What conditions must be placed on the neutrino mixing matrix in order to have the same amount of ν_{e} in ν_{3} as ν_{μ} in ν_{τ} ?

This question is the same as saying

$$
\begin{aligned}
\left\langle\nu_{e} \mid \nu_{3}\right\rangle & =\left\langle\nu_{\tau} \mid \nu_{1}\right\rangle \\
U_{e 3} & =U_{\tau 1}
\end{aligned}
$$

Looking to our U matrix multiplied out,

$$
\left(\begin{array}{c}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right)\left(\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta} \\
-s_{12} c_{23}-c_{12} s_{23} s_{13} e^{i \delta} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta} & s_{23} c_{13} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i \delta} & -c_{12} s_{23}-s_{12} c_{23} s_{13} e^{i \delta} & c_{23} s_{13}
\end{array}\right)\left(\begin{array}{c}
\nu_{1} \\
\nu_{2} \\
\nu_{3}
\end{array}\right)
$$

So $U_{e 3}=U_{\tau 1}$ would imply that the upper right and lower left components are equal.

$$
s_{13} e^{-i \delta}=s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i \delta}
$$

The mathematical requirement that gives the matrix this paramaterization is the requirement that it is Unitary. Any additional symmetry requirements are not physical.

Check the formula for $\tan \theta_{m}$.

The equation is indeed

$$
\tan 2 \theta_{m} \simeq \frac{\sin 2 \theta}{\cos 2 \theta-L / L_{0}}
$$

The confusion came in taking the limit of $L \gg L_{0}$. It is true that This is the high N_{e} case so the matter interaction length scales are short meaning oscillations do not have a chance to develop. This should show up as $\theta_{m} \rightarrow 0$, or no oscillations.

$$
\begin{gathered}
L \gg L_{0} \Rightarrow L / L_{0} \gg 1 \geq \cos 2 \theta \\
\operatorname{an} 2 \theta_{m} \simeq \frac{-L_{0}}{L} \sin 2 \theta \rightarrow 0 \\
\tan 2 \theta_{m} \rightarrow 0 \Rightarrow \theta_{m} \rightarrow 0
\end{gathered}
$$

as expected from our physical understanding of the length scales.

Why do you need θ_{13} in order to determine the hierarchy from the matter effects?

The plot I showed is based on an Earth-bound long-baseline neutrino experiment. Here, you start with a ν_{μ} beam. Matter effects become visible primarily with ν_{e} interactions, so in this case in $\nu_{\mu} \rightarrow \nu_{e}$. Using the same basic math we did before but with more complicated matrices, this probability works out to be:

$$
P\left(\nu_{\mu} \rightarrow \nu_{e}\right)=\sin ^{2} \theta_{23} \sin ^{2} 2 \theta_{13} \sin ^{2}\left(1.27 \Delta m_{31}^{2} L / E\right) .
$$

[Next Slide]

When matter effects are introduced, the equation becomes,

$$
\begin{aligned}
P_{\mu e}^{m} & =\sin ^{2} \theta_{23}^{m} \sin ^{2} 2 \theta_{13}^{m} \sin ^{2}\left(1.27 \Delta_{31}^{m} L / E\right) \\
\Delta_{31}^{m} & =\sqrt{\left(\Delta m_{31}^{2} \cos 2 \theta_{13}-A\right)^{2}+\left(\Delta m_{31}^{2} \sin 2 \theta_{13}\right)^{2}} \\
\sin 2 \theta_{13}^{m} & =\sin 2 \theta_{13} \frac{\Delta m_{31}^{2}}{\Delta_{31}^{m}} \\
A & =2 \sqrt{2} G_{f} N_{e} E
\end{aligned}
$$

First, you can see that this survival probability is heavily dependent on $\theta_{1} 3$. Also, notice in the Δ_{31}^{m} definition that we get the Δm_{31}^{2} mass difference minus a term of definite sign. This means the overall value of this term will be different depending on the sign of Δm_{31}^{2}, resolving the ambiguity.

What happens to lepton number for Majorana neutrinos?

"... \mathcal{L} mixes ν and $\bar{\nu}$. Thus, a Majorana mass term does not conserve L. There is then no conserved Lepton number to distinguish a neutrino mass eigenstate ν_{i} from its antiparticle."
-B. Kayser, PDG 13. Neutrino Mass, Mixing, and Flavor Change

Why is $\mu_{\nu}^{d} \simeq 3 \times 10^{-19} \mu_{B}\left(\frac{m_{\nu}}{1 \mathrm{eV}}\right)$ so small?
I have not been able to find any information on why the neutrino magnetic moment is necessarily so small.

