

Matt Ferry Ph 135C 4/24/07

Fun Facts

- ◆Franz Zwicky at Caltech first to "discover" dark matter in 1933.
- ◆No more evidence for almost 40 years.
- → Most powerful weapon in "Quake 4" is the Dark Matter Gun.
- ◆In Futurama they use dark matter fuel, where "one pound is 10,000 pounds."

Fun Facts

DARK MATTER

Most of the universe can't even be bothered to interact with you.

Current Picture

ΛCDM model

ACDM Model

 $+\Lambda = cosmological constant$

$$G_{ab} + \Lambda g_{ab} = \frac{8\pi G}{c^4} T_{ab}$$

◆CDM = cold dark matter (assumed non-baryonic)

A word about A

 $\bigstar \Lambda$ constitutes an energy density from the Friedmann Equation:

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3c^2}\epsilon(t) + \frac{\Lambda}{3}$$

(Assuming no curvature)

Definitions

- $\phi_C = Critical Density$
- $\Phi \Omega_{\rm X} \equiv \rho_{\rm X}/\rho_{\rm C}$
- $\Phi\Omega$ = 1 => flat universe, what ours looks like.

Why DM?

♦Evidence from...

♦Galaxies

→Galaxy clusters

◆Cosmology

Spiral Galaxies

- **♦**Rotation curve:
 - **♦**Virial Theorem:

$$K = -\frac{1}{2}U$$

$$\frac{1}{2}\frac{GM(r)m}{r} = \frac{1}{2}m(v(r))^2$$

$$v(r) = \sqrt{rac{GM(r)}{r}}$$

Spiral Galaxies

♦Luminous Matter ~ follows:

$$I = I_0 e^{-r/R_D}$$

$$M(r) = 2\pi\sigma_0 R_D^2 \left(1 - e^{-r/R_D} - \frac{r}{R_D} e^{-r/R_D} \right)$$

◆Asymptotes to constant value

Spiral Galaxies

♦ Observations:

◆ Residual fits

$$ho \propto rac{1}{a^2 + r^2}$$

- igstar Assuming hydrostatic equilibrium, $\frac{dP}{dr} = -\rho g$
- ◆And cluster is isothermal,

$$P = nkT = \frac{\rho kT}{\mu m_p}$$

◆Can derive relation between temp, mass, r:

$$rac{d \ln
ho}{d \ln r} + rac{d \ln T}{d \ln r} = -rac{r}{T} \left(rac{\mu m_p}{k}
ight) g(r)$$

♦Simulation of dynamics:

- ◆Also with Sunyaev-Zel'dovich Effect.
 - **◆**Inverse Compton scattering
 - **♦**Sensitive to baryons
 - ◆Spectral distortion:

$$rac{\Delta T_{RJ}}{T} = -2rac{k_B\sigma_T}{m_ec^2}\int dl n_e(l)T(l)$$

◆Line of sight integral of pressure

- **♦SZ Effect**
 - ◆Compute baryon fraction by comparing SZ to X-ray, virial mass, or gravitational lensing mass.
 - ◆Baryon fraction is around 0.12, comparing with X-ray.

→ Bullet Cluster:

A DIRECT EMPIRICAL PROOF OF THE EXISTENCE OF DARK MATTER.

Douglas Clowe¹, Maruša Bradač², Anthony H. Gonzalez³, Maxim Markevitch^{4,5}, Scott W. Randall⁴, Christine Jones⁴, and Dennis Zaritsky¹

ApJ Letters in press

- Weak lensing analysis provides matter contours, Xray baryonic.
- → DM:baryonic ~ 7:1.
- Constrain selfinteracting cross section: σ/m<1 cm² g⁻¹

- **♦**Good evidence from:
 - **→**Big Bang Nucleosynthesis
 - **◆**Cosmic Microwave Background
 - **♦**Gravitational Lensing

Big Bang Nucleosynthesis

- → Following Maxwell-Boltzmann distribution of protons and neutrons, can compute relative ratio.
- Using nuclear reaction rates, can compute relative abundances of light elements.
- ◆ Calculate rate for deuterium synthesis, and higher-mass elements up to Be.

Big Bang Nucleosynthesis

- ◆ Abundances of light elements known from theory.
- ◆ Measure ratio of light element(s) to H.

- **◆**CMB photons from surface of last scattering.
- ◆Density fluctuations left imprint on CMB, creating anisotropies.
- igspace Sensitive to $\Omega_{\rm B}$, not just $\Omega_{\rm M}$.

- ◆Compute autocorrelation function of temperature anisotropies.
- First peak highly sensitive to Ω.
- ♦ Other peaks sensitive to baryon fraction.

♦Temperature autocorrelation function:

$$\frac{\delta T(\hat{x})}{T} = \sum_{l=2}^{\infty} \sum_{m=-l}^{l} a_{lm} Y_{lm}(\theta, \phi)$$

$$C(heta) = \left\langle rac{\delta T(\hat{x}_1)}{T} rac{\delta T(\hat{x}_2)}{T}
ight
angle$$

$$C(\theta) = \frac{1}{4\pi} \sum_{l=2}^{\infty} (2l+1)C_l P_l(\hat{x}_1 \cdot \hat{x}_2)$$

- Left of peak from dark matter.
- Right of peak photons and baryons
 (acoustic
 oscillations).
- Peak is from maximal compression of photon-baryon fluid.
- ◆ Peak sensitive to curvature of universe (should be ~ 1 degree).

Gravitational Lensing

- → Background light sheared by foreground matter distribution.
- → Direct probe of dark matter.

Gravitational Lensing

◆ Can combine with other data (such as optical, X-ray, etc) to infer dark matter.

Results from Cosmology

- ◆Different methods are sensitive in different ways.
- ◆Combine measurements to break degeneracy of cosmological parameters.
- lacktriangle Achieve $\Omega_{\rm B} \approx 0.044$, $\Omega_{\rm M} \approx 0.27$, $\Omega_{\rm tot} \approx 1$.

Results from Cosmology

- ◆ SN, CMB, Clusters provide different constraints on cosmological parameters.
- $\begin{array}{l} \bigstar \text{ Combining} \\ \text{ information} \\ \text{ strongly implies} \\ \Omega_M \sim 0.3 \end{array}$

What else could it be?

- ◆ Baryonic dark matter?
 - ◆ MACHOs such as failed stars, black holes, etc.
 - ◆ Could theoretically account for rotation curves.
 - ightharpoonup Fail with $\Omega_{\rm B}$ from BBN, CMB.
 - → Would expect microlensing signal.
- ◆ Neutrinos?
 - ◆ Particle physicists like it since they know they exist.
 - ◆ Too hot, cannot form gravitational wells.

What else could it be?

- → Modified Newtonian Dynamics?
 - ♦ In 1980s, new approach: change gravity.
 - ◆ Approach limit of Newtonian gravity for large accelerations, $a^2/a0 = g$. $a_0 \approx 2 \times 10^{-8} h_{50}^2 (P/P_0)^{-1} cm \ s^{-2}$

$$a_0 \approx 2 \times 10^{-8} h_{50}^2 (P/P_0)^{-1} cm \ s^{-2}$$

- → Worked when there were large uncertainties.
- ◆ Now, need different constant for each cluster.
- **→** Bullet cluster?

Conclusions

- ◆ Dark matter idea around since 1930s.
- **♦** Evidence from various scales:
 - → Galaxies: rotation curves, velocity dispersion
 - → Galaxy clusters: velocity dispersion, Xrays, SZ Effect
 - ★ Cosmology: large scale structure, BBN, CMB, weak lensing
- ◆ Other theories cannot explain everything seen.