Dhaca	$T(\mathbf{V})$	$m \left(am-3\right)$	Comments
	$\frac{I(K)}{\sum 105.5}$	$n_{\rm H}({\rm cm}^{\circ})$	
Coronal gas (HIM)	$\gtrsim 10^{5.5}$	~ 0.004	Shock-heated
$f_V \approx 0.5?$			Collisionally ionized
$\langle n_{\rm H} \rangle f_V \approx 0.002 {\rm cm}^{-3}$			Either expanding or in pressure equilibrium
	```		Cooling by:
$(f_V \equiv \text{volume filling factor})$	or)		$\diamond$ Adiabatic expansion
			$\diamond$ X ray emission
			Observed by:
			• UV and x ray emission
			Radio synchrotron emission
H II gas	$10^{4}$	$0.2 - 10^4$	Heating by photoelectrons from H, He
$f_V \approx 0.1$			Photoionized
$\langle n_{\rm H} \rangle f_V \approx 0.02  {\rm cm}^{-3}$			Either expanding or in pressure equilibrium
			Cooling by:
			♦ Optical line emission
			♦ Free–free emission
			♦ Fine-structure line emission
			Observed by:
			<ul> <li>Optical line emission</li> </ul>
			<ul> <li>Thermal radio continuum</li> </ul>
Warm HI (WNM)	$\sim$ 5000	0.6	Heating by photoelectrons from dust
$f_V \approx 0.4$			Ionization by starlight, cosmic rays
$n_{\rm H} f_V \approx 0.2  {\rm cm}^{-3}$			Pressure equilibrium
110 7			Cooling by:
			♦ Optical line emission
			$\diamond$ Fine structure line emission
			Observed by:
			• HI 21 cm emission, absorption
			• Optical, UV absorption lines
Cool H L (CNM)	$\sim 100$	30	Heating by photoelectrons from dust
$f_V \approx 0.01$	100	00	Ionization by starlight, cosmic rays
$n_{\rm H} f_V \approx 0.3  {\rm cm}^{-3}$			Cooling by
here of the second			$\diamond$ Fine structure line emission
			Observed by:
			• HI 21-cm emission absorption
			• Ontical UV absorption lines
Diffuse II	50 V	100	Usating by photoslostrong from dust
$f_{1} \approx 0.001$	$\sim 50 \mathrm{K}$	$\sim 100$	Inding by photoelectrons from dust
$f_V \approx 0.001$			Cooling by:
$n_{\rm H} j_V \approx 0.1 {\rm cm}^{-1}$			Cooling by. △ Fine structure line emission
			• HI 21 cm emission observation
			• CO 2.6 mm emission
			• optical UV absorption lines
	10 50	103 106	
Dense $H_2$	10 - 50	$10^{\circ} - 10^{\circ}$	Heating by photoelectrons from dust
$f_V \approx 10^{-4}$			Ionization and heating by cosmic rays
$\langle n_{\rm H} \rangle f_V \approx 0.2  {\rm cm}^{-3}$			Self-gravitating: $p > p(\text{ambient ISM})$
			Cooling by:
			♦ CO line emission
			♦ C1 fine structure line emission
			Observed by:
			• CO 2.6-mm emission
			• dust FIR emission
Cool stellar outflows	$50 - 10^3$	$1 - 10^{6}$	Observed by:
			• Optical, UV absorption lines
			• Dust IR emission
			• H I, CO, OH radio emission

Z	X	$\langle m_X \rangle / amu$	$N_X/N_{\rm H}$	$M_X/M_{\rm H}$	Source			
1	Н	1.0080	1	1				
2	He	4.0026	$9.55 \times 10^{-2 \pm 0.01}$	$3.82 \times 10^{-1}$	Photospheric			
3	Li	6.941	$2.00 \times 10^{-9 \pm 0.05}$	$1.38 \times 10^{-8}$	Meteoritic			
4	Be	9.012	$2.19 \times 10^{-11 \pm 0.03}$	$1.97 \times 10^{-10}$	Meteoritic			
5	В	10.811	$6.76 \times 10^{-10 \pm 0.04}$	$7.31 \times 10^{-9}$	Meteoritic			
6	С	12.011	$2.95 \times 10^{-4 \pm 0.05}$	$3.54 \times 10^{-3}$	Photospheric			
7	Ν	14.007	$7.41 \times 10^{-5 \pm 0.05}$	$1.04 \times 10^{-3}$	Photospheric			
8	0	15.999	$5.37 \times 10^{-4 \pm 0.05}$	$8.59 \times 10^{-3}$	Photospheric			
9	F	18.998	$2.88 \times 10^{-8 \pm 0.06}$	$5.48 \times 10^{-7}$	Meteoritic			
10	Ne	20.180	$9.33 \times 10^{-5 \pm 0.10}$	$1.88 \times 10^{-3}$	Photospheric			
11	Na	22.990	$2.04 \times 10^{-6 \pm 0.02}$	$4.69 \times 10^{-5}$	Meteoritic			
12	Mg	24.305	$4.37 \times 10^{-5 \pm 0.04}$	$1.06 \times 10^{-3}$	Photospheric			
13	Al	26.982	$2.95 \times 10^{-6 \pm 0.01}$	$8.85 \times 10^{-5}$	Meteoritic			
14	Si	28.086	$3.55 \times 10^{-5 \pm 0.04}$	$9.07 \times 10^{-4}$	Photospheric			
15	Р	30.974	$3.23 \times 10^{-7 \pm 0.03}$	$1.00 \times 10^{-5}$	Photospheric			
16	S	32.065	$1.45 \times 10^{-5 \pm 0.03}$	$4.63 \times 10^{-4}$	Photospheric			
17	Cl	35.453	$1.86 \times 10^{-7 \pm 0.06}$	$6.60 \times 10^{-6}$	Meteoritic			
18	Ar	39.948	$2.75 \times 10^{-6 \pm 0.13}$	$1.10 \times 10^{-4}$	Photospheric			
19	Κ	39.098	$1.32 \times 10^{-7 \pm 0.02}$	$5.15 \times 10^{-6}$	Meteoritic			
20	Ca	40.078	$2.14 \times 10^{-6 \pm 0.02}$	$8.57 \times 10^{-5}$	Meteoritic			
21	Sc	44.956	$1.23 \times 10^{-9 \pm 0.02}$	$5.53 \times 10^{-8}$	Meteoritic			
22	Ti	47.867	$8.91 \times 10^{-8 \pm 0.03}$	$4.27 \times 10^{-6}$	Meteoritic			
23	V	50.942	$1.00 \times 10^{-8 \pm 0.02}$	$5.09 \times 10^{-7}$	Meteoritic			
24	Cr	51.996	$4.79 \times 10^{-7 \pm 0.01}$	$2.49 \times 10^{-5}$	Meteoritic			
25	Mn	54.938	$3.31 \times 10^{-7 \pm 0.01}$	$1.82 \times 10^{-5}$	Meteoritic			
26	Fe	55.845	$3.47 \times 10^{-5 \pm 0.04}$	$1.94 \times 10^{-3}$	Photospheric			
27	Co	58.933	$8.13 \times 10^{-8 \pm 0.01}$	$4.79 \times 10^{-6}$	Meteoritic			
28	Ni	58.693	$1.74 \times 10^{-6 \pm 0.01}$	$1.02 \times 10^{-4}$	Meteoritic			
29	Cu	63.546	$1.95 \times 10^{-8 \pm 0.04}$	$1.24 \times 10^{-6}$	Meteoritic			
30	Zn	65.38	$4.68 \times 10^{-8 \pm 0.04}$	$3.06 \times 10^{-6}$	Meteoritic			
31	Ga	69.723	$1.32 \times 10^{-9 \pm 0.02}$	$9.19 \times 10^{-8}$	Meteoritic			
32	Ge	72.64	$4.17 \times 10^{-9 \pm 0.04}$	$3.03 \times 10^{-7}$	Meteoritic			

**Table 1.4** Protosolar Abundances of the Elements with  $Z \leq 32$  (based on Asplund et al. (2009); see text)

Asplund et al. (2009) have corrected the measured photospheric abundances of He, C, N, O, Ne, Mg, Si, S, Ar, and Fe to allow for diffusion in the Sun.

As recommended by Asplund et al. (2009), the photospheric abundance of Si, and meteoritic abundances (tied to Si), have been increased by a factor  $10^{0.04}$  to allow for diffusion in the Sun. Similarly, the measured photospheric abundance of P has been multiplied by  $10^{0.04}$  to allow for diffusion in the Sun.

 $M(Z > 2)/M_{\rm H} = 0.0199; M(\text{total})/M_{\rm H} = 1.402.$ 



IONIZATION POTENTIALS^a

Z Element	Spectrum																				
-	I	п	ш	IV	v	VI	vn	νш	IX	x	XI	XII	'XIII	XIV	xv	XVI	XVII	хуш	XIX	xx	XXI
1 H	13.598																				
2 He	24.587	54.416																			
3 Li	5.392	75.638	122.451																		
4 Be	9.322	18.211	153.893	217.713																	
5 B	8.298	25.154	37.930	259.368	340.217																
6 C	11.260	24.383	47.887	64.492	392.077	489.981															
7 N	14.534	29.601	47.448	77.472	97.888	552.057	667.029														
8 0	13.618	35.116	54.934	77.412	113.896	138.116	739.315	871.387													
9 F	17.422	34.970	62.707	87.138	114.240	157.161	185.182	953.886	1103.089												
10 Ne	21.564	40.962	63.45	97.11	126.21	157.93	207.27	239.09	1195,797	1362.164											
11 Na	5.139	47.286	71.64	98.91	138.39	172.15	208.47	264.18	299.87	1465.091	1648.659										
12 Mg	7.646	15.035	80.143	109.24	141.26	186.50	224.94	265.90	327.95	367.53	1761.802	1962.613									
13 AI	5.986	18.828	28.447	119.99	153.71	190.47	241.43	284.59	330.21	398.57	442.07	2085.983	2304 080								
14 Si	8.151	16.345	33.492	45.141	166.77	205.05	246.52	303.17	351.10	401.43	476.06	\$23.50	2437 676	2673 108							
5 P	10.486	19.725	30.18	51.37	65.023	230.43	263.22	309.41	371.73	424.50	479.57	\$60.41	611.85	2816 943	3060 762						
16 S	10.360	23.33	34.83	47.30	72.68	88.049	280.93	328.23	379.10	447.09	504.78	\$64.65	651 63	707 14	3223 836	3494 000					
17 CI	12.967	23.81	39.61	53.46	67.8	98.03	114,193	348.28	400.05	455.62	\$29.26	\$91.97	656 60	740 74	900 20	3659 435	2046 102				
18 Ar	15.759	27.629	40.74	59.81	75.02	91.007	124.319	143.456	422.44	478.68	538.95	618 24	686.09	755 73	854 75	018	4120 778	4426 114			
9 K	4.341	31.625	45.72	60.91	82.66	100.0	117.56	154.86	175.814	503,44	564.13	629.09	714.02	787 13	861 77	968	1034	4610 955	4033 031		
0 Ca	6.113	11.871	50.908	67.10	84.41	108.78	127.7	147.24	188.54	211.270	591.25	656 39	726.03	816.61	805 12	974	1097	1157	\$120.046	6460 738	
1 Sc	6.54	12.80	24.76	73.47	91.66	111.1	138.0	158.7	180.02	225.32	249.832	685 89	755 47	\$79.79	976.00	2.4	1001	1157	3129.043	3409.735	
12 Ti	6.82	13.58	27.491	43.266	99.22	119.36	140.8	168.5	193.2	215.91	265.23	291 497	787 33	861 33	940 36						
3 V	6.74	14.65	29.310	46.707	65.23	128.12	150.17	173.7	205.8	230.5	255.04	308.25	336 267	895 58	974.02						
4 Cr	6.766	16.50	30.96	49.1	69.3	90.56	161.1	184.7	209.3	244.4	270.8	298.0	355	384 30	1010 64						
5 Mn	7.435	15.640	33.667	51.2	72.4	95	119.27	196.46	221.8	248.3	286.0	314.4	343.6	404	435 3	1136.2					
6 Fe	7.870	16.18	30.651	54.8	75.0	99	125	151.06	235.04	262.1	290.4	330.8	361.0	392.2	457	489 5	1266 1				
7 Co	7.86	17.06	33.50	51.3	79.5	102	129	157	186.13	276	305	336	379	411	444	512	\$46.8	1403.0			
8 Ni	7.635	18.168	35.17	54.9	75.5	108	133	162	193	224.5	321.2	352	384	430	464	499	571	607.2	1547		
9 Cu	7.726	20.292	36.83	55.2	79.9	103	139	166	199	232	266	368.8	401	435	484	\$20	557	633	671	1609	
0 Zn	9.394	17.964	39.722	59.4	82.6	108	134	174	203	238	274	310.8	419.7	454	490	542	\$70	619	608	739	1956
1 Ga	5.999	20.51	30.71	64														/			.050
2 Ge	7.899	15.934	34.22	45.71	93.5																
3 As	9.81	18.633	28.351	50.13	62.63	127.6															
4 Se	9.752	21.19	30.820	42.944	68.3	81.70	155.4														
5 Br	11.814	21.8	36	47.3	59.7	88.6	103.0	192.8													
6 Kr	13.999	24.359	36.95	52.5	64.7	78.5	111.0	126	230.39												
7 Rb	4.177	27.28	40	52.6	71.0	84.4	99.2	136	150	277.1											
8 Sr	5.695	11.030	43.6	57	71.6	90.8	106	122.3	162	177	324.1										
9 Y	6.38	12.24	20.52	61.8	77.0	93.0	116	129	146.52	191	206	374.0									
0 Zr	6.84	13.13	22.99	34.34	81.5																
1 Nb	6.88	14.32	25.04	38.3	50.55	102.6	125														
Z Mo	7.099	16.15	27.16	46.4	61.2	68	126.8	153													
5 1e	7.28	15.26	29.54																		
S Ph	7.51	10.70	28.4/																		
6 Pd	8.34	19.43	32.93																		
7 Ag	7.576	21.49	34.83																		