
Chapter 2

Cosmological Motivation

2.1 Introduction

This chapter summarizes the recent successes in CMB physics as well as the near-future

polarization measurements that will be exciting but challenging. It is these prospects and

challenges that ultimately motivated the detector development described in this thesis.

The standard model of cosmology and the theory of inflation are presented. The origin

of the temperature and polarization anisotropies in the Cosmic Microwave Background are

discussed in the context of these models as well as the cosmological parameters that have

been or will be constrained by characterizing these anisotropies. Challenges associated with

polarized foregrounds are also discussed.

2.2 Cosmological Expansion

There is strong observational evidence that the universe is expanding. Most notably,

the distance between the Milky Way and neighboring galaxies is larger now than in the

past, as evidenced by the spectral redshifting of distant galaxies relative to those nearby.
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This expansion is well modeled by general relativity with the Friedmann-Walker-Robertson

(FRW) metric:

ds2 = −dt2 + a(t)2
�

dr2

1−Kr2
+ r2(dθ2 + sin2 θdφ)

�
(2.1)

where K is large scale curvature and a(t) is the scale factor that records the history of

the universe’s dynamics. The scale factor vanished at the Big Bang and is currently unity

(Lyth [1993]).

The time-time component of the Einstein Field Equation applied to the Equation 2.1

is commonly known as the Friedmann Equation:

�
H(t)

Ho

�2

=
ρ(t)

ρo
− K

a2
(2.2)

where the Hubble parameter H(t) ≡ ȧ(t)/a(t) quantifies the expansion rate and is

measured to currently be Ho = 71km s−1 Mpc−1. ρo ≡ 3H2
o/8πG is the critical density

needed to close the universe; if our universes density exceeds ρo, it will ultimately re-collapse.

In this chapter, the overdots in all equations denote a time derivative.

The energy density ρ(t) is a sum of contributions from matter, radiation, and a cos-

mological constant whose individual densities change with time through the scale-factor.

Conservation of the Stress-Energy Tensor (Tµ
ν;µ = 0) formally establishes these dependen-

cies, but the results are physically intuitive. The energy density of matter is the rest mass

of each particle times its number density. This energy drops as the volume increases and

is proportional to a−3. Cosmic expansion not only dilutes photons like it does massive

particles, but it also decreases the energy of each photon by an additional factor of a as

expansion stretches the wavelengths. As a result, radiation density falls as a−4. A cosmo-

logical constant is assumed to have an energy density that does not scale with a (Carroll

[2003]). With these relationships in a flat universe, Equation 2.2 becomes:

H(t)2 = H2
o

�
Ωma−3 + Ωra

−4 + ΩΛ
�
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where Ω∗ is the energy in a particular species normalized to the critical energy density

ρo. During much of the universe’s history, the energy density was dominated by one of these

species and the other terms in the Freidmann equations could be ignored. As a result, the

behavior during these epochs was

a(t) ∝






t1/2 radiation dominated

t2/3 matter dominated

eHot Λ dominated

The very early universe was dominated by radiation, but transitioned into a matter

dominated universe at aeq = 4.15 ∗ 10−5/(Ωmh2). In more recent times, the universe has

transitioned once again into one dominated by a poorly understood Dark Energy whose

energy density appears to be nearly constant and whose negative pressure is causing the

universe’s expansion to accelerate. The best fit models to date describe Dark Energy as a

cosmological constant (Carroll [2003]).

The average temperature of the universe is tied to the most populous particle, the

photon, and this temperature has dropped as a−1 in step with the scaling of the photon

energies. The high temperatures in the very early universe kept baryonic matter ionized and

in tight thermal equilibrium with the photons through Thompson scattering. This statistical

equilibrium between ionized gas (e.g. electrons and photons), photons, and neutral hydrogen

atoms can be approximated by the Saha Equation:

X2
e

1−Xe

≈ 1

nb

��
meT

2π

�3/2

e−|me+mp−mH |/T

�

where the nb = ηbnγ ∼ 10−9T 3 is the baryon number density (Rybicki and Lightman

[1979]). Xe is the ratio of free electron number density to proton number density and the

high temperatures of the early universe held Xe close to unity (all matter ionized). While

energetics favored hydrogen production at temperatures of a few eV, the large number of

photons in the Wien tail of the thermal distribution (large ηb) kept the universe ionized
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Figure 2.1. Free Electron fraction vs redshift for Equilibrium (Saha) and Non-equilibrium
(Boltzmann) models. This figure is the result from an exercise from Dodelson [2003].

until T ∼ 0.25eV, when Xe abruptly dropped and atomic hydrogen formed. This event is

known as recombination and occurred at a redshift of z = 1100 (Lyth [1993]).

In reality, equilibrium between the photons and baryons was lost just before recombina-

tion in a phenomenon known as freeze-out where the Thompson scattering rate fell beneath

the Hubble rate. Despite the lack of equilibrium, the Saha equation predicts a recombina-

tion redshift of z ∼ 1100 in remarkable agreement with a more detailed numerical solution

to the Boltzmann equation (See Figure 2.1) (Dodelson [2003]).

Subsequently, the photons freely streamed across the universe until they are seen in

our telescopes today. Further expansion stretched their wavelength by a factor of 1100

into the millimeter range and this light source is known as the Cosmic Microwave Back-

ground (CMB). It is perhaps the most compelling evidence in favor of a hot Big Bang since

once-competing “steady state” models of expansion had no natural way of explaining a near-

uniform thermal radiation source at such a specific and high red-shift. Measurements by

the Far InfraRed Absolute Spectrometer (FIRAS) instrument on the COsmic Background
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Figure 2.2. Frequency Spectrum measured by FIRAS. The data error-bars are famously
smaller than the thickness of the theoretical co-plotted line. Figure from Fixsen et al. [1996]

Explorer (COBE) satellite have shown that it’s frequency distribution is very closely mod-

eled by a Plank Distribution (See Figure 2.2) that it is nearly isotropic, with temperature

differences no larger than a few parts in 100,000 (Fixsen et al. [1996]).

2.3 Inflation

The Hot Big Bang scenario described in the previous section is well supported by mea-

surements of the CMB and observations of Hubble’s Law. In addition, predictions of the

relative abundances of light elements (isotopes of Hydrogen and Helium) by Big Bang Nu-

cleosynthesis agree well with the observed abundances in young galaxies (Olive et al. [2000]).

Nonetheless, there are problems with the classic Hot Big Bang model.

Recent observations of the CMB anisotropies (see Section 2.5) suggest that the universe

is nearly geometrically flat. Equivalently, the total energy density is very close to the critical
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density, ρc = 3m2
pl
H2

o/8π, where mpl is the Plank Mass. However, the Friedmann equation

in a universe with curvature K can be rewritten as

|ρ(t)− ρc|
ρc

=
K

(aH)2
∝ t (2.3)

where the proportionality applies to the early radiation dominated universe. For the

current density to be ρo ≈ ρc, the density at the plank scale temperatures would have to

have been

����
ρ(tplank)

ρc
− 1

���� ≤ 10−59

If this inequality was not met, the universe would have re-collapsed long before 13.7

Gyr, or it would have expanded so rapidly that it’s average temperature would now be far

lower than 2.7K. So the curvature of the very early universe must have been extremely close

to flat. The hot big-bang model discussed above has no explanation for this required fine

tuning (Liddle [1999]).

There are additional problems. The particle horizon is the maximum comoving distance

that light could have traveled since the Big Bang:

η =

� t

0

dt

a(t�)
=

� 1

0

da�

a�2H(a�)

Objects separated by distances larger than the horizon have never been in causal contact.

The horizon has increased as the universe has aged and was much smaller at reionization

than it is today; regions that were casually connected at z ∼ 1100 now only subtend an

angle of 1.12o on the sky. Points currently separated by larger angles than this should not

have been in causal contact at recombination and should never have thermally equilibrated.

Nonetheless, the CMB has been measured to be isotropic on large angular scales to a level

of 1 part in 100,000. Physics beyond the classic Big Bang universe is needed to explain this

remarkable isotropy.

Inflation is a hypothesis that solves these and other related problems by speculating
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that the universe underwent an accelerated superluminal expansion very shortly after the

Big Bang. The horizon size can be rewritten as a logarithmic integral over the the Hubble

Radius 1/aH:

η(a) =

�
a

0
d[ln(a�)]

1

a�H(a�)
(2.4)

The Hubble radius is the distance that particles can travel over one expansion time

(doubling of a); it defines the maximum separation between particles that are in causal

contact at a specific time. When the early universe inflates, a sudden increase in a causes

the Hubble radius to rapidly shrink. This allows for regions larger than the current universe’s

Hubble Radius to have once been causally connected and in thermal equilibrium, explaining

the apparent isotropy observed in the CMB.

Since many inflation models are driven by scalar fields operating at temperatures of at

least 1015 GeV, the scale factor at the end of inflation would have been aend ≈ To/1015GeV ≈

10−28 ≈ e64. So to ensure that all scales currently within the horizon today were also once

within the horizon before they were pushed out by inflation, inflation must have expanded

the universe by at least 64 e-foldings. Such an expansion explains the high level of isotropy

in the CMB between points on the sky that would not have been causally connected in the

classic Big Bang scenario (See Figure 2.3). This rapid expansion also solves the flatness

problem with almost identical numerology, where the 1028 decrease in Hubble radius in

Equation 2.3 causes the difference between ρ and ρc to drop to the required 10−60 level

(Dodelson [2003]).

The time-time and space-space components of the Einstein equations may be combined

to give:

ä = −4πG

3
(ρ+ 3P )

where the ρ and P are the energy density and Pressure of the fields driving inflation.

The comovng Hubble radius will shrink ( d

dt

1
Ha

< 0) when ä > 0, or when the universe’s

expansion accelerates. This would have happened during inflation if the pressure P was
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Figure 2.3. Cartoon showing how the Comoving Horizon (Hubble radius, Equation 2.4),
pictorially shown by the green circles, shrinks between the Start and End of Inflation. Over
the subsequent 13.7 Gyr, the our observable universe grows again, but not larger than the
region of uniform temperature shown in yellow. This figure is adapted from a figure by
Andrew Liddle (Liddle [1999]).

negative, specifically P < −ρ/3. Negative pressures arise when fields are trapped in a “false

vacuum” with less Kinetic than Potential energy, allowing their difference, the pressure

(T i

i
), to be negative.

While the detailed physics of inflation is not yet understood, many speculative models

are driven by a scalar field potential V (φ) whose geometry is summarized by the slow roll

parameters:

� ≡
m2

P l

2

�
V �

V

�2

η ≡ m2
P l

V ��

V

(2.5)

where � denotes functional differentiation with respect to the field φ. Models frequently

invoke the slow-roll approximation where � << 1 and η << 1, which ensures that inflation

lasts long enough for the total scale expansion:
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N ≡ ln
aend
ainitial

=

�
te

ti

Hdt ∼= − 8π

m2
pl

� φe

φi

V

V �dφ

to exceed the required 64 e-foldings (Liddle [1999]).

2.4 Inflation as a Source of Structure

Inflation is not just a handy explanation for problems in the classic big bang model; it

can also explain the origin of large scale structure in the universe. The gravitational (gµν)

and inflation (φ(x, t)) fields have quantum mechanical fluctuations whose averages vanish,

but whose variances do not. During inflation, the gravitational metric perturbations were

amplified to cosmic scales outside the horizon where they are frozen in. The inflation field

inflated too, but at the end we presume that it decayed into a hot bath of more familiar

particles. These fields can be separated into homogeneous parts plus small fluctuations that

are not spatially uniform:

φ(x, t) = φo(t) + δφ(x, t)

gµν =





−1 0 0 0

0 a2 0 0

0 0 a2 0

0 0 0 a2





+ 2





Ψ(x, t) 0 0 0

0 a2Φ(x, t) 0 0

0 0 a2Φ(x, t) 0

0 0 0 a2Φ(x, t)





+ a2





0 0 0 0

0 h+(x, t) h×(x, t) 0

0 h×(x, t) −h+(x, t) 0

0 0 0 0





where the first terms in these equations are the homogeneous parts (Dodelson [2003]).

The metric tensor is given in rectangular coordinates for a flat universe with inhomogeneities
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separated into the decoupled scalar and tensor terms. The tensor term is written only for

modes traveling along the ẑ axis. The space-space Einstein Equations to first order in h+,×

are:

¨h+,× + 2
ȧ

a
˙h+,× + k2h+,× = 0 (2.6)

This equation of motion models tensor modes as a harmonic oscillator (gravity waves)

with a damping term created by the expansion of the universe (Carroll [2003]). When

quantized, the expectation of the variance is
�
ĥ†(k, η)ĥ(k, η)

�
≡ (2π)3Ph(k)δ3(k − k�),

where

Ph(k) =
8π

k3
H2

m2
plank

|aH=k ∝ knT−3

The last proportionality defines the tensor spectral index nT , which is nominally 0 for

an ideal scale invariant (Harrison-Zeldovich) power spectrum k3Ph(k) (Liddle [1999]).

Perturbations to the scalar and inflations fields inflate as well, producing a similar scalar

spectrum PδΦ. However, the two fields couple as they are pushed out of the horizon, which

complicated the mathematics considerably (Dodelson [2003]). The result of this analysis is

that:

PΦ(k) =
8π

9k3
H2

�m2
plank

|aH=k ∝ 1

k3

�
k

Ho

�nS−1

(2.7)

(Liddle [1999]). As above, the scalar spectral index nS is nominally 1 for a scale invariant

spectrum. COBE fixed the magnitude of the scalar spectrum on large scales at δH ∼

2× 10−5, which from Equation 2.7 fixes the energy scale of inflation to be similar to energy

scales associated with GUT scales:

V 1/4 ∼ �1/41016GeV

While � and η are the more fundamental parameters that characterize the inflationary
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potential’s shape, the figures nS and nT are more closely tied to observations and are

often preferred in the observational literature. Logarithmic derivatives of the above spectra

establish relationships between them:

nS = 1− 6�+ 2η

nT = −2�

Additionally, the tensor to scalar ratio defined in terms of CMB anisotropy Cls can be

shown to be

r ≡
CT

l

Cs

l

∼= 4π�

A successful measurement of r could constrain the energy scale of inflation and restrict

the space of viable models for the inflationary potential (Liddle [1999]). Data from Large

Scale Structure surveys and CMB maps have already constrained nS and hence some infla-

tionary potentials (see Figure 2.4). The space of viable models will no doubt decrease with

improved measurements of the Microwave Background.

Finally, the two parameters � and η suffice to summarize all slow roll inflation potentials,

while the extra parameter in the set nS , nT , and r contais no new information. Eliminating

nS leads to a constancy relationship:

r = −2πnT

This constancy relationship is generally true of all slow roll inflation potentials. Our field

has yet to develop the means to measure a non-zero r, let alone nT to test this relationship.

However, it is unlikely that any mechanism other than slow roll inflation would relate

the two spectra in this specific way. Detecting scalar and tensor perturbations with this

relationship would constitute (for many scientists) a “smoking gun” confirmation of the

inflationary paradigm.
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Figure 2.4. Large Scale structure data from Sloan Digital Sky Survey as well as CMB data
from WMAP, ACBAR, QUAD, and BICEP constrain r < 0.17 and n = 0.926 ± 0.026 a
95% confidence. Confidence contours are co-plotted with different inflation models, where
the labeled points refer to the number of e-foldings. These data alread rule out a chaotic
potential λφ4 to high confidance. Figure from Finelli et al. [2010].

2.5 Temperature Anisotropies in the Microwave Background

The Microwave Background is not perfectly uniform in temperature; there are variations

of 1 part in 100,000. These anisotropies are sourced by the metric perturbations discussed in

the previous section and their time-evolution is modeled by the Boltzmann Equations. The

Boltzmann Equations relate the statistical distribution of particles in different momentum

states to the collision rates between these particles in a general way that does not require

statistical equilibrium. A full discussion of this theory is beyond the scope of this thesis,

and we just summarize results as needed in the remaining sections. We refer the interested

reader to Dodelson [2003] and Liddle and Lyth [2000].

The Boltzmann Equations for the photons’ anisotropic temperature T (x, p, η) =

T (η)[1 +Θ(x, p̂)] are often decomposed into equations for different multipole moments:

Θ� ≡
1

−i�

� 1

−1

dµ

2
P�(µ)Θ(µ)
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where µ is the cosine of the angle between the wavenumber of the perturbation mode

under consideration and direction of photon propagation and P� is a Legendre Polynomial

of order �. For � ≥ 2, the Boltzmann equations can be approximated as

Θ̇� −
k�

2�+ 1
Θ�−1 +

k(�+ 1)

2�+ 1
Θ�+1 = τ̇Θ� (2.8)

(Hu and Dodelson [2002]). Prior to recombination, the photons were tightly coupled

to the electrons and nuclei. This era was characterized by photons having a mean free

path much smaller than the Hubble radius (τ >> 1), which suppresses the first and third

terms of Equation 2.8, forcing Θ� ∼ Θ�−1/τ . As a result, only the first two moments were

relevant before recombination. Combining the equations for the first two moments with a

Boltzmann equation for the velocity of baryonic matter gives an equation for the photon

monopole that is analogous to a driven and damped mechanical harmonic oscillator:

�
d2

dη2
+

Ṙ

1 +R

d

dη
+ k2c2s

�
[Θo + Φ] =

k2

3

�
1

1 +R
Φ−Ψ

�
(2.9)

where R = 3ρb/4ργ is the ratio of baryons to photons and cs = 1/
�
3(1 +R) is the

sound speed through the photon-baryon fluid (Hu and Dodelson [2002]). The combination

of Θo+Ψ more closely relates to the observed temperatures than just Θo since the photons

redshift as they climb out of the wells with a potential -Ψ.

Equation 2.9 says that modes of wavenumber k oscillate with a restoring force provided

by the photon pressure (third term LHS) acting on the ionized baryonic matter while the

gravitational wells assist compression (RHS). Inflation excites all modes with the same

phase, so the most important are the harmonics reaching full compression or rarification

at recombination; they are the modes that provide the CMB anisotropies with the greatest

power. The age of the universe at recombination and the sound speed cs determine the

wavenumbers of these resonant modes. Cosmologies with higher baryon densities (larger R)

will have lower sound speeds and hence lower wavenumber peaks in Θo +Ψ.
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The tight coupling approximation applies only to the largest scale modes. Over a Hubble

time H−1, the photons random walk a distance of

λD ∼ 1/
�
neσTH

where σT is the scattering cross section and ne the number density of electrons. Modes

with wavelengths smaller than this are washed out, and so only the first few lowest wavenum-

ber modes leave an observable imprint on the microwave background (Dodelson [2003]).

After recombination, the photons decouple from the baryonic matter and free-stream

across the universe. Since τ � 1 in a neutral universe, all terms of Equation 2.8 are

relevant, and power leaks out of the first two multipoles and into the higher � modes.

Simply put, the modes with wavenumber k at recombination manifest themselves today as

angular anisotropies with scale � ∼ kηo, where ηo is the Hubble radius of the last scattering

surface. Cosmologists often resolve the observed photon energy into a basis of spherical

harmonics:

Θ(x, p, η) =
∞�

l=1

��

m=−l

a�m(x, η)Y�m(p)

The coefficients’ average should vanish �a�m� = 0, but the variance for a specific � should

not:

�a�ma∗��m�� = δ���δmm�C�

2.6 Parameters constrained by Temperature Anisotropies

Numerous experiments have measured the temperature anisotropies, and the results

from WMAP and are shown in Figures 2.5 (Larson et al. [2010a]). The angular power

spectrum has a series of pronounced harmonic peaks that are difficult to explain outside of

an inflationary scenario. These measurements have had a profound influence on our under-

standing of the cosmos, allowing scientists to constrain multiple cosmological parameters
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Figure 2.5. WMAP’s full sky false color map of deviations in temperature from the 2.71K
average. Figure from Larson et al. [2010a]

summarized in Table 2.1 (Komatsu et al. [2010]). While this is accomplished through like-

lihood estimators, many of the parameters have an intuitive connections to the features of

the spectrum in Figure 2.6.

2.6.1 Curvature

The CMB has been used to demonstrate that the universe is geometrically flat on the

largest observable scales. Were the universe not flat, rays that were initially parallel would

converge or diverge and the original inhomogeneities discussed in the previous section would

be projected onto respectively smaller or larger angular scales. The first anisotropy peak

sits at � ∼ 200, which is consistent with a flat Universe with ΩK = 0 and implies, from

the Friedmann Equation, that the universe has a critical density ρc. The flatness of the

universe is one of the key predictions of inflation confirmed by the CMB’s angular power

spectrum.

22



Figure 2.6. CMB Temperature Angular Power Spectrum of the full sky from seven years
of WMAP data. This plots variance of spot temperature vs reciprocal of spot size Figure
from Larson et al. [2010a].

2.6.2 Baryon Density

The right-hand side of Equation 2.9 is a driving term that introduces a particular solu-

tion in addition to the homogeneous terms, causing an offset to the zero point of oscillations.

Since the observed temperature fluctuations are proportional to the variance of Θo+Ψ, this

offset will enhance the odd peaks while suppressing the even ones. This effect will be

stronger for lower resonant wavenumbers, and hence larger values of R.

As a result, the ratio of the heights of the even and odd peaks can be used to constrain R.

Since the photon density is tightly constrained by the CMB temperature, the baryon density

was thus determined to be Ωb = 0.0449± 0.00288. This figure is consistent with measured

deuterium abundances in high redshift quasars when compared against the theory of Big

Bang Nucleosynthesis, but it places an even tighter constraint than those measurements.
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2.6.3 Matter Density

A cosmology with a low matter density will have an epoch of matter-radiation equality

that is closer to recombination. Since the photons are neither able to cluster nor help

gravitational wells grow, those gravitational modes that re-enter the horizon long before

recombination decay away. The photons that compress into such a decaying gravitational

well will see a lowered potential barrier when they rarify and can emerge much hotter. This

effect results in enhanced power in the smaller acoustic peaks for lower matter density and

has been used to constrain ΩCDM = 0.222± 0.026.

2.6.4 Scalar Spectral Index

Equation 2.7 defines the scalar spectral index, where a scale-invariant power would

correspond to nS = 1. If nS < 1, then the power in the gravitational wells, and hence the

CMB anisotropies, will be smaller at small scales resulting in a tilt to the spectrum. Since

the spectrum is often normalized around a point point of � = 10, this effect becomes very

pronounced at the high-� end of the spectrum focused on by ACBAR. By assuming that

there is no running scalar-index (i.e, ns is not a function of k), WMAP and ACBAR data

constrain nS = 0.964± 0.0114 (Komatsu et al. [2010]).

Table 2.1. Parameters constrained from 7-year WMAP data set

Parameter Fit Description

100Ωbh2 2.258+0.057
−0.056 Baryon density

ΩCDMh2 0.1109± 0.0056 Cold Dark Matter density
ΩΛ 0.734± 0.029 Dark Energy density
Ωk 0.080+0.071

−0.093 Curvature density
nS 0.964± 0.0114 Scalar Spectral Index
r < 0.36 (95% CL) Tensor Scalar Ratio
Σmν < 1.3eV (95% CL) Neutrino mass sum
to 13.75± 0.13 Gyr Current Age of the Universe
Ho 71.0± 2.5 km/s/Mpc Current Hubble Parameter, H = 100h
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Figure 2.7. A Cartoon illustrating how Thomson scattering can convert a quadrupolar
temperature distribution into polarized signal. In this case, the hot regions (blue) on the left
and right drive the electron in vertical oscillations harder than the cooler region (red) above
and below drive horizontal oscillations, resulting in scattered radiation that is partially
polarized in the vertical, as depicted in black This figure is adapted from one in Hu and
White [1997].

2.7 E mode Polarization Anisotropies

The Microwave Background is also polarized and mapping this is now the primary

occupation in our field. This polarization arises because the CMB photons Thomson scatter

off the primordial plasma. A photon traveling in the direction n̂inc with polarization �̂(n̂inc)

will scatter off charged particles into the direction n̂ and polarization �̂(n̂) with a cross

section proportional to

2�

j=1

|�i( ˆninc)�j(n̂)|2 (2.10)

(Rybicki and Lightman [1979]). Figure 2.7 shows a cartoons that is often cited to

intuitively explain how polarization arises from Thomson scattering (Hu and White [1997]).

If a scattering particle is illuminated uniformly, it will scatter unpolarized light. But if it is

illuminated with hot sources along the x̂ axis, but cool along the ŷ axis, it will scatter light

with a vertical partial polarization.
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The polarization of light with wavevector in the ẑ direction is characterized by the

Stokes parameters (Rybicki and Lightman [1979]):

I ≡ E2
x + E2

y

Q ≡ E2
x − E2

y

U ≡ E2
x+y − E2

x−y

V ≡ E2
x+iy − E2

x−iy

(2.11)

I is simply the intensity. Q is the difference in power polarized along x̂ and ŷ while

U is that difference in power polarized on the pair of axis rotated 45o from x̂. These

characterize the magnitude and orientation of linear polarization. V quantifies how circular

the polarization is by differencing the two chiralities. Thompson Scattering should not

produce circular polarizations, so V is expected to be zero.

Let the incident light upon a scattering particle have a temperature distribution Θ(k, k̂ ·

n̂inc), where k is the wavevector of a single acoustic mode. If we are positioned such that

we only see light scattered in the n̂ = ẑ direction, inserting Equation 2.10 into Equations

2.11:




Q

U



 ∝
�

dΩ�Θ(n�)
2�

j=1





��x̂ · �̂j �
��2 −

��ŷ · �̂j �
��2

��(x̂+ ŷ) · �̂j �
��2 −

��(x̂− ŷ) · �̂j �
��2



 (2.12)

∝
�

dΩ�Θ(n�)




Y2,2(θ�,φ�) + Y2,−2(θ�,φ�)

Y2,2(θ�,φ�)− Y2,−2(θ�,φ�)



 (2.13)

which vanishes for all multipole moments of Θ(n�) aside from � = 2 (Kosowsky [1996]).

For a scalar mode traveling with a wavenumber in the x̂ axis, the relevant moment is

Θ(k, k · n̂inc) ∝ Θ2(k)P2(k̂ · n̂inc) (2.14)

So Q((̂z), k) ∝ Θ2(k) and U(ẑ, k) = 0 in that specific situation. More generally, the
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Figure 2.8. Cartoon illustrating E-mode polarization from a single fourier mode of scalar
perturbation. Cool regions are red, hot are blue and the blue arrows represent the strongest
incident optical power onto the charged particle. The scattered light is partially polarized,
and the wave of the strongest polarization is depicted in black. Note that this must be either
parallel or perpendicular to the wavevector (green) and hence the temperature gradient.

stokes parameters of photons scattering off a scalar mode traveling in the direction k̂ =

(sin(θk) cos(φk), sin(θk) sin(φk), cos(θk)) are




Q

U



 ∝ (1− (n̂ · k̂))2Θ2(k)




cos(2φk)

sin(2φk)



 ≡ Θp(n̂ · k̂)




cos(2φk)

sin(2φk)



 (2.15)

Just like the temperature anisotropies, the full distribution of polarized light ΘP (k, µ)

is governed by a Boltzmann Equation. In the strong coupling limit, this reduces to the

qradrupole distribution in Equation 2.14. After recombination, power from � = 2 leaks into

the higher-� anisotropies

ΘP �(k) � −5kΘ1(k, η∗)�2j�(kηo)

6τ̇(kηo)2
(2.16)

(Kosowsky [1996]). The key feature of this distribution is that the orientation of the

polarization is always parallel or perpendicular to the gradient in temperature, as illustrated

in Figure 2.8. After a parity flip, the polarization is still be parallel or perpendicular to

that gradient: the pattern is even under parity. Since there is no directional information to

a scalar mode aside from it’s own wavevector, the scattered light has no choice but to be

polarized parallel or perpendicular to these directions, and this property is preserved even

after the photons free-stream and move power into the higher � modes in Equation 2.16.
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Figure 2.9. E-mode Angular Power Spectra from several experiments. Figure from Chiang
et al. [2010].

The E-mode/B-mode decomposition reveals this underlying even-symmetry:

E(�) ≡ Q(�) cos(2φ�) + U(�) sin(2φ�)

B(�) ≡ −Q(�) sin(2φ�) + U(�) cos(2φ�)

where in this equation, � is a vector projected on the sky making an angle φ� with

respect to the x̂-axis. For the even symmetry scalar mode generated patterns, CBB(�) = 0

and lim
��1

CEE(�) = CP,� (Challinor and Peiris [2009]). Recently, several experiments have

measured these spectra as shown in Figure 2.9.

The EE spectra, particularly those measured by BICEP and QUAD, show similar fring-
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ing as the temperature spectrum (Figure 2.6). However, the dipole moment at recombi-

nation primarily sourced the E-modes, in constrast the temperature anisotropies that were

sourced by both monopole and dipole terms. As a result, the E-modes are a half-cycle

out of phase from the temperature peaks, as revealed in the TE correlation spectrum. And

because E-modes are only sourced by one moment, the peaks have a higher fractional power

compared to the Temperature. Additionally, it’s power is lower by an order of magnitude

because the multipole moments at recombination drop by factors of τ̇ for each increase in �.

Finally, the B-mode power spectrum is consistent with zero, as predicted by the spectrum

sourced by scalar perturbations.

2.8 B mode Polarization Anisotropies

Scalar modes are not the only polarization source in the CMB. Tensor perturbations

also generate temperature quadrupole moments, but unlike the scalar perturbations, they

have their own (h+, h×) polarization as well. This additional structure that is absent from

the scalar modes allows the polarized photons to scatter into both even and odd parity

patterns, as illustrated in the cartoons in Figure 2.10.

Photons were incident upon particles at last-scattering from all directions n̂inc =

(sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)). A tensor mode traveling in the ẑ direction with po-

larization h× has an angular dependence

ΘT ∝ sin2(θ) sin(2φ) = 2ninc

x ninc

y

For a gravity wave propagating in the general direction (sin(θk) cos(φk)

, sin(θk) sin(φk), cos(θk)), the general temperature distributions is just the result of ro-

tating the n̂inc by a matrix R̃ that would put k̂ back along the ẑ axis.
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(a) E-modes from h+ Gravity waves

(b) B-modes from h× Gravity Waves

Figure 2.10. Cartoons illustrating E-mode and B-mode polarization from a single fourier
modes of tensor perturbations (gravity waves). Cool regions are red, hot are blue. The axis
with the highest amplitude of electron oscillation is denoted with the double-headed black
arrows. This will be the plane of oscillation, projected onto the sky. Note that in 2.10(b), the
polarization is at a 45o angle to the wavevector (in green) and hence temperature gradient.
This Figure is adapted from one in Kovac [2004].

ΘT ∝ (R̃ninc)x(R̃ninc)y

∝ cos(θk)
�
e−i2φkY ∗

2,−2(θ,φ)− ei2φkY ∗
2,2(θ,φ)

�
+

sin(θk)
�
e−iφkY ∗

2,−1(θ,φ)− eiφkY ∗
2,1(θ,φ)

�

(Dodelson [2003]). From Equation 2.13, the Q and U components pick out only the

m = 2 Harmonics, yielding

30






Q

U



 ∝ ΘT

0 (k) cos(θk)




− sin(2φk)

cos(2φk)



 � ΘT

0 (k)n̂ · k̂




− sin(2φk)

cos(2φk)





This results in a pure B-mode signal, one who’s polarization is oriented 45o from the

intensity gradient. A similar analysis of h+ polarized gravity waves would yield a pure

E-mode contribution:




E

B



 ∝ n̂ · k̂




h+

h×





When a tensor perturbation re-enters the horizon, causal physics described by Equation

2.6 determine it’s time evolution. The second term sourced by the Universe’s expansion

acts as a damping term and the waves rapidly decay away. As a result, there should

be a strong peak in the B-mode anisotropy spectrum corresponding to the modes that

were just re-entering the horizon at recombination and greatly suppressed power at other

angular scales (see Figure 2.11). Additionally, the effects of Tensor perturbations on the

Temperature power spectrum are degenerate with the Scalar perturbations. However, this

B-mode signature cannot be produced by Scalar modes and can in principle be used to

determine the tensor-to-scalar ratio r. As of the writing of this thesis, non-zero CMB

B-modes have not been detected.

2.9 Gravitational Lensing

The CMB should be distorted by gravitational wells between us and the last scattering

surface by lensing. Following an order of magnitude calculation from Lewis and Chanllinor

(Lewis and Challinor [2006]), the impact on the temperature power spectrum will be minor.

If only point sources of well depth 3×10−5 lens the CMB photons, then they will be deflected

δα ∼ 4Ψ ∼ 1.2× 10−4. Since the matter power spectrum suggests that most of these wells

have a comoving diameter of ∼ 150 Mpc, there should be around 100 such wells between

us and the last scattering surface 14000 Mpc away. So the total random walk of the CMB
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Figure 2.11. Simulated E-mode and B-mode angular power spectra. The lensing B-modes
(see section 2.9) are separated from the primordial B-modes with r = 0.1 and r = 10−3

possibilities. These were compiled with data available in 2006, displaying the 95% confidance
intervals. Figure from Lewis and Challinor [2006].

photons will experience a total deflection of
√
10 × 1.2 × 10−4 ∼ 1 × 10−3 rad, or roughly

3 arcmin. This means that the lensing contribution only dominates on scales in excess of

� ∼ 2000. Lensing can have a subtle impact on the acoustic peaks because, for lensing

sources half-way to last-scattering, the lensing will be correlated on scales 150/7000 rad

∼ 1.2o. This effect distorts the anisotropies at a 0.05o/1.2o ∼ 2.5% which will widen the

accoustic peaks at the percent level.

However, lensing will have a more pronounced impact on the polarization. Lensing will

distort the CMB photons’ propagation direction by d = ∇φ, where the well-known lensing

potential can be written as an integral over the gravitational potentials Ψ(z):

φ = 2

�
zCMB

0

dz

H(z)

χ(z)− χ(zCMB)

χ(z)χ(zCMB)
Ψ(z)

and where χ(z) is the comoving distance to a lensing well at redshift z. The stokes

parameters will be modified by X(n̂�) = X(n̂+ d), where X can be I, Q, or U. Even though

lensing will not mix Q and U, it will shear E into B and vise versa (Lewis and Challinor
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Figure 2.12. Simulated angular power spectrum for the lensing deflection angle Cdd

� ≡
�(�+ 1)Cphi

� . The top panel is simulated for mν = 0 while the bottom shows deviations for
∆mν = 0.1 eV and ∆w = 0.2. Figure from Kaplinghat et al. [2003]

[2006]). In particular, the much hotter E-modes will be partially reprocessed into B-modes

with an angular power spectrum

CB

� =

�
d2��

(2π)2

�
��(̇�− ��)

�2
Cφ
|�−��|C

E

|��|sin
22(θ�� − θ�) (2.17)

where Cphi is the angular power spectrum of the lensing potential. This results in a

lensing B-mode contribution shown in Figure 2.11 ((Lewis and Challinor [2006])).

While this may dominate over the primordial B-modes for many possible values of r, it

will likely be scientifically interesting in it’s own right. The lensing signal should be sensitive

to parameters that impact structure formation late in our universes history, specifically the

sum of the three generations of neutrino masses and the dark energy equation of state.

Figure 2.12 shows the simulated power spectrum for the lensing deflection angle as

well as distortions from a change in total neutrino mass ∆mν=0.1eV and the dark energy

equation of state ∆w=0.2. Massive neutrinos do not cluster on scales smaller than their

Jean’s length, which decreases as the universe cools. However, we do expect neutrinos to
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cluster at scales larger than their jean’s length at matter-radiation equality, which results

in a slight decrement of power at high-�.

Conversely, dark energy drives cosmic acceleration and suppresses structure at late

times. As a result, it will suppress the deflection angle power spectrum more at low-�.

These two effects are sufficiently distinct that they may be simultaneously constrained by

measurements of the lensing B-mode signature (Kaplinghat et al. [2003]).

The primordial B-modes will likely be dominated by lensing, but there are several

proposals to mitigate this possibility should it arise. Maps that cover large portions of the

sky from Plank and SPIDER may be sensitive to the B-mode reioniation peak at � ∼ 7

where lensing is very weak. Additionally, the lensing statistics is non-gaussian, as seen

from Equation 2.17 that convolves two gaussian distributions. There are several proposals

that exploit this non-gausianity of the lensing distribution to statistically de-lens maps and

possibly allow for detection of B-modes at the reionization peak even if r is very small.

2.10 Polarized Galactic Foregrounds

Efforts to detect B-mode polarization will likely be confounded by contamination from

polarized galactic foregrounds. As of the writing of this thesis, few CMB experiments have

had to remove these sources, but that may change in the near future as we seek to map the

sky’s millimeter polarization to even finer levels. Synchrotron emissions and thermal dust

emissions are most likely the strongest foreground sources. Fortunately, they bear different

spectral signatures than the CMB’s 2.7K blackbody spectrum, so in principle, they can

be characterized and removed from millimeter-wavelength maps if the sky is mapped at

multiple frequency channels. For a foreground model with N components, an experiment

will need at least N + 1 channels to remove the foregrounds from a CMB map. The

spectral properties of synchrotron and thermal dust emissions are summarized in the next

two subsections.
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2.10.1 Synchrotron Emission

Synchrotron radiation is emitted by cosmic rays that are accelerated by the galactic

magnetic field. The antenna temperature of these emissions is T (ν) ∝ νβ , where the

exponent β = −(p + 3)/2 is related to the power law for electron energies N(E) ∝ E−p.

Synchrotron radiation can have a strong fractional partial polarization of

f =
p+ 1

p+ 7/3

aligned with the magnetic field lines. For microwave frequencies with β ≈ −3, this can

be as high as 0.75, but line of sight averaging tends to reduce this significantly.

Mapping this foreground in the millimeter spectral range is still an active area of re-

search, but the WMAP satellite has contributed significantly to our understanding of it.

WMAP mapped the sky at five spectral bands spanning a microwave/millimeter range of

23GHz to 94GHz. For coarse 3.7o pixels, the dominant polarization was consistent with a

Synchrotron source with β ≈ −3 (See figure 2.13). The precise synchrotron spectral index

varied with position on the sky, dropping to -3.25 at 75o off the galactic plane. This models

will no doubt increase in complexity as higher resolution maps are made. Finally, the in-

creased power in the 94GHz channel is consistent with thermal dust emissions with β ≈ 2

discussed in the next subsection (Kogut et al. [2007]).

2.10.2 Thermal Dust Emission

Aspherical dust particles with strong magnetic moments can be aligned to magnetic

fields in the interstellar medium, often with their longest axis perpendicular to the fields.

As a result, they absorb and emit radiation with a partial polarization perpendicular to the

field lines.

Dust emissions are frequently modeled as multiple thermal components with a

frequency-dependent emissivity: I(ν) ∼ νβBν(T ). While these sources are expected to

dominate over synchrotron emissions for frequencies above 100GHz, there is little data cur-
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Figure 2.13. Polarized Foreground emissions from WMAP. They are consistent with a
synchrotron emissions model with β ≈ −3 except for the two highest frequency channels
that are best described with a thermal dust emission model. Note that the foreground
contributions decrease off the galactic plane. Graphi from Kogut et al. [2007]

rently available in the millimeter range. Data from the COBE satellite’s Diffuse Infrared

Background Experiment(DIRBE) mapped the sky with 6o resolution at 100 µm and 240

µm (3000GHz and 1250GHz). These maps have been modeled with two components at

Temperatures 9.5K and 16K, with β of 1.7 and 2.7 respectively (Finkbeiner et al. [1999]).

However, the High Frequency Instrument (HFI) on the Plank satellite has six bands be-

tween 100GHz and 857GHz, the lowest four of which have polarization sensitivity. This

instrument will like provide much more data on this in the near future.

2.11 Conclusions

Recent success in measuring the CMB’s temperature and polarization anisotropies have

driven the rapid progress in Cosmology over the past decade. There are potentially even

greater rewards for those who can successfully separate the B-mode polarization from CMB
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maps. However, these signals are extraordinarily weak and will likely be masked by polarized

emissions from our own galaxy.

While existing technology has enabled great strides, it is unlikely to suffice for future

CMB polarization measurements. As a field, we will need both increased optical through-

put in our telescopes coupled with the ability to spectrally differentiate foregrounds from

cosmic signals. Absent these motivations, the detector work described in this thesis is still

an interesting exercise in electromagnetic design. However, with these cosmological chal-

lenges in mind, the novel design methodology may enable otherwise impossible advances in

fundamental physics.
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