Ay 122a, Fall 2012

Spectrographs and Spectroscopy (UV/visible/IR)

S. G. Djorgovski
(Some slides today c/o M. Bolte)
The Purposes of Spectroscopy

• To measure accurate wavelengths of emission and absorption lines
 – Get velocities, redshifts

• To measure the relative strengths and/or equivalent widths of emission or absorption lines
 – Abundances, ionization states, temperatures…

• To measure shapes of emission or absorption lines
 – Pressure, density, rotation, magnetic fields …

• To measure the spectral energy distribution of the continuum radiation
 – Physical mechanisms, temperature …

• In other words, spectroscopy enables astrophysics!
Types of Spectrographs

- By type of dispersing element:
 - Grating (transmission or reflection)
 - Prism (rare, except as a cross-dispersor)
 - Grism = grating on a prism
 - Narrow-band imaging
 - Interferometry

- By geometry:
 - Long-slit or multislit
 - Aperture of multi-fiber
 - Integral field units (IFU): lenslets or fiber bundles
 - Tunable imagers (e.g., Fabry-Perot)
Diffraction Gratings

• The principal device used to generate wavelength-dependent interference patterns at UV/Opt/IR (and even X-ray) wavelengths

• A diffraction grating acts as a set of equally spaced slits in an otherwise opaque screen

• Each slit can be considered as radiating secondary waves (Huygens’ secondary wavelets)

• The amplitude at any point on the image side of the slit can be calculated by summing the amplitude contributed by each set of secondary wavelets
Diffraction Gratings

- Most common is probably the reflecting diffraction grating.
- Grating equation: \(m\lambda = d[\sin(\alpha) + \sin(\beta)] \)

Diagram

- \(\alpha \) and \(\beta \) are angles.
- \(d \) is the groove spacing.
- \(m \) is the order of diffraction.
Difraction Gratings

One λ

$\theta = \frac{\lambda}{b}$

$\Delta \theta = \frac{\lambda}{w}$

Two λ's

$\theta_1 = \frac{\lambda_1}{b}$

$\theta_2 = \frac{\lambda_2}{b}$
Diffraction Gratings

• The single slit diffraction pattern modifies this by affecting the heights of the maxima, the strongest being at $m = 0$

• This “zeroth order” maximum is of no use, because it does not provide any discrimination in wavelength, it is at the same angle for any λ

• Gratings are designed to concentrate radiation in orders with $m \neq 0$ (note that positive and negative m are equivalent)
Monochromatic diffraction patterns from one and 10 slits
Intensity Profile From an Unblazed Grating
• Differentiate the grating equation wrt outgoing angle and get the *angular dispersion*

\[
\frac{d\beta}{d\lambda} = \frac{m}{d \cos(\beta)}
\]

• The *linear dispersion* is:

\[
\frac{d\lambda}{dx} = \frac{d\lambda}{d\beta} \frac{d\beta}{dx} = \frac{d\cos(\beta)}{mF_{\text{camera}}}
\]

\[F_{\text{camera}} = \frac{dx}{d\beta} \equiv \text{camera focal length}\]
Diffraction Gratings

• There are three principal methods of grating fabrication:
 – Diamond ruling on a low expansion glass substrate
 – Epoxy resin cast of a diamond ruled master
 – Imaging the interference pattern of a laser interferometer onto photosensitive emulsion, then etching away the unexposed regions; these are holographic gratings (not to be confused with Volume Phase Holographic gratings)

• Most practical gratings are reflection gratings, they are not composed of a screen with equally spaced slits, but of alternating reflecting and non-reflecting strips, made by ruling on a reflecting surface

• Note: ruling gratings is not easy! Spacing tolerance is ~1nm. Grating ruling machines are used in rooms kept a constant temperature to 0.01°C
Blazed Gratings

• To concentrate light away from zero order to higher orders, gratings are blazed
• The reflecting surfaces are now oriented at some angle with respect to the surface of the grating, reflecting light preferentially in that direction
• Blaze shifts the peak of the grating efficiency envelope towards higher orders
• An additional advantage is that the whole surface can now be reflecting, since the step where two facets join provides a phase difference to allow diffraction to occur
• But if a grating is blazed to be efficient at a particular wavelength with \(m=1 \), then it is also efficient at half that wavelength with \(m=2 \), so order overlap can be a problem
Grating Blaze

Incoming light

Diffracted light concentrated in the direction of normal geometric reflection

 BF

\[\frac{\lambda}{\lambda_0} \]
Example: LRIS Gratings
(From Keck Obs. WWW page)

<table>
<thead>
<tr>
<th>Grating Name</th>
<th>Grooves (l/mm)</th>
<th>Blaze (Å)</th>
<th>Disp. (Å/pix)</th>
<th>Spec. coverage (Å/2048 pix)</th>
</tr>
</thead>
<tbody>
<tr>
<td>150/7500</td>
<td>150</td>
<td>7500</td>
<td>4.8</td>
<td>9830</td>
</tr>
<tr>
<td>300/5000</td>
<td>300</td>
<td>5000</td>
<td>2.55</td>
<td>5220</td>
</tr>
<tr>
<td>400/8500</td>
<td>400</td>
<td>8500</td>
<td>1.86</td>
<td>3810</td>
</tr>
<tr>
<td>600/5000</td>
<td>600</td>
<td>5000</td>
<td>1.28</td>
<td>2620</td>
</tr>
<tr>
<td>600/7500</td>
<td>600</td>
<td>7500</td>
<td>1.28</td>
<td>2620</td>
</tr>
<tr>
<td>600/10000</td>
<td>600</td>
<td>10000</td>
<td>1.28</td>
<td>2620</td>
</tr>
<tr>
<td>831/8200</td>
<td>831</td>
<td>8200</td>
<td>0.93</td>
<td>1900</td>
</tr>
<tr>
<td>900/5500</td>
<td>900</td>
<td>5500</td>
<td>0.85</td>
<td>1740</td>
</tr>
<tr>
<td>1200/7500</td>
<td>1200</td>
<td>7500</td>
<td>0.64</td>
<td>1310</td>
</tr>
</tbody>
</table>
There are also different versions of transmission gratings:

- Transmission gratings
- **Grisms** - add a prism for *zero-deviation* transmission dispersion
- **Volume Phase Holographic Gratings**: VPH - use modulations of the index of refraction rather than surface structures to produce dispersion. High efficiency!
Volume Phase Holographic Gratings

- They work by a mechanism similar to Bragg diffraction
- The planes are provided by refractive index modulations in a volume of gelatin, set up by a holographic process
 - If the fringes are parallel to the grating surface, the grating acts as a reflecting monochromator as in the Bragg crystal
 - If the fringes are nearly parallel to the grating surface, it acts as a reflection grating
 - If the fringes are perpendicular to the grating surface, or nearly so it acts as a transmission grating
- Transmission gratings with very low fringe spacings can be made, much lower than the ruling spacing on a conventional grating
Spectrometers

- Gratings require collimated (parallel beam) light so the basic long-slit spectrometer:

 - Collimator
 - Grating
 - Telescope focal plane
 - Camera
 - Detector

Can often change the grating tilt to vary the wavelengths arriving on the detector.
Diffractive Grating Spectrograph
In the *camera* focal plane there is the *dispersion direction* perpendicular to the slit and the *spatial direction* along the slit.
seeing disk

Length set by decker

in telescope focal plane
An Example: P200 DBSP

Night sky OH emission bands

Raw data

Sky subtracted

Object spectrum
Spectral Resolution

- \(R = \frac{\lambda}{\Delta \lambda} \)
- For slit spectral, depends on slit width and grating choice.
- Examples:
 - V filter: 5500Å/1000Å = 5.5
 - LRIS-R: 1˝ ~ 4 pixels FWHM
 - 150 l/mm grating: \(R \sim \frac{6500}{20} \sim 325 \)
 - 600 l/mm grating: \(R \sim \frac{6500}{5} \sim 1300 \)
 - 1200 l/mm grating: \(R \sim \frac{6500}{2.6} \sim 2600 \)
Higher Resolution \rightarrow Better Sky Subtraction

Because fewer pixels are covered by the bright night sky lines

P200 DBSP
158 lines/mm
Grating \rightarrow

Keck ESI \rightarrow
For order n, at λ_n there is also order m light with wavelength $\lambda_m = (n/m)\lambda_n$.
Grating Orders

Higher orders are more heavily dispersed
• For higher orders with $\lambda<310$nm it’s not an issue as the atmosphere cuts out all the light (can still be an issue for calibration sources).

• But, if you are working in the red (>640nm) in 1st order, you need to block the 2nd order light.

• If you are working in a higher order, may need to block red light from lower orders.
KPNO 2.1m Goldcam blue blocking filters
Echelle Spectrometers: The Modern Way To Achieve A High Spectral Resolution

If after grating dispersion you “cross disperse” the spatially coincident orders you can separate the orders in the camera focal plane.

Usually do the initial dispersion with a fine ruled grating and the cross dispersing with a prism.

• Keck examples: HIRES, ESI
Echelle Gratings

- Echelle grating is more extremely blazed, to high angles and therefore high order m - could be tens or even hundreds!
- Order overlap is much worse, because adjacent orders differ in wavelength by small amounts (e.g. Order 6 @ 500nm is coincident with order 5 @ 600nm, order 7 @ 429nm, order 8 @ 375nm etc)
- Must separate these orders by **cross-dispersion**, usually dispersing with a prism at right angles to the grating dispersion
- Echelle spectrum consists of a number of spectral orders arranged side by side on the detector
Keck HIRES Outline
A Schematic View of an Echelle Spectrogram (HIRES)
Echelle Example: Keck ESI

Note curved orders, with the spacing getting tighter towards the longer wavelengths
Solar Spectrum Taken With An Echelle
Dichroics and Double Spectrometers

Telescope focal plane

Reflection gratings

grisms

dichroic

camera
filter wheel
filter tray
shutter
ccd
dewar

common
a: decker and slit
b: upper, lower, and user filter wheels
c: dichroic beam splitters and mirror

blue side
d: collimator
e: filter tray
f: grisms
g: camera
h: shutter
i: ccd
j: dewar

red side
k: collimator
m: gratings
n: filter turret
o: camera
p: shutter
q: ccd
r: dewar
Spectrometer Throughput

- Spectrometer throughput ranges from a few percent to ~50%. The losses accumulate fast. Dispersing elements are usually a big hit, then the losses at multiple surfaces go like \((\text{transmission})^n\) where \(n\) is the number of surfaces in the collimator and camera elements (\(n\) can be pretty big)

\[
0.98^8 \times 0.7 \times 0.8 = 0.47
\]

Camera/collim. with 8 surfaces (pretty good!) … and then there is the telescope optics
Another (major!) throughput issue: *slit losses* can be very significant!
• On-chip binning:

You are going to sum over these lines in the extraction anyway. On-chip binning will reduce RN x #pixels

For LRIS-B, 0.15 arcsec/pixel in the spatial direction
Should You Bin the Data?

• In the *spectral direction*, binning can reduce spectral resolution. If the FWHM of arclamp lines ≥ 5 pixels, you can start to think about binning. Lots of time you are interested in accurate line centers and higher moments of the spectral line profiles in which case, well sampled features are a good idea.
S/N for Spectral Observations

- On-chip binning:

\[
S_{\text{spectral pixel}} = \sum_{\text{lines}} R_{\text{object}} \times t
\]

\[
N_{\text{spectral pixel}} = \sum_{\text{lines}} \left[(R_{\text{object}} \times t) + (R_{\text{sky}} \times t) + RN^2 \right]^{1/2}
\]
S/N for Spectral Observations

• Often sum counts again in the spectral direction to determine S/N per resolution element.

• Note! Assumes sky noise is at the shot noise limit. Imperfectly modeled and subtracted sky lines are worse than this.

• For spectra the S/N usually varies considerably with wavelength:
 – Absorption, emission, continuum
 – Sky lines
 – System efficiency with wavelength
More Spectral Considerations

- Differential Atmospheric Dispersion (Filippenko, 1982, PASP, 94 715)
- Dispersion in the atmosphere causes chromatic distortion of images that gets larger at blue wavelengths at fixed airmass and larger with airmass at fixed central wavelength.

\[
\Delta \theta = 206265 \times \left[(n_{\lambda_1} - 1) - (n_{\lambda_2} - 1) \right] \times \tan(ZD)
\]

@X=1.5, 1.3” separation between 350nm and 550nm
Two problems:
1) Preferentially lose red (or blue) light out of the slit.
2) If guiding on a particular wavelength of light, the object at other wavelengths will move out of the slit.
• Two solutions:
 1. Align slit along the *parallactic angle*
2. Build an Atmospheric Dispersion Compensator

ADC WITHOUT CLADDING OR COVERS
Uncorrected
Corrected with ADC
Multiobject Spectroscopy

• Very popular option for many projects, whenever the surface density of targets is high (e.g., surveys)

• Various implementations:
 – Multislit
 – Fiber-fed
 – Fabry-Perot tunable filter imaging
 – Integral Field Units (IFUs)
• Remember the simple case: carefully rotated long slit. Note: better have an ADC.
Multislit spectroscopy
• Advantages of multislits:
 – High throughput
 – Can choose slit width and length
 – Good sky subtraction
 – Can place slits close together in telescope focal plane

• Disadvantages of multislits:
 – Wavelength coverage varies with the slit position
 – Do not always use the detector area efficiently.
Fiber-Fed Multi-Object Spectrographs (MOS)

spectrometer

pseudoslit

Spectra on CCD
An Example of a MOS: 2DF
2DF buttons+fibers
• Advantages of multi-fiber systems
 – Large fields
 – Uniform wavelength coverage
 – Efficient use of detector area

• Disadvantages
 – Minimum separation is between a few and 10+ arcseconds
 – Fiber losses are significant and grow with time (fiber are delicate)
 – Sky subtraction difficulties
 – Setup times can be long
Integral Field Units

- Only the image slicer retains spatial information within each slice/sample → highest information density in the datacube

- Implementation in a cold environment straightforward
- Diffraction affects only 1-dimension
IFU Example: SAURON on WHT

(Bacon et al. 2001)
Narrow-Band Imaging: Interference Filters, Fabry-Perot

Using a filter which is a resonant cavity (thickness = n × λ). Coatings or order-sorting filter can be used to isolate 1 order. If made of a piezoelectric material ➞ tunable Fabry-Perot etalon.
Fabry-Perot Imager

Loci of a constant wavelength in the focal plane are circles: a curved data cube!

\[n\lambda = 2d\mu \cos \theta \]

- \(n \) - interference order
- \(d \) - gap
- \(\mu \) - refractive index
- \(\lambda \) - wavelength
- \(\theta \) - angle of incidence
An Example of a F-P Data Cube

Color-coded velocity map
Slitless Spectroscopy

Place a dispersing element in the front of the telescope/camera: Each source has a dispersed image (generally a low disp.)

Good for wide-field surveys, but only for bright sources: the sky foreground still has the light from all wavelengths
Slitless Spectroscopy Example:
From
KISS
Survey
Fourier-Transform Spectrometer

Really a Michelson Interferometer

Baseline scans $\rightarrow \lambda_{\text{peak}}$
Spectroscopic Observing

- If spectrometer is not flexure compensated, the usual procedure is to obtain a line lamp spectrum (or two) and flat-field spectrum (or two) at the position of your program object. Sometimes even bracket the program exposures with arcs and flats.

- Depending on program, observe:
 - Flux standard
 - Radial velocity standard
 - Hot rapid rotator to identify terrestrial atmospheric absorption

- If no ADC, pay attention to position angle!
Star+sky

Quartz lamp flat

HgCdNe line lamps
Spectroscopic Data Reduction Steps:

- Bias and overscan correction
- Flat-fielding
 - Note: need to remove large-scale variations in the spectral dimension
- Identify location of the spectrum
- Identify location of sky samples
- Extract spectrum
 - Trace
 - Collapse lines
 - Interpolate sky and subtract
- Use stellar aperture to extract arc spectrum
- Fit pixel-wavelength map and apply to spectrum
 - May need heliocentric/other velocity correction
- Derive flux calibration and apply to spectrum
 - Correct for atmospheric and sometimes also interstellar absorption
Spectroscopic Flatfields

• Can flatfield original frames in 2-D format, or extract flatfield with the same aperture as the program object
• You would like a source that is uniform in the spatial direction \textit{and} has a flat spectrum. In practice, all flat-field lamps (usually a hot quartz lamp) have a strong spectral (continuum) signature
• So, usually extract flat, then fit a function in the spectral direction and divide this out to leave the pixel-to-pixel response
• Note: CCD pixel response varies with wavelength!
Quartz lamp
To “flatten the flatfield”, evaluate the low spatial frequency shape along the dispersion directions (poly fit, or a spatially filtered surface) and divide by it.
Two Major Problems
(especially for the faint object work)

1. Fringing (in the red)
2. Slit function: uneven slit width and illumination
Both are greatly aggravated by spectrograph flexure

DBSP spectroscopic flatfield divided by a smoothed version
Extracting the Spectrum: 2-D to 1-D

First, you need to determine the approximate position of the object spectrum to get its trace (extraction band).

Then you need to determine the sky measurement bands.
Trace:

- **order 2 fit**
- **order 7 fit**
Spectroscopic Extraction

• The simplest approach is just to somehow subtract the sky under your object, and add up the flux over some band

• A better approach is to do optimal, S/N-based weighting of the fluxes from individual pixels. To do that, you need to approximate the object intensity profile (~ PSF), which may vary along the dispersion direction. In practice, a fixed-sigma Gaussian is good enough for point sources or faint galaxies
Sky Subtraction

- Critical when crossing the sky lines (which are often tilted and unevenly illuminated)
- Many approaches:
 1. Fit a low-order poly to the sky bands, subtract
 2. Get a (possibly sigma-clipped) median in the sky bands, subtract
 3. Use a sliding-window, sigma-clipped median, and subtract

This is usually the best!
Wavelength Calibration

- Identify the lines in your lamp-line spectrum
- Fit line centers, derive function to map pixel scale to wavelength scale
- Associate arc+solution with program spectra
- Apply the dispersion solution to the data
Arc Line Lamps

• Common types: He, Ne, Ar, Hg (+Cd), sometimes Xe, Zn; for high resolution (Echelle), Cu+Ar or Fe +Ar (hollow cathode)

• Use a pre-defined aperture, trace for extracting arcs. Lines are often tilted or curved
Sometimes fit a master arc taken in the afternoon and use arcs taken adjacent to program objects to make a zeropoint shift to the wavelength solution.
Flux Calibration

There are lists of spectrophotometric standard stars:

Faint spectrophotometric standard stars

Spectral energy distributions of standard stars of intermediate brightness. II.

Spectrophotometry of Flux Calibration Stars for Hubble Space Telescope

Southern spectrophotometric standards for large telescopes

Spectrophotometric standards

The Kitt Peak spectrophotometric standards – Extension to 1 μm

Usual zeropoint is based on Vega:
\[F_{5556\AA} = 3.52 \times 10^{-20} \text{ erg/cm}^2/\text{s/Hz} \quad (V=0.048 \text{ mag}) \]
An Example of a Spectrophotometric Standard
Raw extracted Spectrum

Flux calibrated
Echelle format spectra

Each order has to be traced, extracted, and calibrated separately, then combined.
Radial velocity precision/accuracy:

\[R \equiv \frac{\lambda}{\Delta\lambda} = \frac{c}{v} \]

\[v = \frac{c}{R} \]

- \(R = 2500 \) (e.g., LRIS): 120 km/s
- Centroid to 1/20 resolution element gives a precision of 5 km/s (ignoring wavelength calibration uncertainties)
- HIRES at \(R = 50000 \) and 1/20th: 0.3 km/sec
• For most spectrometers, systematic errors dominate by ~2 km/sec. Flexure, illumination differences between sky and lamp paths, asymmetric line profiles due to detector and spectrometer optics shortcomings, spectrometer focal-plane scale shifts due to refocus/temperature changes, etc.

• Sun reflex motion due to Jupiter is 12.4 m/sec - planet searching is a new ballgame. At this level you even need to worry about the barycentric corrections: 1 m/sec corresponds to determining the mid-time of an observation to 30 seconds.
• Solutions for really high precision work are to environment control stationary spectrometers (coude or Nasmyth platform) and to use a stable, in-spectrum wavelength calibration source.

• Campbell & Walker (1979, PASP, 91, 540) proposed hydrogen-fluoride in a cell in front of the spectrometer slit to superpose narrow lines at zero velocity on the spectrum. Showed 15 m/sec precision was possible. HF was described as “obnoxious”
3m/s Precision With An Iodine Cell:

Fig. 1—The modeling process. Top: The template iodine cell spectrum. Second: The template stellar spectrum (τ Ceti, G8 V). Third: The points are an observation of τ Ceti made through the iodine absorption. The solid line is a model of the observation. The model is composed of the template iodine and stellar spectra. The free parameters consist of the spectrograph PSF and the Doppler shift of the template star relative to the template iodine. Bottom: 10 times the difference between the model and the observation. The model and observation differ by 0.4% rms.