Physics 125a - Problem Set 4 - Due Oct 29, 2007

Version 2 - Oct 22, 2007

This problem set focuses entirely on the infinite-dimensional generalization of inner-product spaces, Shankar Section 1.10 and Lecture Notes Section 3.9.
v. 2: Clarifications/hints on Problems 1, 3, and 4 added.

1. Shankar 1.10.2 + extra: Show that

$$
\begin{equation*}
\delta(f(x))=\sum_{i} \frac{\delta\left(x-x_{i}\right)}{\left.\left|\frac{d f}{d x}\right|_{x=x_{i}} \right\rvert\,} \tag{1}
\end{equation*}
$$

where $\left\{x_{i}\right\}$ are the zeros of the function $f(x), f\left(x_{i}\right)=0$. You also should assume $\left.\frac{d f}{d x}\right|_{x=x_{i}} \neq 0$ and is finite for all x_{i} so the above formula is well-defined. Hint: where does $\delta(f(x))$ blow up? Expand $f(x)$ near such points in a Taylor series, keeping the first term, and do a change of integration variable. You do not need to prove the first item below in order to prove the above theorem.
Using the above, show the following:

- $\delta(a x)=\frac{1}{|a|} \delta(x)$
- $\delta\left(x^{2}-a^{2}\right)=\frac{1}{2|a|}[\delta(x-a)+\delta(x+a)]$
(Use Equation 1 to do these even if you are unable to prove Equation 1.)

2. Use a change of integration variable to show that $\delta(\sqrt{x})=0$ and use your result to evaluate $\delta\left(\sqrt{x^{2}-a^{2}}\right)$. (This is not just a matter of applying Equation 1 again because $\left.\frac{d f}{d x}\right|_{x=0}$ is infinite.)
3. Shankar 1.10.3: Use integration by parts over an infinitesimal interval around $x=x^{\prime}$ to show

$$
\frac{d}{d x} \theta\left(x-x^{\prime}\right)=\delta\left(x-x^{\prime}\right) \quad \text { where } \quad \theta\left(x-x^{\prime}\right)= \begin{cases}0 & x<x^{\prime} \\ 1 & x \geq x^{\prime}\end{cases}
$$

4. We have proven the following relations for derivatives of the δ function:

$$
\left[\frac{d}{d x} \delta\left(x-x^{\prime}\right)\right]=\delta\left(x-x^{\prime}\right) \frac{d}{d x^{\prime}} \quad\left[\frac{d}{d x^{\prime}} \delta\left(x-x^{\prime}\right)\right]=-\delta\left(x-x^{\prime}\right) \frac{d}{d x^{\prime}}
$$

Prove these more rigorously by using the Gaussian approximation to the δ function and taking the appropriate limits. Note that you will have to do an integration by parts in order to make sense of the factor $\frac{d}{d x^{\prime}}$ acting to the right.
5. In class, we considered the space of complex functions with complex coefficients on the real line. Our kets $|f\rangle$ were defined via their $\{|x\rangle\}$ basis representation, $\langle x \mid f\rangle=f(x)$. We then showed how they could be rewritten in terms of the $\{|k\rangle\}$ basis by Fourier transforming:

$$
\tilde{f}(k)=\langle k \mid f\rangle=\int_{-\infty}^{\infty} d x\langle k \mid x\rangle\langle x \mid f\rangle=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d x e^{-i k x} f(x)
$$

We defined the inner product $\langle f \mid g\rangle$ explicitly in terms of the $\{|x\rangle\}$ representation:

$$
\langle f \mid g\rangle=\int_{-\infty}^{\infty} d x f^{*}(x) g(x)
$$

Rewrite the inner product formula in terms of the $\{|k\rangle\}$ representation of $|f\rangle$ and $|g\rangle$; i.e., in terms of $\widetilde{f}(k)$ and $\widetilde{g}(k)$. You will need to use completeness and orthonormality.

