 1/(S + N) and Weiner-like
S/(S + N) weighting where S is the Monte-Carlo
estimated variance of the coadded signal in the
pixel (which varies from pixel to pixel because of
the high pass filtering applied to the time data
stream and the non-uniform scanning speed) and
N is the variance of the noise in the pixel. We
have found the 1/(S + N) weighting gives opti-
mal results for this particular patch and coverage
scheme of this analysis.

In order to remove any effect of the constant-
declination striping contaminant described above
a further (spatial) filtering step is applied to all the
maps in the pipeline. The HEALPIX map is pro-
jected to a rectangular, square-pixel map, where
a spatial Fourier filter is applied that removes all
modes in the map with wavelengths greater than
8.2 degrees in the RA direction. This filtered map
is then projected back to the HEALPIX pixeliza-
tion.

The inclusion of several channels is achieved by
averaging the maps (both from the data, and from
the Monte-Carlos of each channel) before power
spectrum estimation. Weighting in the addition
is by hits per pixel, and by receiver noise at 1Hz.
Each channel has a slightly different beam size,
which is taken into account in the generation of
the simulated maps. The Monte-Carlo procedure
employed in FASTER and MASTER ensures that
the estimated power is explicitly unbiased with re-
spect to any known systematics, thus any inac-
curacy in assuming a common B` in the angular
power spectrum estimation is then absorbed into
F`. Similarly, any inaccuracy on the effective pixel

window function for the patch of sky under con-
sideration would be absorbed into F`.

The calculation of the full angular power spec-
trum and covariance matrix for the four good 150
GHz channels of Boomerang (∼ 350, 000 3.5′

pixels and ≈ 216, 000, 000 time samples; this is
different from the MADCAP numbers given above
because non-CMB sections of the timestream are
treated differently) takes approximately four hours
running on six nodes of the NERSC IBM SP3.

3.4. Application to Data

When treating real data, each of the methods
described has particular advantages. MADCAP is
an “optimal” tool, in the sense that it uses the full
statistical power of the data in deriving the power
spectrum; no other method can use the same data
and produce a power spectrum with smaller er-
rorbars. In addition, it produces a maximum-
likelihood map and pixel-pixel covariance matrix
that take advantage of the full cross-linking of the
scan strategy. However, the MADCAP algorithms
are computationally very costly. This leads to the
use of several approximations (eg the use of a sin-
gle beam for the four channels, using an average
pixel window function, and fitting errors as a log-
normal function), and reduces our ability to use
this method for wide-ranging testing of potential
systematic effects. With our current computing
power and sky cut, we are limited to a 7′ pixeliza-
tion with MADCAP.

The FASTER method provides a less-optimal
estimate of the power spectrum, but is computa-
tionally much more rapid. As will be shown below,
in our case the FASTER results are nearly as sta-
tistically powerful as those from MADCAP. The
rapid computational turnaround allows the use of
finer pixelization (3.5′), and extensive systematic
testing and modeling of potential systematic er-
rors. Additionally, FASTER is capable of handling
independent beams, and enables the computation
of a true window function for our ` bins for use in
parameter extraction.

4. Signal maps

The first step in each pipeline is the production
of a sky map. The fundamental differences be-
tween the two analysis paths are well illustrated
by a visual comparison of the two maps, shown in
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Figure 2. Though there is a high correlation of
the small-scale structure in these two maps, their
overall appearance is strikingly different, due pri-
marily to the time-domain filtering that suppresses
large scale structure in the FASTER map. In addi-
tion, the FASTER map has had the constant dec-
lination modes removed (hereafter, “destriped”),
while the MADCAP map has not. (The MAD-
CAP destriping occurs via marginalization over
contaminated modes during the power spectrum
estimation). The MADCAP map should be in-
terpreted in concert with its covariance matrix,
which describes which modes in the map are well
constrained and which are not. The FASTER pro-
cedure does not create a covariance matrix; the
correlations in the map are accounted for in the
Monte-Carlo process. Thus while it is reassur-
ing that the two maps show similar structure on
small scales, a quantitative comparison can only
be made by proceeding through the estimation of
the angular power spectrum with each method.

5. FASTER Analysis consistency tests

The MADCAP analysis is limited to 7′ pixeliza-
tion, and assumes a common beam window func-
tion for the four channels. We have used the FAS-
TER pipeline to check the effect of this coarser
pixelization and window function assumption with
respect to the baseline FASTER result, which is
calculated using 3.5′ pixels and individual window
functions for each channel. The baseline FASTER
result is shown in Figure 3, which also gives re-
sults derived using 7′ pixels, and results derived
using the same “single beam” assumption used by
MADCAP. As can be seen in the figure, the single
beam approximation has negligible effect. The 7′

pixelization does have some effect, but it is small
compared with the statistical errors.

We have also tested the robustness of the FAS-
TER result to other changes in the pipeline. Fig-
ure 3 also shows the effects of destriping, and of
using signal+noise weighting (rather than uniform
weighting). These have some affect on the power
spectrum, again smaller than the statistical er-
rors. Note that we expect these to have some effect
given that the information content of the map is
modified by these procedures.

Another test of the robustness of the angular
power spectrum is to change the details of the `

Fig. 2.— The maps of CMB temperature produced by
MADCAP (top) and FASTER (bottom). For compar-
ison, both maps are pixelized at 7′; in practice we use
a 7′ (3.5′) pixelization in the MADCAP (FASTER)
analysis. The strikingly different appearance of the
maps, with the MADCAP map preserving more infor-
mation on large scales, illustrates some of the signif-
icant differences in the two analysis methods, as de-
scribed in the text.

binning. We have used the FASTER pipeline to
derive power spectra with ∆` = 40 bins, and for
∆` = 50 bins shifted by 25 from our fiducial bin-
ning. Both of these give excellent agreement with
power spectrum of Figure 3.

6. Internal Consistency Tests

The analysis pipelines described above deliver
an estimated CMB power spectrum along with
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Fig. 3.— Angular power spectra derived from the
FASTER pipeline. The solid black circles in each panel
show the reference FASTER spectrum, which is de-
rived from a 3.5′ pixelized map using S+N weighting,
spatially filtered as described in the text to remove
constant-declination stripes. In the top panel the ref-
erence spectrum is compared with a spectrum derived
using a single beam window function, as in MADCAP.
The second panel shows the effect of using 7′ pixeliza-
tion. The third panel illustrates the effect of remov-
ing the constant declination stripes; the primary effect
is to increase the error in the first bin. The bottom
panel shows the result of using a uniformly weighted
map and neglecting to remove the constant declination
stripes. The top three panels show excellent agreement
with the reference spectrum, while the bottom panel
shows good agreement except at very high `.

statistical errors on that power spectrum. Be-
low, we will show the CMB power spectra derived
from the maps, and use those results to estimate
cosmological parameters. Before doing so, we de-
scribe here a variety of internal consistency tests
designed to check for residual systematic contam-
ination.

Our internal consistency checks are done by
splitting the dataset roughly in half, making a map
with each half of the data, subtracting these two

maps, and asking whether the power spectrum of
the residual map is consistent with pure detector
noise. Note that one only expects the two maps to
be identical if they contain the same information;
if the two maps have been observed or filtered dif-
ferently, perfect agreement is not expected.

Our most powerful internal consistency check
is to take data that was gathered while scanning
the gondola azimuthally at 1dps (roughly the first
half of the flight) and compare it with data taken
during 2dps scans (roughly the second half of the
flight). This tests for effects that vary over long
timescales, position of the gondola over the Earth,
position of the scan region with respect to the Sun,
and instrumental effects that are modulated by
scan speed. The latter include any mis-estimate
of the transfer function of the detector system and
any non-stationary noise in the detector system.
Hereafter, this test is referred to as the (1dps-
2dps)/2 consistency test. Each pipeline was used
to produce and estimate the power spectrum of a
(1dps-2dps)/2 map.

Figure 4 shows MADCAP and FASTER (1dps-
2dps) difference maps, each pixelized at 7′. Many
of the gross features apparent in both maps are
due to the variations in S/N, as can be seen by
comparison with Figure 1. The MADCAP map
is not destriped, because the destriping in that
pipeline is done with a constraint matrix in de-
riving the power spectrum. The FASTER map is
destriped; and appears significantly cleaner to the
eye. In practice, a 3.5′ pixelized map is used in
the FASTER analysis; here we display a 7′ map
so the noise level per pixel remains comparable to
the MADCAP version.

Figure 5 shows the power spectra of the sig-
nal maps (top panel) shown in Figure 2 and of the
(1dps-2dps) difference maps (bottom panel) shown
in Figure 4. It is apparent that the power spec-
tra of the signal maps are in very good agreement
with one another; these are discussed in more de-
tail below. Here we focus on the (1dps-2dps)/2
difference spectra.

The statistical error in the power spectra of the
signal maps is dominated by sample variance for
` < 500. Because there is no signal and thus no
sample variance in the power spectra of the dif-
ference maps, the difference maps are sensitive to
systematic effects that are well below the (sample
variance dominated) statistical noise of the signal
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Fig. 4.— (1dps-2dps) difference maps, both at 7′ pix-
elization to facilitate map comparisons by eye, for the
region of sky where these scans overlap. The color
scale is the same as for the previous figures. Note
that the consistency test power spectra are calculated
on these maps divided by two, (1dps-2dps)/2. Top
panel: The MADCAP difference map. This map
is not destriped, since in that pipeline the constant-
declination stripes are ignored (by introducing a con-
straint matrix) in the derivation of the angular power
spectrum. Bottom panel: The destriped FASTER dif-
ference map. Note that the MADCAP input time-
stream contains additional low frequency information
that is removed by an additional highpass filter in the
FASTER pipeline.

maps at low `.

The FASTER Monte-Carlo simulations show
that the different scanning and `-space filtering
in the 1dps and 2dps data leads to a leakage of

CMB signal into the (1dps-2dps)/2 FASTER map.
The average level of this signal is expected to be
at the level of ∼ 10µK2 near the first peak at
` ∼ 200. We correct for this effect in the FAS-
TER pipeline consistency test by subtracting the
Monte-Carlo mean residual power found in each
bin from the actual (1dps-2dps)/2 power spec-
trum, and by adding the variance of this effect in
quadrature to the errors on that power spectrum.

After these corrections to the FASTER pipeline,
we find the difference map angular power spectra
shown in the bottom panel of Figure 5. The χ2

per degree of freedom with respect to a zero-signal
model is 1.34 (1.28) with a probability of exceed-
ing this χ2 of P> = 0.14 (0.18) for the MADCAP
(FASTER) analysis, respectively. Thus, when the
entire spectrum is considered, the difference spec-
tra of both analysis methods are reasonably con-
sistent with zero. It is clearly apparent, however,
that there is a statistically significant signal in the
FASTER difference spectrum, at ` ≤ 300. Over
this limited range of the spectrum, the FASTER
spectrum has a reduced χ2 = 3.7 for 6 degrees of
freedom, for a P> = 0.001. Over the same range,
the MADCAP analysis gives a reduced χ2 = 1.10
for 6 degrees of freedom, for a P> = 0.36.

The residual signal in the FASTER difference
map is both localized in ` and very small, with a
mean of only 45µK2 in the four bins 150 < ` <
300. The CMB signal is roughly 5000 µK2 in this
` range, and our statistical errors on the CMB sig-
nal, dominated by sample variance, are ∼ 400µK2.
Thus, though the FASTER pipeline formally fails
this test, our statistical errors dominate our sys-
tematic errors by an order of magnitude.

Investigation of individual detector channels
shows that the (1dps-2dps)/2 power spectra near
` ∼ 200 are of similar shape and amplitude in
each. We have done a variety of other consistency
tests and simulations using the FASTER pipeline
on our lowest-noise channel, B150A, to try and un-
derstand potential sources for the (1dps-2dps)/2
failure. We have broken the data into four quar-
ters (Q1 and Q2 at 1dps; Q3 and Q4 at 2dps)
and found difference map power spectra for com-
binations that minimize effects that depend on
scan speed [(Q1+Q3)-(Q2+Q4)] or a drift in time
[(Q1+Q4)-(Q2+Q3)]. These combinations fail the
consistency test with amplitudes and shapes sim-
ilar to the (1dps-2dps)/2 failure.
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Fig. 5.— MADCAP and FASTER angular power
spectra and (1dps-2dps)/2 difference map power spec-
tra. Top Panel: the FASTER (filled blue circles) and
MADCAP (filled red squares) angular power spec-
tra, and their respective (1dps-2dps)/2 difference map
power spectra (open symbols). The effects of constant-
declination stripes have been removed in each of these
analyses. Bottom panel: the difference map angular
power spectra plotted on a magnified scale. There is a
systematic effect near ` ∼ 200 in the FASTER power
spectrum, which is absent in the MADCAP treatment.
The level of these residuals is much smaller than the
statistical errors on the full power spectrum, shown in
the top panel.

Simulations were done in an attempt to recreate
the (1dps-2dps)/2 difference failure by inducing
various systematic effects. Changes in the gain,
the pointing offset, and the filtering were modeled.
Of these, only the last can explain the failure in
the FASTER pipeline, given that the data pass
the test in the MADCAP pipeline, since gain and
pointing offsets should be treated identically by
the two methods. For plausible levels of these sys-
tematic errors, none induced (1dps-2dps)/2 fail-
ures at the level seen. The systematic that cre-
ated the most similar shape was a pointing offset
between the two data sets. This is not a priori
unlikely, as it is plausible that a differential off-
set might occur in the attitude reconstruction for

the two scan speeds. The magnitude of the differ-
ence test failure would correspond to an ∼ 7′ off-
set between the two data sets. This is inconsistent
with the measured stability of the positions of the
quasars in the two maps and, more importantly,
is inconsistent with the fact that the MADCAP
analysis achieves equally high or higher sensitivity
and passes this test. We have not been able to
find the cause of the FASTER analysis failure of
the (1dps-2dps)/2 consistency test.

We also used the FASTER pipeline to perform
two other consistency tests on the real data. These
are shown, along with the (1dps-2dps)/2 results
for reference, in Figure 6. One differences maps
made using rightgoing vs. leftgoing scans. An-
other compares maps made with two of the four
channels (channels A and A2) with the other two
(channels A1 and B2). Both of these power spec-
tra appear to be consistent with zero in all ` re-
gions, as evidenced by the statistics quoted in Ta-
ble 1.

The (1dps-2dps)/2 test failure on the FASTER
pipeline leads us to the inclusion of an additional
systematic error term in the region where that fail-
ure is significant, ie for ` ≤ 400. In our final results
below, we increase the quoted FASTER errors on
those bins by the amount of the failure, adding it
in quadrature (in µK2) to the likelihood derived
errors. In the Fisher matrix this corresponds to
adding the difference map power spectrum residu-
als in quadrature to the diagonal elements, while
leaving the off-diagonal terms unmodified.

7. Comparison of results

The discussion above leads us to believe that
the larger pixels and the single-beam approxima-
tion used by MADCAP should not have a signif-
icant effect on the power spectrum. In addition,
we have learned of a small consistency test fail-
ure over a small range of ` in the FASTER power
spectrum, and corrected the errors on the spec-
trum accordingly.

We now turn to the comparison of the CMB
power spectra derived with FASTER and MAD-
CAP, shown in the top panel of Figure 5.

Despite the fact that they were derived from
the same timestream data, there are several rea-
sons why these two power spectra are not expected
to be identical. Both the crosslinked observing
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Table 1

Consistency Test Results

Test bins Reduced χ2 P>

FASTER (L-R)/2 all 1.15 0.29
1-6 0.96 0.45

FASTER [(A+A2)-(A1+B2)]/2 all 1.18 0.26
1-6 1.25 0.28

FASTER (1dps-2dps)/2 all 1.28 0.18
1-6 3.70 0.001

MADCAP (1dps-2dps)/2 all 1.34 0.14
1-6 1.11 0.35

Note.—χ2 statistics for the consistency tests described in
the text and plotted in Figures 6 and 5. Results are re-
ported for all ` bins (50 ≤ ` ≤ 1000, 20 bins) as well as
for the first six bins (50 ≤ ` ≤ 350), where the FASTER
(1-2dps)/2 test failure of Figure 6 is evident.

strategy and the lower frequency filtering cutoff in
the timestream allows MADCAP to recover some
modes that are missing from the FASTER map.

At the level of the errors shown, the agreement
between these two estimates of the power spec-
trum is excellent. However, there is some indica-
tion of a systematic “tilt” between the two spectra.
The level of this tilt is not large; modeling it as a
difference in the beam window functions, reducing
the FWHM of the beam used by MADCAP by one
quarter of our systematic beam uncertainty, visu-
ally removes the apparent tilt. For this reason,
and as is borne out by the discussion below, this
difference will not have much effect on the cosmo-
logical parameter estimation results.

However, we have investigated any known dif-
ferences that could lead to a systematic differ-
ence between these two power estimation meth-
ods. We have shown (via the FASTER consis-
tency tests discussed above) that the larger pix-
elization and single-beam assumption of MAD-
CAP should not produce such a tilt. Another po-
tential effect is a bias in the pixel window func-
tion, which MADCAP takes to be the average
HEALPIX window function on the sphere. The
FASTER Monte-Carlos incorporate the effects of
the real pixel geometries; any bias induced by
using a single, isotropized approximation for the

smoothing of the HEALPIX pixelization is cor-
rected by Monte-Carlo estimation of the transfer
function F`. In effect the transfer function ensures
the method is robust to any similar approxima-
tions used in describing the effective pixelization
smoothing. However, the analytic arguments dis-
cussed above, based on individual pixel window
functions calculated for larger pixels, indicate that
any such bias caused by the MADCAP assumption
should be very small.

Another potential bias could be introduced by
the destriping algorithms. We have used Monte-
Carlos to test for such effects in FASTER, and
have found that any such bias is much smaller than
the effect seen here. The marginalization method
used by MADCAP is not expected to bias the
power spectrum in any way, but Monte-Carlo tests
to verify this are not practical given the greater
computational cost of that pipeline.

In principle a tilt could also be induced by a dif-
ference in the timestream noise statistics used by
one of the methods; however, the same noise power
spectrum (or time-time noise correlation function)
is used by the two pipelines.

It is possible that the constant declination strip-
ing is not fully removed by one of the destriping
algorithms, and this leads to the difference in tilt.
As can be seen in Figure 3, the FASTER destrip-
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Fig. 6.— Difference map power spectra derived using
FASTER. The top panel shows the (1dps-2dps)/2 dif-
ference map results. The middle panel shows the result
found by difference maps made from leftgoing scans
and rightgoing scans, (L-R)/2. The bottom panel is
for a map made by differencing maps made by two
channel combinations, [(A+A2)-(A1+B2)]/2. While
the latter two power spectra are relatively consistent
with zero contamination, near ` ∼ 200 the (1dps-
2dps)/2 spectrum is not. This contamination is, how-
ever, much smaller than the statistical errors on the
full CMB power spectrum in this `-region. The χ2

statistics of these spectra with respect to zero signal
are given in Table 1.

ing does affect the power spectrum slightly at high
`. If this is the reason for the tilt discrepancy,
residual striping that is randomly phased with re-
spect to the CMB sky signal would increase the
level of the power spectrum.

Figure 7 compares the B02 result, derived us-
ing FASTER on 1.9% of the sky at 7′ pixelization,
with several new results. The top panel compares
the B02 result with the final FASTER result dis-
cussed above, on 2.9% of the sky at 3.5′ resolution.
The middle panel shows a new MADCAP analysis
of the same region as B02, with the same resolu-
tion. Finally, in the bottom panel B02 is compared
with the MADCAP analysis of the larger cut ana-
lyzed in this paper, at 7′ resolution. As expected,

the larger dataset leads to smaller errorbars across
the entire range of `. The MADCAP errors are
smaller than the FASTER errors at low `, due to
the preservation of lower frequencies in the time-
stream. The FASTER results agree very well with
one another, except in the region near ` ∼ 800
where there are three 1-σ and one 2-σ deviations.
In the lower panels there is some evidence for the
same tilt bias between MADCAP and FASTER
on the B02 cut (mentioned above), indicating this
is not unique to the larger sky cut.

Fig. 7.— A comparison of the FASTER results of
B02 (black filled circles) derived from 1.9% of the sky
at 7′ pixelization, with three new analyses (open blue
squares in each panel). Top panel: the FASTER re-
sults of this paper (2.9% of the sky, 3.5′ pixelization).
Middle panel: a new MADCAP analysis of the B02
sky cut (1.9% of the sky, 7′ pixelization). Bottom
panel: the MADCAP results of this paper (2.9% of
the sky, 7′ pixelization). The agreement is generally
very good, with the greatest variations at high ` where
noise, rather than cosmic variance, dominates the er-
rors.

8. Galactic Dust

In Masi et al. (2001) we measured the angu-
lar power spectrum of the Boomerang 410 GHz
map in three circles of 9◦ radius, centered at galac-
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tic latitudes of b = −38◦, −27◦ and −17◦. Cor-
relating the lower-frequency Boomerang maps,
which are dominated by CMB fluctuations, with
the 3000 GHz map of Finkbeiner et al. (1999,
model 8 of that paper), gave a measure of the spec-
tral ratios between that map and the Boomerang

bands; these ratios were used to scale the 410 GHz
power spectra to the lower frequencies.

In the region farthest from the galactic plane,
the 410 GHz map is consistent with noise and
no dust power spectrum result is reported. Fig-
ure 8 shows the extracted power spectrum of dust
for the b = −27◦ circle, taken directly from Masi
et al. (2001), along with the same calculation for
the b = −17◦ circle of that paper. These results
show that the dust contribution to the total power
spectrum is largest at low `, and is generally small
(< 100µK2).

Fig. 8.— Angular power spectra of IRAS-correlated
dust scaled to 150 GHz for two circles of radius 9◦

centered at galactic latitudes of b = −17◦ (red open
squares) and b = −27◦ (blue open triangles). Details
of this analysis can be found in Masi et al. (2001). The
FASTER CMB power spectrum (filled black circles) is
shown for reference.

A proper estimate of the contribution of dust
emission to the measured power spectrum requires
the specific morphology of the dust emission be

taken into account. We have done this by us-
ing the MADCAP analysis path to marginalize
over templates of the galactic foregrounds. The
results are shown in Figure 9. Here, we have
used two templates, one of galactic synchrotron
emission (Haslam et al. 1981; Jonas et al. 1998;
Finkbeiner 2002), the other of galactic dust emis-
sion (Schlegel et al. 1998; Finkbeiner 2002). The
power spectrum is very stable to this process, with
no significant change for ` ≥ 100. There is a
one sigma change in the power at ` = 50, con-
sistent with the the expectation that the effects of
dust contamination should be largest at lowest `,
and generally small. We use the galaxy template
marginalized MADCAP results in the remainder
of this paper. For the FASTER results, for which
the statistical errors at low ` are substantially
higher than those of the MADCAP spectrum, the
effects of dust emission are negligible.

Fig. 9.— Galactic marginalization. The filled red
squares show the results of the MADCAP analy-
sis with marginalization over the constant-declination
modes (to remove constant-declination striping). The
open blue circles show the results after additional
marginalization over two galactic templates, one of
galactic dust and the other of galactic synchrotron
emission. These lead to slight shifts in the power spec-
trum at low `, only significant in the first bin.
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9. Final Results

We have used FASTER and MADCAP to de-
rive two estimates of the angular power spectrum
using the same input timestream, sky coverage,
and noise statistics. The final FASTER results,
derived from a 3.5′ pixel map and corrected for
the small (1dps-2dps)/2 consistency test failure,
appear along with the final galaxy-marginalized
MADCAP results in Figure 10.

Our power spectrum results are characterized
by a likelihood function for the bandpower in each
band (Cb). A good approximation to this func-
tion is given by an offset lognormal function (Bond
et al. 1998) Zb = ln(Cb +xb) of the maximum like-
lihood values found in each band (Cb) and an off-
set parameter for each band, xb. Given these, the
likelihood is found by

σb = ∆Cb/(Cb + xb) (6)

∆Zb = ln(Cb + xb) − ln(Cb + xb) (7)

−2 lnL(Cb) =
∑

bb′

∆Zbσ
−1
b Gbb′σ

−1
b′ ∆Zb′ (8)

where Gbb′ is the bandpower correlation matrix,
normalized to unity on the diagonal. Table 2
gives the maximum likelihood value Cb = `(` +
1)C`/2π, curvature error (∆Cb), and offset pa-
rameter xb for each band for both the FASTER
and MADCAP results of Figure 10. The bin-
bin correlation matrices for these power spec-
tra are given in Tables 3 and 4 for FASTER
and MADCAP respectively. These data, and
the window functions of Figure 12, are avail-
able at http://cmb.phys.cwru.edu/boomerang/ or
http://oberon.roma1.infn.it/boomerang.

One measure of the level of agreement between
the FASTER and MADCAP power spectra can be
made by treating the two power spectra as inde-
pendent datasets (which they are not) and using
the curvature errorbars to calculate a chi-square
statistic. We find that χ2 = 8.54 for 20 degrees
of freedom, which gives P> = 0.988. This low
χ2 value indicates that the two analyses of the
same data vary by an amount much less than is
expected for two random realizations of the same
measurement. That is, the “analysis variance” is
very small compared to the statistical errors.

Fig. 10.— Final angular power spectrum results at
150 GHz, also given in Table 2. In both panels, the
MADCAP results are shown as red squares, while the
FASTER results are given as blue circles. The top
panel shows the data of Table 2, along with the best-fit
model from the weak-prior parameter estimation dis-
cussed below. In addition to the errors shown, there is
a 10% uncertainty in the temperature calibration (20%
in the temperature-squared units of this plot), and a
beam uncertainty of 1.4′ rms. In the bottom panel we
have rescaled the data by changing the the beam win-
dow function by 0.5σ. This gives much better visual
agreement with the model.

10. Features in the Power Spectrum

The cosmological parameter estimation proce-
dure we follow below is done in the context of
inflation-motivated models with adiabatic initial
density perturbations. Thus, it is both interesting
and important to assess the evidence in favor of
these models. One of their generic predictions is
that there will be a series of peaks in the CMB
power spectrum, the exact positions and ampli-
tudes of which depend on the cosmological param-
eters. It is thus interesting to search for such fea-
tures in our power spectrum and evaluate the sta-
tistical significance with which they are detected.

To detect such features, we use the method ap-
plied to the B02 power spectrum in de Bernardis
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Table 2

Angular Power Spectra.

FASTER MADCAP

`low `high Cb ∆Cb xb Cb ∆Cb xb

26 75 1053 401 22 1423 313 341
76 125 3175 358 40 2609 279 34
126 175 4614 406 71 4823 384 50
176 225 5581 418 110 5139 349 81
226 275 5710 385 162 5365 321 124
276 325 4107 264 228 3953 222 180
326 375 2532 160 320 2445 137 249
376 425 1877 120 441 1822 105 337
426 475 2120 130 593 2092 116 467
476 525 2320 142 794 2456 132 638
526 575 2368 149 1054 2444 135 854
576 625 2141 147 1397 2216 133 1133
626 675 1923 149 1838 1994 136 1497
676 725 2066 170 2437 2186 157 2023
726 775 1738 184 3202 2008 172 2657
776 825 2551 239 4204 2581 217 3669
826 875 1647 252 5542 2229 245 4837
876 925 1976 312 7237 2253 296 6674
926 975 1087 352 9696 1156 334 8560
976 1025 1394 444 12878 1155 430 12324

Note.—Angular power spectra of the CMB, derived using
the FASTER (columns 3-5) and MADCAP (columns 6-8)
methods. The FASTER power spectrum has been corrected
for the (1-2dps)/2 failure by the addition of a systematic er-
rorbar in quadrature with the statistical one in the relevant
` bins. The MADCAP power spectrum has been marginal-
ized over two galactic templates as discussed in the text. The
FASTER power spectrum is calculated for shaped bins, while
the MADCAP power spectrum is calculated for tophat bins.
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Table 3

FASTER Bandpower Correlation Matrix

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1.000 -0.140 0.005 -0.002 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

- 1.000 -0.089 0 -0.004 -0.004 -0.005 -0.007 -0.006 -0.005 -0.006 -0.006 -0.007 -0.007 -0.007 -0.006 -0.006 -0.005 -0.005 -0.004

- - 1.000 -0.088 -0.001 -0.006 -0.006 -0.007 -0.007 -0.006 -0.005 -0.006 -0.006 -0.006 -0.007 -0.005 -0.006 -0.005 -0.005 -0.004

- - - 1.000 -0.087 -0.003 -0.008 -0.008 -0.006 -0.006 -0.005 -0.005 -0.006 -0.005 -0.005 -0.005 -0.005 -0.004 -0.004 -0.004

- - - - 1.000 -0.088 -0.005 -0.009 -0.006 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.003 -0.004 -0.003 -0.003 -0.003

- - - - - 1.000 -0.090 -0.004 -0.005 -0.003 -0.003 -0.003 -0.002 -0.002 -0.002 -0.002 -0.002 -0.002 -0.002 -0.002

- - - - - - 1.000 -0.088 0 -0.003 -0.002 -0.001 -0.001 -0.001 -0.001 0 0 0 0 0

- - - - - - - 1.000 -0.085 0 -0.003 -0.002 -0.001 0 0 0 0 0 0 0

- - - - - - - - 1.000 -0.088 0 -0.003 -0.002 -0.001 -0.001 0 0 0 0 0

- - - - - - - - - 1.000 -0.089 0 -0.003 -0.002 -0.001 0 0 0 0 0

- - - - - - - - - - 1.000 -0.089 0 -0.003 -0.002 0 0 0 0 0

- - - - - - - - - - - 1.000 -0.087 0 -0.003 -0.001 0 0 0 0

- - - - - - - - - - - - 1.000 -0.084 0 -0.003 -0.001 0 0 0

- - - - - - - - - - - - - 1.000 -0.086 0 -0.003 -0.001 0 0

- - - - - - - - - - - - - - 1.000 -0.088 0.001 -0.003 -0.001 0

- - - - - - - - - - - - - - - 1.000 -0.091 0 -0.003 -0.001

- - - - - - - - - - - - - - - - 1.000 -0.088 0 -0.003

- - - - - - - - - - - - - - - - - 1.000 -0.087 0

- - - - - - - - - - - - - - - - - - 1.000 -0.081

- - - - - - - - - - - - - - - - - - - 1.000

Note.—The FASTER CMB power spectrum band-band correlation matrix, Gbb′ of equation 8. This matrix is symmetric; values below the diagonal,
not printed, are symmetric with those above. Values with magnitude 0.0005 and lower have been truncated to zero. Bands are labelled 1-20 in
consecutive order from low to high `, as given in Table 2.
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Table 4

MADCAP Bandpower Correlation Matrix

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1.000 -0.080 -0.001 -0.002 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

- 1.000 -0.058 -0.001 -0.001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

- - 1.000 -0.057 -0.001 -0.001 0 0 0 0 0 0 0 0 0 0 0 0 0 0

- - - 1.000 -0.056 0 -0.001 0 0 0 0 0 0 0 0 0 0 0 0 0

- - - - 1.000 -0.055 0 -0.001 0 0 0 0 0 0 0 0 0 0 0 0

- - - - - 1.000 -0.055 0 -0.001 0 0 0 0 0 0 0 0 0 0 0

- - - - - - 1.000 -0.056 0 -0.001 0 0 0 0 0 0 0 0 0 0

- - - - - - - 1.000 -0.055 0 -0.002 0 0 0 0 0 0 0 0 0

- - - - - - - - 1.000 -0.054 0 -0.002 0 0 0 0 0 0 0 0

- - - - - - - - - 1.000 -0.054 0 -0.002 0 0 0 0 0 0 0

- - - - - - - - - - 1.000 -0.054 -0.001 -0.002 0 0 0 0 0 0

- - - - - - - - - - - 1.000 -0.055 -0.001 -0.002 0 0 0 0 0

- - - - - - - - - - - - 1.000 -0.055 -0.002 -0.002 -0.001 0 0 0

- - - - - - - - - - - - - 1.000 -0.056 -0.002 -0.002 -0.001 0 0

- - - - - - - - - - - - - - 1.000 -0.056 -0.002 -0.002 -0.001 0

- - - - - - - - - - - - - - - 1.000 -0.057 -0.002 -0.002 -0.001

- - - - - - - - - - - - - - - - 1.000 -0.058 -0.002 -0.002

- - - - - - - - - - - - - - - - - 1.000 -0.060 -0.003

- - - - - - - - - - - - - - - - - - 1.000 -0.061

- - - - - - - - - - - - - - - - - - - 1.000

Note.—The MADCAP CMB power spectrum band-band correlation matrix, Gbb′ of equation 8. This matrix is symmetric; values below the diagonal,
not printed, are symmetric with those above. Values with magnitude 0.0005 and lower have been truncated to zero. Bands are labelled 1-20 in
consecutive order from low to high `, as given in Table 2.
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et al. (2002), based on parabolic fits to the CMB
power spectrum over a fixed number of bands. We
fit the spectrum to the polynomial

C` = CA(` − `p)
2 + CB, (9)

where `p is the peak position. In order to fit the
measured bandpowers Cb we average the model C`

over the bands reported in Table 2, thus obtaining
the theoretical bandpowers CT

b . Using the covari-
ance matrix G−1

bb′
of the measured bandpowers we

compute

χ2 = (Cb − CT
b )G−1

bb′ (Cb′ − CT
b′), (10)

which we minimize by varying CA, CB and `p. Er-
rors on the fit `p and CB are found by marginal-
ization of the full likelihood over CA. In order to
evaluate the significance of the detection of a fea-
ture we study the likelihood of the curvature CA

marginalizing over the other two parameters.

When we compare different models, i.e. differ-
ent values of the two parameters `p and CB, the
χ2 has 2 degrees of freedom. In order to show
how other models compare to the best-fit one, we
plot in Figure 11 the contours corresponding to
∆χ2 = 2.3, 6.17, 11.8, i.e. 68.3%, 95.4% and 99.7%
confidence.

Table 5 shows the results of this analysis for
both the MADCAP and the FASTER power spec-
tra of Table 2. The significance of the detec-
tions depends somewhat on the range of bands
over which the fit is done; the results in the ta-
ble are those that give the most significant detec-
tions. Comparing the results to de Bernardis et al.
(2002) we find a general improvement in the preci-
sion with which the peaks and valleys are located,
particularly for the first and second peaks, and for
the first valley. We obtain very similar results in a
variation of this method where a three-parameter
quadratic is fit over a sliding five-band window,
also described in de Bernardis et al. (2002). The
results are also very similar when applied to a
FASTER power spectrum derived for bands of the
same width (∆` = 50) with band centers shifted
by ` = 25.

In order to investigate the level at which the de-
tections of different peaks are correlated, we have
performed a simultaneous fit of all the spectral

bins using a linear combination of four Gaussians

C` =

4∑

i=1

A2
i exp(−(` − `i)

2/2σ2
i ), (11)

which is sufficiently flexible to provide a good fit
to any standard theoretical spectrum. We proceed
using a Monte-Carlo Markov Chain method, as in
Christensen et al. (2001), Lewis & Bridle (2002),
and Odman et al. (2002), accounting for calibra-
tion and beam uncertainties as in Bridle et al.
(2002). We find best fit values for Ai and `i that
are in good agreement with the results obtained
above, and point clearly towards the presence of
features in the power spectrum.

Using this simultaneous fit to all of the power
spectrum bins with a single phenomenological
function allows us to study the correlation between
the different parameters. These are not negligi-
ble between the amplitudes of the peaks that are
near to each other (for example R(A1, A2) = 0.19;
R(A1, A3) = 0.07, R(A2, A3) = 0.27), and be-
tween amplitudes and widths (R(A1, σ1) = 0.20),
but the detections are all confirmed.

As the table and figure show, we clearly de-
tect multiple features in the power spectrum. The
next question is whether the adiabatic perturba-
tion, inflationary model set can produce models
with similar features.

Using the same methods discussed below for
cosmological parameter estimation, we use the
data and our theoretically motivated database of
C` models to make Bayesian estimates of the posi-
tions and amplitudes of peaks in the power spec-
trum, for comparison with our model-independent
fits. The last two columns of Table 5 show the
results of this process (using the “weak prior” de-
scribed below), and give results that agree very
well with the phenomenologically measured pa-
rameters of the various features. This bolsters our
confidence in the model set we use in the next sec-
tion, to estimate cosmological parameters.

11. Cosmological Parameters

Our measurement of the CMB angular power
spectrum can be used in conjunction with other
cosmological information to constrain several cos-
mological parameters. Our method, described in
detail in Lange et al. (2001), compares the mea-
sured angular power spectrum with the predicted
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Table 5

Peaks and Valleys in the CMB

MADCAP FASTER Adiabatic CDM

Feature ` range `p Cp (µK2) level `p Cp (µK2) level `p Cp (µK2)

Peak 1 100 − 300 216+6
−5

5480+1130
−1130

6.7σ 215+5
−6

5690+1200
−1200

4.8σ 223+4
−4

6022+394
−370

Valley 1 300 − 500 425+4
−5

1820+420
−410

6.3σ 430+7
−5

1870+420
−410

4.3σ 411+17
−17

1881+152
−141

Peak 2 400 − 650 536+10
−10

2420+620
−570

4.0σ 528+14
−10

2330+600
−550

3.1σ 539+19
−19

2902+248
−229

Valley 2 550 − 800 673+18
−13

2030+670
−560

2.6σ 681+21
−21

1910+630
−530

2.5σ 667+28
−27

2122+302
−265

Peak 3 750 − 950 825+10
−13

2500+1100
−840

3.2σ 820+15
−22

2150+1000
−720

2.2σ 812+26
−25

3121+497
−429

Note.—Locations and amplitudes of peaks and valleys in the power spectrum of the CMB, obtained with
polynomial fits. The locations, amplitudes, and confidence levels of detection are listed for MADCAP (columns
3-5) and FASTER (columns 6-8). The ` range used in the parabolic analysis is reported in column 2. Columns
9 and 10 gives the result of cosmological “peak parameter” extraction (using the MADCAP data, COBE-DMR
data, and the “weak cosmological prior” discussed below) from the set of adiabatic perturbation, cold dark
matter models used in our cosmological parameter estimation. All the errors include the effects of gain and
beam calibration uncertainties.

power spectra from a family of theoretical mod-
els. We choose to compare our measurements
with inflation-motivated adiabatic cold dark mat-
ter models, with the 7 cosmological parameters
given in Table 6.

We take a Bayesian approach, calculating a like-
lihood of each model given the data, in the discrete
parameter database of Table 6. We then marginal-
ize over the continuous parameters such as theory
normalization (ln C10), calibration, and beam un-
certainty for each model. To find confidence inter-
vals on any given parameter, we marginalize over
the other parameters by integrating through the
database, collapsing the n-dimensional likelihood
to a one-dimensional likelihood curve for that pa-
rameter.

In the comparison of the theoretical and mea-
sured power spectra, one must convolve the pre-
dicted theory power spectrum with the window
function for each ` bin of the measurement. The
flat band average of a target model CT

` = `(` +
1)CT

` /2π, can be defined with respect to a win-
dow function W b

` for that band as

CT
b =

I[W b
` C

T
` ]

I[W b
` ]

(12)

with

I[f`] =
∑

`

(` + 1
2 )

`(` + 1)
f`. (13)

In the power spectrum estimation pipelines dis-
cussed above, we can choose to use shaped bands
rather than flat. This will change the details of the
window function, but the prescription for calculat-
ing theoretical band averages remains the same.

We have calculated the window functions for
the FASTER power spectrum bins, using S+N
weighting on the map. In Figure 12 we show the
flat-band window functions, to illustrate their `-
space shapes and the level of correlations between
bands. Details on their derivation are given in
Contaldi et al. (2002). For the MADCAP compar-
ison with theory, we use tophat window functions.

We can also apply a series of “priors”, or
prior probabilities, to each model in the database,
modifying the likelihood of that model before
marginalization. The priors we choose include
a “weak prior” which sets the likelihood to
zero if, for that model, the Hubble parameter
(Ho = 100hkm/s/MPc) has a value outside the
range 0.45 < h < 0.90, the current age of the
universe is less than 10 Gyr, or the total matter
content ΩM < 0.1. We also investigate the effect
of narrowing the prior on the Hubble constant to
h = 0.72 ± 0.08, as measured by the Hubble Key
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Table 6

Cosmological Parameters Database

Parameter Values

Ωk -0.5, -0.3, -0.2, -0.15, -0.1, -0.05, 0, 0.05, 0.1, 0.15, 0.2, 0.3, 0.5, 0.7, 0.9

ΩΛ 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1

ωc 0.03, 0.06, 0.08, 0.10, 0.12, 0.14, 0.17, 0.22, 0.27, 0.33, 0.40, 0.55, 0.8

ωb 0.003125, 0.00625, 0.0125, 0.0175, 0.020, 0.0225, 0.025, 0.030, 0.035,
0.04, 0.05, 0.075, 0.10, 0.15, 0.2

ns 0.5, 0.55, 0.6, 0.65, 0.7, 0.725, 0.75, 0.775, 0.8, 0.825, 0.85, 0.875, 0.9,
0.925, 0.95, 0.975, 1.0, 1.025, 1.05, 1.075, 1.1, 1.125, 1.15, 1.175, 1.2,
1.25, 1.3, 1.35, 1.4, 1.45, 1.5

τc 0, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.7

ln C10 Continuous

Note.—The values of the cosmological parameters in our model space; while
ln C10 is marginalized as a continuous variable, the rest are calculated on a
grid with the discrete parameter values given. The curvature Ωk is related
to the overall density by Ωk = 1 − Ωtotal. The cold dark matter and baryon
physical densities ωc and ωb are given by ωx = Ωxh2, where h is the Hubble
parameter in units of 100 km/s/MPc. The database is restricted to mod-
els for which ΩM = Ωc + Ωb > 0.1. ns is the spectral index for primordial
density fluctuations, where a value of 1.0 indicates scale invariance. Reion-
ization is parameterized by τc, the Thompson depth to the epoch when the
universe reionized after photon decoupling. In addition to these cosmological
parameters, there are instrumental parameters describing the systematic gain
and beam uncertainties. These are accounted for, by marginalization, in all
cosmological parameter estimates reported in this paper.
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Fig. 11.— ∆χ2 contours for the position and am-
plitude of peaks and valleys in the Boomerang

MADCAP power spectrum. The contours are
at ∆χ2 = 2.3, 6.17, 11.8, i.e. 68.3%, 95.4% and
99.7% confidence. The vertical dashed lines give
the feature positions found using the cosmological
database, and as given in Table 5. Similar results
are obtained using the FASTER results.

Project (Freedman et al. 2001).

We also examine the effect of a large-scale struc-
ture (LSS) prior. This is a joint constraint on σ2

8 ,
the bandpower of (linear) density fluctuations on
a scale corresponding to rich clusters of galaxies
(8h−1MPc), and on a shape parameter Γeff charac-
terizing the (linear) density power spectrum. The
LSS prior probability distribution, described in de-
tail in Bond et al. (2002), is slightly modified over
that used in Lange et al. (2001) to agree better
with weak lensing and clustering data. σ8Ω

0.56
m

= 0.47+.02,+.11
−.02,−.08, is distributed as a Gaussian (first

error) convolved with a uniform (top-hat) distri-
bution (second error), centered about 0.47; Γeff =
0.21+.03,+.08

−.03,−.08 is a broad distribution over the 0.1
to 0.3 range. Here Γeff = Γ + (ns − 1)/2, where
Γ ≈ Ωmh exp[−ΩB(1 + Ω−1

m (2h)1/2)] is a function
of our basic cosmological parameters.

Our final set of priors combines the weak and
LSS priors with the supernova data of Riess et al.
(1998) and Perlmutter et al. (1999), and the

Fig. 12.— Window functions derived from the FAS-
TER analysis. These window functions are used to
relate a continuous theoretical model to the expected
experimental band powers, a crucial step in parameter
extraction. The functions are orthogonal, as a result
of the top-hat binning assumed in the theory. The
window for the first band shows how all the informa-
tion is coming from the 50 < ` < 76 region due to
the sharp filtering applied (in the FASTER pipeline)
to the timestream.

assumption that the geometry of space is flat.
In all cases, we use the COBE-DMR measure-
ments (Bennett et al. 1996) to provide a valuable
low-` anchor for the power spectrum.

We are interested in the robustness of our pa-
rameter extraction to the details of the input
power spectrum. Specifically, we would like to
know if the small differences between different
variations of the FASTER analysis, or between the
final FASTER and MADCAP power spectra, lead
to significant differences in cosmological results.
In Figure 13 we show likelihood curves for six cos-
mological parameters derived using only the weak
prior case, for several input versions of our angular
power spectrum results. In all cases the likelihood
curves are very similar, indicating the cosmologi-
cal results are not very sensitive to the details of
our analysis.

Having demonstrated the stability of our re-
sults, we now turn to extracting cosmological pa-
rameters from our angular power spectrum with
the series of applied priors discussed above. Fig-
ures 14 and Figures 15 show a set of one dimen-
sional likelihood curves for six parameters, derived
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Fig. 13.— Parameters extracted from our data plus
the COBE-DMR results (Bennett et al. 1996), using
two “weak” priors, 0.4 < h < 0.9 and age > 10 Gyr.
These likelihood curves are quite insensitive to vari-
ations in the method or details of the analysis, and
show that our analysis methods are quite robust. The
green dashed curve shows the FASTER results of Ta-
ble 2, while the solid blue shows the MADCAP results
of that same table. The black dot-dash curve shows
the FASTER result with no correction for the (1dps-
2dps)/2 consistency test failure. The magenta dotted
curve shows the results upon degrading the FASTER
analysis to 7′ resolution. The cyan solid curve shows
the (FASTER derived) B02 results, using less time-
stream data and sky coverage as discussed in the text.

from the data of Table 2, COBE-DMR, and the
priors described above. Inspection of these fig-
ures shows that the parameter likelihoods derived
from the FASTER and MADCAP results are very
similar for each set of priors. This again demon-
strates the stability of the cosmological results to
the chosen analysis path. Numerical estimates of
parameters derived from these curves are given in
Table 6, where a similar comparison can be made.

12. Conclusions

In this paper we have presented an analysis of
50% more data from the 1998 Antarctic flight of

 wk 

 LSS+wk 

 flat+wk

 LSS+flat+wk

Fig. 14.— Likelihood curves for six cosmological pa-
rameters, derived from the FASTER power spectrum
of Table 2 and COBE-DMR, for a series of applied pri-
ors described in the text. The solid blue curve is for
the “weak prior” case. The dot-dash red line adds the
LSS prior to the weak prior. The cyan dot-dash curve
is for the “weak prior” case with the added assump-
tion that the geometry is flat. The green dashed curve
adds to this the LSS prior. Three parameters, Ωk,
Ωbh

2, and ns are very well determined and unaffected
by the choice of prior. Ωch

2 is fairly well localized by
the weak and weak+flat cases, but much better de-
termined when an LSS prior is applied. Similarly, the
limits on τc improve with the use of the LSS prior. The
data favor a non-zero ΩΛ in the weak and weak+flat
cases; the use of an LSS prior leads to a very solid
detection. In all cases, the observed parameters are
consistent with a flat, Λ-CDM cosmology.

Boomerang than previously treated. Our anal-
ysis is the most thorough to date, using two very
different power spectrum estimation pipelines to
derive the angular power spectrum of the cosmic
microwave background radiation. The two meth-
ods show good agreement and, with the greater
amount of data used, an increase in the precision
of measured power spectrum. In particular, fea-
tures in the power spectrum beyond the first peak
(at ` ∼ 200) are detected with greater confidence.
Given that such features are a natural consequence
of standard cold dark matter dominated cosmolog-
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Table 7

Parameter Estimates

Priors Analysis Path Ωtot ns Ωbh2 Ωcdmh2 ΩΛ Ωm Ωb h Age τc

Weak h + age
MADCAP 1.040.05

0.06 1.020.08
0.07 0.0230.003

0.003 0.140.04
0.04 0.500.18

0.21 0.550.19
0.19 0.0770.023

0.023 0.560.10
0.10 14.81.4

1.4 < 0.52
FASTER 1.030.05

0.06 1.050.08
0.07 0.0230.003

0.003 0.140.04
0.04 0.460.21

0.21 0.580.21
0.21 0.0800.025

0.025 0.560.11
0.11 14.51.5

1.5 < 0.51
Weak h + age + LSS

MADCAP 1.030.05
0.05 1.010.07

0.06 0.0230.003
0.003 0.110.03

0.02 0.660.07
0.09 0.380.10

0.10 0.0650.020
0.020 0.610.11

0.11 14.91.7
1.7 < 0.50

FASTER 1.030.05
0.05 1.030.08

0.07 0.0240.004
0.003 0.110.03

0.03 0.680.07
0.10 0.360.11

0.11 0.0660.022
0.022 0.630.11

0.11 14.81.7
1.7 < 0.53

(h = 0.72 ± 0.08) + age
MADCAP 1.000.04

0.04 1.020.08
0.07 0.0230.003

0.003 0.130.04
0.03 0.640.11

0.14 0.380.13
0.13 0.0530.016

0.016 0.660.09
0.09 13.71.3

1.3 < 0.49
FASTER 0.990.04

0.05 1.060.09
0.07 0.0230.003

0.003 0.140.05
0.04 0.620.12

0.17 0.390.14
0.14 0.0550.016

0.016 0.670.09
0.09 13.41.3

1.3 < 0.49
Flat+ Weak h + LSS + SN

MADCAP (1.00) 1.010.06
0.05 0.0220.002

0.002 0.120.02
0.01 0.690.04

0.06 0.310.05
0.05 0.0470.005

0.005 0.690.04
0.04 13.60.4

0.4 < 0.30
FASTER (1.00) 1.040.06

0.06 0.0240.003
0.002 0.120.01

0.01 0.700.05
0.05 0.300.05

0.05 0.0480.005
0.005 0.700.05

0.05 13.60.4
0.4 < 0.31

Note.—Cosmological parameter estimates for the FASTER and MADCAP results, derived using a series of more restrictive
applied priors. The results show remarkable consistency between the two analysis paths, for all priors. The least stable
parameter is ns, with fairly consistent 1/2 σ variations between the two results.

 wk 

 LSS+wk 

 flat+wk

 LSS+flat+wk

Fig. 15.— Likelihood curves for six cosmological pa-
rameters, derived from the MADCAP power spectrum
of Table 2 and COBE-DMR, for a series of applied
priors described in the text. The curves are as in Fig-
ure 14, and lead to the same conclusions. The agree-
ment of the curves in this figure with those in Fig-
ure 14 demonstrates the insensitivity of our analysis
to the details of the CMB angular power spectrum
estimation pipeline.

ical models with adiabatic initial density pertur-
bations, their presence gives us greater confidence
in the validity of that model set.

Within the context of these models we have es-
timated the the values of cosmological parameters
using the results from both of our analysis meth-
ods. The resulting parameter values are insensi-
tive to the small differences between the two re-
sults. At the increased precision with which we de-
termine the cosmological parameters, we find that
our results remain completely consistent with a
flat Λ-CDM cosmology.
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