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Course Philosophy and Plan

• Experimentalist-oriented research seminar
• Think like a working experimentalist

• What are the interesting problems?
• What are the basic aspects of the theory that provide a framework for understanding 

what is useful to measure?
• What can we go out and measure, and, most importantly, how do we do it?

• Mishmash of interesting topics -- incoherent, but interesting
• Focus on basic understanding and picking out important science points. 

Take a 200-level course for detailed derivations.

• Not a typical course!
• Not problem-set driven
• Not 1-way!  Need lots of discussion!  Like research group seminar
• I’ve picked topics that I personally want to learn more about, and I don’t claim a 

great deal of expertise in them
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Topic Choice

• Focus is on “new physics”

• Three kinds of topics we will cover
• “Nonperturbative” new physics -- manifests itself in new particles, new 

phenomena, etc. that we can go out and search for.
• Dark matter
• Neutrino oscillations

• “Perturbative” new physics -- precision measurements that can show up hints of 
new physics in “old” measurements, many not using conventional techniques
• Electron and neutron electric dipole moments
• Muon g-2
• neutrino magnetic moment
• precision gravity measurements

• Particles in astrophysics
• Not really “new physics”, but trying to understand extremely energetic astrophysical 

phenomena through techniques of particle physics.
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Standard Model Review

• Fundamental 
Matter Fields: 
spin-1/2 fermions
• quarks and charged 

leptons appear to 
be Dirac fields

• massiveness of 
these fields 
and observed
behavior implies 
there are 
right-handed 
and left-handed 
particles and 
antiparticles

• massiveness of neutrinos has been established; but has not been established 
whether they are Dirac or Majorana particles (Majorana: particle is its own 
antiparticle, lives in 2-element Weyl spinor, not 4-element Dirac spinor)
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Standard Model Review

• Fundamental Global (Noether) Symmetries of Fermionic Lagrangian
• U(1) complex phase symmetry: any field can be rotated by a complex phase and 

the Lagrangian is left unchanged
• SU(2) weak isospin symmetry:

• Left-handed fermionic fields appear to live in SU(2) doublets aligned with their 
interactions via the weak force.  Rotations by SU(2) matrices leave the Lagrangian 
unchanged.  These pairings imply that elements of a SU(2) doublet are connected by an 
interaction.
‣ uL and dL are the two components of a 2-element spinor and connected via beta decay:

 n → p + e- + anti-νe is fundamentally dL → uL + eL
- + anti-νeR

‣ Similarly for leptons: µ-L and νµL are a doublet, as seen in muon decay µ-L → νµL + e-
L + anti-νeR

• Right-handed fields are singlets under this rotation -- i.e., uR and dR don’t rotate into 
each other, and thus are not subject to the interaction.

• The distinction between L and R fields is lost in most cases since Dirac mass terms 
connect them (propagating states are mixtures of L and R).  But there may yet be a 
distinction for neutrinos (are there νR?)

• SU(3) strong symmetry
• Quarks are labeled by color (red, green, blue) and form multiplets under SU(3) 

rotations, meaning the different colors are connected by strong interactions.
All leptons are SU(3) singlets.
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Standard Model Review

• Global symmetries are made into local (gauge) symmetries
• i.e., allow the “rotation angle” of these rotations to be position dependent, and 

require that Lagrangian remain invariant
• Requires introduction of new fields with specific transformation properties under 

the symmetries to cancel the terms that appear due to derivatives of the spatial 
dependence of the rotation parameter:
• U(1) x SU(2) give four fields: the γ, the Z0, and the W±.

• SU(3) gives the 8 gluon fields, g
• The fields are all Lorentz 4-vectors and also have nontrivial rotation under U(1), SU(2), 

and SU(3) (except the photon): the vector gauge bosons.
• Their appearance in the Lagrangian makes it clear these are the fields that 

“mediate” interactions, meaning that every time there is a term in the Lagrangian 
that has fields of two different kinds, these additional fields are also there.

• Mass terms not gauge invariant unless introduced via Higgs mechanism
• Introduce scalar Higgs field with potential that makes its expectation value nonzero.
• Higgs couplings to other particles (“Yukawa couplings”) then imply mass when H takes 

on nonzero vev.
• Neutrino sector still unsettled, but neutrino oscillations can be accomodated in 

slightly modified SM
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Standard Model Review

• Origin of mass
• Normal fermionic and gauge boson mass terms do not satisfy gauge symmetries. 

• But they have to be there -- we know all fermions and the Z0 and W± are massive.
• Higgs mechanism allows introduction of gauge-invariant mass terms.

• Introduce scalar Higgs field with potential that makes its expectation value nonzero.
• Introduce terms that include Higgs and other particles: these couple the Higgs to the 

other particles (“Yukawa couplings”).
• These Yukawa couplings are easily made gauge-invariant.
• Expand H above vev: the constant term yields mass terms that are gauge-invariant (due 

to additional gauge properties of H) and the 1st-order terms yield interactions between 
the Higgs and other particles.

• Neutrino sector still unsettled, but neutrino oscillations can be accomodated in 
slightly modified SM; just need to know whether neutrinos are Dirac or Majorana 
measure the “mixing matrix” -- relation between weak-isospin states and freely 
propagating states.
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Review of Spinors

• Non-relativistic spin-1/2 particles described by Pauli spinors (Ph125):

• One can’t write a relativistically covariant Lagrangian using only Pauli 
spinors; Dirac was forced to expand to 4-component (Dirac) spinors:

• He wrote a Lagrangian

with
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March 30, 2007

1 Spinor Basics

A Pauli spinor just consist of coefficients of the up and down states of a spin-1/2 particle:

φ =
(

c↑
c↓

)
(1)

One can’t formulate a relativistically covariant Lagrangian for charged particles using Pauli spinors,
though. So Dirac was led to the assumption of four-component Dirac spinors,

ψ =





c+↑
c+↓
c−↑
c−↓



 (2)

that sit in the Dirac Lagrangian

LDirac = ψ (iγµ∂µ −m) ψ

with

γ0 =
(

1 0
0 −1

)
γi =

(
0 σi

−σi 0

)
ψ = ψ†γ0

where

1 =
(

1 0
0 1

)
0 =

(
0 0
0 0

)

and the σi are the Pauli spin matrices

σ1 =
(

0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ1 =

(
1 0
0 −1

)

The Lagrangian leads to the Dirac equation

(iγµ∂µ −m) ψ = 0

The interpretation of the 4-component spinors is obtained by seeing that the solutions that have
zero in the bottom two components have positive energies and the ones with zero in the top two
components have negative energies. Dirac interpreted the negative-energy solutions as antiparticles.
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Review of Spinors

• The resulting equation of motion is the Dirac equation

• Solutions to Dirac equation include E > 0 and E < 0; E > 0 only has c+ 
components, E < 0 only c- components; interpreted as particles and 
antiparticles.

8

Standard Model and SUSY Equations

Sunil Golwala

March 30, 2007

1 Spinor Basics

A Pauli spinor just consist of coefficients of the up and down states of a spin-1/2 particle:

φ =
(

c↑
c↓

)
(1)

One can’t formulate a relativistically covariant Lagrangian for charged particles using Pauli spinors,
though. So Dirac was led to the assumption of four-component Dirac spinors,

ψ =





c+↑
c+↓
c−↑
c−↓



 (2)

that sit in the Dirac Lagrangian

LDirac = ψ (iγµ∂µ −m) ψ

with

γ0 =
(

1 0
0 −1

)
γi =

(
0 σi

−σi 0

)
ψ = ψ†γ0

where

1 =
(

1 0
0 1

)
0 =

(
0 0
0 0

)

and the σi are the Pauli spin matrices

σ1 =
(

0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)

The Lagrangian leads to the Dirac equation

(iγµ∂µ −m) ψ = 0

The interpretation of the 4-component spinors is obtained by seeing that the solutions that have
zero in the bottom two components have positive energies and the ones with zero in the top two
components have negative energies. Dirac interpreted the negative-energy solutions as antiparticles.

1



Ph135c Lecture 1  Sunil Golwala

Review of Spinors

• From SM point of view, more sensible to work in helicity basis. 
• Gamma matrices are only defined by anticomm relations:

• So pick a different representation:

• Define:

PL and PR clearly project top and bottom components of spinors in this rep, 
so write

9

The gamma matrices really just arise from the anticommutation relation

γµγν + γνγµ = 2gµν

where gµν = diag(1,−1,−1,−1) is the flat-space relativistic metric. One can thus pick different
representations of the gamma matrices that satisfy the same relation. Another representation is

γ0 =
(

0 1
1 0

)
γi =

(
0 −σi

σi 0

)

We define

γ5 = iγ0γ1γ2γ3 =
(

1 0
0 −1

)

We see that, in this basis for the γ matrices, we can define projection operators

PL =
1
2

(
1− γ5

)
=

(
0 0
0 1

)
PR =

1
2

(
1 + γ5

)
=

(
0 0
0 1

)

The meaning of L and R will become obvious later, but clearly, if we write the Dirac spinors as

ψ =
(

φR

φL

)

then PL picks out φL and PR picks out φR. In this basis, and for a free-particle solution with
four-momentum ψ(xµ) = Ψe−ipuxµ , the Dirac equation becomes

(γµpµ −m) Ψ = 0

which can be written as
(

−m p0 + %σ · %p
p0 − %σ · %p −m

) (
ΦR

ΦL

)

or

−mΦR + (p0 + %σ · %p) ΦL = 0
(p0 − %σ · %p) ΦR −mΦL = 0

The key point is that, in this basis, it becomes clear that the mass term mixes the two components
ΦR and ΦL. Moreover, for a massless particle, it is also clear that %σ ·%p = p0 for a pure ΦR state and
%σ · %p = −p0 for a pure ΦL state. For massless particles, it holds that |p0| = |%p|, so these equations
simply state that the projection of the spin onto the momentum direction is either +1 or -1. Thus,
ΦR and ΦL are pure helicity states. Hence the naming R and L. It becomes clear that pure helicity
states are the natural free-particle solutions for massless fermions, and that mass terms just mix
the two states.
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Review of Spinors

• Rewrite Dirac equation in this helicity representation assuming plane-
wave solution                       :
• Dirac equation
• Write in block form using Pauli matrices

• And write out as equations:

• Clearly, mass mixes the top and bottom halves of the Dirac spinor in this basis.
• If particle is massless, no mixing, and                  or  
• Also, for massless particles,               , so these massless states are pure helicity 

states: spin either completely along momentum direction or completely opposite.  
Hence the L and R labeling: they are left and right-handed states.
(c.f. photon)

• So: Dirac fermions naturally split into L and R states, and mass terms 
mix these states.

The gamma matrices really just arise from the anticommutation relation

γµγν + γνγµ = 2gµν

where gµν = diag(1,−1,−1,−1) is the flat-space relativistic metric. One can thus pick different
representations of the gamma matrices that satisfy the same relation. Another representation is

γ0 =
(

0 1
1 0

)
γi =

(
0 −σi

σi 0

)

We define

γ5 = iγ0γ1γ2γ3 =
(

1 0
0 −1

)

We see that, in this basis for the γ matrices, we can define projection operators

PL =
1
2

(
1− γ5

)
=

(
0 0
0 1

)
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1
2

(
1 + γ5

)
=
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0 0
0 1

)
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Standard Model Lagrangian

• Fermion kinetic and mass terms

• massless Dirac fermion kinetic energy term ∂ = γµ∂µ, γµ are Dirac matrices
• masses are from zeroth order term in expansion of Yukawa couplings to Higgs 

about vacuum expectation value (see later slide)
• Not manifestly invariant under SU(2) rotations, but presence of Higgs vev in m fixes it

• assumes neutrinos are Dirac particles (unproven) and massless (wrong)
• f = index over 3 generations

• Global symmetries → Local symmetries
• ∂µ → Dµ = ∂µ + terms include A, W, g fields to cancel the terms that appear when 

we apply local symmetry transformations under U(1), SU(2), SU(3)
• Results in interactions of gauge fields and fermions

11
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Standard Model Lagrangian

• Fermion-EM and fermion-neutral weak gauge boson interaction terms

• Couplings to photon based on particle electric charge, so no neutrinos in EM
• Left-handed projection op PL = 1 - γ5 picks left-handed states
• Z interacts with L and R e, u, and d, though unequally,  because what we see is after 

a rotation away from a pure left-right basis
• start with B and W0, W+/-; L and R pcles interact differently with B (different charges YL 

and YR) and only L pcles interact with W0, W+/- (depending on SU(2) isospin).  
• But then construct linear superposition A of B and W0 so L and R pcles have same 

interaction strength with photon A (QL = QR).  Final interaction strength with Z is thus a 
linear combination of YL , YR and SU(2) isospin.  Since L and R have different SU(2) 
isospin and different YL , YR, we have that L and R don’t interact equally with Z.  

• ν is special: its YL, YR and SU(2) isospin imply R interaction with Z has zero coupling

12
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Standard Model Lagrangian

• Fermion-charged weak gauge boson interaction terms

• Pairings into SU(2) isospinors is clear: u-d pairing, ν-e pairing
• Completely left-handed because the original W+/- that interact only with L 

particles are not modified in any way.
• V matrices are the quark mixing matrices (Cabibbo-Kobayashi-Maskawa, CKM): 

SU(2) interaction is with weak eigenstates, which are not the same as mass eigenstates 
(~ neutrino oscillation).  

• Doesn’t affect mass and neutral interactions because V is unitary and because of pairing 
of quarks into SU(2) isospinors: it’s a clever cancellation mechanism, called the GIM 
mechanism (no flavor-changing neutral currents; predicted the charm quark)

• (SU(2) matrices not explicit in above; they have already been applied 
and the terms split apart)

13
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Standard Model Lagrangian

• Gauge Boson Kinetic Terms

• Remember Fµν from EM?  It gives E2 - B2 in Lagrangian, which gives rise to all the 
derivatives of E and B in Maxwell’s equations.

• These terms are necessary for dynamics in the gauge fields.
• General principle: 

Any term that is not expressly disallowed by symmetry requirements is allowed.
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Higgs Terms

• Mass terms break gauge invariance
• Mass terms for SU(2) gauge bosons break U(1) and SU(2) invariance because they 

add terms under gauge transformation (are not U(1) and SU(2) rotation invariant)
• Mass terms for fermions break SU(2) invariance because they couple L and R

• Add new particle H that couples to everything and provides mass 
coefficients in gauge-invariant manner
• H needs to be complex SU(2) isodoublet (isospin 1/2) to give enough dof to make 

Z0 and W+/- massive
• It has a potential energy V(H) that sets its vacuum expectation value; we expand 

around that vev to get real dof of H.  0th order terms of the Taylor expansion 
provide mass coefficients.

• Include interactions between H and fermions and gauge bosons
• Need Higgs kinetic terms

15
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QCD Lagrangian

• Less and more complicated
• SU(3) gauge invariance requires introduction of 8 fields and more complicated 

SU(3) rotation matrices
• But none of the complications of mass generation: fermion masses generated by 

Higgs, gluons are massless

sum over a, b, c indices are implicit
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9. Quantum chromodynamics 1

9. QUANTUM CHROMODYNAMICS

9.1. The QCD Lagrangian

Revised September 2003 by I. Hinchliffe (LBNL).

Quantum Chromodynamics (QCD), the gauge field theory which describes the
strong interactions of colored quarks and gluons, is one of the components of the
SU(3)×SU(2)×U(1) Standard Model. A quark of specific flavor (such as a charm quark)
comes in 3 colors; gluons come in eight colors; hadrons are color-singlet combinations of
quarks, anti-quarks, and gluons. The Lagrangian describing the interactions of quarks
and gluons is (up to gauge-fixing terms)

LQCD = −1
4
F

(a)
µν F (a)µν + i

∑

q

ψi
q γµ (Dµ)ij ψj

q

−
∑

q

mq ψi
q ψqi , (9.1)

F
(a)
µν = ∂µ Aa

ν − ∂ν Aa
µ − gs fabc Ab

µ Ac
ν , (9.2)

(Dµ)ij = δij ∂µ + igs

∑

a

λa
i,j

2
Aa

µ , (9.3)

where gs is the QCD coupling constant, and the fabc are the structure constants of the
SU(3) algebra (the λ matrices and values for fabc can be found in “SU(3) Isoscalar Factors
and Representation Matrices,” Sec. 36 of this Review). The ψi

q(x) are the 4-component
Dirac spinors associated with each quark field of (3) color i and flavor q, and the Aa

µ(x)
are the (8) Yang-Mills (gluon) fields. A complete list of the Feynman rules which derive
from this Lagrangian, together with some useful color-algebra identities, can be found in
Ref. 1.

The principle of “asymptotic freedom” determines that the renormalized QCD coupling
is small only at high energies, and it is only in this domain that high-precision tests—
similar to those in QED—can be performed using perturbation theory. Nonetheless, there
has been in recent years much progress in understanding and quantifying the predictions
of QCD in the nonperturbative domain, for example, in soft hadronic processes and
on the lattice [2]. This short review will concentrate on QCD at short distances (large
momentum transfers), where perturbation theory is the standard tool. It will discuss the
processes that are used to determine the coupling constant of QCD. Other recent reviews
of the coupling constant measurements may be consulted for a different perspective [3–5].

CITATION: S. Eidelman et al., Physics Letters B592, 1 (2004)

available on the PDG WWW pages (URL: http://pdg.lbl.gov/) June 16, 2004 11:13

SU(3) matrices
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Problems with the Standard Model

• Too many free parameters
• There are 13 free masses in the SM without Higgs.  Higgs mechanism makes these 

mass terms gauge-invariant, but still leaves 13 undetermined Yukawa couplings and 
a couple more parameters to describe the Higgs potential.

• There are three different gauge boson coupling strengths to the matter fields (EM, 
weak, and strong) that do not unify at any energy scale if one only assumes SM.

• Quark and lepton mixing matrices, including complex phases (CP violation)

17
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Problems with the Standard Model
• Hierarchy problem: why are all the masses not MPl?

• All particles are subject to radiative corrections to their masses (virtual loop 
diagrams) with loops running up to some cutoff scale Λ (= MPl?)

• For fermions, these diagrams are divergent 
as log(Λ/m), where Λ is the cutoff energy 
for these loops; a single renormalization 
removes such divergences to all orders.

• For gauge bosons, masslessness is protected by gauge invariance (γ and g), and 
massive bosons are kept light by single renorm of log corrections (I think).

• Scalars have quadratic divergences that
must be renormalized separately at each
order of expansion.

• If the Higgs goes up to MPl, then Yukawa 
couplings pull everyone else up.
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CHAPTER 1. DARK MATTER AND WIMPS 62

Figure 1.15: Electron self-energy correction (from [51]).

Figure 1.16: Higgs self-energy correction (from [51]).

Now, consider renormalization of the Higgs mass. The Higgs boson is subject to corrections
of the form shown in Figure 1.16. The contribution is

π2φ(p = 0) ∼
∫ Λ
d4kiλe

i(k +m)

k2 −m2 iλe
i(k +m)

k2 −m2 (1.112)

∼ −λ2e
∫ Λ
d4k

k2 +m2

(k2 −m2)2

∼ −λ2e

[
Λ2

m2
+ 2m2 log

Λ

m

]

where unimportant constant prefactors have not been carefully followed. The term with k in the
numerator vanishes again. This time, there is a term that is quadratically dependent on Λ. This
is problematic; even if this term is renormalized away, the next order diagram contributes (Λ/m)4,
which requires a second renormalization, and so on. A single renormalization does not suffice. This
is unsatisfactory. If the existence of a true, physical cutoff is assumed, such that Λ is finite, then
the Higgs mass stays finite. However, in the Standard Model, the only plausible cutoff scales are
MGUT or MPl; corrections of these sizes would drive the Higgs mass up to the corresponding scale!
This problem goes under the rubric “quadratic divergences” for obvious reasons. Note that it is
the scalar nature of the Higgs that is the source of the problem; as noted above, fermions do not
suffer from quadratic divergences. It can be shown that gauge bosons are also safe.

Supersymmetry (SUSY) aims to solve the above problem by introducing, for each Standard
Model particle, a partner of the opposite fermionic or bosonic nature. Scalars and spin-1 particles
acquire spin-1/2 partners, spin-1/2 particles acquire spin-1 partners. Including gravity, spin-2
particles acquire spin-3/2 partners. In unbroken supersymmetry, the couplings of a given particle
and its “superpartner” to other particles are the same. That is, the Lagrangian is forced to be
invariant under transformations that exchange particles and superparticles. The result is that
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New Physics?

• So, we hope there is some physics beyond the Standard Model that 
explains these problems
• Really need a fix the hierarchy problem
• Would be awfully nice to unify all the gauge couplings
• Would be a bonus to explain all the masses 

• How?
• Direct searches for new particles
• New phenomena: e.g., neutrino oscillations
• Precision measurements of well-known phenomena that may have corrections 

from new particles in higher-order diagrams
• Both can be pursued at accelerators and in non-accelerator experiments
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Topic Choice

• Three kinds of topics we will cover
• “Nonperturbative” new physics -- manifests itself in new particles, new 

phenomena, etc. that we can go out and search for.
• Dark matter
• Neutrino oscillations

• “Perturbative” new physics -- precision measurements that can show up hints of 
new physics in “old” measurements, many not using conventional techniques
• Electron and neutron electric dipole moments
• Muon g-2
• neutrino magnetic moment
• precision gravity measurements

• Particles in astrophysics
• Not really “new physics”, but trying to understand extremely energetic astrophysical 

phenomena through techniques of particle physics.

20
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Dark Matter

• Surprising inventory of the universe:
• 4% baryons
• 23% non-baryonic dark matter
• 73% “dark energy”

• Zoo of particle physics
candidates
• neutrinos, neutralinos,

axions, axinos, 
gravitinos, primordial 
black holes, Q-balls,
strange quark nuggets, 
mirror particles, 
CHArged Massive 
Particles (CHAMPs), 
self interacting dark 
matter, D-matter, 
cryptons, superweakly 
interacting dark matter, 
brane world dark matter, heavy fourth generation neutrinos...

21
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Dark Matter

• “Favored” Particle Dark Matter Candidates
• new massive electroweak-scale particle (Weakly Interacting Massive Particle, 

WIMPs), e.g., neutralino from supersymmetry
• like a massive neutrino with M ~ 100 GeV, produced thermally in the early universe

• massive sterile neutrino produced from oscillations of non-sterile neutrinos
• few keV mass, in some sense predicted by seesaw mechanism

• axion
• created to solve strong-CP-violation problem (need to set coefficient of CP-violating 

strong-force Lagrangian terms to zero, make the parameter dynamical)
• axino

• if you have an axion and supersymmetry, then you have a spin-1/2 axino, mass ~ 
neutralino

• gravitino
• spin-3/2 light, very weakly interacting prospect

• extra-dimensional particles
• weak interactions because they live in the higher-dimensional bulk
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Detecting Dark Matter

• “Favored” Particle Dark Matter Candidates
• WIMP

• Rare-event neutralino-scattering experiments
• key signatures: scattering on nuclei, annual and diurnal modulation due to Earth’s 

motion through galactic halo
• massive sterile neutrinos

• β decay spectrum endpoint shape
• searches in decays of massive particles produced in collider/fixed-target experiments

• ββ-0ν decay
• astrophysical evidence: X-rays, pulsar kicks, large-scale-structure power spectrum

• axion
• Primakoff conversion (a + B → γ) in cavity with detection by low-noise RF receiver or 

Rydberg atom
• astrophysical searches for axion decay or conversion in high-B regions

• axino, gravitino, extra-dim particles
• Largely undetectable?
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Neutrino Oscillations

• Basic idea:
• neutrinos are produced in weak-interaction eigenstates -- diagonal under weak 

interaction
• neutrinos propagate in mass eigenstates -- those states that are diagonal under 

interactionless neutrino Hamiltonian
• If there is a neutrino mass term, it’s possible for these two sets of eigenstates to 

be different

• Oscillations
• Just like Ph12a beat phenomenon: if you start a coupled oscillator system in a state 

that is not an eigenstate of the “propagation” Hamiltonian, energy sloshes between 
the “propagating modes”

• Initial weak eigenstate gets turned into a state that is not a weak eigenstate: 
probability of detecting a different neutrino species is nonzero
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Neutrino Oscillations

• Well established in the 
last decade

• Simple scheme:
• two ∆m2 dominate
• 1-2 leads primarily to 
νe-νµ oscillation
• initially detected in solar 
νe disappearance

• now confirmed by KamLAND 
reactor anti-νe disappearance

• Requires “matter-enhancement” 
of oscillation in Sun

• 2-3 mainly gives νµ-ντ oscillation
• atmospheric (cosmic ray shower) νµ disappearance

• K2K, MINOS: create νµ at accelerator, they disappear on the way to detector
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Neutrino Oscillations

• PDG summary 
of results

• But:
• what about LSND?  

Suggests fourth 
(or more) sterile
generation with oscillations
with νµ

• Being tested by MiniBoone
• Other reasons

to believe
in sterile 
neutrinos

• Next: 
• measure

1-3 mixing to
close the loop

• CP violation in neutrino mixing?
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Double-Beta Decay

• Neutrino oscillations lead us to ask: how to implement neutrino mass 
• Standard model with massless ν has no νR and anti-νL, only νL and anti-νR.
• But now we need to introduce neutrino mass
• Dirac mass term: does not allow mixing of νR and νL:
• Majorana mass term does allow mixing:

• How do we know which?  ββ-0ν decay
• Majorana term allows the following process: simultaneous beta decay of two neutrons in a 

nucleus
• Only possible with Majorana mass term
• Detectable as very sharp peak due to

all decay energy going into two e- 
(as opposed to continuous β-decay-like 
spectrum of ββ-2ν decay)

• Major efforts going into this area
• Majorana: Ge high-resolution spectrometers
• EXO: Liquid xenon
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13. Neutrino mixing 15

the process (A, Z) → (A, Z + 2) + 2e−, in which a nucleus containing A nucleons, Z of
which are protons, decays to a nucleus containing Z +2 protons by emitting two electrons.
This process manifestly violates L conservation, so we expect it to be suppressed.
However, if (A, Z) is a nucleus that is stable against single β (and α and γ) decay, then it
can decay only via the process we are seeking, and the L-conserving two-neutrino process
(A, Z) → (A, Z + 2) + 2e− + 2νe. The latter decay mode is suppressed by the small phase
space associated with the four light particles in the final state, so we have a chance to
observe the neutrinoless mode, (A, Z) → (A, Z + 2) + 2e−.

Figure 13.4: The dominant mechanism for 0νββ. The diagram does not exist
unless νi = νi.

While 0νββ can in principle receive contributions from a variety of mechanisms
(R-parity-violating supersymmetric couplings, for example), it is easy to show explicitly
that the observation of 0νββ at any non-vanishing rate would imply that nature contains
at least one Majorana neutrino mass term [38]. Now, quarks and charged leptons
cannot have Majorana mass terms, because such terms mix fermion and antifermion, and
q ↔ q or % ↔ % would not conserve electric charge. Thus, the discovery of 0νββ would
demonstrate that the physics of neutrino masses is unlike that of the masses of all other
fermions.

The dominant mechanism for 0νββ is expected to be the one depicted in Fig. 13.4.
There, a pair of virtual W bosons are emitted by the parent nucleus, and then these
W bosons exchange one or another of the light neutrino mass eigenstates νi to produce
the outgoing electrons. The 0νββ amplitude is then a sum over the contributions of the
different νi. It is assumed that the interactions at the two leptonic W vertices are those
of the SM.

Since the exchanged νi is created together with an e−, the left-handed SM current that
creates it gives it the helicity we associate, in common parlance, with an “anti-neutrino.”
That is, the νi is almost totally right-handed, but has a small left-handed-helicity
component, whose amplitude is of order mi/E, where E is the νi energy. At the vertex
where this νi is absorbed, the absorbing left-handed SM current can absorb only its
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right-handed neutrino field νR, but only the left-handed field νL that couples to the W
and Z bosons. To accommodate the ν mass in the same manner as quark masses are
accommodated, we add νR to the Model. Then we may construct the “Dirac mass term”

LD = −mD νL νR + h.c. , (13.32)

in which mD is a constant. This term, which mimics the mass terms of quarks and
charged leptons, conserves the lepton number L that distinguishes neutrinos and
negatively-charged leptons on the one hand from anti-neutrinos and positively-charged
leptons on the other. Since everything else in the SM also conserves L, we then have an
L-conserving world. In such a world, each neutrino mass eigenstate νi differs from its
antiparticle νi, the difference being that L(νi) = −L(νi). When νi "= νi, we refer to the
νi − νi complex as a “Dirac neutrino.”

Once νR has been added to our description of neutrinos, a “Majorana mass term,”

LM = −mR νc
R νR + h.c. , (13.33)

can be constructed out of νR and its charge conjugate, νc
R. In this term, mR is another

constant. Since both νR and νc
R absorb ν and create ν, LM mixes ν and ν. Thus, a

Majorana mass term does not conserve L. There is then no conserved lepton number to
distinguish a neutrino mass eigenstate νi from its antiparticle. Hence, when Majorana
mass terms are present, νi = νi. That is, for a given helicity h, νi(h) = νi(h). We then
refer to νi as a “Majorana neutrino.”

Suppose the right-handed neutrinos required by Dirac mass terms have been added
to the SM. If we insist that this extended SM conserve L, then, of course, Majorana
mass terms are forbidden. However, if we do not impose L conservation, but require
only the general principles of gauge invariance and renormalizability, then Majorana mass
terms like that of Eq. (13.33) are expected to be present. As a result, L is violated, and
neutrinos are Majorana particles [36].

In the see-saw mechanism [37], which is the most popular explanation of why neutrinos
— although massive — are nevertheless so light, both Dirac and Majorana mass terms
are present. Hence, the neutrinos are Majorana particles. However, while half of them
are the familiar light neutrinos, the other half are extremely heavy Majorana particles
referred to as the Ni, with masses possibly as large as the GUT scale. The Ni may have
played a crucial role in baryogenesis in the early universe, as we shall discuss in Sec. V.

How can the theoretical expectation that L is violated and neutrinos are Majorana
particles be confirmed experimentally? The interactions of neutrinos are well described by
the SM, and the SM interactions conserve L. If we may neglect any non-SM L-violating
interactions, then the only sources of L violation are the neutrino Majorana mass terms.
This means that all L-violating effects disappear in the limit of vanishing neutrino masses.
Thus, any experimental approach to confirming the violation of L, and the consequent
Majorana character of neutrinos, must be able to see an L violation that is going to be
very small because of the smallness of the neutrino masses that drive it. One approach
that shows great promise is the search for neutrinoless double beta decay (0νββ). This is
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Electric Dipole Moments

• EDMs in point particles are inherently P and T violating
• EDM is 
• By this defn, EDM is clearly odd under P (moment flips direction) and even under 

T (no change in x or charge density)
• But our theory of fundamental particles only assigns particles mass, charge, and 

spin; spin is the only vector, so EDM ∝ spin

• But spin is T-odd and P-even.

• Holds for composite particles too (neutrons, protons, deuterons, etc.): 
intraparticle interactions would have to violate P and T to create an 
EDM if constituent particles do not have them.

• P invariance well-known in weak interaction, but T-breaking → CP-
violation, which is existent but very small in SM

• Moreover, need to get the CP violation into the particle-γ interaction, 
so requires high-order diagrams (see next page)
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E.g., Electron Electric Dipole Moments

• Communicating CP violation from quark sector
• Need to go to three-loop diagrams
• Even these fail when summed;

need gluon corrections to quarks
to get nonzero effect

• CP violation in lepton sector
• Possible if CP violation in

neutrino sector
• But 1-loop and 2-loop diagrams

all cancel: need 3-loop diagrams
• But new physics (new particles)

can change this.  Generically:
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g-2

• Gyromagnetic ratio: µ = g (q/2m) S with
• S = angular momentum
• q = charge
• m = mass
• g = gyromagnetic ratio

• g = 1 for a classical charged sphere

• g = 2 for spin-1/2 particles to zeroth order
• Corrections in particle-γ interaction push g away from 2.  SM first-

order correction is just QED-based.

• Clearly, higher-order corrections, esp.
those involving new particles, can also
affect g-2.

• Muon g-2 is more sensitive to new physics
because there is more energy sloshing around 
for creation of virtual particles in the vertex
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Extra Dimensions and Precision Gravity

• Solving the hierarchy problem with extra dimensions:
• extra dimensions of µm-to-mm size may explain weakness of gravity: gravity lives 

in all dimensions, other particles and forces live only in 3 spatial dimensions
• brings Planck scale down to ~TeV scale: gravity is weak not because the coupling 

constant is weak, but because there is so much volume for its flux to live in
• Trades hierarchy problem for problem of deciding on size of extra dimensions

• And various and sundry additional theories

• Experimentally:
• can test by making high-precision 

measurements of gravity on 
µm-to-mm scales

• Parameterize corrections as

• Some old: torsion balances
• Some new: nanoresonators, etc.

31
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Figure 1: Experimental limits on α and λ
of Eq. (8), which parametrize deviations from
Newton’s law. From ref. [33]. See full-color
version on color pages at end of book.

For gravity with δ extra dimensions, in the case of toroidal

compactifications, the parameter α is given by α = 8 δ/3 and

λ is the Compton wavelength of the first graviton Kaluza-

Klein mode, equal to the radius R. From the results shown in

fig. 1, one finds R < 130 (160) µm at 95% CL for δ = 2 (1)

which, using Eq. (3), becomes MD > 1.9 TeV for δ = 2.

This bound is weaker than the astrophysical bounds discussed

in sect. II.6, which actually exclude the occurence of any

visible signal in planned tests of Newton’s law. However, in

the context of higher-dimensional theories, other particles like

light gauge bosons, moduli or radions could mediate detectable

modifications of Newton’s law, without running up against the

astrophysical limits.

II.6 Astrophysical Bounds
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If MD is around the TeV scale, transplanckian collisions

would regularly occur in the interaction of high-energy cosmic

rays with the earth’s atmosphere and could be observed in

present and future cosmic ray experiments [28,29].

II.4 Graviscalars

After compactification, the D-dimensional graviton contains

KK towers of spin-2 gravitational states (as discussed above),

of spin-1 “graviphoton” states, and of spin-0 “graviscalar”

states. In most processes, the graviphotons and graviscalars are

much less important than their spin-2 counterparts. A single

graviscalar tower is coupled to SM fields through the trace of

the energy momentum tensor. The resulting coupling is however

very weak for SM particles with small masses.

Perhaps the most accessible probe of the graviscalars would

be through their allowed mixing with the Higgs boson [30] in the

induced curvature-Higgs term of the 4-dimensional action. This

can be recast as a contribution to the decay width of the SM

Higgs boson into an invisible channel. Although the invisible

branching fraction is a free parameter of the theory, it is more

likely to be important when the SM Higgs boson width is par-

ticularly narrow (mH ! 140 GeV). The collider phenomenology

of invisibly decaying Higgs bosons investigated in the literature

is applicable here (see ref. [31] and references therein).

II.5 Tests of the Gravitational Force Law

The theoretical developments in gravity with large extra

dimensions have further stimulated interest in experiments

looking for possible deviations from the gravitational inverse-

square law (for a review, see ref. [32]) . Such deviations are

usually parametrized by a modified newtonian potential of the

form

V (r) = −GN
m1m2

r
[1 + α exp (−r/λ)] (8)

The experimental limits on the parameters α and λ are sum-

marized in fig. 1, taken from ref. [33].
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TeV Gamma-Ray Astronomy

• Sources
• Very energetic “astrophysical” photon sources

• pulsar nebulae and supernova remnants: 
synchrotron photons (high B fields)
+ inverse compton scattering off very 
energetic electrons (shock accel?)

• active galactic nuclei: inverse compton 
scattering from relativistic particles 
in AGN jets

• diffuse production: p + X → π + Y → γγ

• Dark matter annihilation to γγ and γZ
• Primordial black hole evaporation

• Techniques
• Air Cerenkov
• Ground air shower
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Neutrino Astronomy

• Similar sources, esp. π → µ + νµ

• Low interaction cross-section, so more penetrating view of sources

• Detection by charged-current scattering νµ + X → µ + Y and track the 
final-state µ via the particle shower it creates
• Ice optical Cerenkov (AMANDA, IceCube)
• Water optical Cerenkov (ANTARES)
• Ice radio Cerenkov (ANITA, RICE)
• Radio Cerenkov in the moon
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Energy Resolution & Calibration of the 
ANITA Detector

 TeV Particle Astrophysics II
    28-31 August 2006 

D. Goldstein, UC Irvine
for the ANITA Collaboration

Why ANITA?

!

! Enormous detector volume
! Radio transparent
! ~Background-free environment

" Trigger threshold limited by
   thermal noise.
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Ultra-High-Energy Cosmic Rays

• Cosmic rays (protons 
and nuclei) extend 
up to very high 
energy

• There should be a
cutoff due to 
interaction with CMB
CIRB

• Some events have been
seen above the cutoff (2, 3.2 x 1011 GeV)

• Maybe can use for astronomy?
• At most energies, cosmic rays have gyroradius comparable to galaxy and so lose 

memory of source direction
• But protons at such high energies have very gyroradius >> galaxy: may point back 

to sources, can identify
• Some hints of anisotropy in existing measurements

34

16 24. Cosmic rays

!!!!!!! !!!!!!!!!!
!!
!!!!!!!!!!!!!!

!!

!

!
!

!
!!!!

!!
!!!

!!!
!!!

!!

! ! !
!

!

!!!!!!
!!!!!!

!
!

!

!
!!
!

!
!!!!!!

!!!

!
!

!
!!

!

!

"""""""""""""""""""

# # # # # # #
#

#
#

#

$$$$$$$$$$$$$$$$$$$$$$$$$$$$

%
%%%

%
%%%

%%
%%

%%
%%%%%

%%

%%
%

!�!�!�!�
!�!�

!�
!�

!�
!�
!�!�!�!�!�!�!�!�

!�
!�

!�
!�
!�

!�
!�

!�!�!�
!�

!�!�
!�!�

!�
!�

!�
!�!�

"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�"�
"�"�"�"�"�"�

&&

#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�

#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�#�

$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�$�
$�
$�

$�$�$�$�

'''''''''''''''''''''''''''''''''''''''
'
''

! ! ! !
! !
! !
! !
! ! !

! !
!
!
!

! ! ! ! ! ! !
! !
! ! !

!
!
! !
! !

! "#"$"
! "%&'()*+)%,*

! "%&'()-)%,*

! ".#/0
12"34"

" 4"$"567"
%�874/
# 1"$9/56"$
$ /"$5:(;
% <=>?@)/>&
ABC&DBE)FBD%
ABC&DBE)FBD%)<&
ABC&DBE)FBD%);)
A/#0"

!�AG0&@57
!�AG0&@577

!�AG0&@H67"
! I"$4"8/)J&H,)K#$9/:L
! I"$4"8/)J&H,)$71M22L
I"$4"8/)JEH,L

' I"$4"8/)J''L
"�6$.
6NO)3(DG%PDB

& $.#"0
#�:GQ&N)"$&
#�:GQ&N)"$& 5777
$�:P'%B5*R
MB%PN@%

SGD&TNU 9"4//
0.39V1
$VIV2
#DGW(D(C

<
=P
X
 d
'
Hd

E
)!
"E
*
OR
))
Y,

(
*
)@
(
-
)@
D(
-
)#
&
Z
-
OR
[

-+\ -+R -+] -+^ -+_ -+` -+-+ -+--

-+a

-+\

-+*

-+

-

/'&DW>)E)))Y#&Z[

ANKLE

KNEE

Figure 24.9: The all-particle spectrum: for references see [65]. Figure used by
permission of author. See full-color version on color pages at end of book.

Some types of expanding supernova remnants, for example, are estimated not to be able
to accelerate particles above energies in the range of 1015 eV total energy per particle.
Effects of propagation and confinement in the galaxy [69] also need to be considered.

It was previously thought that the most likely explanation for the dip in the spectrum
near 3 × 1018 eV called the ankle is a higher energy population of particles overtaking a
lower energy population, for example an extragalactic flux beginning to dominate over
the galactic flux. The situation now seems more complicated because of better evidence
for the existence of a break in the spectrum near 5 × 1017 eV called the second knee [70],
just below the ankle structure. There are clear predictions of a dip structure in the
region of the observed ankle produced by e+/e− energy losses of extragalactic protons on
the 2.7 K cosmic microwave radiation (CMB) [71]. This dip structure has been claimed
to be a more robust signature of both the protonic and extragalactic nature of the
highest energy cosmic rays than the GZK cutoff (see below) itself. If this interpretation
is correct, then the most likely explanation of the second knee would be the termination
of the galactic cosmic ray flux. Composition changes across this energy region would be
important correlative evidence for this view.

If the cosmic ray flux above the second knee is cosmological in origin, then there should
be a rapid change in the spectral index (called the GZK cutoff) around 5 × 1019 eV,
resulting from the onset of inelastic interactions with the (CMB) [72,73]. While several
experiments have reported events that have been assigned energies above 1020 eV [74–77],
more recent experiments such as HiRes [78] have failed to confirm this; results are
consistent with the expected cutoff. An implication of a continued spectrum would be
that some sources of the highest energy particles must be relatively nearby. For example,
the attenuation length for protons at 2 ·1020 eV is 30 Mpc [73]. Both cosmic accelerators
(bottom up) and massive cosmological relics (top down ) have been suggested [74–77].

Figure 24.10 gives an expanded view of the high energy end of the spectrum, showing
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Ultra-High-Energy Cosmic Rays

• Pierre Auger Observatory
• 1600 surface stations on 1.5 km spacing

• detect charge particle air shower
• provides good direction measurement

• 4 N2 fluorescence detectors
• shower excited fluorescence by N2 molecules

in atmosphere
• provides good energy measurement
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