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Abstract

A Log-Periodic Focal-Plane Architecture for Cosmic Microwave Background

Polarimetry

by

Roger Christopher O’Brient

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Adrian T. Lee, Chair

We describe the design, fabrication, and laboratory-demonstration of a novel dual-polarized

multichroic antenna-coupled Transition Edge Sensor (TES) bolometer. Each pixel separates

the incident millimeter radiation into two linear polarization channels as well as several fre-

quency channels (bands). This technology enables us to realize bolometer arrays for Cosmic

Microwave Background (CMB) polarimetry measurements that map the sky at multiple

colors while simultaneously boosting the optical throughput over what would have been at-

tained from arrays of single-frequency channel detectors. Observations at multiple frequency

channels are important for differentiating polarized galactic foregrounds and atmospheric

fluctuations from the CMB.

Each pixel couples free-traveling radiation onto lithographed microstrip transmission

lines prior to the bolometers using a dual-polarized broadband antenna known as a sinuous

antenna. The transmission lines are integrated onto the back of the antenna arms and

the antennas are in direct contact with an extended-hemispherical lens. We show mea-

surements of scale model (4-12GHz) and to-scale (80-240Hz) antennas to demonstrate high

antenna-gain, low cross-polarization contamination, and efficient coupling over a 1-2 octave

bandwidth.
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We have developed microstrip circuits that divide the antenna’s wide bandwidth into

smaller channels. In one scheme, two or three frequency channels can be extracted from the

antenna’s received power using microstrip circuits known as diplexers and triplexers. These

avoid atmospheric spectral lines and are well suited to terrestrial observations. We can also

partition this bandwidth into contiguous bands using cochlear channelizers inspired by the

physiology of the human ear; this design is most advantageous for satellite missions where

there are no concerns about atmospheric contamination. We present design methodologies

for these circuits and show measurements of prototypes coupled to TES bolometers to verify

acceptable performance. We also describe the fabrication of a broadband anti-reflection

coating for the contacting lenses and demonstrate that lens-coupled sinuous pixels receive

more power with the coatings than without. Finally, we remark on the last un-resolved

challenge of forming symmetric beams and balun designs that may help form patterns more

useful for polarimetry.

This technology is a candidate for use in the Polarbear ground-based experiment. By

packing more detectors into the focal-plane than can be done with monochromatic pixels,

multichroic pixels will allow Polarbear to map the sky much faster. This technology is also

candidate for future space-based missions as well, where multhchroic pixels will allow a less

massive payload and hence a lower cost mission. Finally, we envision using arrays of similar

pixels in sub-millimeter observations of high-redshift galaxy clusters as well (e.g.example

Sunyaev-Zeldovich Effect measurements). However, we require more sophisticated lithog-

raphy and etching techniques to shrink these pixels to a size suitable for such wavelengths.

Professor Adrian T. Lee
Dissertation Committee Chair
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In memory of Huan Tran, who provided crucial early leadership on this project and

dragged me out of complacency on a number of occasions. He missed seeing the final

results from these efforts by a few weeks; I think he would have gotten a kick out of them.
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5.9 Measured beam-patterns on scale mode devices. Blue is E-plane and red
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