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Revision Date: January 15, 2007

This document lists errors in the September 25, 2006, version of the lecture notes. Corrections are
listed by section. Many thanks to students who have informed me of errors and typos.

Changes made between Dec 29 and Jan 15:

• Corrections added for Chapter 5 on Rotating Systems. Perhaps incomplete; more corrections
may be added later.
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Chapter 1

Elementary Mechanics

1.1 Newtonian Mechanics

1.1.3 Energy and Work

Potential Energy, Conservation of Energy, and Conservative Forces

• In the discussion of forces for which the work W12 is path-independent, we should replace

Furthermore, consider forces for which W12 is path-independent, i.e., depends
only on ~r1 and ~r2. (Do there exist position-dependent forces for which this is
not true? Hard to think of any.)

by

Furthermore, consider forces for which W12 is path-independent, i.e., depends
only on ~r1 and ~r2. Another way of saying this is that the work done around a
closed path vanishes: pick any two points 1 and 2, calculate the work done in
going from 1 to 2 and from 2 to 1. The latter will be the negative of the former
if the work done is path-independent. By Stokes’ Theorem (see Appendix A),
we then see that path-independence of work is equivalent to requiring that
~∇× ~F = 0 everywhere. (Do there exist position-dependent forces for which this
is not true? Hard to think of any physically realized ones, but one can certainly
construct force functions with nonzero curl.)

Calculating Motion from the Potential Energy

• In Example 1.9, after we solve for the equilibrium position, we say

There is a stable equilibrium if m1 > m2/2; otherwise the square root becomes
zero or imaginary.

This is incomplete; please replace with:

There is an equilibrium if m1 > m2/2 (so that the square root is neither zero
nor imaginary) and if b and d are such that the resulting value of z1 < 0: m1 is
not allowed to go above point B.
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1.3 Dynamics of Systems of Particles

1.3.1 Newtonian Mechanical Concepts for Systems of Particles

Angular Momentum, Conservation of Angular Momentum, External and Internal
Torques

• In the calculation of the total angular momentum ~L, we have the line

=
∑
a

ma

[(
~R× ~̇R

)
+
(
~R× ~̇sa

)
+
(
~sa × ~̇R

)
+
(
~sa × ~̇as

)]
which should of course be

=
∑
a

ma

[(
~R× ~̇R

)
+
(
~R× ~̇sa

)
+
(
~sa × ~̇R

)
+
(
~sa × ~̇sa

)]
1.3.2 The Virial Theorem

We add a new section on the Virial Theorem, between the original Sections 1.3.1 (Newtonian
Mechanical Concepts for Systems of Particles) and 1.3.2 (Collisions of Particles)

Here we prove the Virial Theorem, which relates the time-averaged kinetic energy
for a bounded system to a quantity called the virial, which is just a time-averaged
dot product of the force and position of the various particles in the system. In its
basic form, the virial theorem does not have a clear intuitive interpretation, though
it is certainly useful. When one considers the specific case of conservative forces
that depend on particle radius, the virial becomes simply related to the potential
energy of the system. Thus, we obtain a time-averaged relation between kinetic and
potential energy. This is an incredibly powerful statement because it doesn’t require
specific knowledge of the particle orbits.

Generic Version
Consider an ensemble of particles, whose positions ~ra and momenta ~pa are
bounded, meaning that there are upper limits on both. This means that the
particles are both confined to a particular region of space and also that they
never approach a force center that might impart to them infinite momentum.
Define the quantity

S =
∑
a

~pa · ~ra

Calculate the time-averaged rate of change of S:〈
dS

dt

〉
=

1
τ

∫ τ

0

dS

dt
dt

The integrand is a total derivative, so the integral is done trivially:〈
dS

dt

〉
=
S(τ)− S(0)

τ

Since we assumed ~ra and ~pa are bounded, it also holds that S is bounded.
Thus, by letting τ →∞ – i.e., by taking the average over an arbitrarily long
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time – we can make
〈
dS
dt

〉
→ 0. Let us explicitly calculate

〈
dS
dt

〉
and use the

fact that it vanishes:

0 =
〈
dS

dt

〉
=

〈∑
a

[
~pa · ~̇ra + ~̇pa · ~ra

]〉
=

〈∑
a

~pa · ~̇ra

〉
+

〈∑
a

~̇pa · ~ra

〉
The two terms can be time-averaged separately because time averaging is
a linear operation. The first term is just 2T , twice the kinetic energy.1

The second term may be rewritten using the force on particle a, ~Fa, using
Newton’s second law. We may thus write the above as

〈T 〉 = −1
2

〈∑
a

~Fa · ~ra

〉
The quantity on the right side is known as the virial. The key result is that
the time-averaged kinetic energy is related to a time-average of a quantity
involving the forces and positions. The virial theorem is similar to the work-
energy theorem, which relates the work done by a force on particle to the
particle’s kinetic energy and which is also derived using Newtons’ second law,
but the virial theorem pertains to time-averaged, summed quantities rather
than to individual particle instantaneous quantities. What good does this
do for us? The key is the time-averaging and summing over particles, which
lets the virial theorem be used in unexpected ways.
Example: Ideal Gas Law
We can, for example, use the virial theorem to prove the ideal gas law! Con-
sider a gas of temperature Θ confined to a box of volume V . The temperature
is defined in terms of the average (over particles) kinetic energy of the gas
particles, so we can relate the total time-averaged kinetic energy of the gas
to the temperature:

〈T 〉 =
3
2
N kΘ

where N is the number of gas particles. To calculate the virial, we need to
evlauate the time average of ~Fa · ~ra. The gas particles move freely except
when they hit a wall, when an instantaneous force is exerted to reflect them
from the wall. Let us write the sum for virial,

∑
a
~Fa ·~ra, as an integral over

the walls of the box. The average contribution to the force exerted on an
area element dA of the wall by the gas at any instant in time is

d~F = n̂ P dA

where n̂ is the outward normal at the wall. By Newton’s third law, the force
exerted on the gas by the wall is the same modulo a sign. The sum for the
virial is then just an integral over the walls:

−1
2

〈∑
a

~Fa · ~ra

〉
=

1
2

∫
S
P n̂ · ~r dA

1Note: there is no ambiguity here about how to calculate T . ~pa and ~ra are not generalized coordinates, they are
the Cartesian vectors describing the particles (think back to elementary mechanics). It always holds that ~pa = ma ~̇ra

and that T = 1
2

ma ~̇r2
a, hence ~pa · ~̇ra = 2 T .
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where S indicates the closed surface defining the box walls. We may do the
surface integral using Gauss’ theorem:∫

S
n̂ · ~r dA =

∫
V

~∇ · ~r dV = 3V

Thus, we obtain

〈T 〉 =
3
2
P V

=⇒ N kΘ = P V

which is the ideal gas law. Note especially how we did the derivation using
only information about the time-averaged force: we didn’t need to know
any details about the interaction of the particles with the walls except the
average force per unit area, P , due to that interaction.

Conservative Power Law Potentials
If we now consider the specific case of particles being acted upon by a con-
servative force field that is derived from a potential energy that is a power
law in particle radius from the center of force, we can evaluate the virial
more explicitly. That is, we assume

~Fa = −~∇aV (~ra)

where V (~r) is the potential energy and where ~∇a is the gradient with respect
to particle a’s position vector, ~ra. Note that we are assuming that all the
particles move in a single potential energy that is a function of the particle
position.2 This assumption allows us to write the virial as

−1
2

〈∑
a

~Fa · ~ra

〉
=

1
2

〈∑
a

~ra · ~∇aV (~ra)

〉

Now, assume V (~ra) = k rna . Then, ~∇aV (~ra) = nk rn−1
a r̂a and the virial

becomes

−1
2

〈∑
a

~Fa · ~ra

〉
=

1
2

〈∑
a

ra nk r
n−1
a

〉
=
n

2

〈∑
a

k rna

〉

=
n

2

〈∑
a

V (ra)

〉
=
n

2
〈U〉

where U =
∑

a V (ra) is the total potential energy of the system. Thus, the
virial theorem reduces to

〈T 〉 =
n

2
〈U〉

2Strictly speaking, pairwise central forces do not satisfy this form. But, for an ensemble of many particles, it is a
very good approximation to say that each particle moves in a potential generated by the whole ensemble that looks
like a potential fixed to the center of mass of the ensemble, which we take to be at rest. The ensemble potential is
quite close to independent of the position of any single particle.
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That is, we obtain a very simple relation between the time-averaged kinetic
and potential energies of the system.
Example: The Virial Theorem in Astrophysics
The virial theorem is used widely in astrophysics because of the dominance of
gravity and because it relates directly observable quantities – kinetic energy
and temperature – to unobservable quantities – potential energy and mass.
We assume gravitational forces, so n = −1. If we divide the virial theorem
by the number of particles, we have

1
N
〈T 〉 =

1
2

1
N
|〈U〉|

(The sign in n has been canceled by the use of the absolute value sign.) That
is, the kinetic energy per particle is half the potential energy per particle.
We can use this in different ways to measure total masses of systems:

• If we are looking at a gas cloud, we can measure the gas temperature
Θ by its free-free photon emission.3 That gives us 〈T 〉. The potential
energy can be rewritten in terms of the cloud mass M , the typical gas
particle mass µ, and the cloud-averaged particle radius. We denote this
latter averaged radius as, somewhat uninformatively, the virial radius,
Rv. The virial theorem then tells us

3
2
kΘ =

1
N
〈T 〉 =

1
N

1
2
|〈U〉| = 1

2
GM µ

〈
1
r

〉
≡ 1

2
GM µ

1
Rv

3 kΘ =
GM µ

Rv

Note that the averaging is done on 1/r, not on r. A typical application
would be to use the virial theorem to measure the cloud mass. One has
to assume that the cloud is spherically symmetric and optically trans-
parent to its own free-free emission; one can then infer from the observed
photon radial distribution the shape (but not the normalization!) of the
cloud’s density profile. From the shape of unnormalized profile, one can
calculate the virial radius. The gas is almost always mostly ionized hy-
drogen, so µ is known. That leaves the cloud mass as the only unknown.
Thus, one can infer from only the photon emission and the virial theo-
rem the cloud mass without any absolute knowledge of normalization of
the photon emission in terms of the density. That’s rather remarkable!

• If we are looking at a galaxy, we can measure the line-of-sight velocity of
a subset of stars by redshift of known spectral lines. The same technique
works for galaxies orbiting in a galaxy clusters. Assuming isotropy of the
object, the line-of-sight velocity and the velocity transverse to the line
of sight will be equal on average (up to a

√
2). Assuming all the orbiting

objects in the larger object are of roughly equal mass, the kinetic energy
3Free-free emission is just the process of electrons scattering via the Coulomb force off ions in a plasma, a gas

that is hot enough that the bulk of the atoms are ionized. Since the electrons are accelerated in these scattering
events, they emit light in the form of a photon. The typical photon energy depends on the plasma temperature; for
the very hot plasma in galaxy clusters, which is at millions of degrees K, the photons are keV-energy X-rays. In our
own galaxy, the emission is usually in the radio, with wavelength of 1 cm and longer.
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per particle is simply related to the rms of the measured line-of-sight
velocity:

1
N
〈T 〉 =

1
2
mv2

3d,rms =
3
2
mv2

1d,rms

where we relate the full 3-dimensional rms velocity to the measured one-
dimension rms velocity assuming isotropy. We can do the same kind of
thing as we did for the gas cloud, except now m will drop out:

3
2
mv2

1d,rms =
1
N
〈T 〉 =

1
N

1
2
|〈U〉| = 1

2
GM m 〈1r〉 ≡ 1

2
GM m

1
Rv

3 v2
1d,rms =

GM

Rv

Since the test particles whose velocities we measure are discrete objects,
we can just make a plot of their number density as a function of radius
and from that calculate the virial radius. We can thus determine M
only from our observations of the test particle positions and line-of-sight
velocities!

1.3.3 Collisions of Particles

Thus section wa formerly section 1.3.2.

Elastic Collisions: Energy

• In the calculation of the kinetic energy in the lab frame, we conside rthe special case m1 = m2.
We incorrectly state

T1

T0
=

4m2
1

(m1 +m2)2
= 1

The expression should be

T1

T0
=

4m2
1

(m1 +m2)2
cos2 ψ1 = cos2 ψ1
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Chapter 2

Lagrangian and Hamiltonian
Dynamics

2.1 The Lagrangian Approach to Mechanics

2.1.2 Virtual Displacement, Virtual Work, and Generalized Forces

Virtual Work

• Toward the end of the subsection, just before Example 2.1, we have a discussion about how
constraint forces satisfy the assumption that they do no virtual work. The discussion could
stand to be rewritten somewhat. We replace the original text

At this point, we specialize to constraints that do no net work when
a virtual displacement is applied. This assumption is critical. Making this
assumption implies that only the non-constraint forces need be included in the
sum over j because the terms due to constraints yield no contribution. One must
go case-by-case in deciding whether a constraint satisfies this assumption.1

Mathematically, the assumption lets us drop the part of the sum containing
constraint forces, leaving

δW =
∑
ij

~F
(nc)
ij · δ~ri

where the (nc) superscript indicates that the sum is only over non-constraint
forces. Note that each constraint force term may or may not vanish separately.
If ~Fij · δ~ri vanishes for a single particle i and a single constraint j, then, the
constraint force must act on only one particle and must act normal to the
motion. Our elliptical wire constraint is of this form. Not all constraints are

1It is not clear whether it is possible to state general rules about which kinds of constraints satisfy the assumption.
In fact, Schaum’s Outline on Lagrangian Dynamics (D. A. Wells) says “While the truth of this statement is easily
demonstrated with simple examples, a general proof is usually not attempted. It may be regarded as a postulate.”
Goldstein simply states that “We now restrict ourselves to systems for which the net virtual work of the forces of
constraint is zero.” and makes no statement about the general applicability of the assumption. Note that Hand
and Finch completely gloss over this subtlety; they simply state “Recall that since constraint forces always act to
maintain the constraint, they point in a direction perpendicular to the movement of the parts of the system. This
means that the constraint forces do not contribute anything to the virtual work.” The first sentence is patently false,
as our Atwood’s machine example shows!
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of this form; see our Atwood’s machine example below. In my experience, it is
true that

∑
i
~Fij · δ~ri always vanishes for any given j: that is, one constraint

may require multiple forces acting on multiple particles, but the net work done
to enforce that constraint is always zero. The second example below is of this
type. But our assumption is more generic; it simply says that∑

ij

~F
(c)
ij · δ~ri = 0

where the (c) superscript restricts the sum to constraint forces but the sum is
over all constraint forces and all particles.

with the new text

At this point, we specialize to constraints that do no net work when
a virtual displacement is applied. This assumption is critical. Making this
assumption implies that only the non-constraint forces need be included in the
sum over j because the terms due to constraints yield no contribution.
The assumption deserves some detailed discussion. It is not clear whether it
is possible to state general rules about which kinds of constraints satisfy the
assumption. In fact, Schaum’s Outline on Lagrangian Dynamics (D. A. Wells)
says “While the truth of this statement is easily demonstrated with simple
examples, a general proof is usually not attempted. It may be regarded as a
postulate.” Goldstein simply states that “We now restrict ourselves to systems
for which the net virtual work of the forces of constraint is zero” and makes no
statement about the general applicability of the assumption. Note that Hand
and Finch completely gloss over this subtlety; they simply state “Recall that
since constraint forces always act to maintain the constraint, they point in a
direction perpendicular to the movement of the parts of the system. This means
that the constraint forces do not contribute anything to the virtual work.” The
first sentence is patently false, as our Atwood’s machine example shows!
Let us try to at least get an intuitive idea of how different kinds of constraints
satisfy the assumption. There are clearly three kinds:

1. “normal forces”: If ~Fij · δ~ri vanishes for a single particle i and a single
constraint j, then, the constraint force must act on only one particle and
must act normal to the motion. Our elliptical wire constraint is of this form.
The constraint defining rigid-body motion, |~ra − ~rb| = cab for all particles
a, b in the body, is similar in form: an allowed virtual displacement keeps
the length of the vector separation of the two particles fixed but allows its
orientation to change, while the force that maintains the constraint is the
central force between the two, which acts along the separation vector and
thus perpendicular to the virtual displacement. It is not quite the same
as the single-particle version, but it still can be considered a normal force
because the constraint force and virtual displacement are perpendicular.

2. “single-constraint satisfaction”: Not all constraints are “normal forces”; see
our Atwood’s machine example below, where the constraint force acts along
the virtual displacement so that ~Fij · δ~ri 6= 0 but

∑
i
~Fij · δ~ri does vanish

due to summation over i. In this case, once one sums over the particles
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that are affected by a particular constraint, then the sum vanishes. For this
type of constraint, each constraint j satisfies the assumption

∑
i
~Fij ·δ~ri = 0

independently. Of course, normal forces are a special subset of this class,
but it is instructive to consider them separately.

3. “interlocking constraint satisfaction”: I admittedly cannot think of an ex-
ample, but one can imagine in a general sense that some set of interlock-
ing constraints, where multiple coordinates appear in multiple constraints,
might require the summation over both i and j for the assumption to hold.

Because of the possibility that there exist situations of the third type, we use
the most generic assumption we need to proceed with our derivation, which is
the third one. We write that down as∑

ij

~F
(c)
ij · δ~ri = 0

where the (c) superscript restricts the sum to constraint forces but the sum is
over all constraint forces and all particles. Mathematically, the assumption lets
us drop the part of the virtual work sum containing constraint forces, leaving

δW =
∑
ij

~F
(nc)
ij · δ~ri

where the (nc) superscript indicates that the sum is only over non-constraint
forces.

2.1.9 Special Nonconservative Cases

Velocity-Dependent Potentials

• In this section, we make use of the vector identity

~a× (~∇×~b) = ~∇ (~a ·~b)− (~a · ~∇)~b

We should have stated that this identity only holds when ~a is not acted on by ~∇: we have
moved ~a from the left side of ~∇ (LHS of equation) to its right side (first term on RHS). More
generally, one has to be a bit more careful. It is not possible to clearly write the general result
using just vector notation, but it can be written using index notation:[

~a× (~∇×~b)
]
i
=
∑
j

aj∇ibj −
∑
j

aj∇jbi

The key point is that in the first term, ~a is in a dot product with ~b, but ~∇ must be allowed
to act on ~b first, and not as ~∇ ·~b.

2.2 Variational Calculus and Dynamics

2.2.3 Imposing Constraints in Variational Dynamics

Lagrange Multipliers for Standard Calculus Minimization Problems

• The paragraph that describes why the equation

~∇H(~ym) =
∑
p

λp(~ym)~∇Gp(~ym)
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is the correct requirement on ~∇H for minimization of H subject to the constraints given by
the {Gp} is not as clear as it could be. The original paragraph is

That is, if there is a point ~ym such that the vector ~∇H at that point is a
linear combination of the vectors ~∇Gp at that point, then we are assured that
~∇H(~ym)·d~y = 0 for all d~y that satisfy the constraints (i.e., for all d~y that satisfy
~∇Gp(~ym) · d~y = 0). Geometrically, the constraints require that the allowed d~y
lie in the intersection of the j tangent subspaces created by the constraints. In
order to have dH = 0 subject to the constraints, the gradient of H must point
“out of” this intersection of subspaces – it can have no component “along” the
intersection of tangent subspaces. If ~∇H is perpendicular to at least one of the
tangent subspaces (denote it by T⊥), then ~∇H is perpendicular to the intersec-
tion of all the tangent subspaces because that intersection contains some portion
of T⊥ (if it did not, the intersection would be empty, indicating the constraints
are not self-consistent). ~∇H is perpendicular to at least one tangent subspace
if it is a linear combination of the above form. The undetermined {λp} can be
found because we now have M minimization equations (the M components of
Equation 2.27) and j constraint equations (the j equations {Gp(~y)− Cp = 0}),
enough information to find the M components of ~ym and the j parameters {λp}.

Replace it with the following:

We can see that this expression is sufficient to minimize H while respecting the
constraint condition by simply calculating ~∇H(~ym) · d~y:

~∇H(~ym) · d~y =

[∑
p

λp(~ym)~∇Gp(~ym)

]
· d~y =

∑
p

λp(~ym)
[
~∇Gp(~ym) · d~y

]
= 0

where the last equality holds because we are only consideringq d~y that satisfy
the constraints, which mathematically is the statement ~∇Gp(~ym) ·d~y = 0 for all
p as explained earlier.
How do we see that the expression is necessary, that it is the minimal possible
expression for ~∇H(~ym)? That is straightforward to see geometrically. Geomet-
rically, the constraints require that the allowed d~y lie in the intersection of the j
tangent subspaces created by the constraints. In order to have dH = 0 subject
to the constraints, the gradient ofH must point “out of” this intersection of sub-
spaces – it can have no component “along” the intersection of tangent subspaces.
To stay out of this intersection, ~∇H(~ym) must have a nonzero projection along
at least one ~∇Gp(~ym). We can use proof by contradiction to see this. Suppose
~∇H(~ym) has zero projection along every ~∇Gp(~ym). Then ~∇H(~ym) would be
perpendicular to all ~∇Gp(~ym), which would imply that ~∇H(~ym) lies in all the
tangent subspaces, which implies that it lies in the intersection of the tangent
subspaces. That is exactly what we do not want. So it must be false to assume
that ~∇H(~ym) has zero projection along every ~∇Gp(~ym). If that is false, then
the expression we have written down is the minimal one that allows ~∇H(~ym)
to have nonzero projection along at least one ~∇Gp(~ym). Not all the λp need be
nonzero, only one has to be nonzero.2

2We shall see later that a given λp vanishes when the corresponding constraint force vanishes. That happens if no
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The undetermined {λp} can be found because we now have M minimization
equations (the M components of Equation 2.27) and j constraint equations (the
j equations {Gp(~y)− Cp = 0}), enough information to find the M components
of ~ym and the j parameters {λp}.

Lagrange Multipliers in Variational Problems

• We make the statement

Applying the variation {δyk} to the constraint yields the j equations∑
k

∂Gp
∂yk

δyk = 0

It would be better to explicitly show the x dependence in the above equation by writing it as

Applying the variation {δyk(x)} to the constraint yields the j equations∑
k

∂Gp(x)
∂yk

δyk(x) = 0 at each x independently

Lagrange Multipliers and Constraint Forces

• Example 2.9
Toward the end of the example, where we say

Solving, we find

ẍ =
1
2
g sinα ÿ =

1
2
g sinα
R

λ = −1
2
M g sinα

the ÿ in the second equation should obviously be a θ̈. The corrected version is

Solving, we find

ẍ =
1
2
g sinα θ̈ =

1
2
g sinα
R

λ = −1
2
M g sinα

2.2.4 Incorporating Nonholonomic Constraints in Variational Dynamics

We break this section into two subsections, the first one describing an example of how to deal with
inequality constraints, the second one being the original discussion of nonintegrable constraints.
The first section is completely new, so we provide it here. We also list an error in the old section
on nonintegrable constraints.

force is needed to enforce the constraint. For example, if a particle is restricted to live on the plane x = 0, is subject
to gravity in the z direction, and is given initial condition x = 0, then it will continue to satisfy x = 0 for all time
with no constraint force applied.
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Inequality Constraints

We give an example of how to deal with one type of inequality constraint. We make no claim this
is a generic method, but it is instructive.
Consider a pointlike particle sitting on top of a hemisphere of radius R. Let the coordinate system
origin be at the center of the hemisphere. The particle thus satisfies r ≥ R. Suppose the particle is
placed at rest at the top of the hemisphere and given an infinitesimal nudge to get it sliding down
the hemisphere. We want to determine the dynamics of the particle, specifically the polar angle at
which it leaves the hemisphere. The polar angle is taken to be zero at the top of the hemisphere.
We will solve the problem by treating the constraint as an exact equality constraint, r = R, and then
finding at what angle the constraint force enforcing the constraint – as given by the corresponding
Lagrange multiplier – goes to zero. It will become clear that this is the point at which the particle
leaves the hemisphere.
The Lagrangian and constraint equation are

L =
1
2
m ṙ2 +

1
2
mr2 θ̇2 −mg r cos θ r −R = 0

The resulting Euler-Lagrange equations with Lagrange multipliers are:

r : mr θ̇2 −mg cos θ −m r̈ + λ = 0

θ : mg r sin θ − d

dt

(
mr2 θ̇

)
= 0

λ : r −R = 0

We use the λ equation to substitute for r (also using ṙ = 0) to obtain

r : λ = mg cos θ −mR θ̇2

θ : mR2θ̈ = mg r sin θ

We cannot solve the system analytically. But it is clear that λ tells us the force that the hemisphere
must exert to counter gravity acting on the particle, after subtracting off the apparent centrifugal
force due to the particle’s circular motion. λ is positive when the particle is on the hemisphere,
but it will go to zero and become negative when the particle leaves the hemisphere. (The equations
obviously become invalid as soon as λ goes negative because the constraint is no longer valid.) So
we simply need to find the θ at which λ = 0. So we want θ̇ as a function of θ. We can obtain that
by conservation of energy:

mgR = mgR cos θ +
1
2
mR2θ̇2

θ̇2 = 2
g

R
(1− cos θ)

We could also obtain the same result by a clever integration of the θ equation of motion:

θ̈ =
dθ̇

dt
=
dθ̇

dθ

dθ

dt
= θ̇

dθ̇

dθ

θ̈ dθ = θ̇ dθ̇

We can replace θ̈ on the LHS using the θ equation of motion and then integrate both sides:

g

R

∫ θ

0
sin θ′dθ′ =

1
2

(
θ̇′
)2
∣∣∣∣θ̇
0

g

R
(1− cos θ) =

1
2
θ̇2

14
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With θ̇ written in terms of θ, we can reduce the r equation and obtain λ as a function of θ:

λ = mg cos θ −mR
[
2
g

R
(1− cos θ)

]
= mg (3 cos θ − 2)

So λ = 0 when cos θ = 2/3. One can obtain the complete dynamics by calculating θ̇ at this angle
and then using this position and velocity as the initial condition for continued motion with no
constraint and subject to gravity. That would, for example, let one figure out exactly where the
particle hits the ground.

Nonintegrable Constraints

• There is an error in the Lagrangian written down for the problem given in the notes. We
wrote down

L =
1
2
MR2

[
3
2
φ̇2 +

1
4
θ̇2

]
It should be

L =
1
2
MR2

[
3
2
φ̇2 +

1
4
θ̇2

]
−mg y sinα

The expression we originally gave was just the kinetic energy.

2.3 Hamiltonian Dynamics

2.3.2 Phase Space and Liouville’s Theorem

Liouville’s Theorem

• At the start, we incorrectly state that Liouville’s theorem implies that the phase space fluid
is incompressible. Rather, it is a fluid with incompressible flow. This will be explained in
more detail in the following revised section.

Alternate Versions of Liouville’s Theorem

This section is rather badly muddled and badly named. The title should be changed the The Fluid
Interpretation of Liouville’s Theorem. Just replace it wholesale with the following:

To see clearly the fluid interpretation of Liouville’s theorem, we must expand out
the differential above or the total derivative using the chain rule: If we write out the
total derivative using the chain rule, we have

ρ(~q(t+ dt), ~p(t+ dt), t+ dt)− ρ(~q(t), ~p(t), t) =
∂ρ

∂t
dt+

∑
k

[
∂ρ

∂qk
q̇k dt+

∂ρ

∂pk
ṗk dt

]
or

dρ

dt
=
∂ρ

∂t
+
∑
k

[
∂ρ

∂qk
q̇k +

∂ρ

∂pk
ṗk

]

15
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The second term can be rewritten to give

dρ

dt
=
∂ρ

∂t
+
[
~̇q · ~∇q + ~̇p · ~∇p

]
ρ =

∂ρ

∂t
+ ~̇ξ · ~∇ξρ

where in the first step we have simply rewritten the sums over k as dot products
(note the q and p subscripts on ~∇, which specify which variables the gradient is
taken with respect to), and in the second step we have defined a new composite
coordinate ~ξ, with

ξk =
{
q(k+1)/2 k = odd
pk/2 k = even

This is known as symplectic notation; we will return to this term later. Four points
can be made about this form:

• The derivative expression given is completely analogous to the one we would
find in fluid mechanics, where ~̇ξ would be replaced by the fluid velocity ~v
and the gradient ~∇ξ would be replaced by the simple spatial gradient ~∇r. The
derivative operator ∂

∂t+~v·~∇r is generically called the “convective”, “advective”,
“Lagrangian”, “substantial”, “substantive”, “material”, or “Stokes” derivative
due to its use in fluid mechanics to calculate differentials “moving along” with
the fluid.

• Liouville’s theorem can be rewritten in a slightly different way using the con-
vective form. Let’s separate the two pieces of the convective derivative:

0 =
dρ

dt
=⇒ 0 =

∂ρ

∂t
+ ~̇ξ · ~∇ξ ρ =⇒ ∂ρ

∂t
= −~̇ξ · ~∇ξ ρ

The last form says that if, instead of moving along with the phase space flow,
you sit at one point in phase space and watch the phase space density at that
point change with time, then the rate at which it changes, ∂ρ

∂t , is given by the
negative of the gradient of the phase space density along the flow direction
multiplied by the flow speed.

• Liouville’s theorem is not a trivial result of conservation of particle number.
Conservation of particle number simply states

∂

∂t

∫
V
ρ dVqp +

∫
S
dAqp n̂ · ρ ~̇ξ = 0

i.e., the rate of change of the number of particles in a volume V in phase space
is just related to the net flow into the volume through its surface S. Gauss’s
theorem lets us rewrite the above as

∂

∂t

∫
V
ρ dVqp +

∫
V
dVqp ~∇ξ ·

(
ρ ~̇ξ
)

= 0

Since the volume is not changing in time (we consider a volume V fixed in
phase space, not one moving with the flow), we may move the time derivative
inside the integral: ∫

V
dVqp

[
∂ρ

∂t
+ ~∇ξ ·

(
ρ ~̇ξ
)]

= 0
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Finally, because the volume V is arbitrary, the integrand must vanish at any
point in phase space:

∂ρ

∂t
+ ~∇ξ ·

(
ρ ~̇ξ
)

= 0

The above equation is the continuity equation and simply states conservation
of particle number. We need to know nothing about Hamiltonian dynamics to
derive it To get from the continuity equation to Liouville’s theorem, let’s expand
out the divergence term:

0 =
∂ρ

∂t
+ ~∇ξ ·

(
ρ ~̇ξ
)

=
∂ρ

∂t
+ ~̇ξ · ~∇ξρ+ ρ

(
~∇ξ · ~̇ξ

)
We need for the third term to vanish to obtain Liouville’s theorem. It turns
out that it vanishes because of Hamilton’s equations:

~∇ξ · ~̇ξ =
∑
k

[
∂q̇k
∂qk

+
∂ṗk
∂pk

]
=
∑
k

[
∂2H

∂qk ∂pk
− ∂2H

∂pk ∂qk

]
= 0

Thus, we are left with

0 =
∂ρ

∂t
+ ~̇ξ · ~∇ξρ

i.e., Liouville’s theorem. Liouville’s theorem is thus a consequence of both con-
servation of particle number and Hamilton’s equations. We implicitly assumed
conservation of particle number in our derivation: we followed particular parti-
cles along, assuming that they could not vanish. And we had to use Hamilton’s
equations in our original derivation of Liouville’s theorem. So we have ob-
tained an alternate derivation of Liouville’s theorem, though one that rests on
the same physics. The derivation is actually really the same in that one can
make a term-by-term correspondence between the two; the language we use
here is just more sophisticated and results in a more compact derivation.

• Combining the above two points, we can see that there is a very nice analogy
between phase space flow and incompressibility in fluid mechanics. There are
two kinds of incompressibility in fluid mechanics, and it is the latter one that
corresponds to phase space flow:

– incompressible fluid: An incompressible fluid has an unchangeable density:
ρ = constant. Therefore, ~∇rρ = 0, ∂ρ

∂t = 0, and dρ
dt = 0. We can use the

continuity equation to also infer that ~∇r · ~v = 0:

0 =
∂ρ

∂t
+ ~∇r · (ρ~v) =

∂ρ

∂t
+ ~v · ~∇rρ+ ρ ~∇r · ~v

Incompressibility of the fluid implies that the first two terms vanish, so
(assuming we don’t have a trivial fluid with ρ = 0)

~∇r · ~v = 0

We thus see than an incompressible fluid is very uninteresting. The phase
space density is not an incompressible fluid.
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– incompressible flow: The definition of a fluid with incompressible flow is

~∇r · ~v = 0

We derived above that the phase space flow obeys the analogous equation
thanks to Hamilton’s equations. Thus, there is a perfect correspondence
between the phase space fluid and a fluid with incompressible flow. Just
as we derived Liouville’s theorem from the continuity equation with the
additional condition based on Hamilton’s equations that ~∇ξ · ~̇ξ = 0, we
could derive the analogy of Liouville’s theorem for incompressible flows:

0 =
dρ

dt
=
∂ρ

∂t
+ ~v · ~∇rρ

We note than an incompressible fluid always has incompressible flow (be-
cause we showed above ~∇r ·~v = 0 for an incompressible fluid), but of course
a fluid with incompressible flow need not be an incompressible fluid.

2.4 Topics in Theoretical Mechanics

2.4.1 Canonical Transformations and Generating Functions

Generating Functions

• At one point, we state

We shall make the enlightened guess that a sufficient condition for that term
to vanish is that the Lagrangians (not the Hamiltonians) in the two coordinate
systems differ by a total derivative of a function F (q,Q, t) and that P = ∂F

∂Q .

There is a sign error typo on the condition on P , the statement should be

We shall make the enlightened guess that a sufficient condition for that term
to vanish is that the Lagrangians (not the Hamiltonians) in the two coordinate
systems differ by a total derivative of a function F (q,Q, t) and that P = −∂F

∂Q .

2.4.4 Action-Angle Variables and Adiabatic Invariance

Though this section is part of Section 2.4 that is not required for most students, the concepts of
action-angle variables and adiabatic invariance are generically useful and should be understood,
even if the derivation cannot be appreciated. To that end, we have added a “Pre-Summary and
Cookbook” discussion at the start of this section that both helps to outline the results of the
derivation that follows and also summarizes the results for those who have not studied the previ-
ous material on canonical transformations and generating functions necessary to understand the
derivation. This material appears after the initial example of the SHO and before the full derivation
begins.

Pre-Summary and Cookbook

In the following section, we shall generalize the above example. The basic result
we will obtain is that, for any 1-dimensional periodic system, we may always define
conjugate action and angle variables analogous to P and Q above and that they
always obey the following:

18



Revision Date: January 15, 2007

• The action variable I is constant and has the value

I =
∮
p(E, q) dq (2.1)

where one obtains p(E, q) by inverting H(p, q) to obtain p(H, q) and then using
the fact that energy is conserved for a periodic system, so that H is a constant
with value E set by the initial conditions, E = H(p(t = 0), q(t = 0)). The inte-
gral is thus explicit for any initial condition (though whether it is analytically
integrable depends on the specific problem).

• The angle variable evolves linearly in time at rate ω:

ψ = ω t+ ψ0 with ω ≡ ∂H(I)
∂I

(2.2)

where H(I) is just the Hamiltonian rewritten in terms of I instead of in terms
of p and q. ψ0 is set by initial conditions.

The full proof will demonstrate that it is always possible to define I and ψ for any
periodic system and that they always satisfy the above.

We will also demonstrate that I is an adiabatic invariant, which means that, if some
normally constant parameter in H is changed sufficiently slowly, then I is constant
to first order in the change in the parameter. An example of a “normally constant”
parameter is the natural frequency ω in a SHO, or the mass m and spring constant
k that combine to give ω. By “sufficiently slowly,” we mean that, if the changing
parameter is α, the rate of change of α must satisfy α̇ T/α� 1 where T is the period
of the system. That is, the fractional change in α in one period is small compared
to 1. By ”constant to first order,” we mean that İ ∝ α̇2.

Adiabatic invariance of I is how these concepts prove useful because they provide
one quantity, I, that is constant even when parameters in the problem and the total
energy are changing. The classic example is a pendulum with a slowly lengthening
bob length l(t). If the parameter changes sufficiently slowly, we do not need to solve
the full problem with the rheonomic constraint that gives us l(t) to find out how
the energy, oscillation amplitude, or maximum speed of the pendulum change with
time; we simply use the fact that I is constant to relate the rate of change of E to
the rate of change of the bob length l, and then we can obtain the rate of change of
the amplitude A or the maximum speed v from the rate of change of E.

The geometric interpretation of all of the above in phase space is also interesting. I,
by definition, is the area enclosed in phase space by the phase space orbit and ψ is
the angular position of the system on that orbit in the pq plane. Adiabatic invariance
has a clever geometric interpretation – even as a parameter in the problem changes,
causing the orbit shape to change (e.g., the maximum q and p will change), the area
of the orbit is preserved as it changes shape.

Additional corrections and clarifications:

Action-Angle Variables

• In the derivation of action-angle variables, we state
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Now, we could use the standard Legendre transformation rules to obtain an
explicit formula for ψ:

ψ =
∂W̃2(q, I)

∂I
=

∂

∂I

∫
p(q, I) dq =

∫
dq
∂p(q, I)
∂I

Evaluation of this form requires knowing the full dynamics of the system. There
is a way around this: because W̃2 generates a canonical transformation, we are
assured that Hamilton’s equations are satisfied in the (ψ, I) variable set. In
particular,

ψ̇ =
∂H(ψ, I)

∂I

Since H is conserved, we know it should be possible to write H as a function of
the one constant of the motion available, I, so we are left with

ψ̇ =
∂H(I)
∂I

≡ ω = constant

This of course implies that ψ is cyclic in the transformed Hamiltonian. Since ψ̇
is constant, it holds that

ψ = ω t+ ψ0

We thus obtain an explicit formula for ψ that is valid independent of the details
of the problem. The Legendre transformation formula for ψ would yield this, but
one has to perform the integral explicitly using the particular p(q, I) function.

The above is not as clear as it could be. We rewrite as follows:

Now, we could use the standard Legendre transformation rules to obtain an
explicit formula for ψ:

ψ =
∂W̃2(q, I)

∂I
=

∂

∂I

∫
p(q, I) dq =

∫
dq
∂p(q, I)
∂I

We shall show below that, after the canonical transformation, H has no ψ
dependence and thus is a function of I alone, H = H(I). This would allow us
to obtain p(q, I) via H: H = H(p, q) also, so we should be able find p = p(q,H)
and therefore p = p(q,H(I)) = p(q, I). We could then do the integral and
take ∂

∂I , or alternatively take ∂
∂I and do the integral, to obtain ψ. But it may

not always be possible to do the integral analytically. It turns out there is an
easier way to obtain ψ(t) using the fact that (ψ, I) are canonical variables by
construction. Hamilton’s equations in the new variables are

ψ̇ =
∂H(ψ, I)

∂I
İ = −∂H(ψ, I)

∂ψ

I is constant by construction. Therefore, İ = 0 and thus ∂H
∂ψ = 0. Therefore, the

canonically transformedH has no ψ dependence, H = H(I) only. Consequently,
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ψ̇ = ∂H
∂I can depend only on I. Moreover, because I is constant in time, we

know ∂H
∂I is constant in time. Putting this all together gives

ψ̇ =
∂H(I)
∂I

≡ ω = constant

Therefore,

ψ = ω t+ ψ0

We thus obtain an explicit formula for ψ that is valid independent of the details
of the problem. The Legendre transformation formula for ψ would yield this,
but one would have to perform the integral explicitly using the particular p(q, I)
function.
We belabor one point, the functional dependences of ω. We explicitly noted
above that ω = ω(I): ω is not constant as a function of I. But ω is constant
in time because I is constant in time. The constancy of ω in time provides the
simple evolution of the angle variable ψ. Now, in some cases, ω may indeed be
independent of I – for example, in the SHO, ω =

√
k/m depends only on the

parameters of the problem, not on I, which comes from the initial conditions.
But, more generally, ω may be a function of I; one example is the non-small-
angle pendulum – the period of the motion (which we shall see below is given
by ω) is dependent on the initial conditions.

Adiabatic Invariance

• The derivation completes with the following:

Recall that W̃ is periodic in ψ because the motion is periodic in ψ. So we have

−
〈
İ
〉

=
α̇

2π

[
∂W̃ (q, ψ, π, α(T ))

∂α
− ∂W̃ (q, ψ, α(0))

∂α

]

= T
α̇2

2π
∂2 W̃

∂ ψ ∂ α
≈ 0

There is an error in the last line, it should be

−
〈
İ
〉

= T
α̇2

2π
∂2W̃

∂α2
≈ 0

2.4.5 The Hamilton-Jacobi Equation

Examples

• Example 2.16: Simple Harmonic Oscillator
At the end of the example, where we calculate S explicitly using the solution for q(t) and p(t)
we have obtained, we have the line

S = −E t+
√

2E
∫
d(
√

2E
ω

sin (ω t+ φ)
√

1− sin2 (ω t+ φ)
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The parentheses clearly do not match up, it should be

S = −E t+
√

2E
∫ [

d

(√
2E
ω

sin (ω t+ φ)

)]√
1− sin2 (ω t+ φ)

The d is taking the differential of the quantity
(√

2E
ω sin (ω t+ φ)

)
.
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Oscillations

3.1 The Simple Harmonic Oscillator

3.1.3 The Damped Simple Harmonic Oscillator

Damped Solutions

• In the discussion of the critically damped case, we derive the form for the first of the two
possible solutions. We state

q1(t) = exp (−t)
[
exp

(
t
√
ε
)

+ exp
(
−t
√
ε
)]

≈ exp (−t)

We lost a factor of 2 in stepping between the two lines as we let ε→ 0, the last line should be

q1(t) ≈ 2 exp (−t)

The loss of the factor of 2 has no other repurcussions.

3.1.4 The Driven Simple and Damped Harmonic Oscillator

Delta-Function Response, or Green’s Functions

• In the paragraph

Intuitively, one should think of the Green’s function G(t, t′) as giving the motion
at a time t if there was in impulsive force of unit amplitude at time t′. Since the
differential equation is linear, we obviously can find the response to two separate
impulses a and b at times ta and tb by calculating q(t) = aG(t, ta) + bG(t, tb).
For a force consisting of impulses Fi at times ti, i.e., F (t) =

∑
i δ(t − ti), the

solution will be q(t) =
∑

i FiG(t, ti). The extension to a continous force is
trivial, giving Equations 3.8 and 3.9 above.

we give the wrong expression for F (t), it should be

F (t) =
∑
i

Fiδ(t− ti)

• In the explicit derivation of the generic initial conditions for the Green’s function, we have
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The explicit method for finding the Green’s function is to make use of the ho-
mogeneous solution and the properties of the δ-function. Away from t = t′,
the Green’s function satisfies the homogeneous differential equation. Causality
requires G(t, t′) = 0 for t < t′, which is a perfectly good solution of the differ-
ential equation. For t > t′, we can just take G to be the generic solution to
the homogeneous equation. The coefficients A and B are obtained by integrat-
ing the differential equation for G (Equation 3.9) over a small interval around
t = t′ and making careful use of the delta function’s properties; essentially, this
integration provides boundary conditions for G that determine A and B:∫ t′+ε

t′−ε
dt

[
G̈(t, t′) +

Ġ(t, t′)
Q

+G(t, t′)

]
=
∫ t′+ε

t′−ε
dt δ(t− t′) = 1[

Ġ(t′ + ε, t′)− Ġ(t′ − ε, t′)
]

+
1
Q

[
G(t′ + ε, t′)−G(t′ − ε, t′)

]
+ 2 εG(t′, t′) = 1

Ġ(t′ + ε, t′) +
1
Q
G(t′ + ε, t′) + 2 εG(t′, t′) = 1

Ġ(t′ + ε, t′) +
1
Q

[
G(t′, t′) + ε Ġ(t′+, t′)

]
+ 2 εG(t′, t′) = 1

where we have made use of multiple facts in stepping through the above: 1)G(t, t′)
and Ġ(t, t′) vanish for t < t′; 2) G must be continuous at t = t′ to avoid having
the oscillator change position discontinously 3) Ġ(t, t′) may change discontinu-
ously at t = t′ because of the impulsive force, but it is finite everywhere, so any
terms of the form ε Ġ vanish as ε→ 0. So we have the initial conditions

lim
ε→0

[
G(t′, t′) + 2 εG(t′, t′)

]
= G(t′, t′) = 0

lim
ε→0

[
Ġ(t′ + ε, t′) + ε Ġ(t′+, t′)

]
= Ġ(t′+, t′) = 1

The above was both unclear and not quite right. We should have done it as follows:

The explicit method for finding the Green’s function is to make use of the ho-
mogeneous solution and the properties of the δ-function. Away from t = t′,
the Green’s function satisfies the homogeneous differential equation. Causality
requires G(t, t′) = 0 for t < t′, which is a perfectly good solution of the differ-
ential equation. Continuity of position then implies G(t′, t′) = 0 too (i.e., the
position cannot change instantaneously, even with and infinite delta-function
force). For t > t′, we can just take G to be the generic solution to the ho-
mogeneous equation. The coefficients A and B are obtained by integrating the
differential equation for G (Equation 3.9) over a small interval around t = t′ and
making careful use of the delta function’s properties; essentially, this integration
provides initial conditions for G that determine A and B:∫ t′+ε

t′−ε
dt

[
G̈(t, t′) +

Ġ(t, t′)
Q

+G(t, t′)

]
=
∫ t′+ε

t′−ε
dt δ(t− t′)[

Ġ(t′ + ε, t′)− Ġ(t′ − ε, t′)
]

+
1
Q

[
G(t′ + ε, t′)−G(t′ − ε, t′)

]
+ 2 εG(t′, t′) = 1
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where we have explicitly done the integrations. Now, use the facts Ġ(t′−ε, t′) = 0
and G(t′ − ε, t′) = 0 (which result from causality), giving

Ġ(t′ + ε, t′) +
1
Q
G(t′ + ε, t′) + 2 εG(t′, t′) = 1

Now, Taylor-expand the second term to obtain

Ġ(t′ + ε, t′) +
1
Q

[
G(t′, t′) + ε Ġ(t′+, t′)

]
+ 2 εG(t′, t′) = 1

where Ġ(t′+, t′) is the derivative of G as t → 0 from the positive side. This
positive-side/negative-side distinction is necessary for Ġ because it may change
discontinuously at t = t′ (because the acceleration will be infinite due to the
delta-function applied force.) Next, use the fact explained above that G(t′, t′) =
0 due to causality and continuity of position, yielding:

Ġ(t′ + ε, t′) +
ε

Q
Ġ(t′+, t′) = 1

Finally, use the fact that Ġ, while it may change discontinuously at t = t′,
must remain finite at all times – even the infinite acceleration provided by the
delta-function impulse will integrate to only a step change in velocity. Thus,
the second term goes to zero as ε goes to zero, giving

Ġ(t′+, t′) = 1

Thus, our initial conditions for G are G(t′, t′) = 0 and Ġ(t′+, t′) = 1. The +

superscript simply means that the initial condition for the t > t′ solution will
be that its initial velocity is 1, while for t < t′ it holds that Ġ = 0. The solution
will have a velocity discontinuity at t = t′. With these and the known form
of the solution of the homogeneous equation, we may determine the Green’s
function completely.

3.2 Coupled Simpler Harmonic Oscillators

3.2.2 General Method of Solution

Finding the Normal Mode Vectors

• We wrote

Let’s be a bit more explicit and write the equation for the mode vectors in
terms of the cofactors of the matrix −ω2 t + v. Recall that the determinant
of a matrix can be calculated by taking the sum over the product of any row or
column and its cofactors, with sign flips between adjacent elements:

This turns out to be a strange way to lead in to the discussion. It would be more clear to say

We will solve the above equation using the cofactors of the matrix −ω2 t + v.
Recall that cofactors arise in the calculation of the determinant of a matrix: the
determinant of a matrix can be calculated by taking the sum over the product of
any row or column and its cofactors, with sign flips between adjacent elements:
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• A bit further below, we wrote

Now, when we have a matrix equation of the form a ~f = 0, we require |a| = 0
to have a nontrivial solution. This is equivalent to requiring that ~rTi ~C

r
i = 0 or

~cTi
~Cci = 0. That is, any row or column of the matrix a and its cofactor vector

are orthogonal.

While all true, the above suggests that we needed to prove |a| = 0. We already know |a| = 0
because we used that fact to obtain the normal mode frequencies. The above should be
rewritten

Now that you are reminded of what a cofactor is, and we have introduced how
the determinant can be written as a dot product of row or column vectors
and their respective cofactor vectors, let us note a useful property of these dot
products. For the specific a we are considering here, a = ω2

i t+v, we know that
|a| = 0: this was necessary to have nontrivial normal mode vectors. In terms of
the row/column vectors and their cofactor vectors, this statement implies that
~rTi
~Cri = 0 or ~cTi ~C

c
i = 0; that is, any row or column of the matrix a and its

cofactor vector are orthogonal. We shall use this orthogonality below.

• There is a typo in the paragraph that follows. The statement

We can see in fact that any of these cofactor vectors satisfies the full set of
equations by realizing that

∑
aij ~C

r
k for k 6= i also must vanish because this

quantity is the determinant of the matrix obtained by replacing row k of a with
row i and calculating the determinant using row i. The determinant of a matrix
with two equal rows vanishes.

should read

We can see in fact that any of these cofactor vectors satisfies the full set of
equations by realizing that

∑
aij

(
~Crk

)
j
for k 6= i also must vanish: this quantity

is the determinant of the matrix obtained by replacing row k of a with row i
and calculating the determinant using the new row k (which is now identical to
row i); since the determinant of a matrix with two equal rows vanishes, it holds
that

∑
aij

(
~Crk

)
j

vanishes even when k 6= i.

3.2.4 Degeneracy

General Considerations

• In the first paragraph of this section, wherever we have M − n, it should be M − n− 1.

Example: Masses Coupled by Springs on a Circle

• We state

Correctly normalize, the λ = 1 mode vector is

There is no λ = 1 mode, this should of course be the λ = 0 mode.
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Chapter 4

Central Force Motion and Scattering

4.2 The Special Case of Gravity – The Kepler Problem

4.2.1 The Shape of Solutions of the Kepler Problem

The General Solution

• When we write out the energy in terms of A, lθ, and the constants in the problem, the last
line is erroneously given as

E =
l2θ
2µ

[
A2 +

(
Gµ2M

l2θ

)2
]

The sign is a typo. The line should be

E =
l2θ
2µ

[
A2 −

(
Gµ2M

l2θ

)2
]

The error only occured here, the remainder of the section is correct.

4.3 Scattering Cross Sections

4.3.2 The Generic Cross Section

Differential Cross Section

• The text introducing the definition of differential cross section is unclear. Replace

If dN is the number of particles per unit time scattered into the solid angle dΩ,
the differential cross section is

dσ

dΩ
dΩ =

dN

F
dσ

dΩ
=

1
F

dN

dΩ

dσ
dΩ has units of area per steradian; hence the name cross section.

with
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If dN(θ∗, φ∗) is the number of particles per unit time scattered into the solid
angle dΩ at (θ∗, φ∗), we define the differential cross section via the relation

1
A

dσ

dΩ
(θ∗, φ∗) dΩ =

dN(θ∗, φ∗)
F A

Let us explain the above. On the right side of first line, the denominator is the
number of particles per unit time incident on the target from a beam of flux
F and cross-sectional area A. Since the numerator is the number of particles
per unit time that scatter into dΩ at (θ∗, φ∗), the right side is thus the fraction
of particles that scatter into dΩ at (θ∗, φ∗); it is a probability. We include
additional factors so that dσ

dΩ is defined only by the scattering force, not by
parameters of the experiment. We have a 1/F on the right side but none on
the left side because including the 1/F makes the ratio dN/F independent of
F : if F goes up, dN goes up proportionally. However, we include a 1/A on the
left side to cancel the 1/A on the right side because dN(θ∗, φ∗) may not scale
with A: if one adds cross-sectional area at a radius from which particles do not
scatter into the particular solid angle dΩ at (θ∗, φ∗), dN(θ∗, φ∗) will not increase
when A increases. Hence the different treatment of F and A. Solving for the
differential cross section gives

dσ

dΩ
(θ∗, φ∗) =

1
F

dN(θ∗, φ∗)
dΩ

The beam area A has dropped out. dσ
dΩ has units of area per steradian; hence

the name cross section.

4.3.3 1
r

Potentials

Calculating the Differential Cross Section

• There is a simple typo in the result, we wrote

dσ

dΩ
=

b

sin θ∗

∣∣∣∣ dbdθ∗
∣∣∣∣ = b2

4
csc2 θ∗

2
sec2 θ∗

2
=
(
GµM

4E

)2 1
sin2 θ∗

2

There is an error in the exponent in the last expression, the last expression should be(
GµM

4E

)2 1
sin4 θ∗

2
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Chapter 5

Rotating Systems

5.2 Dynamics in Rotating Coordinate Systems

5.2.1 Newton’s Second Law in Rotating Coordinate Systems

Position and Velocity in Rotating and Non-Rotating Frames

• Following the calculation of d
dt ~r

′(t), we have the paragraph

The velocity relative to the non-rotating system has two components – one due
to rotation of the rotating system, the other due to motion relative to the rotat-
ing system. This is not yet what we need, as the right side uses the coordinate
representation in the rotating system ~r. We may use ~r(t) = [R(t)]T ~r ′(t) to
rewrite ~r in terms of the non-rotating system representation. d

dt ~r is a bit more
tricky. Transforming it by RT does not yield d

dt ~r
′; that would obviously yield

a trivial result. What is meant by R(t) d
dt ~r(t) and why is it not just d

dt ~r
′(t)?

This paragraph is confusing because it is not clear at this point why it is undesirable to write
the right side in terms of the rotating-system coordinate representation. That point is not
important. Replace the paragraph with the following, which focuses on the main point we
want to bring up here:

The velocity relative to the non-rotating system has two components – one
due to rotation of the rotating system, the other due to motion relative to the
rotating system. But, what is meant by R(t) d

dt ~r(t) and why is it not just
d
dt ~r

′(t)?

Rewriting Using Instantaneous Angular Velocity

• In our discussion of the direct method of calculation Ṙ, we write

Ṙ(t) =
1
dt

[R(t+ dt)−R(t)]

=
1
dt

[(
I + ~ω(t) dt · ~M

)
− I
]
R(t)

= ~ω(t) · ~MR(t)
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It would be more accurate to write

Ṙ(t) = lim
dt→0

1
dt

[R(t+ dt)−R(t)]

= lim
dt→0

1
dt

[(
I + ~ω(t) dt · ~M

)
− I
]
R(t)

= lim
dt→0

~ω(t) · ~MR(t) = ~ω(t) · ~MR(t)

5.2.2 Applications

Foucault’s Pendulum

• We had a Freudian slip and wrote everywhere “centripetal” instead of “centrifugal” force in
this example. The fictitious force is centrifugal, while the true force needed to cause circular
motion (or the true force in the rotating frame needed to counter centrifugal force) is called
centripetal force.

5.2.3 Lagrangian and Hamiltonian Dynamics in Rotating Coordinate Systems

• In the introduction to this section, we say it is surprising that one can do Lagrangian and
Hamiltonian dynamics in rotating coordinate systems. It really is not surprising: the rotating
coordinates are just an example of generalized coordinates.

Obtaining and Using the Lagrangians

• We left out some important terms in our calculation of the Euler-Lagrange equations. We
wrote

d

dt
(mẋ− y ω sinλ) = −mg

x

l
=⇒ ẍ+

g

l
x = 2 ẏ ω sinλ

d

dt
(mẏ + xω sinλ) = −mg

y

l
=⇒ ÿ +

g

l
y = −2 ẋ ω sinλ

We forgot to include the ∂L
∂x and ∂L

∂y terms that come from the extra ω-dependent term in the
kinetic energy. The Euler-Lagrange equations should be

d

dt
(mẋ− y ω sinλ) = ẏ ω sinλ−mg

x

l
=⇒ ẍ+

g

l
x = 2 ẏ ω sinλ

d

dt
(mẏ + xω sinλ) = −ẋ ω sinλ−mg

y

l
=⇒ ÿ +

g

l
y = −2 ẋ ω sinλ

5.3 Rotational Dynamics of Rigid Bodies

5.3.1 Basic Formalism

Principal Axes

• In the explanation of the coordinate representations of the inertia tensor and the principal
axes vectors in an arbitrary non-principal-axis frame F ′, we write

e′i,j = Rji = (R~ei)j
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This is wrong because it does not make sense to have R act on the vector ~ei; it must act on
a coordinate representation. The above should be

e′i,j = Rji = Rjkδki = Rjkei,k = (R~ei)j

• Similarly, in the explanation of the coordinate representations in the principal-axis frame F ,
we write

ei,j = δji =
(
RT~ei

)
j

when we should write

ei,j = δji = RkjRki = Rkje
′
i,k =

(
RT~ei

)
j

Physical Significance of the Moment of Inertia Tensor

• The last paragraph of the section includes the sentence

In general, we would again need six numbers to fully describe this “mass ten-
sor” – the orientation of the principal axes (axes that yield angular momentum
aligned with angular velocity) and the conversion factors from speed to momen-
tum for these three principal axes.

Hopefully, it is clear from context that the use of “angular” in the parenthetical clause is
incorrect. The sentence should be

In general, we would again need six numbers to fully describe this “mass tensor”
– the orientation of the principal axes (axes that yield linear momentum aligned
with linear velocity) and the conversion factors from speed to momentum for
these three principal axes.

Relation of Euler Form to Single-Axis Rotation

• At the start of this section, we say

We to some extent expect this result – we proved earlier that, for a rigid body, all
motion about the center of mass consists of rotation about a common angular
velocity vector ~ω – but this result is more generic, being true for arbitrary
rotation (orthogonal) matrices in N = 3 dimensions.

In the above, we mistakenly equate rotation matrices with orthogonal matrices. Not all
orthogonal matrices are rotation matrices – orthogonal matrices also include coordinate in-
versions, which cannot in general be written in terms of rotation matrices. So “orthogonal”
should be removed from the above statement.

• One step in the proof given in this section involves proving that orthogonal matrices have
unit determinant, which is written as follows:

The defining relation of orthogonal matrices is

RRT = 1
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Taking the determinant of both sides, using the facts |AB| = |A||B| and |AT | =
|A|, we obtain

|R| = |RT | = 1

This is equivalent to the statement that orthogonal matrices preserve the norm
of vectors they operate on.

The last step is not quite correct. It should read

. . . we obtain

|R| = |RT | = ±1

Now, all rotation matrices must have only the + sign. This can be seen quickly as
follows. From our discussion of infinitesimal rotations in terms of the generator
matrices ~M, one can see explicitly that an infinitesimal rotation about any single
coordinate axis has positive determinant (to linear order in the angle δθ – the
corrections are O(δθ)2), and thus determinant +1. Since infinitesimal rotations
commute, one can construct an infinitesimal rotation about any direction from
the product of three such rotations; such an infinitesimal rotation must therefore
also have determinant +1. It holds that any finite rotation can be built up as
an infinite product of infinitesimal rotations, and also that the determinant of
a product is the product of the determinants. Since each infinitesimal rotation
has determinant +1 to linear order, the product must also have determinant +1
to linear order. Hence, any rotation matrix must have determinant +1.

5.3.2 Torque-Free Motion

Generic Torque-Free Motion: Euler’s Equations

• This section needs both an introduction and a conclusion. The introduction should be

Our goal in this section is to obtain enough information to give the time evo-
lution of the orientation of the rigid body in the space frame. We shall do this
by first obtaining the time evolution of the body-frame representation of the
angular velocity vector, RT ~ω ′(t), and then obtaining the rigid body orientation
in the space frame from it.

The conclusion should be

With the full time evolution of RT ~ω ′ in hand, we can now obtain the orientation
of the body as a function of time. First, it holds that

RT ~L ′ = IRT ~ω ′

If we apply R to the above, we obtain

R
(
IRT ~ω ′

)
= ~L ′

Now, recall that Euler’s equations have given us RT ~ω ′, that I is known because
it is the body-frame representation and is thus given by the principal moments,
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that ~L ′ is a constant set by the initial conditions, and also that rotation matrices
only have three degrees of freedom. Thus, we have a set of three linear equations
for the three degrees of freedom of R at any instant of time t. We can thus
obtain R(t), which completely defines the orientation of the body relative to
the space frame as a function of time. Because a rigid body is fully specified
by its three principal moments and the orientation of its principal axes, it holds
that R(t), along with the principal moments, fully determines the rigid body in
the space frame at any time.
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Appendix A

Mathematical Appendix

A.3 Vector and Tensor Definitions and Algebraic Identities

Algebraic Identities

• After the listing of the identities, we make the statement:

Note that, if any of the vectors are the gradient vector ~∇, care must be taken in
how the above expressions are written out to ensure ~∇ acts on the appropriate
vectors. Any two quantities that commute in the above should be commuted
as necessary to get reasonable behavior of ~∇. One example is the second line,
where ~b may need to be moved to the left of ~a · ~c if ~b = ~∇.

The second sentence is not quite right because in some cases it may not be possible to write
the correct form in pure vector notation. Replace the above with

Note that, if any of the vectors are the gradient vector ~∇, care must be taken in
how the above expressions are written out to ensure ~∇ acts on the appropriate
vectors. Any two quantities that commute in the above should be commuted as
necessary to get reasonable behavior of ~∇. But in some cases, even that may
not be sufficient and you will have to keep track of which vector should be acted
on by ~∇. A good example is the second line when ~b = ~∇. In the simple case of
~a being constant, one simply needs to move the ~b in the first term:

~a×
(
~∇× ~c

)
= ~∇ (~a · ~c)−

(
~a · ~∇

)
~c

But if ~a depends on position and does not give zero when acted on by ~∇, then
the above must be read with care. One has to somehow remember that ~∇ should
not be allowed to act on ~a since it does not act on ~a in the original expression.
Since the above expression does not correctly convey that meaning, it is better
to abandon the vector notation. The completely unambiguous way to write it,
using index notation, is[

~a× (~∇× ~c)
]
i
=
∑
j

aj∇icj −
∑
j

aj∇jci

The key point is that in the first term, ~a is in a dot product with ~c, but ~∇ must
be allowed to act on ~c first, and not as ~∇ · ~c.
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A.6 Taylor Expansion

• The expansion given for (1± x)−1 is just wrong. Instead of

1
1± x

= 1∓ x− 2x2 + · · ·

it should be

1
1± x

= 1∓ x− x2 + · · ·

• There are errors in the Taylor expansion of |~R − ~r|n also. The corrected version of the
derivation is

1∣∣∣~R− ~r∣∣∣n =
1(

R2 + r2 − 2 ~R · ~r
)n/2 =

1
R

1(
1− 2

(
R̂ · r̂

)
r
R + r2

R2

)n/2
=

1
R

1

1 + n
2

[
−2
(
R̂ · r̂

)
r
R + r2

R2

]
+ 1

2
n
2
n−2

2

[
−2
(
R̂ · r̂

)
r
R + r2

R2

]2
+ · · ·

=
1
R

1

1 + n
2

[
−2
(
R̂ · r̂

)
r
R + r2

R2

]
+ n(n−2)

8

[
4
(
R̂ · r̂

)2
r2

R2

]
+ · · ·

=
1
R

1

1− n
(
R̂ · r̂

)
r
R + n

2
r2

R2

[
1 + (n− 2)

(
R̂ · r̂

)2
]

+ · · ·

=
1
R

{
1 + n

r

R

(
R̂ · r̂

)
− n

2
r2

R2

[
1 + (n− 2)

(
R̂ · r̂

)2
]
− n2

(
R̂ · r̂

)2 r2

R2
+ · · ·

}
=

1
R

{
1 + n

r

R

(
R̂ · r̂

)
+
n

2
r2

R2

[
−1− [(n− 2)− 2]

(
R̂ · r̂

)2
]

+ · · ·
}

=
1
R

{
1 + n

r

R

(
R̂ · r̂

)
+
n

2
r2

R2

[
−1− (n− 4)

(
R̂ · r̂

)2
]

+ · · ·
}

For the specific case usually under consideration, n = 1, we find

1∣∣∣~R− ~r∣∣∣ =
1
R

{
1 +

r

R

(
R̂ · r̂

)
+

1
2
r2

R2

[
3
(
R̂ · r̂

)2
− 1
]

+ · · ·
}
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Appendix B

Summary of Physical Results
Appendix

B.2 Lagrangian and Hamiltonian Dynamics

Theoretical Mechanics

Liouville’s Theorem

• Along with the change we made to the section in the main text on this, we should eliminate
the statement that an equivalent alternate form is Equation B.65,

∂ρ

∂t
+ ~∇ξ ·

(
~̇ξρ
)

= 0

This we explained was simply the statement of conservation of particles. To obtain Liouville’s
equation from this continuity equation requires use of Hamilton’s equations. The continuity
equation is therefore not physically the same as Liouville’s theorem, the latter has more
physical content because it incorporates Hamilton’s equations.

Action-Angle Variables and Adiabatic Invariance

• This section should be moved prior to the section on the Hamilton-Jacobi equation. Also, we
state here that ψ can be obtained by (Equation B.95)

ψ =
∂

∂I

∫
p(q, I) dq

This is exactly how we said not to obtain ψ in our derivation. Replace the entire section with
the following:

Given a 1-dimensional system whose Hamiltonian is conserved and that un-
dergoes periodic motion, it is possible to define via canonical transformation
action-angle variables (ψ, I). The action variable is given by

I =
1
2π

∮
p dq

In practice, to get the function p(q, E) in order to do the integral, one obtains
from H(p, q) the function p(q,H) and then uses the fact that energy is conserved
for periodic systems to replace H by its constant value E. I will depend on E.
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The canonical transformation, combined with the fact that H is conserved,
allows the Hamiltonian to be rewritten in terms of I. ψ evolves linearly with
time according to

ψ(t) = ω t+ ψ0 with ω ≡ ∂H(I)
∂I

ω is constant in time but may depend on I. ω gives the period of the motion,

T =
2π
ω

ψ advances by 2π when the motion goes through one period. Adiabatic in-
variance says that if the Hamiltonian has slow time dependence via a parameter
α, then the action variable I is to first order independent of changes in H that
are slow compared to the period of the periodic motion. This property can be
used determine features of the evolution of such systems.

B.4 Central Forces and Dynamics of Scattering

The Kepler Problem

• As we did in the text, we made an error in the energy relation; the first step of Equation
B.190 is given as

E =
l2θ
2µ

[
A2 +

(
Gµ2M

l2θ

)2
]

It should be

E =
l2θ
2µ

[
A2 −

(
Gµ2M

l2θ

)2
]

Dynamics of Scattering

• As we did in the text, we gave the incorrect final result for the Rutherford scattering differ-
ential cross section; we gave (Equation B.205)

dσ

dΩ
=
(
k

4E

)2 1
sin2 θ∗

2

The exponent in the denominator is wrong, the result should of course be

dσ

dΩ
=
(
k

4E

)2 1
sin4 θ∗

2
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