MKID Development for SuperSpec:

An on-chip, filter-bank spectrometer for mm-wavelength astronomy

Erik Shirokoff
California Institute of Technology

SPIE 2012-07-04
The SuperSpec hardware team:

Caltech & JPL
C. M. Bradford
G. Chattopadhyay
P. Day
S. Hailey-Dunsheath
A. Kovacs
H. G. LeDuc
C. McKenny
R. O'Brient
S. Padin
T. Reck
E. Shirokoff
L. Swenson
J. Zmuidzinas

Cardiff University
P. Barry
S. Doyle

Arizona State University
P. Mauskopf

Complutense
University of Madrid
N. Llombart

University of Arizona
D. P. Marrone
By measuring CII (and CO) lines in high-redshift galaxies, efficient R~700 mm-wave spectrometers will enable:

- Redshift-finding for continuum sources to measure the high-z luminosity function and rate of star formation
- Measuring gas evolution through CII and CO / continuum ratios
- Measuring the galaxy power spectrum, $P(k)$, at $z>4$
A general filter bank (or cochlear) spectrometer:

Incoming radiation is sorted by narrow band filters

Each channel couples to a power detector

Channel width and spacing are independently adjustable
Realization of the filter bank spectrometer using lumped element Microwave Kinetic Inductance Detectors (MKIDs)
SONNET simulation of 8 resonators on a single feedline

\[R = \frac{Q_i}{2} = \frac{Q_c}{2} = 700 \]
\[\Delta f = f_0 R\Sigma_R \]
MKID design goals

- Demand near photon-noise limited operation:
 \[\text{NEP} \sim 2 \times 10^{-18} \text{WHz}^{1/2} \]

- MKID readout frequencies of 50-500 MHz

- Multiplex \sim 600 detectors per octave:
 \[\text{If } f_0 \text{ scatters with } \sigma = 10^{-3} \]
 \[N = 600/\text{Octave }, Q_r = 10^5 \rightarrow < 5\% \text{ loss} \]

Absorb 190 GHz photons

3He sorption fridge

\[\left\{ \begin{array}{c}
V_L \sim 130 \mu m^3 \rightarrow n_{qp} = 200 \mu m^{-3} \text{ w/ optical load} \\
\text{expect } Q_i \bigg|_{250 mK} = \sim 4 \times 10^{-5}
\end{array} \right. \]

Extrapolation from measured TLS noise in MAKO devices suggests we can meet our noise goals.
Prototype device layout.
Sonnet simulation of a single MKID resonator

Approximate equivalent circuit.

\[f_0 = 157 \text{ MHz} \]
\[Q_c = 2 \times 10^5 \]
\[Q_i \geq 3.5 \times 10^5 \]
First Test device

1.08 \mu m
Yield looks promising!

6 out of 7 tested dies pass 300K resistance measurements
In cryogenic tests of one die: 74 / 77 standard channels are present
At least 3 / 4 low-frequency termination kids

\[f_{\text{scaled}} = f_0 + A f_{\text{design}} \] (1X1 and 2X2 case fitted separately)
Q distribution

design for $Q_c = 2 \times 10^5$ Measured $< Q_c > = 3.5 \times 10^5$

\rightarrow consistent with frequency shift and design C_c

low temp limit $< Q_i > \sim 8 \times 10^5$
Prototype will use a smooth-walled feedhorn
Prototype will use same GPU-based readout as MAKO

Pentek 2x ADC, 2x DAC
500 MSPS $15k

C++ (CUDA) cuFFT

Nvidia m2090
~$2.8k

Server price $2k

CPU or Disk

Full instrument.
C/C++ programming.
250 MHz bandwidth
$30k for 2 lines ($15k/line)

1st stage: $3500
Weinreb SiGe Cryo Amps

2nd stage: $500
Miteq .001-500 MHz
The Future

- Responsivity, noise measurements of dark pixel underway.
- Feedhorn hardware is being fabricated.
- Test chip with inverse-bolometer thermal source underway.
- Dedicated cryostat, pulse-tube, He-sorption fridge are in hand, now being integrated.
- Short term goal: a few-pixel, 2-band Nc~600, R~700, observation-grade demo within 1-2 years.
- Long term goal: proposed X-Spec instrument for CCAT with hundreds of channels