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Notes to my Friends

I am writing a book entitled “Signal Processing & Data Analysis For
Astronomers”. The goal is to equip a first year graduate student in astronomy
with the basics of probablity and signal processing that is essential to the
pursuit of observational astronomy. Statistical inference and modeling is only
discussed on the margins. I do this for the simple reason that inference is
not my strength and I feel that I do not possess sufficient depth to justify its
inclusion in the book.

Please read the Preface and Notes to Using the Book first. Then please
review the present table of contents. Please comment what else you may
wish to see.

I attach a sample chapter (Order Statistics) as an illustrative chapter. Is
the style readable? Can you suggest more homeoworks?

Thanks
Shri
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Preface
Scientists obtain data with the hope of discovery new phenomena or de-

tecting patterns that may then give an insight into how nature functions.
However, the first thing that they encounter is likely noise or a very large
background or foreground. Only after careful sifting of the data, in particu-
lar after eliminating or throughly understanding the noise, does one usually
obtain a reliable sensible. Thus, the path to discovery usually goes through
a thicket of noise.

I have written this book with a single purpose: distill the essence of tech-
niques and methodologies relevant to astronomical instrumentation, method-
ology and observations in one book. The book is aimed at a first year grad-
uate student in astronomy. The book is pedagogical. In this respect this
book differs from the many fine books on signal processing written by en-
gineers And books written by mathematicians and statisticians are, well,
mathematical.

I deliberately focus on the theoretical underpinnings. It is critical that
the reader develop a sense of numbers for both experiment planning as well
as analysis. Eventually, numerical simulations or some variant of bootstrap
will likely give the most definitive result. However, simulations without a
strong understanding is unlikely to be productive nor efficient use of one’s
time.

It is my experience that real examples provide the best motivation to
learn. It is not a common sight to find a scientist tossing a coin or selecting
colored balls from a bowl. On the other hand, pedagogy is critical and there
is no escape from hard thinking and head banging. For this the book is
conceptually divided into two parts: the basic concepts early on, followed by
“applied” topics.

The writing of the book was a process of self learning with the hope that
I may be able to present a fresh perspective and (very) occasionally a new
result. All the figures and tables in this book have been either drawn or
programmed by the author.

The best way to read this book is to find a long stretch of time (wintry
days or summer holidays) and blaze through it. True enlightenment is only
possible via direct understanding, ergo work out every equation and do the
homeworks.

I would consider it an outstanding success if the book (though written
with a strong astronomical bias) would be found useful by other scientists
(geologists, biophysicists etc). The author would be delighted to hear of
success stories. I continue to seek interesting real problems to be included in
the next version of the book.
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Notes to Using the Book

The book is conceptually organized into two parts. The first part covers
the pedagogical foundation of probability, statistics and signal processing.
The second part has applications that are drawn from astronomy and with a
view of having more than one area (e.g. probablity and signal processing) as
well as rather specialized topics of some interest to astronomy (e.g. Kalman
filtering, Allan Variance, Phasor and Bispectrum).

Each chapter has homeworks in up to three different: pedagogy (P),
standard homework (H) and interesting open-ended or problems without
known solutions (?). The pedagogical problems are expected reinforce the
content and the homework problems are designed to be moderately useful
and usually require a good knowledge of the material in the first part.

This is a textbook and not a research paper. I have avoided giving ref-
erences within the main text. Key references are given at the end of each
chapter. I would like to acknowledge the following fundamental references:
the Wikipedia (which is amazingly comprehensive and adequate pedagogical
explanations) and Eric Weinstein’s MathWorld. Numerical Recipes by Press,
Teukolsky, Vetterling & Flannery (1986–2007) is the standard reference that
the reader is advised for explanations of a wide variety of algorithms and
their implementation. The Fast Fourier Transform by E. O. Brigham is the
standard textbook for a student wishing to learn about Fourier transforms
and their applications.

Each chapter ends with terse references to papers which either present
a valuable extension of methodology or an illustrative application of the
method under discussion. I have sought the help of colleagues (and still
continue to do so) to send me suggestions for interesting examples. However,
I must stress that the goal is not a comprehensive treatise or compendium
of numerical methods or analysis but pedagogy.

Notation

For a textbook to be useful uniformity in style is critical. I have paid some
attention to this issue and below you will find the guiding rules for notation.1

The probability density function is denoted by lower case and the cumu-
lative function by upper case. For example, p(x) is the probability for the
random variate to lie in the interval [x, x+dx] and P (x) =

∫ x
−∞ p(x)dx is the

cumulative function. Population mean and variance is indicated by µ and V

1THIS IS WORK IN PROGRESS SINCE HARMONIZING NOTATION ACROSS
THE PLANNED 20 CHAPTERS WILL REQUIRE SOME TRIAL AND ERROR.
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and σ2 = V .
The forward Fourier transform is

H(f) =

∫ +∞

−∞
h(t) exp(−j2πft)dt (1)

and the inverse transform is

g(t) =

∫ +∞

−∞
G(f) exp(−j2πft)df. (2)

This is the convention used in Brigham’s book (ibid) and I find it far prefer-
able compared to the choice in Physics textbooks (with ω instead of f). Both
i and j are used for

√
−1.



Chapter 1

Algebra of Probability

1.1 Axioms of Probability

1.2 Bayes Theorem

1.3 Mean, Median & Variance

The probability density function or probability distribution function com-
pletely characterizes the signal or noise (or both). However, as in ordinary
life, single value descriptors are generally useful (“The weather in Los Ange-
les is ideal” or “The mean temperature in Los Angeles is 65 ◦F”). Mean and
median are commonly used single value descriptors for probability distribu-
tions.

The median is the 50-percentile value. Consider a 101-strong group of
fifth graders. Ask them to organize so that the person to the right is taller
(and at best equal but not shorter). The median height of this group is the
height of the 51st student. Mathematically the median is specified by the
equation

P (x = m) =

∫ m

−∞
p(x)dx =

1

2
. (1.1)

where P (x) is the cumulative function of x.
A seemingly separate attribute of the median is that it also minimizes

the absolute deviation of a sample, i.e.

Y = E(|x− c|) =

∫
|x− c|p(x)dx (1.2)

is minimized when c = m.

1
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A useful relation to note is that the median and mean cannot deviate by
more than the rms (and discussed below):

|µ−m| ≤ σ. (1.3)

The arithmetic mean (usually shortened to “mean”) is defined as

µ =

∫ ∞
−∞

p(x)xdx. (1.4)

The arithmetic mean has many desirable properties: unbiased and efficient.
In addition, the mean minimizes the squared deviation of a given sample.
The sum of the squared deviation of the sample can be written as

Y =

∫
(x− c)2p(x)dx. (1.5)

We seek that value of c which minimizes Y . Differentiating Equation 1.5
with respect to c and setting the result to zero we find c = µ.

An alternative proof which is easier to understand is along the following
lines:

Y =

∫
(x− c)2p(x)dx

=

∫
[(x− µ) + (µ− c)]2p(x)dx

= σ2 + (c− µ)2 (1.6)

where

σ2 =

∫
(x− µ)2p(x)dx. (1.7)

Clearly, Y is minimized when c = µ and the minimum value is the “variance”
of the distribution (the second central moment). The square root is some
times called “sigma”, “standard deviation” or “rms”. We will revisit these
names when discussing samples of finite size.

For a probability density function with a single well defined peak (“uni-
modal”) the mean and median provide a numeric measure of the location
of the peak. The third indicator is the “mode”, x = M , which is the the
value at which p(x) is maximum. The primary (and perhaps only) usage
of the mode in astronomy is to determine the “sky” level in optical and IR
astronomy.

Other topics: harmonic mean, geometric mean. When are these

useful?
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Exercise: A Light Puzzler. For a set of five integers, the mean, median
and mode are 4, 1 and 5. Infer the values of the integers.

Exercise: Empirical Relation. For probability distributions with a sin-
gle mode (“unimodal”) and of no more than “moderate” asymmetry is the
following empirical relation appears to be noted:

mean−mode = 3(mean−median). (1.8)

As you go along the text, test this claim.

1.3.1 Relation between Mean and Median

The Bienaymé-Tchebycheff inequalities are very powerful relations with ap-
plication to general relation between mean and median and the central limit
theorem.

Consider a random variable, y which can attain only zero or positive
values. The expectation value of y is then

E(y) =

∫ ∞
0

ypy(y)dy

≥
∫ ∞
y0

ypy(y)dy

≥ y0

∫ ∞
y0

pydy. (1.9)

Thus

Py(y > y0) ≤
E(y)

y0
, (1.10)

the simple but beautiful inequality of Bienaymé.
We now set y = |x − a|n where x is a random variable with density

distribution, px(x). Clearly, y ≥ 0 regardless of the range of x. Consider the
specific case, n = 2, a = µ and y0 = kσ2. Then we obtain

Px[|x− µ)| > kσ] ≤ 1

k2
, (1.11)

the Tchebycheff inequality. Neither of these inequalities provide specific use-
ful constraint for a given data set since the constraints are quite weak (k−2

should be compared with exp(−k−2) expected of a Gaussian distribution).
Cantelli’s inequality is the one-tail version of Equation 1.11 inequality

(needs to be proved.):

P (x− µ ≥ kσ) ≤ 1

1 + k2
. (1.12)
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Setting k = 1 in Equation 1.12 one obtains , P (x ≥ µ+σ) ≤ 1/2. This means
that the median m < µ + σ. Interchanging the signs within the argument
of P or applying Equation 1.12 to x′ = −x we find P (x ≤ µ − σ) ≤ 1/2.
This means that m > µ− σ. Thus the range [µ− σ, µ+ σ] must include m,
the median. In other words, the |µ−m| ≤ σ, independent of the probability
density function.

Exercise: Tchebycheff Inequality: another proof. Start with

σ2 =

∫ ∞
−∞

(x− µ)2px(x)dx

≥
∫ kσ

−kσ
(x− µ)2px(x)dx (1.13)

and derive Equation 1.11 relation.

Exercise: Demonstrate Equality. Construct examples when the in-
equality discussed above becomes equality.

1.4 Correlation and Covariance

1.5 Characteristic and Related Functions

The characteristic function is the Fourier transform of the probability dis-
tribution and it has two principal applications: in deriving the probability
distribution of sums and differences of independent random variates (§ZZ)
and in obtaining the central moments. Letting x be our random variate the
characteristic function is defined without any adornments of π and as follows:

φ(t) ≡ E
[

exp(itx)
]

=

∫ ∞
−∞

p(x) exp(itx)dx. (1.14)

The characteristic function exists provided that p(x) is well behaved and
bounded. Now consider the Taylor expansion around t = 0.

φ(t) =

∫
p(x)

[
1 + itx+

(itx)2

2!
+

(itx)3

3!
+ ...

]
dx

= 1 + it〈x〉+
(it)2

2!
〈x2〉+ ... (1.15)

Thus the Maclaurin series (Taylor expansion evaluated at t = 0) of φ(t) yield
the moments of p(x).
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However, many times it is of interest to compute central moments and
for this the following subsidiary function is useful:

φµ(t) ≡
∫
p(x) exp[it(x− µ)]dx

= exp(−itµ)φ(t). (1.16)

One can show straightforwardly,

ikµ′k =
∂kφµ(t)

∂tk

∣∣∣∣∣
t=0

. (1.17)

The cumulants κn are defined by the following equation:

log[φ(t)] ≡
∞∑
n=1

κn
(it)n

n!
. (1.18)

The Maclaurin series of log(phi(t)) yields

log[φ(t)] = (it)µ′1 +
1

2
(it)2[µ′2− µ′1

2
] +

1

3!
(it)3[2µ′1

3− 3µ′1µ
′
2 + µ′3] + ... (1.19)

where µ′k are the raw moments (see above, Equation XX). Re-arranging:

κ1 = µ′1
κ2 = µ′2 − µ′1

2

κ3 = 2µ′13 − 3µ′1µ
′
2 + µ′3. (1.20)

The cumulants have a highly desired relation to the central moments:

κ1 = µ
κ2 = µ2

κ3 = µ3

κ4 = µ4 − 3µ2
2. (1.21)

The first central moment is the mean and the second central moment is
the variance. Sometimes the third model is presented as “skewness”, γ1 =
µ3/µ

3/2
2 and the fourth moment as “kurtosis”, γ2 = µ4/µ

2
2.

The k-statistics are the unbiased estimators of the cumulants.

Add to discussion.

Gaussian Distribution. Show that for symmetric Gaussian distribution,
p(x) ∝ exp(−x2) (over the range [−∞,∞]), all cumulants save the second
cumulant are zero.
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1.5.1 Probability Generating Function

The probability generating function, G(z), is useful for random variates (r)
which take only integer or quantized values:

G(z) ≡ E(zr) =
∑
r

p(r)zr (1.22)

where the summation is over all allowed value of r. z is treated as a contin-
uous parameter. Differentiating Equation 1.22 we obtain

G′(z) =
∑
r

rzr−1p(r)

G′′(z) =
∑
r

r(r − 1)zr−2p(r) =
∑
r

r2zr−2p(r)−G′(z),

G′k(z) =
∑
r

r(r − 1)...(r − k + 1)zr−k. (1.23)

Evaluating the functions at z = 1 (in many cases, more precisely, as z ap-
proaches unity from smaller values) and re-arranging we find

E(r) = G′(1),
V (r) = G′′(1) +G′(1)−G′(1)2,

E(r(r − 1)...(r − k + 1)) = G′k(1). (1.24)

Let r1 and r2 be independent random variables with probability gen-
erating functions, G1(z) = E(zr1) and G2(z) = E(zr2). Now consider
R = ar1 + br2. Then

GR(z) = E(zR) =
∑
R

zar1+br2p(r1, r2) = G1(az)G2(bz). (1.25)

The probability generating function for the sum, S = r1 + r2 and the differ-
ence, D = r1 − r2 is

GS(z) = G1(z)G2(z)
GD(z) = G1(z)G2(1/z), (1.26)

respectively.

Exercise: Poisson Distribution. The Poisson probability distribution
is given by p(r) = (λr/r!) exp(−λ) where r = 0, 1, 2, ... . Show that E[r(r −
1)...(r − k + 1)] = λk.

Exercise: Infer the Distribution. You are given that a particular
distribution has the following values: G′(1) = 1 and all higher derivatives,
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evaluated at z = 1, are zero. Infer the underlying distribution. (This problem
can be clearly solved with knowledge of calculus. However, think what does
it mean that the variance is zero. This is a pedagogical problem which
demonstrates the power of thinking over purely symbolic manipulations.)

Exercise: Galton-Watson process. Let r1, r2, ... rN be independently
but identically distributed [with probability generating function, G(z)]. N
itself is the result of a separate random process [with probability generating
function, GN(z)]. Consider the random variable R =

∑N
j=1 rj. Show that

the probability generating function for R is

GR(z) = GN [G(z)]. (1.27)

Exercise: Vanishing of Surnames. By tradition the Koreans are re-
stricted to one of about 250 surnames. Assume that in the distant past that
there was equipartition between these original names. However, over time
there has been a shrinking of surnames even though the population of the
Korean peninsula has dramatically increased. Three surnames (Kim, Lee
and Park) account for 45% of the population. Can you develop a model to
explain the extinction of family lines?

1.6 Transformation of Variables

1.7 Addition and Subtraction Theorem

Consider two random variates, x and y, with probability density function,
pxy(x, y). We wish to know the distribution function of their sum, z = x+ y.

In the x-y plane, lines of constant z slope at 135◦ with an x or y intercept
of z (Figure XX). We compute the cumulative function of z. I Let x be the
free variable. Then y must be z − x. Then the cumulative function of z is

Pz(z) =

∫ ∞
−∞

dx

∫ z−x

−∞
pxydy. (1.28)

The probability density function of z is dPz/dz. We Taylor expand Pz(z)
around z and can rapidly conclude that

pz(z) =
dP (z)

dz
=

∫ ∞
−∞

pxy(x, z − x)dx. (1.29)

Let us now assume that x and y are independent. In this case,

pz(z) =

∫ ∞
−∞

px(x)py(z − x)dx = px(z) ∗ py(z) (1.30)
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Thus pz is the convolution of px and py.
A well known theorem in theory of Fourier transforms is that convolution

in one domain is multiplication in the conjugate domain. Thus

φz(z) = φx(z)φy(z). (1.31)

Thus the characteristic function of z is simply the product of that of x and
y, provided that x and y are independent.

Now let us consider z = x− y. In this case,

pz(z) =

∫ ∞
−∞

px(z + y)py(y)dy

= px(z)� py(z). (1.32)

Thus the pz is the correlation of px and py. Correspondingly,

φz(z) = φ∗x(z)φy(z) (1.33)

The convolution theorem for x + y is well known but the correlation
theorem for x−y is less known. Since, for two arbitrary functions, convolution
of two functions is not expected to be equal to their correlations x − y and
x + y do not follow the same distribution. However, if φx(x) and φy(y)
are both symmetric or anti-symmetric functions then x ± y follow similar
distributions.



Chapter 2

Probability Distributions

2.1 Uniform Distribution

The simple uniform distribution surprisingly arises in a number of situa-
tions. The distribution of the phase of a complex random Gaussian variate
is uniformly distributed over the range [0, 2π]. Other examples.

However, the greatest use of uniform variates arises in the generation
of random numbers in computers. A number of algorithms exist that can
generate a random number uniformly over an integer range, [a, b]. The re-
sulting numbers form the basis of generating random numbers with a desired
probability density function.

The probability density function of a deviate, distributed uniformly be-
tween a and b is p(a ≤ x ≤ b) = 1/(b − a) and zero otherwise. The mean
and variance of a uniform variate is

µ =

∫ b

a

xp(x)dx = (1/2)(b+ a)

V =

∫ b

a

x2p(x)dx− µ2 = (1/12)(b− a)2. (2.1)

Letting b = −a the characteristic function is

φ0(t) =

∫ a

−a
p(x) exp(itx)dx = sinc(ta). (2.2)

The mean and variance can be obtained by Taylor expansion around t = 0
and taking the first and and second derivatives of φ0(t) at it = 0. For the
more general case, utilizing Equation XXX, φµ(t) = φ0(t) exp(−itµ) where
µ = (1/2)(b+ a).

9
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2.2 Binomial Distribution

Consider an event whose outcome is binary. Let p the probability for suc-
cess in which case q = 1 − p is the probability for failure. This is called
a “Bernoulli” trial. Now consider n Bernoulli trials. The probability for r
successes in n trails leads to the “Binomial” distribution:

B(r;n, p) =
n!

(n− r)!r!
prqn−r r = 0, 1, ..., n (2.3)

The characteristic function is

φn(t) ≡ E(exp(it)) =
n∑
r=0

B(r;n, p) exp(irt)

= [p exp(it) + q]n. (2.4)

Here, we have used the well known binomial expansion theorem, (x+ y)n =∑n
r=0[n!/((n − r)!r!)]xryn−r. Another way to obtain φn(t) is by assigning

y = 1 to success and zero to failure. With this assignments y = r. For a
single Bernoulli trial, the characteristic function is φ1(t) = 〈y〉 = p exp(it)+q.
Since successive trials are independent we have φn(t) = Πn

j=1φ1(t) = φn1 (t).
The first k moments can be obtained by Taylor expansion of φ(t) around

t = 0. evaluating dkφn(t)/d(it)k at it = 0 (§XX). From this we find

E(r) = np
V (r) = npq. (2.5)

The binomial distribution is symmetrical when p = q. The skewnessis pro-
portional p− q.

The binomial distribution becomes a Gaussian distribution N(µ, σ2) [§3]
with µ = np and σ2 = npq as n becomes a large number. If, on the other
hand, as n increases p decreases so that np = λ then the binomial distribution
asymptotes to a Poisson distribution, P (r, λ) [§2.4].

The multinomial distribution is the generalization in which there is more
than two outcomes, say m outcomes. Let r

r = (r1, r2, ..., rm)
p = (p1, p2, ..., pm) (2.6)

be the number of successes for outcome 1 through m and let the correspond-
ing probabilities be p1, p2, ..., pm. Clearly,

∑m
j=1 pj = 1 and the total number
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of tries be n =
∑m

j=1 rj. The probability distribution and the first two mo-
ments are given by

M(r;n,p|n) =
n!

r1!r2!...rk!
pr11 p

r2
2 ...p

rk
k

E(rj) = npj
V (rj) = npj(1− pj)

cov(ri, rj) ≡ E(ri, rj)− E(ri)E(rj) = −npipj
ρij ≡

cov(ri, rj)√
V (ri)V (rj)

= −
√
pipj
qiqj

. (2.7)

The covariance is negative since, given that n is fixed, any increase in one
bin has to come at the expense of other bins.

As noted in the above equation, the multinomial distribution has been
computed assuming n is known and fixed. However, let us consider the more
likely case when n itself is a result of a Poisson process, i.e.

p(n) =
λn

n!
exp(−λ). (2.8)

where 〈n〉 = λ. Noting n = r1 + r2 + ...rk and p1 + p2 + ...pk = 1. Then

M(r;n,p) = M(r;n,p|n)p(n)

=
λn

n!
exp(−λ)

n!

r1!r2!...rk!
pr11 p

r2
2 ...p

rk
k

=
(p1λ)r1

r1!

(p2λ)r2

r2!
...

(pkλ)rk

rk!
exp(−λ)

=
(p1λ)r1

r1!
exp(−p1λ)

(p2λ)r2

r2!
exp(−p2λ)...

(pkλ)rk

rk!
exp(−pkλ).

Thus, the multinomial distribution in which the total number of events fol-
lows a Poisson distribution is exactly the same as independent Poisson distri-
butions with λj = pjλ. In particular, for such an unconstrained distribution
the covariance between different bins is zero.

Need some examples other than histograming data.

2.3 Exponential Distribution

The exponential distribution lies at the basis of reliability of manufacturing.
In particular, the time for a component or system to fail is described by
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the exponential distribution. In physics, one may regard the decay of a
radioactive nucleus as an example of a component falling apart.

Consider a component (nucleus). Let the probability that the component
will fail (undergo fission) in the interval [t, t + δt] be δp = λδt. Here the
interval is assumed to be sufficiently small δp � 1. For a component to
decay in the time interval [τ, τ + δt] the unit must have survived for all the
previous time and decayed within [τ, τ + δt]. Thus

p(τ)δt = (1− λδt)τ/δt−1 × λδt
≈ λδt exp(−λτ). (2.9)

where we have used the well known approximation (1−ε)n ∼ exp(−nε) when
ε� 1 but nε is a finite number. Thus

p(τ) = λ exp(−λτ). (2.10)

The mean time to decay is

〈τ〉 =

∫ ∞
0

τp(τ)dτ = λ−1. (2.11)

and the cumulative function is

P (τ) = 1− exp(−τ/〈τ〉) (2.12)

The fraction of components that survive to time τ is 1−P (τ) and is plotted in
Figure ZZ. The survival fractions are 37%, 13%, 5% and 2% by [1, 2, 3, 4]×〈τ〉.

In the simple exponential model the probability to decay is independent of
time. The Weibull distribution allows for increased failure at early times (e.g.
infantile death) or later times (wearing out of parts). Consider a cumulative
function, P (τ) = 1 − exp(−g(τ)). The corresponding probability density
function is p(τ) = g′(τ) exp(−g(τ)). The fractional rate of units failing at
time τ , λ(τ), is given by the rate of failure normalized to the number of units
that have survived to time τ . Thus

λ(t) =
p(τ)

1− P (τ)
= g′(t) (2.13)

A standard operating procedure is to invoke power laws when some generality
is called for. We set

g′(τ) =
β

α

( τ
α

)β−1
(2.14)
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and find

p(τ) =
β

α

( τ
α

)β−1
exp

[
−
( t
α

)β]
. (2.15)

With this assumption one has the Weibull probability density function where
β (the “shape”) parameter sets the timescale and α (“scale”) provides the
normalization.

β = 1 corresponds to the simple exponential model. 0 < β < 1 corre-
spond to premature failures whereas β > 1 account for increased failure as
components age.

2.4 Poisson Distribution

The Poisson distribution is central to optical and X-ray astronomy or any
low-light level experiment. It is a distribution worth knowing since many
routine things in life follow Poisson distribution: the number of cars which
pass a given point in a road (assuming the traffic rate is constant on average),
the number of mutations after being irradiated and so on.

Assume a constant intensity light source (such as a well stabilized single-
mode laser) is incident on a photoelectric detector. Our goal is to estimate
the variation in the number of photoelectrons detected over say a time T . As
in the previous section (§2.3) we divide the interval [0, T ] into many small
intervals of duration, δt. The intervals are chosen to be small enough that
there is negligible chance of detecting more than one photo-electron. Let the
probability for photoelectron emission in each such interval be λδt. We now
have a binomial problem with n = T/δt and p = rδt (see §2.2). Thus while n
is a very large number, pn = λT is finite. Thus the probability distribution
of the number of photoelectrons, P (k), is

P (k) =
n!

(n− k)!k!
pr(1− p)n−k

=
1

r!
[np][(n− 1)p]...[(n− k + 1)p](1− p)n−k

≈ 1

k!
(rT )k exp(−rT ) (2.16)

where two approximations have been made, n� 1 and (1− ε)n ≈ exp(−nε)
as n tends to infinity but nε is a finite number.

Thus the Poisson distribution can be re-expressed as

P (k) =
λk

k!
exp(−λ). (2.17)
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where λ = 〈k〉. The mean, variance, mode and median of the Poisson distri-
bution is

〈k〉 = rT
V (k) = 〈k〉

med(k) = λ+ 1/3− 0.02/λ
mode(k) = floor(λ), [λ− 1, λ] (2.18)

The following relation is particularly useful in the Chapter XX (Semi-
classical Theory of Detection):

〈k(k − 1)...(k − r + 1)〉 = λr. (2.19)

The characteristic function of this distribution is

φ(t) =
∞∑
k=0

P (k) exp(itk) = exp[λ(eit − 1)]. (2.20)

Consider two independently distributed Poisson variates, k1 and k2, with
mean values λ1 and λ2. Let K = k1 + k2. The characteristic function of K is

φK(t) = exp[λ1(e
it − 1)] exp[λ2(e

it − 1)]
= exp[Λ(eit − 1)]. (2.21)

Thus the sum of two independent Poisson variates is also a Poisson variate
with Λ = λ1 +λ2. Clearly this result can be readily generalized to more than
two variates. In contrast, the difference of two Poisson variates follows the
Skellam distribution.

There are several points worth remembering. First, be aware of scaling
Poisson data. Specifically, consider the following example. Charge Coupled
Detectors (CCDs) are the most widely detectors these days. They are found
in your digital camera and the choice detectors for optical telescopes. Each
photon (subject to quantum efficiency) produces a photoelectron. Modern
CCDs are very well engineered and the noise associated with “reading” the
detected photoelectrons is very small. Ideally one would like that one input
photoelectron produces one unit of output. However, given more bits for the
output costs more money. A compromise is made in which each output unit
corresponds to say g input photoelectrons. Letting y be the output and np
be the number of electrons we have y = np/g. A typical mistake is to claim
that y follows Poisson statistics. This is wrong. We know that variance in
np, V (np) = np and thus V (y) = np/g

2 = y/g. Thus the the rms of y is√
y/g and not

√
y.
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You can turn around and exploit the fact that the ratio of the measured
mean to the measured variance of a Poisson variable is unity to determine
the scale factor. APPLICATION ...

Next, as explained in §2.3 the difference in arrival time of successive
photons follows an exponential distribution.

Third, at low light levels (λ � 1) the number of integration intervals
([0, T ]) with zero photo-electrons is P (0) = exp(−λ). Thus the number of
intervals with one or more photo-electrons is P (≥ 1) = 1 − exp(−λ) = λ +
λ2/2!+λ3/3!+ ..., corresponding to one, two, three and so on photoelectrons.
However, for faint levels (λ� 1), P (≥ 1) = 1− P (0) ≈ λ.

The Poisson distribution is widely used in surveys. Let us say that you
have a survey a wide area of the sky looking for an award-winning source (e.g.
a black hole-milisecond pulsar binary). Unfortunately no source is seen. You
would then like to say something quantative of the area density (the number
of sources per square degree) of such sources. Clearly, the lower limit to
the area density is zero. To compute an upper limit we need to specificy
a confidence level, P . The upper limit is computed by demanding that no
source be detected even though true source count was λ no more than 1−P
fraction of the cases, i.e.

P (0) = 1− P
λ < − log(1− P) (2.22)

Thus a true source population with λ = 4.6 will result in a non-detection
about 1% fraction of the cases.

Literature:

The median of Poisson distribution is from Adrella & Jodra (2005, Metrika);
see Wikipedia also. The discussion of the Weibull distribution is from www.mathpages.com.

Applications

Problem Set: Probability Distributions

Exercise PD-2(P): Sum and Difference of Binomial variates. Let r1
and r2 arise from B(r1;n, p) and B(r2;m, p)). Show that R = r1 + r2 arises
from B(R;n + m, p). Next, show that R = r1 − r2 is not a binomial distri-
bution. Compute E(R) and V (R).
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Exercise PD-3(P): Poisson Conditional Distribution. Let k1 and k2
be independent Poisson variates with mean values of λ1 and λ2. Let K =
k1 + k2. Show that

p(k1|K) = B(k1;K,
λ1

λ1 + λ2
). (2.23)

Exercise PD-4(P): Geometric Distribution.1 Let r be the number of
trials before a failure takes place. The probability distribution of r is

G(r) = prq. r = 0, 1, 2, ... (2.24)

Show that the probability generating function is

G(z) = 〈zr〉 =
p

1− qz
. (2.25)

From this show that 〈r〉 = p/q and V (r) = pq−2.

1There are two different definitions of geometric distribution. One definition is the
number of trials before a failure takes place. The steps can range from 0 (the first event
is itself a failure) and upwards. The other definition is the number of trials at which the
first failure takes place. In this case, the steps can range from 1 and upwards. Here, we
use the first definition.
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Solutions to Problem Set of Probability Distributions
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Chapter 3

Gaussian Distribution

Some history.
The Gaussian distribution for a single variate is given by

N(µ, σ2) =
1√
2π

exp
[
− (x− µ)2

2σ2

]
. (3.1)

The characteristic function is

φN(t) = 〈exp(it)〉
= exp[−t2σ2] (3.2)

3.0.1 χ2 Distribution

3.0.2 The Central Limit Theorem

19
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Chapter 4

Generation of Random
Numbers

Our goal in this section is to generate random numbers with a specified distri-
bution function, say py(y). All computer generated number schemes assume
the availability of high quality random numbers with a uniform distribution1.

A distinct advantage of a random number which is uniform over (say)
the interval [0, 1] is that the cumulative distribution also spans this interval
and by definition the range [0, 1] is equally probable. Deviates whose inverse
cumulative function is readily calculable can be easily obtained from uniform
random deviates (this is called as the ”inverse” approach).

There are three methods by which variates with a desired distribution
can be generated: transformation, inverse of the cumulative function and
rejection methods. We discuss each method with examples.

Let x be a random number uniformly distributed between [0, 1]. Then
px(x) = 1 for 0 ≤ x ≤ 1 and zero otherwise. The simplest approach is to find
a transformation, y(x) so that the resulting distribution of the y’s follows the
desired distribution. From Chapter XX, we know that

py(y) = px(x)
∣∣∣dx
dy

∣∣∣. (4.1)

1This is the modern approach. In the past, random numbers were obtained from real
experiments. A fair mechanical or electrcal roulette wheel can be expected to generate
uniform random variates. A radioactive source can serve as a proxy for exponential dis-
tributions. Finally, teams of unemployed astronomers armed with a fair coin each can be
usefully employed to generate binomial distributions. One of the best known examples of
“genuine” random numbers is a book published by RAND corporation in 1948 titled “A
Million Random Digits”. This books si regarded as one of RAND’s greatest publication.

21
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4.0.1 Exponential and Related Deviates

The transformation y = − log(x) is an elegant way to generate exponential
distribution. The proof is quite simple.

py(y) = px

∣∣∣dx
dy

∣∣∣ = x = exp(−y). (4.2)

χ2
2 also follows the exponential distribution. Given the χ2 addition theo-

rem (REF) we find

u = − log(x1)− log(x2)− ... log(xn) (4.3)

follows χ2
2n distribution, provided of course xj are independently distributed.

The exponential distribution is also χ2
2

4.0.2 Poisson and Related Deviates

4.0.3 Gaussian Deviates

Let x1 and x2 be independent uniform variates over the range [0, 1]. Then

p(x1, x2) = p(x1)p(x2) = 1 0 ≤ xj ≤ 1
= 0 otherwise (4.4)

The Box-Muller transformation

y1 =
√
−2 log(x1) cos(2πx2)

y2 =
√
−2 log(x1) sin(2πx2) (4.5)

results in y1 and y2 being independent Gaussian variates with zero mean and
unit variance.

The proof is as follows. From Equation 4.5 we find

x1 = exp
[
− 1

2
(y21 + y22)

]
x2 =

1

2π
arctan

(y2
y1

)
. (4.6)

The probability distribution of y1 and y2 is given by (REF)

p(y1, y2) = p(x1, x2)
∂(x1, x2)

∂(y1, y2)

=

∥∥∥∥∥ ∂x1
∂y1

∂x1
∂y2

∂x2
∂y1

∂x2
∂y2

∥∥∥∥∥
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=
1

2π
exp

[
− 1

2
y21 −

1

2
y22

]
=

1√
2π

exp
[
− 1

2
y21

] 1√
2π

exp
[
− 1

2
y22

]
. (4.7)

Thus y1 and y2 are independent Gaussian variates with zero mean and unit
variance. This transformation is ideally suited to generating circular complex
Gaussian numbers (see Chapter XX).

A variation known as the Marsaglia polar method speeds up the Box-
Muller transformation by eliminating trignometric calculations. Consider
two independent random variates, u, v, over the range [−1, 1]. Accept the
pair only if the pair lies within the unit circle, R2 = u2 + v2 < 1 (see
Figure 4.1). Thus the joint distribution of u and v is

p(u, v)dudv =
1

π
dudv. (4.8)

Noting that

u = R cos(θ)
v = R sin(θ) (4.9)

we find

p(R, θ) = p(u, v)

∥∥∥∥ ∂x1
∂R

∂x1
∂θ

∂x2
∂R

∂x2
∂θ

∥∥∥∥ (4.10)

Thus

P (R, θ)dRdθ =
dθ

π
dR

=
dθ

2π
dρ (4.11)

where ρ = R2. Thus, θ and ρ follow a uniform distribution over the range
of [0, 2π] and [0, 1]. Noting that cos(θ) = u/R and sin(θ) = v/R and the
uniform distribution of ρ and θ we re-express y1 and y2 (Equation 4.5) and
find

y1 =
√
−2 log(x1) cos(2πx2) → u

√
−2 log(ρ)/ρ

y2 =
√
−2 log(x1) sin(2πx2) → v

√
−2 log(ρ)/ρ. (4.12)

The method is inefficient by 4/π = 1.27 but is compensated by not under-
taking computationally expensive trignometric computations.

The recent method is the Ziggurat method.
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Figure 4.1: Marsaglia polar form.

4.0.4 Other Deviates

The lifetime of a product whose probability to fail is expected to be constant
with time follows an exponential law. The Weibull distribution allows for
the probability to fail to change with time:

W (z) = αβzβ−1 exp(−αzβ) z > 0. (4.13)

and zero otherwise. The mean and variance are respectively

µ = α−1/βΓ(1 + 1/β)
σ2 = α−2/β

[
Γ(1 + 2/β)− Γ2(1 + 1β)

]
. (4.14)

If β < 1 then the failure rate decreases with time (as with people, “infantile”
mortality) whereas β > 1 corresponds to an increase with time (as with your
car, wearing out of parts). A second application of the Weibull probability
function is that it can mimic an exponential (β = 1) to an appoximate
Gaussian (β ∼ 3.4).

The cumulative function of this distribution is

F (y) =

∫ y

0

W (z)dz = 1− exp(−αyβ) (4.15)

We know that x = F (y) is uniformly distributed between 0 and 1. Thus,

y =
[
− 1

α
log(1− x)

]1/β
(4.16)
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follows the Weibull distribution.
Other examples include y = tan(x) and y = sin(x).

NOTES. To read up.

http://www.mathworks.com/company/newsletters/news_notes/clevescorner/spring01_cleve.html

4.1 Pitfalls

It is not uncommon to find someone using sums of uniform random variates
as a proxy for Gaussian distribution (appealing to the central limit theorem;
§XX) or the sum of binomial variates as a proxy for Poisson variate. These
two (and any other such approach) is risky because the main purpose of
simulation is not to derive the mean value (this usually can be calculated
quite easily) but to determine the probability distribution of the outcome
of the experiment. It is the distribution of extreme values that should be
motivating the simulation analysis. The sum of a few tens or even hundreds
of

Exercise: Random numbers of questionable significance. Let r be
random number distributed between [−1, 1]. Consider the sum of n such
numbers, R =

∑n
j=1 rj. For definitiness, set n = 100. What is the expected

and mean and variance of R? Compare the distribution of R with that of
Gaussian distribution (whose mean and variance match the expected value).
Howe deep should the simulation (i.e. the total number of R’s you gener-
ate) be to adequately characterize the difference in R and an ideal Gaussian
distribution?
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Chapter 5

Order Statistics

Say you have undertaken a Fourier transform of an X-ray time series of a
neutron star and you are looking for periodic signal but with an unknown
period. [The profile is assumed, for simplicity, to be a pure sinusoid]. The
usual approach is to Fourier transform the X-ray time series and then search
the power spectrum. The frequency bin corresponding to that of the pulsar
period would be expected to show a much larger value relative to other bins.
In the same spirit, let us say that you are looking for a short burst from a
neutron star or a spiky emission from a flare star. We will assume that you
you have done the usual processing of data (including rejecting interfering
signals) and that the resulting time series follows a single distribution, p(h).
Again the approach is to look for a spike in your time series. Likewise, the
search for a Higgs boson, consists of looking for a spike in an energy spectrum
of events seen at the LHC.

In each of the above cases, on inspection, you may find a maximum
that appears to be quite large and enticing. Should you get excited? You
instinctively realize that the more bins you have searched the larger will be
the maximum value that you will find. Thus, your excitement has to be
contained until you understand the probability distribution of the maxima.

One can generalize and think about the second highest bin, the third
highest bin and so on. We note that the median is the (n+1)/2 highest bin1.
Continuing, the minimum is the one with smallest value of input series. The
statistics of extrema (maximum or minimum), the median and the range
(maximum−minimum) is called as “order statistics”2.

1The median is well defined when n is odd. However, this is nit-picking since the main
application of order statistics is when n is large.

2In books of statistics the minimum is the first order statistic and the maximum is the
nth maximum. However, most of our applications involve maxima and so we focus on the
nth statistic and .

27
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5.1 Extrema

Let us denote the measurements by hi where i = 1, ..., n andH = max(h). We
assume that hi are independent of each other and drawn from a probability
density distribution of ρ(H). Say that h1 happens to be the maximum value.
Then all other values must be less than h1. The joint probability density
function then yields:

ρ(H = h1) = p(H)
[
1− P (H)

]n−1
(5.1)

where P (h) =
∫ h
−∞ p(h)dh is the cumulative probability function. However,

the maximum could be any one of hi and so we find

ρ(H) = np(H)
[
1− P (H)

]n−1
. (5.2)

The cumulative distribution, %(H), is obtained by integrating ρ(H) from −∞
to H. This yields

%(H) =
[
1− P (H)

]n
. (5.3)

Let us now look at the probability distribution of H when p(h) is a Gaus-
sian distribution, N(µ, σ2) and for µ = 0 and σ2 = 1. Then,

p(h) =
1√
2π

exp(−h2/2), P (h) =
1

2

[
1 + erf(h/

√
2)
]

(5.4)

where

erf(t) =
2√
π

∫ t

0

exp(−t2)dt, erfc(t) = 1− erf(t). (5.5)

Substituting Equation 5.4 into Equation 5.2 and 5.3 and using the well
known approximation (1 − ε)n ≈ exp(−nε) when ε is vanishingly small but
nε is finite we find

ρ(H) ≈ np(H) exp
[
− n− 1

2
erfc(H/

√
2)
]

%(H) ≈ exp
[
− n

2
erfc(H/

√
2)
]
. (5.6)

As can be seen from Figure 5.1 the probability density function of H is
concentrated – a result of multiplying a Gaussian tail ∝ exp(−h2/2) with a
step function exp[−(n− 1)/2 erf(H/

√
2)].

For experimental planning it helps to have a typical value for the maxi-
mum (for a given n). A simple way to determine a typical maximum value
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Figure 5.1: Plot of ρ(H), the probability density function for the maximum,
ρ(H) for sample size of n = [106, 109, 1012, 1015] and assuming that the input
series follows a Gaussian density function with zero mean, namely, p(h) = N(0, 1).
The 1% and 99% confidence points are marked by a “+” and the intervals are [4.4,
5.6], [5.7, 6.7], [6.8 7.6] and [7.7, 8.5]; Notice the width is approximately one σ, as
one would expect for any one single quantity.

(for a given n) is given by the mode of ρ(H) since for a single experiment or
run the mode is the most likely value. The peak of ρ(H) yields the mode,
Hmode and can be obtained the usual way. We find

Hmode =

√
2 log

( n− 1

Hmode

√
2π

)
. (5.7)

Note that Hmode increases very slowly with n being ∝
√

ln(n). Next, the
above equation is not a closed form solution for Hmode. However, since Hmode

on the right hand side appears as
√

lnHmode we can set Hmode = 6 (typical
for n = 109) and find approximate value for Hmode. With this simplification
for n = [106, 109, 1012, 1015] we find Hmode = [4.7, 6.0, 7.1, 8.0] which can be
compared to the exact value of Hmode = [4.76, 6.01, 7.04, 7.95].

In order to interpret a particular experiment the cumulative distribution
(Equation 5.6) is useful. We would like to know the chance (probability) of
obtaining a value as high as the measured value, H = H. If this probability
is reasonable (say between 0.01 and 0.99) then you have no reason to suspect
that you have a detection.

It is common practice that many searches are designed to identify singular
peaks e.g. giant spikes from pulsars, strong bursts from other galaxies and
so on. However, sometimes a minimum is also very interesting. Possibilities
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range from occultation (e.g. by a rock in the solar system, a bird in the dome)
to an extreme scattering event caused by structures in the interstellar medium
or a defocussing lens in the interstellar medium. The above discussion also
applies to the statistics of the minimum.

The statistics of extrema are very sensitive to imprecision in our knowl-
edge of σ or the measurement itself or more precisely the signal-to-noise ratio
(SNR) of the bin in question, H/σ. A small imprecision, say 10%, will change
H from say 7.5 to 8.5. (for an assumed n = 1012). Given the narrowness
of ρ(H) we can say that such a shift has a dramatic impact on the infer-
ence. The cumulative probability goes from an acceptable value of 97% to
99.9921%. Likewise a difference of a single σ (owing say due to some additive
error) would also have a dramatic effect. The way to recognize the presence
of such biased scale factor or additive constants is to look at the distribution
of the top m maxima.

The arguments which led us to derive Equation 5.2 lead us to the fol-
lowing probability density function for the mth highest point in sample of n
elements:

ρ(Hm) = np(Hm)× n−1Cm−1P (Hm)n−m[1− P (Hm)]m−1 (5.8)

where nCr = (n)!/(r!(n − r)!). In Figure 5.2 I plot the maxima and higher
order maxima for zero mean, unit variance Gaussian variates. Notice the
decreasing variance of higher order maxima. Roughly one expects the vari-
ance to decrease as m−1/2 (with the median enjoying the smallest variance).
The decreasing width of the variance means that spikes due to noise occur at
rather specific values (and thereby the pattern of the top m maxima provide
a distinction between noise and signal).

5.2 The Median

Perhaps the most important percentile is the median (IntREF). While the
mean minimizes the sum of the square of the differences between the mean
and the sample values (residuals) the median minimizes the sum of the abso-
lute value. As a result the median is naturally more robust against outliers.

Consider a sequence of measurements, hi as in the previous section (§5.1).
Let us re-arrange this sequence to produce an ordered series, gi where gi < gj
for i < j. Let ri = i/n. Clearly, 0 < ri ≤ 1. The next measurement, hn+1 can
be below the current minimum or above the current maximum or lie between
a sequential paper, say, gi and gi+1 or a total of n+ 1 possibilities. Thus the
probability for any of these possibilities is 1/(n + 1). This is a useful and
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Figure 5.2: The distribution of mth maxima for a set (n = 3× 107) of zero mean,
unit variance Gaussian variates. The m values are marked next to each of the
curves. The m = 1 curve corresponds to ρ(H).

general result to keep in mind. We say general because the result applies to
any valid probability distribution.

Next, we compute the confidence range for the median. For this calcula-
tion it is helpful if n is even. In this case the inferred median is bracketed
by gq and gq+1 where q = n/2. The probability that the true median lies in
this range is the probability of having n/2 points below and above the pop-
ulation median. This probability that such is the case is P = nCq2

−n. Thus,
for instance, if n = 10 the probability that the true median is in the range
[g5, g6] is 0.246. The confidence level (P ) can be increased by increasing the
range. Thus for instance the probability for the range [q − 1, q + 2] is larger
and given by

P = [nCq−1 + nCq + nCq+1]2
−n. (5.9)

Note that the confidence level derived thus applies to any p(h).

The density of r on the axis [0, 1] is uniform. With increasing n the
probability density function of r becomes continuous. Thus p(r) = 1 and
P (r) = r. A given percentile, say t, is the point closest to m = tn. The
probability density that there are m points above interval [t, d + dt] and
n−m− 1 below this interval is given by (cf. Equation 5.8) is

ρ(n; t) = nCm−1 t
n−m[1− t]m−1. (5.10)

In the asymptotic limit the distribution becomes normal, ρ(n; t) ∝ N(t, t(1−
t)/n). Thus, for the median, t = 1/2 and we find ρ(n; 1/2) ≈ N(1/2, 1/(4n)).
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For the specific case of noise which follows Gaussian distribution, N(µ, σ2),
the variance of the median estimator can computed exactly:

V (Hmed) =
4n

π(2n+ 1)
σ2 (5.11)

where n is the sample size. In contrast, the variance of the arithmetic mean
is σ2/(n− 1) (Internal REF). Thus the median, for Gaussian distribution, is√
π/2 worse estimator than the arithmetic mean. The median, on the other

hand, is robust against the presence of strong fluctuations due to say Radio
Frequency Interference (RFI) or cosmic rays hitting the CCD. These events
with high amplitude are rare but owing to their large magnitude they will
bias the arithmetic mean and the variance as well. The median estimator is
essentially immune to such rare and extreme interfering events.

Incidentally Equation 5.11 should not lull the reader into thinking that
the median is always a worse estimator relative to the mean. For example,
the variance of the median is the same as that of the mean for exponen-
tial distribution and uniform distribution (PS-1, PS-6) and the median is a
better of estimator of µ for a Laplace distribution (PS-1, PS-5). In Chap-
ter(IntREF) we learnt that the Cauchy distribution is so pathological as to
not have any central moments. In particular, for this distribution neither the
mean nor variance are defined. OS-4(P) nicely demonstrates the median is
well defined for this distribution.

The median is also useful in analysis of data, not merely in data re-
duction. Indeed median analysis is essential when two different underlying
distributions contribute to the measurements (as discussed above) or when
the underlying distribution is not Gaussian. It is safe to assume that any
astronomical class of objects is not described by a single Gaussian. Examples
include supernovae of all sorts (even if classified into Ia and II) and luminos-
ity functions of stars of a given spectral type. The reason is simple. In the
first case, it is most likely that there are multiple channels of producing type
Ia supernovae (indeed the systematics of the difference between supernovae
produced in elliptical and star-forming galaxies) and in the second case there
may be external perturbations (e.g. stars classified as A type from low reso-
lution spectroscopy may have faint companions and thus the luminosity will
be biased towards higher values).

Another use of medians is when the variance of the measurements are
not well known or if a small fraction of measurements are suspected to be of
dubious value. The χ2 approach is powerful but only if the assumptions of
normality of the data is true and the variances are known. These are very
strong assumptions and application of χ2 may yield results which a level of
confidence that is not well deserved.
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Literature: The Wikipedia entry on “Order Statistics” is comprehensive
and understandable. The classical result of Equation 5.11 is quoted from
Eric Weinstein’s Mathworld. Gott et al. (Astrophysical Journal, 549, 1–17,
2001) provide a sound pedagogical discussion of when the use of median is
preferred (§5.2). OS-8 is from S. K. Mishra (Economics Bulletin, 3, pp. 1–6,
2004).

Applications: Gott et al. (ibid) for application of median in determining a
robust value of H0 given measurements with poorly known variance. Frail et
al. (2011, arXiv:1111.0007) for real examples of scaling or additive errors in
measurements and a subsequent application of top m maxima. See Israel &
Stella (ApJ 468, pp. pp. 369–379, 1996) for pre-whitening power spectrum
of X-ray sources prior to searches for periodic signals.
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Problem Set: Ordered Statistics

Exercise OS-1(P): Reason out Equation 5.8. Write a program to evaluate
Equation 5.8 and thence reproduce Figure 5.2.

Exercise OS-2(P): Generate (say) n = 101 Gaussian random numbers with
zero mean and unit variance. Determine the median and median. Repeat
the exercise say N = 105 times. Plot the histogram of the mean and median
estimators. Notice that the histogram of the median is more spread out than
that of the mean. Redo the same exercise for an exponential distribution,
p(h) = exp(−h) for h ≥ 0 and 0 otherwise, and the Laplace distribution,
p(h) = 1/2 exp(−|h|).

Exercise OS-3(P): Continuing with the case of p(h) = exp(−h) derive the
mode of H = max(h) as a function of the number of independent bins, n.
Plot the distribution of ρ(H) for n = [102106, 109, 1012].

Exercise OS-4(P): The Cauchy distribution,

p(h) =
1

π(1 + h2)
(5.12)

with −∞ < h < ∞ is a distribution for which the central moments (mean
and variance, in particular) are formally indefinite (IntREF). However, the
median is well defined. Generate a sequence, say hk for k = 1, 2, .., n with
n=101. Generate m = 104 such runs and for each run obtain the mean and
the median. Comment on the histograms of the means and the medians.

Exercise OS-5(H): The Laplace distribution (with µ = 0) is the distribu-
tion of two identically distributed exponential variates (hence sometimes this
distribution is called the double exponential). Show that the maximum like-
lihood estimator of µ is given by the median and the median is the better
estimator compared to the mean.

Exercise OS-6(H): The probability density function of the median can be
obtained from Equation 5.8 with m = (n + 1)/2. Show (that is, derive and
not merely restate Equation 5.11) that for large n and assuming Gaussian
distribution, N(µ, σ2) that the variance of the estimator of the median is
(π/2)σ2/n. Next, provide a general expression relating the the variance of
the median to n and σ2 (for large values of n). Extend the result for any
percentile.

Exercise OS-7(H): The statistics of the Fourier transform of a series of mea-
surements asymptotes to a uncorrelated Gaussian variates (Internal REF) as
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the number of measurements increases. As a result, the statistics of the
power spectrum (s) asymptote to χ2

2 or exponential distribution, p(s) =
exp(−s/A)/s0 where the A is the mean value and for white noise A is a
constant, independent of frequency. However, many X-ray binaries exhibit a
strong frequency dependence in their power spectrum with strong red noise
(increasing power at low frequencies), quasi-periodic oscillations (resulting
in broad humps at moderate frequencies) and flicker noise (contributing to
the spectrum at high frequencies). These may arise from hot gas in the disk
and the corona. Regular pulsations may arise from a specific region (e.g. the
polar cap of the neutron star). Thus you expect to see a strong single-bin
peak (assuming that the pulsation can be represented by a pure sinusoid)
but against a varying background, the power spectrum P(f) = A(f) where
A(f) is given to you. Now work out the statistics of H (in the absence of
any signal).

Exercise OS-8(?): In general the computation of the median involves
n log(n) steps. In contrast the mean requires n steps and allows you to
access the data sequentially. It has been suggested a weighted arithmetic
mean yields an approximate value for the median:

wi =
1

|xi − ν1|
ν1 =

n∑
i=1

xiwi

/ n∑
i=1

wi. (5.13)

Here, ν1 is initially set to the mean in determining the weights, wi. Then ν1 is
computed. The two steps repeated until necessary precision in convergence is
obtained. I wonder what weights would be appropriate to similarly compute
a certain percentile.

Exercise OS-9(?): For reasons discussed in the previous exercise it is some-
times advantageous to use median instead of the mean. This is especially the
case when combining CCD images of the same field. After the images are
registered to the same reference grid a median image is obtained by taking,
for each position on the sky, a median of the pixels which map to that piece
of sky. Assume that for a given position, the Poisson parameter is λ and
that we have n images. Numerically compute the median and variance of
the median as a function of λ (say from λ = 0.1, 1, 3, 10, 20, 50, 100) and n
(say 5, 10, 30, 100).

Compare your numerical median estimator to an analytical estimate (REF:
Wiki/Poisson Distribution).

Median = floor(λ+ 1/3− 0.02/λ) (5.14)

To my knowledge there is no known simple expression for the variance of the
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median. Make a sensible guess and obtain a fitting formula as a function of
λ and n.
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Solutions to Problem Set of Ordered Statistics

Solution to OS-1(P): For the mth maximum we need to have one point
in interval, [Hm,Hm + dHm] (for which there are n choices), m − 1 points
above this interval and n−m below this interval. The number of choices for
the latter is n−1Cm−1 and the probability for a point being above the interval
is 1− P (Hm) but P (Hm) for being below the interval. This then leads to

ρ(Hm) = np(Hm)× (n− 1)!

(m− 1)!(n−m)!
P (Hm)n−m[1− P (Hm)]m−1. (5.15)

For large n direct evaluation of the above Equation is not possible with
even double precision arithmetic. We recognize that the primary interval
of interest is the vicinity where ρ(Hm is not exceedingly close to zero. This
happens when P (Hm) approaches unity. We then use the approximation (1−
ε)n ≈ exp(−nε) when ε→ 0 but nε tends to a non-zero value. Furthermore,
we make use of the approximation that n−m ≈ n when n� 1 and m� n.

ρ(Hm) ≈ 1

(m− 1)!
p(Hm)[1−P (Hm)]m−1 exp

[
−(n−m)[1−P (Hm)]

]
(5.16)

Solution to OS-2(P): See Figures 5.3, 5.4 and 5.5. The Gaussian vari-
ates were generated with the Box-Muller transformation; for exponential
h = − log(x) where x is a uniformly distributed random number, [0, 1]; the
Laplace variates were generated as the difference between two unit variance
exponential variates or alternatively as sgn(y) log(1−2y) where y is uniformly
distributed over the range [−1/2, 1/2].

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
0

1

2

3

4

5
x 10

4

h

H
is

to
gr

am

Gaussian

 

 
Mean
Median

Figure 5.3: A sequence of n = 1001 Gaussian variates, h, with zero mean and
unit variance were generated, p(h) = 1/

√
2π exp(−h2/2). The mean and median

for each run was obtained. The run is repeated N = 106 times and the histogram
of the resulting means and medians is shown above.
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Figure 5.4: Same as Figure 5.3 with n = 101, N = 106 and p(h) = exp(−h) for
h ≥ 0 and 0 otherwise.
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Figure 5.5: Same as Figure 5.3 with n = 101, N = 106 and p(h) = exp(−|h|).

Solution to OS-3(P): The probability density function and the cumulative
function are p(h) = exp(−h) and P (h) = 1 − exp(−h). The probability
density function and the cumulative function of H, the maximum of h, is
given by (cf. Equation 5.6)

ρ(H) ≈ n exp(−H) exp
[
− (n− 1) exp(−H)

]
, %(H) ≈ exp

[
− n exp(−H)

]
.(5.17)

The mode of ρ(H) is the value of H at the peak of ρ(H) and can be shown
to be

Hmode = ln(n− 1). (5.18)

Thus, Hmode = [13.8, 20.7, 27.6] for n = [106, 109, 1012]. The plots of ρ(H)
can be found in Figure 5.6. Notice the constant width of ρ(H) with respect
to the sample size, n. Compare this to Figure 5.1.

Solution to OS-4(P): The transformation h = tan(π(x − 1/2)) generates
zero mean Cauchy distribution with pdf given by Equation 5.12; here x is
a random variate uniformly distributed over the range [0, 1). A simulation
run will show that the median is nicely distributed over the approximate
interval between −1 and +1. In contrast, the mean is wildly and randomly
distributed over a much larger range.

Solution to OS-5(P): Not solved yet.
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Figure 5.6: Plot of ρ(H), the probability density function for the maximum, ρ(H)
for sample size of n = [10, 106, 109, 1012, 1015] and assuming that the input series
follows a unit mean exponential distribution. The 1% and 99% confidence points
are marked by a “+” and the intervals are [0.8 6.9], [12.3, 18.5], [19.2 25.3], [26.1
32.3], [33.0, 39.2] – essentially a constant width with respect to n.

Solution to OS-6(H): From Figures 5.3 and 5.4 we see that the distribution
of the median looks like a Gaussian distribution, despite differing p(h). We
will make the assumption that for large values of n the distribution of the
median, at least in the vicinity of the median, is also Gaussian, ρ(hm) ∝
exp(−(h− hm)2/(2σ2

h); here ρ(hm) is the probability density function of the
sample medium. If so, it is easy to show that

d2ρ

dh2m
= − 1

σ2
hm

. (5.19)

While this equation is true for a Gaussian distribution, at any value of h, we
will make use of this result only in the vicinity of the peak ρ(hm) for which
our simulations, as discussed above show is a plausible approximation.

The probability density function for the sample median, hm, is obtained
from Equation 5.8 with r = (n− 1)/2 and the result is

ρ(hm) =
n!

r!r!
p(hm)P r[1− P (hm)]r. (5.20)

Taking the log(ρ) and differentiating it twice yields

d2 log(ρ)

dh2m
=

d2 log(p)

dh2m
− r
( dP
dhm

)2[ 1

P 2
+

1

(1− P )2

]
+ r

d2P

dh2m

[ 1

P
− 1

1− P

]
.(5.21)
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The inverse of the variance of the median is obtained by evaluating the above
equation at the true value of the median, Hm = hm. The median is defined
as the value of hm which satisfies the condition, P (hm = Hm) = 1/2 and
thus the last term in Equation 5.21 is identically equal to zero. Substituting
this value in Equation 5.21 and noting dP/dh = p(h) we obtain

1

σ2
Hm

=
[
− d2 log(p)

dh2m
+ 8r p(hm)2

]
hm=Hm

≈ 4(n− 1)p(Hm)2 (5.22)

In arriving at Equation 5.22 we ignored the first term in Equation 5.21 (which
is approximately the variance of a single sample) relative to the second term
which is ∝ nσ2.

We now apply Equation 5.22 for the specific case of a Gaussian distribu-
tion, N(µ, σ2). With Hm = µ we find

σ2
Hm
≈ π

2

σ2

n− 1
(5.23)

leading us to conclude that the variance of the median is π/2 worse than that
of the mean.

Next, we apply the general formula (Equation 5.22) to an exponential
distribution, p(h) = exp(−h) for h ≥ 0 and zero otherwise. The cumula-
tive distribution is P (h) = 1 − exp(−h). The mean, µ = 1. The median
is obtained by noting that P (Hm) = 1/2 or Hm = log(2). We note that
p(Hm) = 1/2. Thus σ2

Hm
≈ 1/(n − 1). The variance in the sample mean is

also ≈ 1/(n− 1).

Solution to OS-7(H): The probability density function for each channel is
an exponential but with a mean which is channel dependent. In particular,
let A(f) be the expected mean value for channel f . Then, to the extent
A(f) is characterized we can convert the value in each channel, P (f) to
a significance level, h(f) ∝ exp(−P (f)/A(f)). We see that h(f), being a
probability, is uniformly distributed on [0, 1]. Thus, the probability density
of H is

ρ(Pm) = nHn−1 %(H) = Hn. (5.24)

The problem with this approach is that if small errors in determining A(f)
can lead to significant variation in h(f). For this reason, determining A(f)
with high precision is important. One approach is to “pre-whiten” the spec-
trum.

Solution to OS-8(?): Not thought about it.

Solution to OS-9(?): Not thought about it.
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Chapter 7

Digitizing Intensity

7.1 1-bit Quantization

Let N be a zero mean, unit variance Gaussian variate [N(0, 1)]. Let S be
the signal (assumed, for the purpose of the discussion, to be steady). The
input and the output to the 1-bit digitizer is thus

Y = S +N (7.1)

y = sgn(Y) (7.2)

Our goal is to evaluate the signal-to-noise ratio of y, defined as 〈y〉/
√
V (y)

where V (y) is the variance and 〈y〉 is the mean value. We wish to compare
this with the SNR of the input signal,

SNR(Y) = S (7.3)

(since the variance of the input signal is unity).
Given thatN follows Gaussian statistics with zero mean and unit variance

we deduce that the probability distribution of Y is

p(Y) =
1√
2π

exp
(
− (Y − S)2

2

)
. (7.4)

The mean and the variance of Y is simply S and 1, respectively. The mean
of the digitized signal is

〈y〉 =
1√
2π

[∫ ∞
0

exp
(
− (Y − S)2

2

)
dY −

∫ 0

−∞
exp

(
− (Y − S)2

2

)
dY

]
=

1√
2π

∫ S
−S

exp
(
− Y

2

2

)
dY

43
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= erf(S/
√

2) (7.5)

The second moment of y is simply unity1

〈y2〉 =
1√
2π

[∫ ∞
0

exp
(
− (Y − S)2

2

)
dY +

∫ 0

−∞
exp

(
− (Y − S)2

2

)
dY

]
= 1 (7.6)

and thus

V (y) = 〈y2〉 − 〈y〉2 = 1− erf(S/
√

2)2. (7.7)

Thus the SNR of a single sample of the digitized signal is

SNR(y) =
erf(S/

√
2)√

1− erf(S/
√

2)2
(7.8)

With Equations 7.3 and 7.8 we can now plot the SNR of a 1-bit digitizer
(Figure 7.1).
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Figure 7.1: Signal-to-noise ratio of 1-bit digitized intensity signal.

1At least in the framework we specified and that is S is noiseless. Any real signal will
induce its own additional noise and a correct treatment would take effect into account.
However, 1-bit digitizers are or should be employed for weak signals and so this discussion
is academic even in the context of an academic discussion.
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At low input SNR (by which we mean S since the input noise has a
variance of unity) the output SNR of the 1-bit digitizer bears a linear rela-
tion with the input SNR. However, as the input SNR increases the output
SNR increases exponentially – a very curious state of affairs. Let us try to
understand both these features.

First we consider the case of S � 1. Taylor expansion of the RHS of
Equation 7.8 leads to

SNR(y) =

√
2

π
S (7.9)

Thus the SNR of the 1-bit signal is
√
π/2 worse than that of the input signal

by about 20%.
Now consider the opposite case, S & 1. In this limit, erf(S/

√
2 ap-

proaches unity and. Thus, as can be seen from Equation 7.8, SNR(y) then
increases rapidly. In fact, it can be shown to increase exponentially! It is
easy to understand this result since in this limit the variance decreases (most
of the samples are +1) and the signal saturates to unity. Thus we are in
the paradoxical situation in which the SNR of the digitized signal exceeds
that of the analog signal. In fact, this phenomenon presents a very good
opportunity to understand the limitations of the concept of SNR.

The fundamental quantity that matters in measurement theory is infer-
ring the range of the underlying physical quantity. In our case it is S. From
Equation 7.5 we find that variation in 〈y〉 is

∆〈y〉 =

√
2

π
exp(−S2/2)∆S. (7.10)

We invert this equation and obtain

∆S =

√
π

2
exp(S2/2)∆〈y〉. (7.11)

For S & 1 you can see that a small variation in the measured value of y
results in a larger variation in the inferred value of S. This simple example
shows the limitation of using SNR as a proxy for the confidence interval of
S.

The lesson learnt is simple: normally increasing SNR also means better
knowledge of the inferred parameter. However, here, the larger SNR is a
mirage. Our knowledge of S decreases with increasing value of S. On the
other hand our knowledge that the input signal has a strength comparabele
to the noise becomes more certain with increasing S.

This situation is similar to the photon statistics in the low light and zero
background case: a certainty of detection but near absence of a quantitative
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knowledge of the amplitude of the signal. On some reflection you can see
that the probability distribution of the negative state (−1) indeed approach
Poisson distribution as S becomes larger. Here we have an example of a
Gaussian process which approaches Poisson limit (rather than the other way
around).
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Figure 7.2: Two bit digitizer.

7.2 2-bit Digitizer

The next level of sophistication is a 2-bit digitizer with transitions at 0, ±L1

(Figure 7.2). The four possible states (j = 1, 2, 3, 4) for the digital signal
y are S(j) = −Q,−1,+1,+Q where for generality we let the state 1 and 4
have a value ≥ 2. Given the discussion in the previous section we assume
that S � 1.

Adopting the same model as before (Equation 7.2) we find the probability
of each state for a signal to be as follows:

P (1) = 1/2
[
1− erf((L1 + S)/

√
2)
]

P (2) = 1/2
[
erf((L1 + S)/

√
2)− erf(S/

√
2)
]

P (3) = 1/2
[
erf((L1 − S)/

√
2) + erf(S/

√
2)
]
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P (3) = 1/2
[
1− erf((L1 − S)/

√
2)
]
. (7.12)
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Figure 7.3: Slope of the SNR-S for a 2-bit digitizer as a function of L1.

The mean and second moment can be computed as before: 〈y〉 =
∑
P (j)S(j)

and 〈y2〉 =
∑
P (j)S(j)2.

〈y〉 =
Q− 1

2

[
erf((L1 + S)/

√
2)− erf((L1 − S)/

√
2)

]
+ erf(S/

√
2)

≈ (Q− 1) exp(−L2
1/2)

√
2

π
S +

√
2

π
S

≈ S
√

2

π

[
(Q− 1) exp(−L2

1/2) + 1

]
(7.13)

where the approximation is valid for S � 1.

〈y2〉 = Q2P (1) + P (2) + P (3) +Q2P (4)
= 1 + (Q2 − 1)[1− 1/2erf((L1 + S)/

√
2)− 1/2erf((L1 − S)/

√
2)]

≈ 1 + (Q2 − 1)
[
1− erf(L1/

√
2)
]
. (7.14)

We note that the output signal increases linearly with the strength of the
input signal. In the limit we are considering S ∼ 0 the variance is approxi-
mately independent of the input signal. For Q = 2 we find the output SNR
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is related to the input SNR as

SNR(y) ≈ S

(√
2

π

)
(Q− 1) exp(−L2

1/2) + 1√
1 + (Q2 − 1)[1− erf(L1/

√
2)]

(7.15)

The simplest choice is Q = 2 for which L1 ∼ 1 optimizes the output SNR
(see Figure 7.3). The efficiency is about 92%. The efficiency monotonically
decreases to that of the 1-bit digitizer for smaller values of L1. For larger
values of L1 the efficiency decreases since states 1 and 4 become increasingly
sparsely populated.
Exercise: Find out which combination of Q and L1 maximizes the efficiency
of a 2-bit digitizer.
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Combining Experiments

Consider two experiments aimed at measuring the same quantity. Each ex-
periment has a different variance: σ2

i for i = 1, 2. What is the best way to
combine the two measurements, xj?

Let wi be the weights assigned to each measurement:

X = w1x1 + w2x2 with (8.1)

The two weights should add to unity in order to ensure that the mean value
of X is indeed the sample mean. Thus,

1 = w1 + w2. (8.2)

We use the signal-to-noise ratio (SNR) as the metric to maximize. In the
mean 〈X〉 = w1µ1 + w2µ2 and the variance of X, V = w2

1σ
2
1 + w2

2σ
2
2. Thus

the SNR is

S =
w1µ+ w2µ√
w2

1σ
2
1 + w2

2σ
2
2

. (8.3)

The goal is to determine the weights which maximize SNR(X). Given Equa-
tion 8.2 there is only one free parameter and we arbitrarily choose the free
parameter to be w1. The condition for the maximum of SNR(X) is obtained
by setting the partial derivative of SNR(X) with respect to w1 to zero.

∂S
∂w1

= (w2
1σ

2
1 + w2

2σ
2
2)− (w1 + w2)w1σ

2
1 = 0 (8.4)

which when combined with 8.2 yields

w1 =
σ2
2

σ2
1 + σ2

2

=
σ−21

σ−21 + σ−22

. (8.5)
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By symmetry the weighting can be generalized to wj ∝ σ−2j . This is the
origin of the so-called weighted mean. The SNR of the weighted mean is
obtained by subsitutiong the above weights into Equation 8.3 and is

S = µ

√∑
i

1

σ2
i

=
(∑

i

µ2

σ2
i

)1/2
. (8.6)

For the case of σi = σ we recover the usual result of the SNR improving by√
n relative to a single measurement.

Next, consider an experiment which measures j = (1, 2, ..., n) separate
channels. Say, the measurement noise is the same in each channel. How-
ever, the expected signal strength is different in each channel. The expected
strength in each channel can be known in advance of the measurement (ex-
cept for the overall strength of the signal), e.g. a resolved spectral line with
a known center wavelength but unknown flux.

As before consider

X =
n∑
j=1

wjxj with (8.7)

with the requirement that the sum of the weights add to unity,
∑

j wj = 1.
The SNR of X is

S =

∑n
j=1wjµj

σ
√∑n

j=1w
2
j

. (8.8)

Setting the partial derivatives to zero yields

∂S
∂wi

= µi

n∑
j=1

w2
j − wi

n∑
j=1

wjµj = 0. (8.9)

Thus wi ∝ µi and with the requirement for unit sum for the weights we find

wi =
µi∑n
j=1 µj

. (8.10)

This is the so-called “matched filter” solution. Substituting wi into Equa-
tion 8.8 yields the SNR of the Xf:

S =
1

σ

√∑
i

µ2
i =

(∑
i

µ2
i

σ2

)1/2
. (8.11)
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For the special case, µi = µ we recover the well known result that S =√
n(µ/σ).

Finally, we consider the most general case: allow each channel to have its
own variance, σ2

i and its own mean value µi. By following the steps as above
we find

wi =
µi/σ

2
i∑

j µj/σ
2
j

(8.12)

maximzes S. We could call this as the weighted matched filter. The SNR is

S =
(∑

i

µ2
i

σ2
i

)1/2
(8.13)

In effect, the square of the SNR of n measurements, when combined opti-
mally, is the the sum of the squares of the SNRs of each measurement (or
channel).

8.1 Application: Optical Imaging

Optical imaging is done with a camera followed by a CCD detector. We will
assume that the pixel size is chosen to be a fraction of width of the point
spread function (PSF). For space based imagers the PSF width is approxi-
mately λ/D whereas for ground-based imagers it is set by atmospheric seeing
(angular diameter, θFWHM). The primary source of noise is due to the emis-
sion from the background (zodiacal dust emission, reflection by interstellar
grains and emission from the atmosphere). CCDs are getting so good that
one, in most cases, ignore read noise.

For simplicity we will consider circularly symmetric extended sources.
The surface brightness of the source is described by

I(~θ) = Ig(θ) = I exp
[
− (θg/θ)

2
]

(8.14)

where ~θ = (θx, θy), θ
2 = θ2x + θ2y and I is the central surface brightness

(unit: photons per square centimeter per second per pixel). Let B be the
background surface density and assumed to be constant across the image.
The unit for both I and B is photons per square centimeter per second per
pixel.

Say your goal is to estimate I. Going forward we will assume that the
mean background level has been subtracted out from the images (with negli-
gible noise penalty). Following the discussion centered around Equation 8.12
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the pixel data should be combined with the following weight

w(~θ) ∝ g(~θ)

I(~θ) + B
(8.15)

where it is understood that the integral of w(~θ) is unity. The weighted sum
then yields an optimal value for the central surface brightness of the source:

I0 =

∫
w(~θ)I(~θ)d~dθ. (8.16)

The SNR of I0 is

S =

(
I0
∫ [ g(θ)I(θ)

I(θ) + B

]
2πθdθ

)1/2

(8.17)

Above we assumed that the collecting area (A) and the integration time (t)
was unity. The SNR should be increased by

√
At for the general case.
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Problem Set: Combining Experiments

Exercise CE-1(P): Qualitatively argue that the in the bright limit (I � B)
the best SNR is

√
FS where FS is the total number of photons detected. Verify

that Equation 8.17 yields this value. Show that in the opposite limit (I <∼ B)

S ≈ I0√
2B

√
πθ2g =

FG√
2πθ2gB

. (8.18)

Thus at any given SNR level the limiting surface brightness ∝ θ−1g . the SNR
of the integrated flux density scales as θ−1g .

Exercise CE-2(P):

Need some ideas
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Solutions to Problem Set: Combining Experiments

Solution to CE-1(P): The flux density from the object is FG = I(θ)2πθdθ =
I0πθ2g . In the limit of for B � I0 Equation 8.17 simplifies to

S =
(
I0
∫
g(θ)2πθdθ

)1/2
= FG (8.19)

In the opposite regime

S = I0
(∫ g(θ)I(θ)

B
2πθdθ

)1/2
. (8.20)

In the mean I(θ) = I0g(θ) and thus Equation 8.20 simplifies to S = I0
√
πθ2g/(2B).



Chapter 9

Gaussian Distribution: Famous
Examples

9.1 Astrometry

9.2 Fourier Transforms

9.3 Ruze’s Formula (Strehl Ratio)

One of the basic formula familiar to radio astronomers is Ruze’s formula for
radio telescopes. Assume that each segment is well laid down so as to hug a
parabola. However, the segment surface is rough (to some degree). Let δk be
the path length error of each “patch” (which is either a region of a segment
or the segment itself). The corresponding phase error is

φk = 2× 2πδk/λ (9.1)

where the factor of two accounts for reflection (in and out). We will assume
that each panel or region contributes equal amount of flux. Thus the pri-
mary error (“piston”) is the phase error shown above. Let p(φ) describe the
statistics of the phase error. We assume 〈φ〉 = 0 and note the variance is

V (φ) =
(4πσδ

λ

)2
(9.2)

where σ2
δ is the variance in the piston errors.

Each region/panel contributes the following electric field at the focus:

ER(k) = E0 cos(φk)
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EI(k) = E0 sin(φk). (9.3)

The total electric field is thus

Etot =
∑
k

E0 cos(φk) + j
∑
k

E0 sin(φk)

= ER(tot) + jEI(tot)

= nE0

〈
exp(jφ)

〉
(9.4)

where

exp(φ) =

∫
p(φ) exp(jφ)dφ. (9.5)

Here, p(φ) is the probability distribution of φ and the integration limits range
from −∞ to +∞.

We now consider the specific case of a Gaussian distribution

p(φ) =
1

σφ
√

2π
exp

(
− φ2

2σ2
φ

)
. (9.6)

As will become apparent it is better to compute a slightly more general
expression, namely the Fourier transform of p(φ),

G(t) ≡ 1

σφ
√

2π

∫
exp

(
− φ2

2σ2
φ

)
exp(jtφ)dφ

= exp
(
−
σ2
φt

2

2

)
; (9.7)

here we utilize the well known expression for the characteristic function
(Fourier transform) of the normal distribution. As expected the sine compo-
nent is zero leaving only the cosine transform. Thus

Etot = nE0 exp
(
− σ2

φ/2
)
. (9.8)

The specific quantity we seek is simply Itot = 〈(ER + jEI)(ER − jEI)〉.
At first blush one may think that Itot = EtotE

∗
tot. However, this is incorrect,

since, in general, 〈xx∗〉 6= 〈x〉〈x∗〉.
The correct approach is to derive the mean value of Itot directly:

Itot = E2
0

∑
k,l

exp(jφk − jφl) (9.9)

which requires the evaluation of〈
exp(jφ− jφ′)

〉
=

∫ ∫
dφdφ′p(φ)p(φ′) exp(jφ− jφ′)
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= δ(φ, φ′) + (1− δ(φ, φ′))
〈

exp(jφ)
〉
. (9.10)

Thus

〈Itot〉 = E2
0

[
n+ n(n− 1)G(1)

]
. (9.11)

The maximum value of is obtained when all the rays are combined in phase,
Itot = n2E2

0 . Normalizing with this value we obtain the celebrated Ruze
formula for the aperture efficiency of radio telescopes:

η =
1

n
+
n− 1

n
exp

[
−
(

4πσδ
λ

)2
]
. (9.12)

The first term (1/n) sets a minimum value to the aperture efficiency and
is obtained even when all the contributing rays have random phases. In
this case, Etot is zero but there is still some power resulting from incoherent
combination of all the rays. The second term arises from coherent sum of all
the rays and is related to the quality of the surface.

The Ruze formula includes only piston errors (no tilts, no focus). As-
suming that n � 1 we see that η ≥ 0.5 requires σδ ≤ λ/15, a rough rule of
thumb known to radio astronomers.
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Chapter 10

The Fourier Transform

10.1 The Ubiquitous Transform

The Fourier transform appears in many fields of physics and signal processing:

• Quantum Mechanics. The wave function in spatial coordinates and
that in momentum space bear a Fourier relation to each other.

• A lens is a Fourier transforming machine. NEED MORE.

• The basis of interferometry is the van Cittert-Zernike theorem. The
visibility function and the far field intensity distribution bear a Fourier
relation to each other.

The definition of Fourier transforms depends on the sub-fields. We will
use the following definition for a forward Fourier transform:

H(f) =

∫ ∞
−∞

h(t) exp(−j2πft)dt. (10.1)

We will use lower case symbols for functions of time domain and the upper
case for their Fourier transforms. The inverse transform is defined to be

h′(t) =

∫ +∞

−∞
H(f) exp(j2πft)df (10.2)

Since this is a book on signals and noise that you encounter in real systems
we will not worry whether all functions have Fourier transform. We will
assume that the above integrals exist and that the h′t(t) = h(t) because
(what result?) ∫ +∞

−∞
exp(j2πf(t− t′)df = δ(t− t′). (10.3)
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For moderately discontinuous signals we note that

h′t(t) =
h(t+) + h(t−)

2
; (10.4)

otherwise know as the Dirichlet result?? We are now ready to explore the
essentials of Fourier transforms.

If you are serious about understanding this book you have to become
familiar with the following ?? Fourier transforms.

Box Car. Consider the very simple function

b(t, T ) = 1 |t| < T/2
= 0 otherwise (10.5)

The Fourier transform is

B(f) =
exp(jπfT )− exp(−jπfT )

j2πf

= T
sin(πfT )

πfT
= T sinc(πfT ). (10.6)

The box-car function occurs so frequently in Fourier transforms that a new
function “sinc(x) ≡ sin(x)/x” has been invented. We note that limitx→0sinc(x) =
1. This can be seen by considering Taylor expansion of sin(x) or by the ap-
plication of L’Hopital’s rule.

Note the following: the first zero of the function is at f = T−1 i.e the first
zero occurs at the inverse of the full width of the box car function. Next,
B(0) = T which is the integral of b(t, T ).

Cosine and Sine. The Fourier transform of a pure tone, l(t) = cos(2πf0t)
is

L(f) =
1

2
δ(f + f0) +

1

2
δ(f − f0). (10.7)

A δ function at f = f0 is expected. However, we also have a δ function at
the negative frequency −f0. Indeed, all real signals have power at negative
frequencies and the negative functions are as real as positive frequencies. We
will discuss this slightly disconcerting fact in some details below.

The Fourier transform of a pure sinusoidal tone, l(t) = sin(2πf0t) is

L(f) = − 1

2j
δ(f + f0) +

1

2j
δ(f − f0). (10.8)

Note that the components are purely imaginary and have the opposite phase.
Compare and contrast with the Fourier transform of a cosine pure tone.
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Delta Function. Consider h(t) = δ(t− t0). The Fourier transform is

H(f) = exp(j2πft0). (10.9)

The amplitude H(f) is unity for all values of f . The phase of the H(f)
increases linearly with frequency, φ(f) = 2πft0. The phase gradient is pro-
portional to t0:

1

2π

dφ

df
= t0. (10.10)

DC or Constant Value. Consider a dc signal, h(t) = k for all t. The
Fourier transform is

H(f) = kδ(f). (10.11)

As expected such a “dc” signal has no power at any frequency other than
zero.

Exponential.

Gaussian.

10.2 Properties of Fourier Transforms

10.2.1 Linear Transformations.

All said and done, a Fourier transform is a linear transform of the input (say
time series) data. Maintaining this perspective will make Fourier transforms
less obscure. What are the consequences of linear transforms? Simply scaling
up the input data will result in the output being scaled up by the same
factor. The Fourier transform of the sum of two data streams is the sum of
the Fourier transform of each data stream.

10.2.2 Symmetric in f and t.

Next, notice that the forward (Equation 10.1) and the inverse transform
(Equation 10.2) is symmetric in f and t. The choice of the sign of the
exponent (− for the forward transform and + for the inverse transform)
is arbitrary. Thus if you know the forward transform for (say) the boxcar
function then you also know the inverse transform for the boxcar function.
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10.2.3 Real Signals.

Most signals that you encounter are real functions. For example, the time
series of a song recorded in audio files (e.g. a Compact Disk) is a series of
integers. Let h(t) be a real function and as before let H(f) be its Fourier
transform. Let us inspect the H(f) for f < 0. We find

H(−f) =

∫ ∞
−∞

h(t) exp(j2πft)dt

=

∫ ∞
−∞

[
h(t) exp(−j2πft)

]
dt

= H∗(f). (10.12)

Thus the Fourier transform of real function exhibits a certain symmetry:
the negative frequency component has the same amplitude and the opposite
phase as that of the positive frequency component. The official name of this
symmetry is “Hermetian” symmetry.

10.2.4 Sine and Cosine Transforms.

The Fourier Transform of h(t) can be written as the sum of the sine and
cosine transform:

H(f) = Hc(f)− jHs(f) (10.13)

where

Hc(f) ≡
∫ ∞
−∞

h(t) cos(2πft)dt

Hs(f) ≡
∫ ∞
−∞

h(t) sin(2πft). (10.14)

are the subscripts refer to “cosine” and “sine” transforms.
Now, let h(t) be an even function about t = 0

[
i.e. h(−t) = h(t)

]
and

g(t) be an odd function
[
i.e. g(−t) = −g(t)

]
. We find H(f) = Hc(f) and

G(f) = −jGs(f). Any arbitrary function, say y(t) can always be expressed
as the sum of an even and odd function:

y(t) = ye(t) + yo(t)

ye(t) =
1

2
[y(t) + y(−t)]

yo(t) =
1

2
[y(t)− y(−t)]. (10.15)

With this decomposition we see that Yc(f) maps to ye and Ys(f) to yo.
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10.2.5 Time Scaling.

Say h(t), a function of time, is replayed back at a faster pace1 g(t) = h(αt)
where α < 1. Then a change of variable in Equation 10.1 demonstrates

G(f) = α−1H(f/α). (10.16)

Thus the Fourier transform expands with contraction in time domain.

10.2.6 Modulation and Demodulation.

Modulation (and Demodulation) consist of multiplying a signal by a pure
tone to change the center frequency of the signal.

Amplitude modulation (AM) radio works by multiplying the voice signal
(h(t)) with a pure tone (carrier) in the range 0.3 to 3 MHz. For simplicity
assume that the voice signal is also a pure tune in the audio band, h(t) =
A cos(2πft+φ) and the carrier tone is l(t) = cos(2πft). Note that 300Hz <
f < 10, 000 Hz and 0.3 < f0 < 3 MHz. The wide separation of f0 and f
simplifies further discussion. Let the product be y(t) = h(t)l(t) which we
expand to yield more elementary terms:

y(t) = A cos(2πft+ φ) cos(2πf0t)
= A/2 cos[2π(f0 − f)− φ)] + A/2 cos[2π(f0 + f)t+ φ)](10.17)

Thus the voice signal is now at transformed to radio frequencies in the AM
band (see Figure XX). There are two bands: the upper side band (f < f0;
USB) and the lower side band (f > f0; LSB). The upper side band has the
positive frequencies and the lower side band has the negative frequencies.
Either one band has all the information one needs. Demodulation consists
of reversing the process. This is what the radio does so that you can listen
to h(t) but shifted to the audio range.

10.3 Correlation

Correlation is something that you use all the time. A more common name
is “pattern recognition”. Consider a radar (or sonar) signal that is launched

1In the previous century, music was recorded on grooves etched on flat circular plates
– the so-called gramophone. Playback consisted of spinning the the plate and a needle
which sensed the groove was the transducer. Smaller plates were spun at 45 rotations
per minute (rpm) and larger ones at 33 1/3 rpm. Time scaling could be easily arranged
by playing a 33 rpm recorded at the higher 45 rpm speed, yielding hilarious squeaky
sounds. Equation 10.16 lay at the heart of the very successful musical group called the
The Chipmunks.
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from a transmitter (or a bat). The signal bounces back and is received by a
receiving antenna. The returned signal is a paler version of the transmitted
signal. One can show that the most optimal way of determining the radar
echo is by cross-correlating the reflected signal with the transmitted signal.
LOOK UP BAT STUFF.

Letting g(t) be the return signal and h(t) the transmitted signal we can
write the correlation function as

c(τ) ≡ h(τ) · g(τ) =

∫ +∞

−∞
dt h(t+ τ)g(t) (10.18)

here τ is called the “lag” and in the specific case of a radar echo one computes
c(τ) for positive values of τ . In other applications, it may be desirable to
compute negative lags (or both).

The Fourier transform of c(τ) is given by

C(f) =

∫ ∞
−∞

dτ exp(−j2πfτ)dτ

∫ ∞
−∞

dt h(t+ τ)g(t). (10.19)

As before, we assume that for any signals that we experimentally measure
(as opposed to signals that exist for infinite time etc) the order of integration
can be freely exchanged. Justified thus we proceed and find

C(f) =

∫ ∞
−∞

dt g(t)

∫ +∞

−∞
h(t+ τ) exp(−j2πfτ)dτ

=

∫ ∞
−∞

dt g(t)

∫ ∞
−∞

dt′ h(t′) exp[−j2πf(t′ − t)]

=

∫ ∞
−∞

dt g(t) exp(+j2πft)

∫ ∞
−∞

dt′ h(t′) exp(−j2πft′)

= G∗(f)H(f). (10.20)

The order of the correlation does matter (as can be gathered by contem-
plation or tracing the steps in Equation 10.20):

c′(τ) = g(τ) · h(τ) =

∫ ∞
−∞

dt g(t+ τ)h(t)

C ′(f) = G(f)H∗(f) = C∗(f). (10.21)

Thus the order matters. Furthermore, C ′(f) is Hermetian conjugate of C(f).
Thus the famous correlation theorem: the Fourier transform of the correla-
tion of two functions is the product of the Fourier transform of the lagged
function and the conjugate of the Fourier transform of the unlagged function.
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For the specific case where h(t) = g(t) we have

a(τ) =

∫ ∞
−∞

dt h(t)h(t+ τ). (10.22)

This is called as the auto-correlation function. Note that a(−τ) = a(τ). The
Fourier transform of the auto-correlation function is

A(f) =

∫ ∞
−∞

dτ exp(−2jπfτ)

∫ ∞
−∞

dt h(t)h(t+ τ)

= H(f)H∗(f). (10.23)

is the Power Spectrum of h(t). By analogy the quantity C(f) is called as the
“Cross-power” spectrum.

Exercise: Correlation Function.

1. Show by explicit integration that a(−τ) = a(τ).

2. What special relations exist if one of the functions [g(t) or h(t)] is even;
if both are even; and if both are real.

3. Prove

h(t) · [g(t) + x(t)] = h(t) · g(t) + h(t) · x(t)
[h(t) · g(t)] · x(t) = h(t) · [g(t) · x(t)] (10.24)

10.4 Convolution

As we will learn later (§XX) the output of a filter can be understood as the
convolution of the input signal (x(t)) and the impulse response function of
the filter (h(t)). The convolution function is defined to be

v(t) ≡ h(t) ∗ x(t) =

∫ ∞
−∞

dτ h(t− τ)x(τ). (10.25)

The Fourier transform is given by

V (f) =

∫ ∞
−∞

dt exp(−j2πft)
∫ ∞
−∞

dt h(t− τ)x(τ)

=

∫ ∞
−∞

dτ x(τ)

∫ ∞
−∞

dt h(t− τ) exp(−j2πft)

= X(f)H(f). (10.26)

It appears that convolution is independent of the order in which the functions
are convolved.

A convolution is obtained by
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1. Flip one of the two functions, either the impulse response function or
the input time series around τ = 0 (the latter makes sense to me).

2. Delay function by t response function by τ .

Apart from their use in their own right, convolution and correlation are
of great use in Fourier “algebra”. Convolution in time domain results in
multiplication in Fourier domain (Equation 10.26). The auto-correlation
provides a convenient way to determine the power spectrum (Equation 10.23).
Thanks to symmetry between time and frequency, one could equally state
that multiplication in time domain corresponds to convolution in frequency
domain and that the Fourier transform of the power spectrum yields the
auto-correlation function.

Exercise: Convolution is distributive and associative. Prove that

h(t) ∗ [g(t) + x(t)] = h(t) ∗ g(t) + h(t) ∗ x(t)
[g(t) ∗ h(t)] ∗ p(t) = g(t) ∗ [h(t) ∗ p(t)] (10.27)

What about commutative?

10.5 Parseval’s Theorem

Let us set g(t) = x(t)2Then we know from the convolution theorem that

F [x(t)× x(t)] = F(h) ∗ F(h)∫ ∞
−∞

dt x2(t) exp(−2jπσt) =

∫ ∞
−∞

dfX(f)X(σ − f) (10.28)

This equality is true for any σ and in particular for σ = 0. Thus we find∫ ∞
−∞

dt x2(t) =

∫ ∞
−∞

df X(f)X(−f)

=

∫ ∞
−∞

dfX(f)X∗(f) (10.29)

where assume that h(t) is a real signal (cf Equation XX). This is the cele-
brated Parseval’s theorem. Imagine that x(t) is a the signal and specifically
its current. Then x2(t) is proportional to the power dissipation. Thus the
left side hand represents the work done by the signal. We can now under-
stand why X(f)X∗(f) is the “power” spectrum (the power unit frequency
at frequency f).

An insight: In Equation 10.28 the RHS is the Fourier component

of the power at frequency σ. It is equal to the sum of the cross-power

spectrum whose difference in frequency is σ. Kind of obvious after

the fact. Not seen this mentioned before.



Chapter 11

Sampling and Interpolation

11.1 Baseband Sampling

Your CD player has the audio signal (in left and right channels) recorded
at a standard rate of 44.1 × 103 samples per second with 16-bits sampling
(for each of Left and Right channels). The simplest playback consists of
obtaining a stable stream of samples (despite you moving around and despite
your grimy fingerprints; whence the tremendous redundancy in recording and
a big output buffer). The sampling theorem assures us that these numbers
have all the information to faithfully reconstruct the audio signal. In this
section the most basic explanation for this “sampling”.

First we have to understand a very important function: the sampling
function or the sha function.

The Fourier transform of a run of δ-functions regularly spaced by ∆t is
also another run of δ-functions regularly spaced but by ∆f = 1/∆t. This
function is so important that it has its own name:

s(t,∆t) = sha(t,∆t) =
∞∑

k=−∞

δ(t− k∆t) (11.1)

The Fourier transform is (see Papoulis 1962; see below for a plausible graph-
ical development)

S(f) =
1

∆t

∞∑
k=−∞

δ(f − k∆f). (11.2)

Exercise: Graphical demonstration of the sha Function. Consider
the following function

sn(t,∆t) = 1 + 2
n∑
k=1

cos
(

2π
kt

∆t

)
(11.3)
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Sketch both sn(t,∆t) and Sn(t). This graphical exercise is expected to show
why the Fourier transform of a sha function is another sha function but with
inverse spacing.

11.2 Fourier Interpolation Theorem

11.3 Bandpass Sampling

11.4 Fourier Series

The traditional approach in physics is to teach Fourier series first and then
Fourier transform. This is mathematically a sound approach since issues of
the existence of a Fourier transform for a function of infinite duration is not
all that obvious. However, here (as in engineering books) we are dealing with
signals of finite duration and so we can happily dispense these sorts of subtle
mathematical concerns. As will become clear from the discussion below it is
much easier to discuss Fourier Series after discussion Fourier Transforms.

11.5 References

The Compact Disc Story by Kees A. Schouhamer Immink, J. Audio Eng.
Soc., 46, 458–463 (1998)



Chapter 12

Power Spectrum

12.1 Window Functions

12.2 Filterbanks

12.3 Autocorrelators
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Chapter 13

Basic Signal Processing

Signal processing requires that you digitize the signal. Here, we discuss the
steps that are undertaken prior to digitization. The most general input signal
is a band-pass signal: the power spectrum of a signal is bounded by fl (lower
edge) and fu (upper edge). A signal with fl = 0 Hz is called as “base-band”
signal.

The simplest case is when the analog signal is already a baseband signal.
In this case the signal processing consists of using a low-pass filter prior
to sampling (Figure 13.1). The sampling rate should be sufficiently high
to satisfy the sampling theorem: fs ≥ 2B where B is the bandwidth of the
filter. It is difficult to make analog filters with “brick-wall” response (a sharp
cutoff) and so there will be some aliasing due to the response of the filter for
frequencies greater than B.

Figure 13.1: Digital sampling of a baseband signal.

Simple examples include telephony and CD signals (Table 13.1). Profes-
sional (studio) signals, like DAT, are sampled at 48 kHz (many audiophiles
claim that a 20-kHz low pass filter gives is inadequate for sampling rate of
44.1 kHz).

However, radio telescopes produce bandpass signals, example “L-band”
is a band in the 1.4-GHz (relevant to the study of cosmic H I), “P-band” is
a band centered around 0.3 GHz (relevant to observations of the hyper-fine
line of deuterium) and so on. For reasons of performance a receiver usually
responds to a band (usually fractional bandwidth less than unity).
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Signal fs (kHz) Bits Channels Band (kHz)
Telephone 8 8 Mono 0.2–3.4
AM Radio 11.025 8 Mono ??
FM Radio 22.050 16 Stereo ??
CD 44.1 16 Stereo 0.020-20
DAT 48 16 Stereo 0.02-20

Table 13.1: From a course by David Marshall, Cardiff School of Computer
Science.

13.1 Simple Mixing to Baseband

The simplest bandpass case is when the center frequency (the center of the
band) is fixed. In this case, we have two choices: convert the bandpass signal
to baseband or make use of the bandpass sampling theorem (§ REF). We
will discuss the first possibility.

The approach consists of using is a local oscillator tuned to fl (Fig-
ure 13.2). Multiplying (or “mixing” in the jargon)1 the radio frequency (RF)
signal by the local oscillator (LO) followed by a low-pass filter of the output
(the “Intermediate Frequency”, IF) does the job (see Figure 13.2).

The usual way to understand the signal processing shown in Figure 13.2
is to consider the RF to be a pure tone, b(t) = A(f) cos[2πft + φ(f)]. The
output of the mixer is then

o(t) = A(f) cos(2πft+ φ(f))× cos(2πf0t)

=
A(f)

2
cos[2π(f − f0)t+ φ(f)] +

A(f)

2
cos[2π(f + f0)t+ φ(f)].

→ A(f)

2
cos[2π(f − f0)t+ φ(f)] (13.1)

The low pass filter is designed to eliminate signals at the sum frequency
leaving only the difference (first term) as the output.

By setting fLO to fl and adopting the circuitry shown in Figure 13.2
results in a baseband signal with bandwidth B = fu − fl (see Figure 13.3).
This baseband signal can then be sampled at a rate fs > B.

1A mixer is an analog device that multiplies the input signals, a and b. A diode
operating at the knee of the i-V curve is used to square a signal. A pair of “balanced”
diodes are used to obtain (a+ b)2 and (a− b)2. The difference between these two signals
is ∝ ab. Another approach is a Gilbert cell. INVESTIGATE.
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Figure 13.2: Conversion of Radio Frequency to Intermediate Frequency.

Figure 13.3: Simple mixing to baseband.

13.2 Phasor Algebra

In the previous section, we used the cumbersome trignometric relations in
arriving Equation 13.1. The “phasor” approach allows one to swiftly compute
the filtered output signal. The rules for phasor algebra are as follows:

1. Replace the real signal (always represented by the cosine with appro-
priate phase added for a sine) by the complex exponential and an am-
plitude of 1/2. This is the phasor representation.

cos[2πft+ φ(f)]→ 1/2 exp[j2πft+ jφ(f)]. (13.2)

2. Prior to multiplication of two signals conjugate the phasor of the signal
whose frequency is lower of the two.

3. The real part of the product is the low pass frequency output of the
mixer.

Applying these rules we obtain the following output:

o(t) =
A(f)

2
cos[2π(f − f0)t+ φ(f)], f > f0

=
A(f)

2
cos[2π(f0 − f)t− φ(f)], f < f0. (13.3)

However, usually radio telescopes have a range of operating bands (RF
central frequencies and bandwidths). In the next two sections we two more
general purpose solutions.
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13.3 Complex Sampling

Figure 13.4: Mixing.

In contrast to the previous approach the LO is place at the center of
the RF band. For simplicity assume that the input RF signal consisting
of two unit cosines frequencies f = f0 ± f ′. Following mixing, these two
tones will appear at the same IF frequency. Special processing is needed to
separate the lower- and upper-side band tones. The techniques are complex
sampling (a software approach) and single-side band separation (a hardware
approach). Both techniques exploit the difference in sign that can be seen in
Equation ??.

A bandpass signal, b(t), is split and one signal mixed with a local oscillator
with phase θ0 = 0 (“cosine” LO) and phase θ0 = π/2 (“sine” LO); see
Figure 13.5. The corresponding two outputs, hc(t) and hs(t), are filtered
(to eliminate the sum frequencies). The power spectrum of hc and hs would
look similar with USB and LSB overlapping. The first channel is referred
to as “X”, “real”, “in-phase” (I), or “cosine”. The second channel is “Y”,
“imaginary”, “quadrature” (Q) or “sine”. The channels are sampled by
analog-to-digital (A/D) units. Each pair of sample is treated as a complex
number:

z(k) = x(k) + jy(k). (13.4)

We now show that the LSBs and USBs of Z(f) are properly separated.
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Figure 13.5: Complex Sampler.

Consider a pair of RF unit amplitude phasors with frequency, f = f0 ± f ′:

cos[2π(f0 ± f ′)t+ φ(±f ′)]. (13.5)

Using Equation ?? we find

X(f ′) = cos[2πf ′t+ φ(+f ′)]
Y (f ′) = cos[2πf ′t+ φ(+f ′)− π/2] = + sin[2πf ′t+ φ(+f ′)]

X(−f ′) = cos[2πf ′t− φ(−f ′)] = cos[−2πf ′t+ φ(−f ′)]
Y (−f ′) = cos[2πf ′t− φ(−f ′) + π/2] = − sin[−2πf ′t+ φ(−f ′)](13.6)

Thus

Z(+f ′) = X(+f ′) + jY (−f ′) = exp[+j2πf ′t+ jφ(+f ′)]
Z(−f ′) = X(−f ′) + jY (−f ′) = exp[−j2πf ′t+ jφ(−f ′)]. (13.7)

Thus the USB signal is now an analytical signal with f ′ > 0 and LSB is an
analytical signal with f ′ < 0 (see Figure ZZ).

13.4 Single Side-Band Mixer

The band-pass signal is, as before, mixed with local oscillators and converted
to two baseband signals, hs(t) and hc(t). A π/2 phase shift is applied to the
former signal to produce h′s(t). The sum and difference of h′s and hc result
in USB and LSB respectively (see Figure 13.6).

The “π/2” phase shifter is somewhat akin to anti-reflection coatings. The
purpose of the shifter is to introduce π/2 shift over the entire bandwidth.

A graphic proof of how the SSB mixer works is presented in Figure 13.7.
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Figure 13.6: Single Side-Band Mixer.
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Figure 13.7: SSB Mixer - Graphic proof.
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Chapter 14

Discrete Fourier Transform
(Applications)

The practical realization of a Fourier Transform is the Discrete Fourier Trans-
form (DFT). The simplest case for a DFT is a band limited (Bandwidth, B)
signal sampled uniformly, h(k∆t) where k = [0, 1, ..., n − 1] and ∆t = 1/fs
where fs = 2B is the sampling frequency. The duration of the sampled signal
is thus n = 2B∆t. The symmetry between time and frequency (see previous
Chapter) requires that the Fourier transform be also computed on an even
grid, say spacing, ∆f . Thus the DFT is given by

H(l∆f) =
n−1∑
k=0

h(k) exp(−j2πkl∆t∆f). (14.1)

What is the minimum frequency resolution at which you should compute
the Fourier Transform? There are several ways to answer this question. The
first answer is based on the time-frequency symmetry of Fourier transforms.
Thus if the critical sampling interval is the inverse of the total bandwidth
(positive and negative frequencies), ∆t = (2B)−1, then ∆f is the inverse of
the total duration, T = n∆t or ∆f = fs/n.

Another approach is to consider a band limited signal, band width B
and sampled at the critical rate, fs = 2B. Since the input time series is
sampled at a critical rate each successive element is independent of other
elements. Thus over a period of T we have n = 2B∆t independent elements.
The Fourier Transform is simply a linear combination of these independent
elements and can at most also be made up of N independent elements. Since
these elements include both positive and negative frequencies the frequency
spacing must be ∆f = fs/n.
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Thus with the above choice for ∆f the DFT equation is

H(l) =
n−1∑
k=0

h(k) exp(−2πj
lk

n
). (14.2)

Certain channels are worthy of note. The “dc” bin (or “l=0”) and the
“Nyquist” bin1 (or l = n/2) are both purely:

H(0) =
n−1∑
k=0

h(k), H(n/2) =
n−1∑
k=0

(−1)kh(k) (14.3)

with the former being the sum of all elements and the latter being the sum
of the differences of successive elements. A signal which is not zero mean
will produce a strong spike at l = 0. Suppression of this peak is done by
subtracting the mean value of the input time series from each element of the
time series. Next, note that H(n − L) = H(−L). The negative frequencies
are thus found between k = n/2 + 1 and k = n − 1. Next, the sequence, H
is periodic with period P . For instance, H(n) = H(0).

The inverse DFT is essentially the same as the forward DFT except that
the −j in the exponential (Equation 14.2) is replaced by +j and a scaling
factor of 1/n is applied2. The scaling factor ensures that a DFT followed by
an inverse DFT yields the initial function. As an example consider the the
function h(k) = 0 except for h(1) = 1. In this case the DFT is H(l) = 1 for
l = 1, ..., n. The inverse DFT, if it incorporates the scaling factor of 1/n, will
reproduce the input function, h.

14.1 The Fast Fourier Transform

The calculation of a specific frequency component requires (for each of cosine
and sine transforms) n trignometric computations, n multiplications and
n additions. Now if one wants to compute, say m frequeny components,
then the number of computations is 4mn; henceforth, we assume that the
trignometric computations are “pre computed”.

As noted above, a full exploration of the frequency requires that m ≈ n
and thus the DFT would require 4mn or O(n2) multiply or add operaitons.
Fourier Transforms are used for signal processing, convolution of images or

1The critical sampling rate is sometimes referred to as the Nyquist rate; the term
Nyquist as used here is common, at least amongst astronomers.

2There are other choices including for example a scaling factor of
√

1/n for both the
forward and inverse transforms.
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time series (via the convolution theorem), searching for periodicities and lossy
compression of data. Many of these involve sequences with large value of n
and O(n2) can become quite prohibitive.

A Fast Fourier Transform (FFT) evaluates equation 14.2 in onlyO(n log(n)
multiply and add operations. The algorithm was apparently known to Gauss
and re-discovered in the sixties by Cooley & Tukey in the sixties. The ap-
proximate number of computation steps needed for an FFT is 4n log2(n).
[Explain how it works].

As an algorithm the FFT has had a transformative impact on signal
processing and certainly without it the development of most of modern radio
astronomy (aperture synthesis, spectrometers, pulsar research, low frequency
astronomy) would have been held back. The FFT is a clear instance in which
development of a methodology has had a profound effect, comparable to the
discovery of a major phenomenon.

In this chapter we consider two specific uses of the FFT. The first is
the generation of a time series which follow Gaussian statistics and have a
specified power spectrum. The second is the detection of a sine wave buried
in noise.

14.2 Statistics of DFT

We re-express the DFT of a uniformly sampled series as the sum of the cosine
and sine components, H(l) = C(l) + jS(l) where

C(l) =
n−1∑
k=0

h(l) cos(2πlk/n), S(l) =
n−1∑
k=0

h(l) sin(2πlk/n). (14.4)

We will only specify the first two moments of h:

〈h〉 = 0 cov(h(l), h(l′)) = σ2δll′ (14.5)

where the covariance function is defined as cov(x, y) = 〈xy〉 − 〈x〉〈y〉. The
covariance of C(l) and S(l′):

cov[C(l), S(l′)] =
〈 n−1∑
k=0

n−1∑
k′=0

h(l)h(l′) cos(2πlk/n) sin(2πl′k′/n)
〉

=
1

2

n−1∑
k=0

n−1∑
k′=0

〈h(l)h(l′)〉
[

sin(2π(l′k′ + lk)/n) + sin(2π(l′k′ − lk)/n)
]

= 0. (14.6)
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It is pretty straightforward to show that

cov[C(l), C(l′)] = (σ2
H/2)δlk, cov[S(l), S(l′)] = (σ2

H/2)δlk (14.7)

where σ2
H = nσ2. Note that these covariances (Equations 14.6, 14.7) go to

zero only for the specific case when ∆f = 1/T (more on this later). The
complex representation, Z(l) = C(l) + jS(l) are circular Gaussian variates.
As will be seen later (Chapter InternalRef) the computation of higher order
moments is relatively easy for such variates.

So far we have only specified the first two moments of h. For large values
of n we can argue that C(l) and S(l) will follow Gaussian statistics with zero
mean and variance, n/2σ2 – provided that h follows the conditions specified
by Equation 14.5 . Next, the virtue of the lack of covariance between C(l)
and S(l′) assures that the sine and cosine components are themselves inde-
pendent variates. Thus, at this point we have fully specified the probability
distributions of each element of the power spectrum.

Many analyses involve the power spectrum, P (l) = C(l)2 + S(l)2. Given
Equation 14.6 we can easily show that P (l) follows an exponential or χ2

distribution (see InternalRef) with mean value of σ2
H = nσ2. Given that

the cosine and sine components for each frequency channel are independent
Gaussian variates it also follows that P (l) are also independent from each
other. This means in particular that the statistics of a sum of any subset of
power spectra bins, say P (l1)+P (l2)+ ...+P (lp) follows χ2 distribution with
2p degrees of freedom. This result is useful in pulsar astronomy (“harmonic
summing”; see InternalREF).

14.3 Generating Gaussian Noise with a Given

Power Spectrum

Frequently one needs to generate a time series or a spatial series (map, image)
with a given power spectrum. For instance, you may wish to simulate the
detection of a faint feature in a radio spectrum which already has bright
lines and a sloping continuum; or you may wish to simulate the formation of
speckles arising from a Kolmogorov spectrum (either in the decimeter band
or at optical wavelengths); or the intensity distribution of the CMB. Another
application is to generate band limited spectrum so that you can study the
effect of digitizing the data.

A time series generated by h(k) which arise from N(µ = 0, σ2 = 1) will
have a power spectrum which is flat (because each member is independent
of any other member of the sequence; thus the auto-correlation is a delta
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Figure 14.1: (Top) Mean power spectrum of a sequence h(k) with k = 1, 2, ..., n
with n = 1024. The h(k) were Gaussian variates drawn from N(0, 1) and m = 1024
such runs. Each of the power spectrum was scaled down by n so that the average
value across the power spectrum would be unity. The horizontal axis is the bin
index with the Nyquist bin (n = 513) marked by a vertical dotted line. The bins
to the right of the Nyquist bin are negative frequency components. (Bottom) The
mean power spectrum of y(k) where y(k) is the low pass filtered version of h (see
text). The following low pass filter was applied, B(l) = 1 for l < nf and zero
otherwise; here, f = 1/8. The mean power spectrum has been scaled down by an
additional factor of 0.8 (for the purpose of plotting) so that the filtered version
does not overlap the original power spectrum.
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function and from this the assertion of a flat spectrum follows). Traditionally,
noise with a flat spectrum is called as “White Noise”.

The following prescription generates Gaussian noise with a specific power
spectrum, say B(f).

1. Generate h(k) of desired length n.

2. Fourier transform to obtain H(l).

3. Filter the signal per specification, Y (l) = H(l)B(l).

4. Inverse Fourier transform Y (l) to obtain y(l). By construction y(l) will
be Gaussian noise with a power spectrum specified by B(f).

The basic idea described above is quite simple. The usual difficulty lies in
implementation and the usual mistake is not correctly treating the negative
frequencies. Hermetian symmetry must be preserved in step (3) above and
this should be borne in mind when treating the negative frequency compo-
nents. A simple check is to verify that y is purely real.
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Figure 14.2: The power spectrum of quantized white noise source. The filtered
white noise, y(k), is generated in a block of n = 1024 and in a manner described in
the caption to Figure 14.1. The quantization is done as follows: z = nint(yS) where
S = [1, 4, 256] and corresponds (in spirit) to 1-bit, 2-bit and 16-bit digitization.
The power spectrum for m = 1024 such blocks is averaged and normalized by the
average of the dc channel. Only channels with positive frequencies (l = 1, ..., 512)
are shown.
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An example for the need for filtered noise is shown in Figure 14.2. The
filtered time series described in Figure 14.1, y(l), is quantized as follows:
z = nint(yS) where S = 1, 4, 256 and nint is the nearest integer function.
Quantization produces a long tail of essentially noise. Thus quantization
takes a band-limited signal and makes it not band limited. The signal-to-
noise ratio of the quantized signal is worse than that of the unquantized
signal for two reasons. First is the loss of power (the power in the tail is at
the expense of the principal signal) and the second is increased noise from
the tail (as it folds back into the main band).

14.4 Spectral Resolution & Fine Binning

In astronomy a major application of Fourier Transforms is to search peri-
odic signals. Examples abound: searches for pulsars at radio wavelengths,
searches for pulsations at optical and X-ray wavelengths, searches for or-
bital period via radial velocity and photometry and so on. Other examples.
Here, we will explore this important application in some detail. We will start
by assuming that the periodic signal is the simplest possible, namely, a sine
wave with frequency f0 (and period P0 = 1/f0).

The DFT as implemented by a standard FFT package produces the fol-
lowing response to our putative period signal of unit amplitude:

H(l) =
1

2
sinc

(π(l − l0)
n

)
(14.8)

where l0 = f0/∆f .

Exemplars. Need astronomical exemplars.

Exercise FFT-1: Most package FFTs accept a sequence of real measure-
ments and return complex output (both positive and negative frequencies).
However, given the Hemetian symmetry the computation of (say) the nega-
tive frequencies is unnecessary. Bearing this in mind devise an algorithm to
undertake an efficient FFT of two real sequences of the same length.

Exercise FFT-2: As discussed in the text, zero padding allows for compu-
tation of Fourier transform on a finer grid of frequencies. What is the effect
of “pre-padding” instead of “post-padding”?

Exercise FFT-3: Say that you have an FFT “Machine”, a device that can
undertake rapid n-point transforms (but not more than n) attached to your
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machine as an accessory. How would you go about making a 2n point trans-
form on your computer?

Exercise FFT-4: Reproduce Figure 14.2. This means generate h(k), for
k = 1, 2, ..., n, Gaussian variates drawn from N(0, 1). Low pass filter this
time series as noted in the caption of Figure 14.1. Next digitize the filter
series to 1-bit, 2-bits and 16-bits. [The digitization is in units of σ of the
filtered series]. Obtain the power spectrum. Repeat the process saym = 1024
and plot the mean power spectrum of the digitized data. [For every step
pay attention to the variance of the signal; you need to understand what
determines the variance].

Exercise FFT-5: Redo the above exercise except that the filter function is
say B(f) ∝ fα/2. Undertake the exercise for n = 1024 and plot a single run
of y(l). Compute the variance of y(l) and (preferably predict) explain the
value. Compare the character of the time series of white noise and the red
noise with α = −1 (which means that the power spectrum has a power law
slope of 2α).

Exercise FFT-6: [Interesting problem but not sure if there is a solution].
Can one use the FFT to compute an octave of frequency components (at a
finer grid)?

Literature: The Wikipedia (“Fast Fourier Transform”) provides a good
starting point for a summary of the FFT algorithm. See also Numerical
Recipes.
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Solutions:

Exercise FFT-1:

Exercise FFT-2:

Exercise FFT-3:

Exercise FFT-4:

See text.

Exercise FFT-5:
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Figure 14.3: (Top) Time series generated from k = 1, 2, ..., n = 1024 measure-
ments drawn from N(0, 1). (Bottom) The above series filtered to l2α where α = −1
and l is the channel number.
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