Axions:

A Clean Solution to Strong CP and Dark Matter?

History:

- Strong CP problem
 - Naively, the QCD Lagrangian has CP violating terms
 - So why is the neutron EDM so small?
 - Current limits: $\theta_{eff} \leq 10^{-10}$
- Could there be a new symmetry?
 - Peccei-Quinn suggested new U(1) symmetry
 - Assumed symmetry breaking scale to be the electroweak scale

History:

- Weinberg and Wilczek realized PQ solution requires existence of a pseudoscalar
 - Mass, couplings are inversely proportional to symmetry breaking scale
 - Electroweak scale implies $m_{\rm a} \approx 100 \text{ keV}$
 - Coupling would be large enough that the axion would be observable in accelerators
 - Quickly excluded by experiment

Steven Weinberg

Frank Wilczek

Symmetry Breaking

• Consider the Lagrangian:

$$\mathcal{L} = \frac{1}{2} [(\partial \phi)^2 - (\mu^2 - f_a^2)\phi^2] - \frac{\lambda}{4}\phi^4$$

- Choice of vacuum breaks symmetry
- For U(1) symmetry, the potential is minimized when $|\phi|^2 = v$
- Massless boson corresponding to excitations around the circle of minima

History:

- What if PQ symmetry breaking scale (f_a) is much larger than the electroweak scale?
 - "Invisible axion" models

- Cosmological
 abundance increases!
 - $\Omega_{
 m a} \propto f_{
 m a}^{~7/6}$
 - Well-motivated candidate for Cold Dark Matter

Primakoff Effect

 Laboratory searches use the axion-photon coupling:

$$\mathcal{L}_{A\gamma\gamma} = -g_{\gamma} \frac{\alpha}{\pi} \frac{A(x)}{f_A} \vec{E} \cdot \vec{B}$$

 This can lead to the conversion of an axion to a photon in a magnetic field, or vice versa

Looking for "Invisible Axions"

- Astrophysical constraints:
 - Stellar evolution in globular clusters
 - Limits energy loss by axion emission
 - Most accurate limits come from ratio of HB stars

Astrophysical Constraints

 Neutrino flux from Supernova 1987 A observed by Kamiokande, IMB, BNO

- Duration of a few seconds
- Indicates cooling primarily by neutrinos
- Limits axion coupling, mass

Cosmological Constraints

- Astrophysical observations give upper limits on mass, coupling
- Inflation and string models give lower
 limits
 - $\Omega_{\text{CDM}}\approx 0.22$
 - $\Omega_{\rm a} \propto f_{\rm a}^{~7/6}$ (independent of exact mechanism)

•This leaves a range $10^{-6} < m_a < 10^{-3} \text{ eV}$ •Axion with $m_a \approx 10^{-5}$ is a candidate for CDM

How Can Axions be "Cold"?

- Dark matter should be non-relativistic before structure formation
 - For $m_A = 10^{-5} \text{ eV}$ at 2.7 K = 2×10⁻⁴ eV
 - These "thermal" axions would be relativistic
- Also have axions produced at QCD phase transition
 - "Non-thermal" axions are cold and form BE condensate

Summary of Astrophysical Constraints

Laboratory Searches

- Using the Primakoff Effect, several types of experiments have been performed:
 - Microwave Cavity Experiments
 - Axion Helioscopes
 - Polarization Effects
 - Photon Regeneration

Rely on astrophysical sources of axions

Produce axions directly in the lab

Microwave Cavity Experiments

- High-Q cavity placed in large magnetic field
 - Stimulated conversion of axions to microwave photons: $f = E / h \approx m_A / h$
 - For $m_A = 10^{-5} \text{ eV}$ then f = 2.4 GHz
 - Need to be able to tune cavity since m_A unknown

Microwave Cavity Experiments

- Proof of concept: University of Florida and Rochester-Brookhaven-Fermilab (late 80s)
 - Sensitivity several orders of magnitude lower than needed for realistic axion models
- Second generation experiments:
 - Axion Dark Matter Experiment (ADMX)
 - Cosmic Axion Research using Rydberg Atoms in a Resonant Cavity in Kyoto (CARRACK)

ADMX

- Axion signal would show up as excess power above background
 - $E_a = m_a + m_a \beta^2 / 2$
 - For halo axions, $\beta = 10^{-3}$
 - $\Delta f / f \sim 10^{-6}$
- Diurnal, annual modulation
 - $\beta_{\rm rot} \sim 10^{-6}$, $\beta_{\rm rev} \sim 10^{-4}$
- Late infalls could show up as narrow peaks with much higher signal to noise
 - Intrinsic widths ~ 10^{-17}

ADMX

- Ran from 1996 2004
 - Excluded KSVZ axions for 1.86 < m_A < 3.36 μ eV

CARRACK

- Same front end as ADMX, but photon detection done with Rydberg atoms
 - Atoms with single electron with n >> 1
 - Transitions in microwave range: e.g. $E_{100} E_{99} \approx 7 \text{ GHz}$
 - Long lifetimes: $\tau_{100}\approx$ 1 msec
- ⁸⁵Kr optically pumped into $|111 s_{1/2}\rangle$
- Use Stark effect to tune splitting with $|111\ p_{3/2}\,\rangle$ to the cavity frequency
- Selectively ionize excited atoms

Rydberg Atom Detection

Axion Helioscopes

- BNL (1992), Tokyo Axion Helioscope (2002)
- 3rd Generation: CERN Axion Telescope (CAST)
 - Refurbished LHC test magnet

$$\mathsf{B} = 9.0 \ \mathsf{T}$$

CAST

- Points at sun 1.5 h during sunrise and sunset nearly all year
 - Detector backgrounds measured at other times
 - Roughly 10 times longer exposure during nonalignment
- Operated ~6 months (May Nov 2003)

CAST Time Projection Chamber (TPC) Smaller MICROMEGAS gaseous chamber x10⁻⁵ <u>x10⁻⁵</u> Counts s ⁻¹ cm-² keV ⁻¹ 3 2 1 **(b)** (a) ٥Ē -1 12 14 Energy (keV) 10 2 3 4 5 7 8 Energy (keV) 2 6 4 6 8 18_E Counts (c) 16 14 12 10 8

Counts s ⁻¹ cm⁻² keV ⁻¹

0

.5

-1

-1.5

ō

X-ray mirror system with CCD

4

5

3

2

Energy (keV)

Higher Masses

- Upgrade underway:
 - Fill with refractive gas ⁴He or ³He to modify photon dispersion relation and probe higher masses
- For best conversion probability, $qL \leq 1$

•
$$q = k_{\gamma} - k_{a} = \omega - (E_{a}^{2} - m_{a}^{2})^{1/2} \approx m_{a}^{2} / 2E_{a}$$

- Refractive gas slows propagation
 - Adds effective mass term to photon dispersion relation

•
$$q
ightarrow |m_\gamma^{\ 2} - m_{
m a}^{\ 2}|$$
 / 2 $E_{
m a}$

Polarization Effects

- Linearly polarized light passing through magnetic field
- Primakoff effect reduces parallel component, perpendicular component unchanged
 - Rotates the plane of polarization
- Bottom two diagrams give vacuum birefringence
 - Changes linear polarization to elliptical polarization

RBF

RBF

- Two superconducting dipoles end to end
 - 8.8 m, $\langle B^2 \rangle$ = 4.5 T^2
- Optical cavity allowed laser ~500 passes
- Sensitivity to rotation, ellipticity:

 θ = 0.38 \times 10⁻⁹, ϵ = 2 \times 10⁻⁹

• Predicted ellipticities: $\epsilon^{\text{QED}} = 4.7 \times 10^{-13}$ $\epsilon^{\text{A}} \approx 3 \times 10^{-22}$

PVLAS

- Linearly polarized light in high finesse Fabry-Perot cavity
 - $F \sim 7 \times 10^4$ for PVLAS
 - Optical path length increased by N = 2 F/ π = 4.5×10⁴
- Dipole with B = 5.5 T over 1 m interaction region
- Report signal corresponding to rotation of: $(3.0 \pm 0.5) \times 10^{-12}$ rad per pass
- To agree with RBF:
 - $m_{\rm A}$: 1-1.5 meV $g^{-1} = M$: $(2-6) \times 10^{-5}$ GeV
 - This would seem to contradict astrophysical limits

Photon Regeneration

• "Shining light through walls"

- $P(\gamma \rightarrow A \rightarrow \gamma) \propto (g B_0 I)^4$
- Need large magnetic fields over long distances

RBF

4.4 m, 3.7 T dipoles, 200 traversals in an optical cavity

• Limit $g < 7.7 \times 10^{-7}$ GeV for $m_A < 1$ meV

Summary

Conclusions

- Axions remain to be a promising solution to Strong CP but have proven difficult to detect
- They additionally provide a well-motivated candidate for CDM
- Realistic axion models will soon be probed:
 - $10^{-6} 10^{-4}$ eV range by microwave cavity experiments
 - 0.1 1 eV range by axion helioscopes
- Laser experiments are being pursued after a reported signal by PVLAS