
Order of magnitude estimations and occasional precision

estimates

Learn to be a swash buckler. For the first foray into a problem an order of magnitude
estimate is sufficient. This means, focusing on the exponent value and to zeroth order
setting all mantissa1 values to unity!

The principal stumbling block faced by tyros is the tendency to carry the mantissa to high
precision. After all for most of your life in school and college you have been drilled of the
importance of exact calculations and are consequently experiencing “fear of imprecision”.
Do it a few times to get over the fear. Aim to be a swash buckler. For the next level,
approximate the mantissa to a number close to unity. However, do remember that a mistake
in adding and subtracting the characteristics will cost you dearly. It is my observation that
it will take many months of disciplined and sustained effort to get used to even the first-
order level of swash buckling.

For rapid computation it is essential to have a comprehensive grasp of mathematical,
physical and astronomical constants. Finally, it is efficient to arm yourself with already
constructed formulae (which I call as “pre-computations”).

Higher Precision. However, a higher precision is needed when you are considering
whether an effect is observable or not. Another occasion is that you are listening to a
seminar and the speaker proposes an explanation for an observation. It is fun and oc-
casionally very productive to figure out whether the proposed model has observational
consequence. If you can compute in real time you can impress your colleagues with your
brilliance! So, remember to take a paper and pencil to all talks.

The minimum necessary mathematical constants for an observational astronomer are given
in the accompanying Table. From this table, many other frequently needed constants
(ln(2) = ln(10) log(2) = 0.69, 1/

√
2 =

√
2/2 = 0.707, etc.) can be derived. The half-life

period is ln(2)τ ≈ 0.69τ where the radioactive material decays as exp(−τ).

1as in value = m × 10n where m is the mantissa (also “significand”) and n is the exponent value or
characteristic.
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Table 1: Some useful mathematical values

name value

π 3.1415√
2 1.414√
3 1.732

log(2) 0.301
log(3) 0.477
e 2.718
ln(10) 2.306

FWHM (Gaussian)
√

ln(28) ≈ 2.35

I recommend that the student commit to memory2 the constants given in Table 1. Some-
times, stories help reconstruct numbers. A classical way to celebrate the amazing π is to
eat a piece of pie on 14th March at 1500 hours. I sleep between 22 hours and 7 hours and
22/7 is sometimes an adequate approximation of π for calculations.

Log3. There are two reasons why astronomers must be able to compute the log of a
number and equally to compute the number, given the log. The first is that astronomers
use magnitudes which are defined by m = −2.5 log(f) +m0 where f is the measured flux
and m0, an offset, provides much fodder for older astronomers to impress neophytes. Next,
many astronomical plots or tables have log of the physical quantities (e.g. mass-luminosity
relation, table of absolute magnitude versus mass of star).

Fortunately, you need to remember only log(2) and log(3). The values for 4, 6, 8, 9 follow
from these two. Likewise, log(5) = log(10) − log(2) = 0.7. Noting that 10/

√
2 ≈ 7 we

derive a simple way to remember log(7) ≈ 0.85.

Magnitudes. To start with, since log(2.5) = log(10/4) ≈ 1− 0.6 = 0.4 it follows that one
magnitude corresponds to a factor of 2.5. A source which doubles in brightness by a factor
of two will appear ≈ 2.5× 0.3 = 0.75 mag brighter.

Astronomers frequently quote symmetric errors in magnitude but it is not correct since
the underlying flux measurement, f , is almost always Gaussian (and occasionally Poisson).
However, when the magnitude errors are small the distribution is approximately Gaussian.
Let the measured flux be f0 ±∆f . Then the uncertainty in the magnitude is

∆m = −2.5 log
(

1± ∆f

f0

)
≈ ± 2.5

ln(10)

∆f

f0
= ±1.1

∆f

f0
(1)

2One way to commit to memory is to use the mantra approach: read aloud Table 1 every morning until
you can recite the values.

3I use the convention of log and ln to mean logarithm to the base 10 red and to the base e, respectively.



where I have retained the first term of Taylor series expansion of ln(1 + x). Thus, for
high signal-to-ratio (SNR) measurements, the uncertainty in the magnitude is equal to the
relative precision of the measurement or equivalently to the inverse of the SNR.

Square Root. Occasionally it helps to know the square root of a number. You can use
Newton’s method: √

n =
1

2

(n
a

+ a
)

(2)

where a is your guess value for
√
n. As an example, consider n = 3 and we set the guess

value as 2. Then,
√

3 ≈ 1/2(3/2 + 2) = 7/4 = 1.75 (which can be compared with the more
precise value given in Table 1).

Full Width At Half-Maximum. The half width half-maximum of a Gaussian profile,
x, is given by exp(−x2/2) = 1/2. Thus, the full width at half-maximum is FWHM =
2×

√
2 ln(2) =

√
ln(28) =

√
8× ln(2) = 2.35.

Inflation Escalator. Our entire life which includes research funding is governed by fi-
nance (micro, macro, personal). The cost of research (basic material cost, energy, payroll)
increases with inflation, at the very least. The doubling time for a fixed (true) cost item is
nd = ln(2)/ ln(1+p) where p is the inflation increase per year. For small p Taylor expansion
can be profitably used and so

nd =
ln(2)

p(1− p/2)
≈ 70

P

(
1

1− p/2

)
≈ 70

P

(
1 +

p

2

)
years. (3)

Here, P = 100p and is the annual inflation increase but expressed as a percentage. I
provided the second term since in financial matters precision matters! In most countries
(excluding Japan and Zimbabwe) the inflation index is between 3% and 10%. Thus a a
simple rule: nd ≈ 71/P years.
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