Gravitational Lensing: Einstein’s Unfinished Symphony

Richard Ellis (Caltech)

http://www.astro.caltech.edu/~iran1.pdf

April 2011
Progress in Cosmology: I - Galaxy Surveys

Australian Astronomical Observatory: 2 degree field facility
2dFGRS Galaxy Redshift Survey
Galaxy distribution is distorted in redshift space

Peculiar velocities distort the distribution of galaxies in redshift space; this can provide a measure of the mass density of dark matter associated with galaxies on larger scales
2dF redshift-space distortions

- peculiar velocities quantified by distribution of >100,000 galaxies

- Two effects visible:
 Small separations: ‘Finger-of-God’;
 Large separations: l.o.s. flattening

LOW MASS DENSITY

Microwave background corresponds to separation of matter & radiation at redshift $z = 1088 \pm 1$ when age $= 372,000$ years.
Cosmic Geometry: Space is Flat

Measures \textit{total} energy density
Supernovae act as `standard candles’ so their brightness gives a distance to a remote object moving with cosmic expansion in the past.
Type Ia Supernovae

Thought to occur in binary systems containing an accreting white dwarf; models suggest explosion is very homogeneous.
Supernova are rare, random and faint!

- planned search using wide field cameras with modest telescopes
- Keck spectroscopy to get redshifts (velocities)
- Hubble Space Telescope for light curve & corrected peak luminosity
Supernovae are fainter than expected for a given velocity in decelerating model.

An early measure of the expansion history using 42 distant supernovae (Perlmutter et al 1999)
Cosmic Acceleration – a big surprise!

The rate of cosmic expansion is affected by two ingredients:

Matter – this gravitationally slows down the expansion but by an amount which varies as the density of matter is reduced

Dark energy – a more general explanation of unknown form which acts as a repulsive term (possibly equivalent to the original Λ term introduced by Einstein)
Two Rogue Cosmic Ingredients

Dark Matter (1933 -)

Dark Energy (1998 -)
Deflection of Light by Mass

- Isaac Newton (1704) “Do not Bodies act upon Light at a distance, and by their action bend its Rays; and is not this action strongest at the least distance?”

- Henry Cavendish (1784, unpublished) – calculates deflection due to hyperbolic trajectory assuming light is corpuscular

- Johann von Soldner (1804) – publishes same calculation and gets 0.84 arcsec

- Einstein (1911) – relativistic version of Newtonian deflection 0.875 arcsec (classical result assumed light can be accelerated/decelerated like matter)

- Einstein (1915) – GR version includes curvature of space, 1.75 arcsec
Solar Eclipse of 29 May 1919

Remarkable opportunity as Sun is in the rich Hyades star cluster

British send two expeditions to Sobral, Brazil and Principe, W Africa

Frank Dyson (Astronomer Royal) recognizes the opportunity
Eddington is however driving force as he is inspired by Einstein’s theory
Eddington leads expedition by going to Principe
The unexpected hero: Arthur Eddington

When the eclipse expedition is planned, Britain is at war with Germany

Contact between Eddington and Einstein would be a `treasonable act’

Eddington learns of GR via de Sitter and is inspired to verify or disprove it

Eddington is a pacifist and a Quaker and is only rescued from military service by leading the expedition

The war ends 6 months before the eclipse
Pilgrimage to Principe: September 2008
My very dear Mother

Just a month to the eclipse; and today we have all our belongings at the site selected, and have started the work of erection.

We got our first sight of Principe at 9 o’clock in the morning of April 23, and it looked very charming. We had seen no land since leaving Cape Verde Islands; although we went within forty miles or so of Africa, it was always too misty to see the coast. We did not pass any ships. Occasionally we saw schools of porpoises playing about, and plenty of flying-fish, but no whales or sharks.

At four o’clock that afternoon we both played tennis with the Curador and the Judge. We had three very good sets and enjoyed the games very much. The court was on asphalt. There is no one else who plays tennis on the island now, so I think the other two were very glad to have the game—the Judge especially seemed to enjoy himself. I expect we shall get some more games when we return to the city.² (We always call it the city—but S. Antonio is only a tiny village.)
IYA2009: Celebrating 90 Years of General Relativity

May 29th 2009 Principe
- Unveiling new plaque
- Lectures/poster displays
- High school activities
Sponsors: IAU, RAS, Gulbenkian Foundation, Rombout Swanborn

http://www.1919eclipse.org/
Fritz Zwicky: the irascible pioneer

Contrary to proclamations by Einstein, Eddington and others, Zwicky (1936) predicts gravitational lensing will be invaluable in:

- tracing and measuring the amount of dark matter thought to pervade the cosmos
- magnifying distant objects

Never lived to see the renaissance..
How it works: three broad regimes

What the observer sees, viewing through a lens, depends on the focusing power of the lens, the relative distances of lens and background source and the degree of alignment of both

- rings & arcs
- arclets
- weak distortion
Thin lens approximation:

\(\theta_I, \theta_S \) represent positions on image & source plane, \(\alpha \) is deflection

Geometric lens equation relevant in weak regime where 1-to-1 mapping is ok

\[
\alpha(D_L \theta_I) = \frac{D_S}{D_{LS}}(\theta_I - \theta_S),
\]
EINSTEIN RING Image

Einstein Ring formed when earth-lens-object are perfectly aligned

DISTANT OBJECT

LENS GALAXY

EARTH

Multiple images formed when alignment is not perfect
Hubble Survey for Einstein Rings

Einstein Ring Gravitational Lenses

Hubble Space Telescope • ACS

J073728.45+321618.5
J095629.77+510006.6
J120540.43+491029.3
J125028.25+052349.0
J140228.21+632133.5
J162746.44-005357.5
J163028.15+452036.2
J232120.93-093910.2

NASA, ESA, A. Bolton (Harvard-Smithsonian CfA), and the SLACS Team

STScI-PRC05-32
In case of elliptical lens, no ring is produced, but as background source moves closer in alignment, multiple images, some highly magnified appear – these are known as “giant arcs”
The First Giant Arc Seen in a Cluster of Galaxies

In 1987 Genevieve Soucail at Observatoire de Midi Pyrenees (Toulouse) demonstrated the arc in the galaxy cluster Abell 370 represents light of a single background galaxy distorted by the foreground cluster lens.
Multiple Images

The exquisite resolution of Hubble locates same source seen in 3 different locations!

This is particularly informative if the distances to the lens and the source can be determined as it tells us how lensing matter is distributed in the cluster.
A remarkable cluster lens:

5 images of the same source (A-E)!
Abell 2218: arcs galore!
 Courtesy: Lars Christensen (ESA)
The Role of Lensing in Cosmology

I: - **Strong lensing:** multiply-imaged sources tests
 “universal” mass profile predicted in cold dark matter models; is DM non-interacting?

II: - **Weak lensing:** statistical characterization of DM distribution; its evolution provides strong constraint on dark energy (independently of supernovae & with less assumptions)

III: - **Strong magnification:** use of cluster lenses as “natural telescopes” to survey distant Universe; magnify distant galaxies and set limits on epoch of “first light” stellar systems; likewise search for Earth-like planets around stars in Milky Way
Dark "halos" act as seeds for later stars and galaxies to form.

..governs the formation of galaxies

12 billion years ago

Present epoch
We find the dark matter is:

- dominant (50-100 times more than the mass associated with the visible cluster galaxies)
- smoothly distributed, broadly following that of the smoothed light

AC114 HST/WFPC2

Smail, Kneib, Ellis 96
Theorists claim Cold (non-interacting) Dark Matter concentrates with a density profile with radius $\rho_D \propto r^{-\beta}$ with simulations indicating “universal” form: $1.0 < \beta < 1.5$

Can gravitational lensing be used to test how dark matter is distributed on these scales?
Mass profiles in cluster cores

Presence of radial and tangential arcs of known z strongly constrains mass on 20-50 kpc scales.

MS2137-23 ($z=0.313$)
Origin of tangential and radial arcs
Best-fitting density profile for MS2137-23

\[\rho(r) \]

\[r \ (\text{kpc}) \]
Keck and Hubble Studies of Arcs

6 systems: 3 with radial arcs, 3 with tangential arcs (control)
Each studied using combined dynamics and lensing method
Observations reveal that dark matter is less sharply clumped (inner slope β is flatter) than predicted in numerical simulations based on cold (non-interacting) dark matter:
Instead of measuring lensing in “special” regions like clusters can we use it to make statements about dark matter everywhere?

Expect to see statistical distortions arising from large scale structure in any direction.
Weak Lensing
Distortion of background images by foreground matter

Intervening dark matter distorts the shapes of background galaxies
‘Shear’ inferred from mean ellipticity of background galaxies in a given direction is used to give the convergence κ – projected mass density along the line of sight.
Problems: Camera Distortion

Dithered fields
Problems: Telescope Tracking

At the level required, even stars are not round on best telescopes!

Raw ellipticities: 3-10% reduced to ~ 0.1% by fitting stellar data
A gravitational lensing signal only produces `E-modes'
Would not expect significant `B-mode' signal
COSMOS:
Largest HST survey
587 ACS fields
2 deg2 in F814W
F814W<26.6 (5σ)
2. 10^6 galaxies
\sim80 resolved arcmin$^{-2}$

http://irsa.ipac.caltech.edu/Missions/cosmos.html
Dark Matter Map: E- and B-modes
Comparing Light and Dark Matter

Distribution of Visible and Dark Matter

Hubble Space Telescope • Advanced Camera for Surveys

Growth of Dark Matter Clustering

3.5 billion years ago

5 billion years ago

6.5 billion years ago

z=0.3

z=0.5

z=0.7
3D Distribution of Dark Matter
New Proposals for Tracking Dark Energy

NASA initiates studies for a Dark Energy mission (WFIRST)

ESA does likewise with Euclid

Possible ESA/NASA merger?

Shorter term initiatives on the ground (DoD/DoE/NSF):

Ground versus Space

Space: small and stable PSF:
⇒ larger number of resolved galaxies
⇒ reduced systematics

Typical cosmic shear is ~ 1%, and must be measured with high accuracy.
A new wide-field space telescope which would extend the Hubble results by directly mapping dark matter at various cosmic times: this would trace dark energy.
Exploring the very early Universe

~13.4 billion years since Big Bang
z=0

~11.2 billion
z=0.18

~2.1 billion
z=3

~750 million
z=7

~300 thousand
z=1100

Kneib & Ellis with Caltech Digital Media Center
Gravitationally Lensed Galaxies: Record Breakers (1991-2008)

- Abell 370 (z=0.724); Soucail et al 1988
- Cl2244-02 (z=2.237); Mellier et al 1991
- A2218 #384 (z=2.515); Ebbels et al 1996
- MS1512 cB58 (z=2.72); Yee et al 1996, Seitz et al 1998
- A2390 (z=4.05); Frye et al 1998, Pellò et al 1999
- MS1358+62 (z=4.92); Franx et al 1997
- A2218 (z=5.7); Ellis et al 2001
- A370 (z=6.56); Hu et al 2002
- A2218 (z~6.8); Kneib et al 2005
- A1689 (z~7.6); Bradley et al 2008
• After the microwave background the Universe enters the so-called “dark ages” prior to formation of first stars.

• Hydrogen is then re-ionized by the newly-formed stars.

• How do we explore this era when the sources are so faint?
Charting Regions of Maximum Magnification

We know precisely which small strips of sky are those where background sources are highly magnified.

So we search those areas only for the earliest stars!
Finding Very Distant Magnified Systems

LRIS: Single line detection

ESI: Pair confirmation

$z=1$

$z=5$
Further examples

$z = 5.6$

$z = 6.8$
Detailed Study of Multiply-Imaged z~6.8 galaxy

Spitzer → this is already a well-established system 800 Myrs after Big Bang

Star formation rate = 2.6 solar masses/yr; stellar mass ~ 0.5% Milky Way

Age at this epoch: 100 – 450 million yrs, so formed at 9 < z_F < 12

Puzzle: despite heroic exposure with NIRSPEC – did not detect Ly α
All Sky Adaptive Optics is Here!
Adaptive Optics: How It Works

The Deformable Mirror, Wavefront Sensor, and Control System perform real-time corrections to the atmospheric distortions.

Image source: ?? Image: Sandbox Studio; Uranus images: Keck Observatory
Strong Lensing as a Magnifying Glass

Keck Telescope and Cosmic Lens Resolve Nature and Fate of Early Star-Forming Galaxy

Rotation curve with 100 pc resn.

Stark/Ellis with Caltech Digital Media Center
Resolved Dynamics (~100 pc resn!) via Combination of Lensed Magnification and Keck Adaptive Optics

6 lensed galaxies $1.7 < z < 3.1$ (linear magnification ~8-10) revealing rotation in 5/6 cases

Rotation would not be revealed without lensing magnification

Jones et al MN 404, 1247 (2010)
Detecting Planets via Microlensing

BLG390LB 5.5 Earth masses

Beaulieu et al 2006
Gravitational lensing has risen from obscurity, originally thought by Einstein to be of little practicality, into a significant tool for cosmologists (as Zwicky claimed)

• The only precise probe of where the dark matter lies and how much there is, with promise of uncovering the nature of dark energy

• Enables us to magnify distant parts and secure our first glimpse of the earliest cosmic sources

• Can be used to search for abundance of Earth like planets in the Milky Way
With thanks to many telescopes..

Mauna Kea Observatory

Hubble Space Telescope

Cosmic lens
Eclipses Before 1919 – a Sorry Tale

- Einstein finds assistant observer – Eirwin Findlay-Freundlich who tries for ten years to measure the deflection & never succeeds!
- Einstein writes to Hale inquiring whether deflection could be detected via Jupiter
- William Wallace Campbell (Director, Lick) races with Findlay-Freundlich to prove/disprove Einstein.
- US community remains very skeptical of GR through late 1920’s

Aug 21 1914 Eclipse:- war breaks out week of eclipse!
 - Campbell’s equipment in Russia impounded
 - Findlay-Freundlich arrested in Turkey

June 8 1918 Eclipse
 - Campbell clouded out in Washington State
Was Eddington Biased in His Analysis?

• Eddington was clearly inspired by Einstein’s theory
• He considered his verification of the deflection ‘the greatest moment’ of his life
• Yet the deflection results from Sobral and Principe were at first sight discrepant and needed careful treatment
• Some consider he was so sure of the result that he discarded discrepant data so as to verify Einstein

E.g. John Waller (2002) Fabulous Science “a series of famous scientists whose passion and belief in a theory blinded them to contrary evidence” (including Millikan!)

Read Daniel Kennefick’s excellent analysis on astro-ph/0709.0685
(see also Physics Today March 2009 p37)

Conclusion: Eddington was a man of principle and did not fudge his data!
Kennefick’s Case in Support of Eddington

Principe : Eddington & Cottingham:

Astrograph: only 2 plates, 5 stars on each
Comparison plates taken at Oxford in February 1919
Analysis gave $\delta = 1.61 \pm 0.30$ arcsec

Sobral: Crommelin & Davidson

Astrograph: several plates, 12 stars on each but out of focus!
Comparison plates taken later in situ
Analysis gave $\delta = 0.93 \pm ?$ arcsec

4-inch lens: much smaller field but in focus
Comparison plates taken later in situ
Analysis gave $\delta = 1.90 \pm 0.11$ arcsec

Some argue Eddington discarded the Sobral astrograph to match GR prediction
Actually it was not Eddington but Dyson who discarded those data
Dyson did a further analysis of the Sobral astrograph assuming focus change
did not affect the plate scale and got $\delta = 1.52$ arcsec

1979: Sobral plates were re-measured via machine: $\delta = 1.55 \pm 0.32$ arcsec