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The computation of the grain temperature is straightforward. We equate the heating
to the cooling. This classical approach is adequate for large grains. However, a remarkable
development (as we learnt from IRAS, COBE, IRTS, IRTS, ISO, Spitzer, Herschel, Planck)
observations) is that a comparable amount of emission from the dust results from very small
grains, particularly PAHs. As the grain size decreases its store of internal energy decreases
as well. Clearly, there is interesting physics when the energy of the optical/UV photon
becomes comparable to that of the internal store. The physics of the latter is the topic
of this note. All the material for this pedagogical note is from Statistical Mechanics by
Pathria (a most excellent book).

1 Phonon Framework

Consider a solid. The ions are in some sort of quasi-regular arrangement. The nuclei,
numbering N , can vibrate along the three spatial axis. The kinetic energy of the vibrating
nuclei is

K =
1

2
m

3N∑
i=1

ξ̇2
i (1)

where ξi = xi − x̄i and the sum is over 3 × N 3 one-dimensional vibrators. In addition,
they are attracted to each other (otherwise the solid would not be formed) and so there is
some sort of potential energy function, φ(x1, x2, ..., x3N ). Since the solid is in equilibrium
the mean force on each ion is zero. Thus

∂φ(xi)

∂xi
= 0 (2)

where it is assumed that the derivative is evaluated with the nuclei at their equilibrium
position, x̄i. With this simplification the potential can be Taylor expanded and, recognizing
that the vibrational amplitudes are small compared to the ion-ion spacing, keep only the
second derivatives (also evaluated at equilibrium positions). Thus the potential energy is

V = φ0 +
∑
i,j

αijξiξj (3)
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αij =
1
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(
∂2φ

∂xi∂xj

)
. (4)

Figure 1: Specific heat per particle, cv = CV /(3kB Kelvin), as a function of T/θD where T is the temperature
and θD is the Debye temperature.

Seemingly it would appear that we would need to have ≈ (3N)3 coefficients in V .
However, a transformation of the coordinates, ξi → qi, can always be found in which V can
be recast in terms of 3N coefficients. The transformed coordinates are “normal” modes.1

The Hamiltonian can thus be written as

H = φ0 +
3N∑
i

1

2
m(q̇2

i + ω2
i q

2
i ) (5)

Here, ωi are the characteristic frequencies of the normal modes. Thus the thermodynamics
of a solid can be boiled down to a collection of oscillators, each with their own frequencies.

Einstein, following Planck, reasoned that phonons like photons are quantized. The
modern QM eigenvalues for Equation 5 is

E{ni} = φ0 +
∑
i

(ni +
1

2
)~ωi. (6)

The internal energy is then

U(T ) =

{
φ0 +

∑
i

1

2
~ωi

}
+
∑
i

N(ωi)~ωi (7)

1The standard example is that for a two coupled pendulums whose instantaneous positions are x1 and
x2. The coordinates q1 = x1 − x2 and q2 = x1 + x2 are the normal coordinates for this system. With this
transformation the Hamiltonian of qi simplifies to that shown in Equation 5.
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Clearly, the first term in curly brackets (the binding energy of the solid including the zero
point oscillations) is negative and larger (in magnitude) than the sum of the energy in
vibrations.

In Einstein’s model all phonons had the same vibration frequency. Einstein postu-
lated that the number density of phonons obeyed Boltzmann distribution. The number of
phonons, unlike photons, were restricted by the highest vibration frequency that the lattice
could bear. Thus, the internal energy of the crystal is

U = N〈n〉~ω =
N~ω

exp(~ω/(kBT ))− 1
(8)

Then CV (T ) = (∂U∂T )V . The model was a success at higher temperatures but failed to
explain the low temperature behavior.

2 Debye Model: Internal Energy & Specific Heat

Debye’s model improved upon Einstein’s model by allowing for a range of frequencies
(uniform in phase space). We now need to know the values of ωi. If N is large enough we
can replace the sum in Equation 7 with a density function, g(ω), for the distribution of ω.
In the Debye model, the assumption is that

g(k) = 2 · 4πk2dk (9)

where k = ω/(2πc) is the wavenumber. This formulation – the Rayleigh assumption –
assumes that the normal modes are uniformly distributed in wave numbers. However,
unlike photons, there is a cap on ω, namely, the mode in which the displacement of each
successive ion changes sign. Thus ∫ ωD

0
g(ω)dω = 3N (10)

g(ω)dω is the number of normal modes of vibration whose frequency lies in the range
[ω, ω+ δω]. We are now all set2 to compute the internal store, U(T ) and the specific heat3

CV :

CV (T ) = (∂U/∂T )V = 3NkBD(x0) (11)

D(x0) =
3

x2
0

∫ x0

0

x4 exp(x)dx

(exp(x)− 1)2
(12)

2There are other complications that are being glossed over. There are two families of elastic waves in
solids: longitudinal and transverse. waves etc.

3at constant volume – naturally for solids
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where x0 = θD/T . The asymptotic limits are

D(x0) = 1− x2
0

20
+ ..., x0 � 1 (13)

D(x0) =
4π4

5x3
0

=
4π4

5

( T
θD

)3
, x0 � 1 (14)

Equation 14 is the much celebrated Debye relation. Plots of CV and U =
∫ T

0 CV (T )dT as
a function of T/θD can be found in Figures 1. and 2, respectively.

Figure 2: Internal energy per particle, u = U/(3kBθD), in the Debye model as a function of T/θD where T is the
temperature and θD is the Debye temperature.

3 Heat Capacity of Very Small Grains

Consider a grain whose density is ρ and is composed primarily of element with atomic
number, A. The number of atomic nuclei in the grain of radius a is

N =
NA

A

4πa3

3
ρ (15)

and the heat content is
U = 3kBNθDu (16)

where NA is Avogadro’s number and u is the ordinate in Figure 2.
Let us adopt, T = 30 K and θD = 600K (see Figure 3). For these two choices, inspecting

Figures 1 and 2 we cv = 1.2× 10−4 and u ≈ 1, 2×−6. Thus the store of internal energy of
a a grain with radius a = 50 Å and ρ = 3 g cm−3 is

U = 1.47
( 6

A

)( θD
600 K

)
eV. (17)

4



Figure 3: The specific heat per gram of dust for silicate (full curve), graphite (broken curve) and PAHs without
hydrogen atoms. Figure 8.9 of Krüger’s book.

Clearly, the absorption of even a single photon of few eV is a “shock” to the grain. [Here, θD
is typical of Silicates or Carbon dust.] The temperature of the dust grain rises dramatically
and as a result the emission moves from LIR (larger dust grains) to the MIR.

3.1 PAH

PAHs and graphene are 2-D structure. The density of normal modes4 is

g(ω) =
6N

ω2
D

ω (18)

Note that the normalization has been correctly chosen so that g(ω)dω = 3N . In any case,
for such planar structure, CV ∝ T 2 in the low-temperature regime.

Separately, it is interesting to note that the lowest frequency of vibration depends on
the size of the object (one wave across the grain). The minimum frequency is obtained by
integrating g(ω) and setting to unity.∫ ωmin

0
g(ω)dω = 1 (19)

~ω
kB

=
θD√
3N

(20)

Say that you have a 10 Å dust particle. With A = 12 we find ~ωmin/kB ≈ θD/44. For

4I am following Krügel’s book, §8.4.6. I do not understand why it is 3N instead of 2N .
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PAH, θD = 950 K (out-of-plane bending) or 2500 K (in plane stretching). You can see that
the minimum energy of the emitted photon is 250µm.
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