SHORT-RANGE SEARCHES FOR NON-NEWTONIAN GRAVITY:

NEW PHYSICS AT SMALL SCALES

JUSTUS BREVIK PHYSICS 135c MAY 15TH, 2007

THE INVERSE SQUARE LAW

NEWTONIAN ISL:
$$F_G = -G \frac{m_1 m_2}{r^2}$$

- ASSUMED RANGE OF VALIDITY: ∞ TO $R_P = \sqrt{G\hbar/c^3} = 1.6 \cdot 10^{-35} m$

- GEOMETRIC IN ORIGIN:
$$F_G = -G \frac{m_1 m_2}{r^{n-1}}$$

- ONLY WITHIN A DECADE GRAVITY PRECISELY TESTED BELOW 1mm

- INTRINSICALLY WEAK COMPARED TO E&M
- THERMAL, SEISMIC, ETC. BACKGROUNDS POSE CHALLENGES
- DIFFICULTY IN BRINGING TEST MASSES ARBITRARILY CLOSE

- COMPARED TO RANGE OF COULOMB'S ISL MEASUREMENT:

- TESTED DOWN TO SEPARATIONS $\sim 10^{-18} m$
- IN e^+e^- LEPTONIC INTERACTIONS IN HIGH-ENERGY COLLIDERS

POTENTIAL PARAMETRIZATIONS

• YUKAWA:
$$V(r) = -G \frac{m_1 m_2}{r} \left[1 + \alpha e^{-r/\lambda} \right]$$

 GENERALLY DESCRIBES SHORT-RANGE FORCE CARRIED BY PARTICLE OF MASS:

$$m = \hbar / c\lambda$$

- $-\alpha$ = dimensionless strength parameter, \propto squared product of coupling constants
- $\lambda = \text{length scale}$
- VALID FOR:
 - BOSON-EXCHANGE FORCES
 - APPROX FOR LARGE EXTRA DIMENSIONS DOWN TO SEPARATIONS ~ SIZE EXTRA DIM'S
- POWER-LAW:

$$V(r) = -G\frac{m_1m_2}{r} \left(1 + \beta_k \left[\frac{1mm}{r}\right]^{k-1}\right)$$

- VALID FOR EXCHANGE OF 2 MASSLESS PARTICLES
- β_k COEFFICIENTS DEPEND ON PARTICLES EXCHANGED

THEORETICAL MOTIVATION

• GAUGE HEIRARCHY PROBLEM:

– WHY IS GRAVITY SO WEAK COMPARED TO OTHER FORCES?

$$M_{EW} \sim 100 GeV \ll M_{PL} = \sqrt{\hbar c / G} = 1.2 \cdot 10^{16} TeV / c^2$$

- HIGGS MASS: $M_H \sim 100 GeV$
- QM CORRECTIONS PULL M_H UP TO M_{PL} UNLESS PHYSICS "CUTS OFF" AT LOWER SCALE
- OTHERWISE REQUIRES "FINE-TUNING"... CANCELLATION OF QM CORRECTIONS IN L
- COSMOLOGICAL CONSTANT PROBLEM:
 - SCALE FOR C.C. SHOULD BE: • SECOND-QUANTIZATION QM SHO $E_{\lambda} \sim M_{PL} \sim 10^{19} GeV$
 - Observed value: $E_{\lambda} \sim 10^{-4} eV$
 - CONTRIBUTIONS FROM ALL PARTICLES/FIELDS HAVE TO CANCEL OUT -> "FINE-TUNING"

NON-GRAVITATIONAL PHYSICS:

٠

- SM PREDICTS VERY-LOW-MASS SCALAR OR VECTOR BOSONS
- PRODUCE SHORT-RANGE EXCHANGE FORCES => ISL VIOLATIONS

SOLVING THE HEIRARCHY PROBLEM

• SUPERSYMMETRY (SUSY):

- SUPERSYMMETRIC PARTNERS CANCEL OUT QUANTUM CORRECTIONS
- FINE-TUNING NOT NEEDED!
- CANCELLED UP TO $M_{\tilde{t}} \sim 100 GeV$
- PREDICTS NEW PARTICLES AT 100 GeV SCALE

STRING / M-THEORY:

٠

- 3+1 DIM BRANE IN 10+1 DIM BULK (7 DIM CURLED UP)
- SM PARTICLES OPEN STRINGS TERMINATED ON BRANE
- GRAVITONS CLOSED STRINGS PROPOGATE IN BULK

STRING / M-THEORY SOLUTION

- A SOLUTION (1998 ARKANI-HAMED, DIMOPOULOS & DIVALI):
 - Maybe Mpl isn't $10^{16} TeV$
 - ACTUALLY CLOSER TO M_{EW}

TRUE PLANCK MASS: $M_* \sim 100 GeV$

- GRAVITY ACTUALLY STRONGER THAN OBSERVED AT SMALL-RANGE: $M_{PL} \propto 1/\sqrt{G}$
 - WE SEE WEAKER GRAVITY BECAUSE IT LEAKS INTO EXTRA DIMENSIONS
 - THE GREATER # OF COMPACT DIMENSIONS , THE WEAKER GRAVITY
 - GRAVITONS PROPOGATE IN 10+1 DIM BULK, OTHER SM PARTICLES ON BRANE

- CONSISTENT WITH OBSERVATIONS OF ELECTROMAGNETIC INTERACTIONS

"LARGE" EXTRA DIMENSIONS

• M-THEORY EXPERIMENTAL PREDICTIONS:

_

 SOME EXTRA DIM'S COULD BE "LARGE" ENOUGH TO BE EXPERIMENTALLY ACCESSIBLE

$$R_* \gg R_{PL} = 1.6 \cdot 10^{-35} m$$

EFFECTIVE ISL:
$$r \gg R_* \Rightarrow V(r) \propto 1/r^2$$
$$r << R_* \Rightarrow V(r) \propto 1/r^{2+n}$$
$$r \ge R_* \Rightarrow V(r):$$
$$\lambda = R_*$$
$$\alpha = 8n/3$$

- GRAVITY WILL BE STRONGER AT DISTANCES ~ "LARGE" EXTRA DIM'S

WHERE TO LOOK: $R_* = \left[\frac{M_{PL}}{M_*}\right]^{2/n} \left[\frac{\hbar}{2\pi cM_*}\right]$ $R_* \approx \frac{1}{\pi} 10^{-17+32/n} cm \qquad \begin{array}{l}n=1\\n=2\end{array} \implies \begin{array}{l}R_* = 3 \cdot 10^{12}m\\R_* = .3mm\end{array}$

THE COSMOLOGICAL CONST. PROBLEM

- **REDUCE QM PREDICTION FOR VACUUM ENERGY DENSITY:**
 - SECOND-QUANTIZATION (QM SHO W/ NON-ZERO REST ENERGY) TOO HIGH!

• **REDUCE THE GRAVITATIONAL COUPLING TO STANDARD VACUUM ENERGY:**

- FOR LOCAL EFFECTIVE QFT, NATURALNESS => NEW GRAV. PHYSICS AT LENGTH SCALES
 ~1mm WOULD CUT OFF SHORTER DISTANCE CONTRIBUTIONS TO VAC. ENERGY
- "FAT" GRAVITONS

• EXPERIMENTAL PREDICTIONS:

- GRAVITY "SHUTS OFF" AT LENGTH SCALES < 100 μm
- YUKAWA ISL VIOLATION: $\alpha = -1$ $\lambda = .1$ mm
- OPPOSITE OF M-THEORY PREDICTION

OTHER ISL-VIOLATING PREDICTIONS

• BOSON-EXCHANGE FORCES:

- VIOLATES WEAK EQUIVALENCE PRINCIPLE
- DISTINGUISH FROM EXTRA DIM BY EQUIVALENCE PRINCIPLE TESTS

• RADION-MEDIATED FORCES:

- DYNAMICAL VARYING SPACETIME GEOMETRY, RADII OF NEW DIMENSIONS FLUCTUATE
- RADIONS: LOW-MASS SPIN-0 FIELDS STABILIZE VOLUME OF EXTRA DIMENSIONS
- MAY BE LONGEST-RANGE EFFECT, AND DOESN'T DEPEND ON # DIM

• "MODULI" PARTICLES:

- LARGE # OF WEAKLY-COUPLED MASSLESS SCALAR FIELDS == MODULI
- COUPLE TO SUSY-BREAKING OF GROUND STATES OF STRING THEORY
- DILATON
 - BEST UNDERSTOOD MODULUS PARTICLE
 - SCALAR PARTICLE, DETERMINES STRENGTH OF GAUGE COUPLINGS
 - IMPORTANT AS SMOKING GUN FOR STRING THEORY

• AXION-EXCHANGE FORCES:

- AXIONS: PSEUDO-SCALAR PARTICLES EXPLAIN SMALL UPPER LIMIT ON Θ_{QCD}
- GIVES SPIN-INDEPENDENT YUKAWA POTENTIAL BETWEEN NUCLEONS

• MULTI-PARTICLE EXCHANGE FORCES:

- 2 MASSLESS PARTICLES EXCHANGING SIMULTANEOUSLY
- GIVES RISE TO THE POWER-LAW POTENTIAL

ISL EXPERIMENTS SEARCH FOR NEW PARTICLE PHYSICS BEYOND STANDARD MODEL

DISTINGUISHING ISL-VIOLATIONS

- CURRENTLY EXPERIMENTS ARE PUSHING DOWN CONSTRAINTS IN PARAMETER SPACE...
- WHAT IF A NON-ISL FORCE IS DETECTED?
- COULD BE DUE TO:
 - LARGE EXTRA DIMENSIONS
 - "FAT" GRAVITONS
 - NEW PARTICLE EXCHANGES
 - ETC...
- COMPOSITION DEPENDENT FORCE?
 - TEST THE EQUIVALENCE PRINCIPLE
 - IF COMPOSITION-DEPENDENT CANNOT BE DUE TO LARGE EXTRA DIMENSIONS
 - E.G. BOSON-EXCHANGE VIOLATES EP
- HOW DOES ISL CHANGE WITH DISTANCE?
 - MODELS GIVE PREDICTIONS FOR STRENGTH OF FORCE AND LENGTH SCALE
 - FITS OF YUKAWA POTENTIAL PARAMETERS α AND λ WILL RESTRICT MODELS
 - E.G. RADION LONGEST RANGE EFFECT

LATEST EXPERIMENTAL CONSTRAINTS:

95% CONFIDENCE LEVEL CONSTRAINTS ON A YUKAWA VIOLATION OF GRAVITATIONAL ISL

TYPES OF EXPERIMENTS

• TORSION PENDULUMS

- HISTORICALLY BEST TOOL FOR MAKING MEASUREMENTS OF WEAK FORCES
 - DENSITY OF EARTH (MITCHELL, 1750)
 - ELECTROSTATIC FORCE (COULOMB, 1785)
 - GRAVITATIONAL CONSTANT (CAVENDISH, 1798)
 - EQUIVALENCE PRINCIPLE (EÖTVOS, 1890)
 - HIGH-PRECISION G, LORENTZ SYMMETRY (TODAY)
 - OF COURSE, ISL VIOLATIONS!

• MICROCANTILEVER

- NEWER TECHNOLOGY NOT YET AS SENSITIVE AS TORSION
- ALLOWS FOR MUCH SMALLER TEST MASS SEPARATIONS
- FABRICATION TECHNIQUES ALLOW FOR BETTER ALIGNMENT
- LESS SENSITIVE TO SEISMIC FLUCTUATIONS

• CASIMIR EFFECT

- HYBRIDIZATION OF TORSION AND CANTILEVER APPROACHES
- PHYSICS IS IMPORTANT FOR NANOFABRICATION TECHNOLOGY
- LESS EXPERIMENTAL HISTORY FOR THESE TESTS

TORSION PENDULUMS

• BASIC COMPONENTS:

- TEST MASSES
- FIBER PENDULUM (SUSPENDING TEST MASSES)
- ATTRACTOR MASSES
- LIGHT BEAM BOUNCES OFF MIRROR ON PENDULUM (TO MEASURE TWIST)

• NATURALLY SUITED TO GRAVITATIONAL MEASUREMENTS

- NATURALLY SUITED TO GRAVITATIONAL MEASUREMENTS
- ROTATION INDEPENDENT OF g
- INSENSITIVE TO NET FORCES ACTING ON CENTER OF MASS
- DECOUPLED FROM EXTERNAL FLUCTUATIONS (HOW?)
- VERY SENSITIVE TO FORCE:
 - TORQUE SENSITIVITY: $10^{-18} N \cdot m$
 - LENGTH OF PENDULUM: ~1cm
 - FORCE SENSITIVITY: $10^{-16}N$
- EXPERIMENTAL CHALLENGES ABOUND
 - SHIELDING FROM EXTERNAL INFLUENCES
 - PRECISION SEPARATIONS OF TEST MASSES

ADELBERGER @ UNIVERSITY OF WASHINGTON HIGHEST PRECISION TORSION EXPERIMENT TO DATE

- EXPERIMENTAL SETUP:
 - "MISSING MASS" TEST BODIES IN PARALLEL PLATES
 - BORE & POSITION PRECISELY KNOWN/MEASURED → MISSING MASS
 - CORRECTIONS FOR BUOYANCY OF AIR!
 - GOLD PLATING
 - TORSION PENDULUM
 - TORSION FIBER
 - FIBER POSITIONING (x-y-z-θ STAGE)
 - THIN TEST MASS RING
 - PASSIVE MAGNETIC DAMPER
 - UNIFORMLY ROTATING ATTRACTOR DISK SET
 - UPPER & LOWER ATTRACTOR MASSES
 - ATTRACTOR ROTATION DRIVE
 - CAPACITIVE SEPARATION & TILT SENSORS
 - AUTOCOLLIMATOR (PENDULUM TWIST)
 - MODULATED LASER BEAM
 - POSITION-SENSITIVE DETECTOR
 - MIRRORS
 - VACUUM VESSEL
 - MECHANICAL SUPPORT & SHIELDING
 - ELECTROSTATIC
 - VIBRATION-DAMPENED KINEMATIC MOUNT ON CYCLTRON MAGNET
 - MU-METAL SHIELDS
 - THERMAL ISOLATION
 - SEISMIC MONITORING
 - CALIBRATION TURNTABLE
 - 2 BRASS SPHERES
 - ROTATES AROUND VAC. VESSEL

ALIGNMENT & POSITIONING

- SEPARATION:
 - THE MOST IMPORTANT EXPERIMENTAL PARAMETER
 - CURRENTLY DOWN TO s ~ 50μm (HALF DIA. HAIR)
 - LIMITED BY:
 - SEISMIC VIBRATIONS
 - DUST PARTICLES
 - ALIGNMENT UNCERTAINTIES
- TILT:
 - PENDULUM (CAPACITANCE WITH REMOVABLE SEMI-CIRCLES)
 - ATTRACTOR (CAPACITANCE WITH MEMBRANE)
- CENTERING:
 - ATTRACTOR PENDULUM
 - BASED ON GRAVITATIONAL TORQUE SYMMETRIC ABOUT X & Y

RESULTS:

٠

- MOST RECENT INCARNATION PROBED DOWN TO $\lambda_{\rm d} = \sqrt[4]{\hbar c/\rho_{\rm d}} \approx 85 \ \mu {\rm m}.$
- TESTED ISL FOR SEPARATIONS FROM 9.5mm to 55μm
- 95% CONFIDENCE ISL HOLDS DOWN TO 56μm
- MODEL INDEPENDENT UPPER-LIMITS ON SIZE OF COMPACT-EXTRA DIMENSION: R<44µm

- **BEST RESULTS TO DATE FOR RANGE:** $\lambda = 6 20 \mu m$
- **EXPERIMENTAL SETUP:**
 - CANTILEVER
 - SINGLE-CRYSTAL MICROMACHINED SILICON
 - RESONANT FREQUENCY: $\omega_0^2 = k/m_t$
 - TRANSFER FUNCTION: $x(f_o) = F(f_o)Q/k$
 - TEST MASS
 - MOLDED GOLD PRISM, MAG-TYPE NICKEL-COATED
 - DRIVE MASS
 - * GOLD / SILICON MEANDER \rightarrow AC GRAVITATIONAL FIELD
 - MEANDER CURRENT FOR SPATIALLY-VARYING B FIELD
 - Operated at subharmonic of ω_0
 - SHIELD MEMBRANE
 - ISOLATE ELECTROSTATIC & CASIMIR EXCITATIONS
 - STIFF METALLIZED SILICON-NITRIDE (VS. CANTI)
 - PIEZOELECTRIC BIMORPH ACTUATOR
 - DRIVEN AT $f_0/3$ OR $f_o/4$
 - VIBRATION ISOLATION
 - CAPACITIVE POSITION & TILT SENSORS
 - CRYOGENIC APPARATUS ~10K
 - LIMIT THERMAL NOISE IN CANTILEVER MOTION $f_f = \sqrt{4kk_bT/Q\omega_o}$
 - INTERFEROMETER
 - FIBER INTERFEROMETER TO DEDUCE FORCE ON TEST MASS
 - WORKS WITH PIEZO STACK TO MAINTAIN FRINGE ALIGN.

• MEASURE FORCE VS. Y-POSITION

- ANY COUPLING BETWEEN MASSES WILL SHOW PERIODICITY
- COMPARE MEASUREMENT TO PREDICTIONS BASED ON FEA
- GIVES A BOUND ON YUKAWA-TYPE DEVIATIONS
- USE SPATIAL PHASE-SENSITIVE DETECTION

• MEASUREMENT SCHEME:

- GRAVITATIONAL TESTS:
 - MEANDER GROUNDED
 - 100µm FORCE PERIODICITY
- MAGNETIC TESTS:
 - APPLY AC CURRENT THROUGH MEANDER , BIMORPH STILL
 - DRAW DC CURRENT, BIMORPH MOVING
 - SAME RESULT: SEE MAGNETIC COUPLING B/W MASSES
 - 200µm FORCE PERIODICITY, PI PHASE CHANGE

• ALIGNMENT MEASUREMENTS:

- FEA SENSITIVE TO ALIGNMENTS MUST MEASURE
- TILTS SHIMMED & 3-AXIS POSITIONERS USED
- Z DETERMINED BY CANTI-SHIELD TOUCH THEN BACKED OFF

- MAGNETIC ANALOG EXPERIMENT:
 - BIMORPH MOVING, 1/3 RESONANT FREQUENCY
 - STEP THROUGH Y-POSITION, MEASURE FORCE
 - MEASURE CURRENT ON == MAGNETIC CASE
 - MEASURE CURRENT OFF == GRAVITATIONAL CASE

• **RESULTS:**

•

- CONFIRMS ALIGNMENT B/W MASSES
- FEA PREDICTIONS OF FORCE PERIODICITY
- NO DRIVE CURRENT WAY TOO BIG FOR GRAVITY
 - NOT DUE TO CASIMIR / ELECTROSTATIC
 - PURELY MAGNETIC
 - DRIVE MASS MAGNETIZED BY AMBIENT FIELD
 - TEST MASS A MAGNETIC SUSCEPTOMETER
- SUSCEPTOMETER PLACES LIMIT ON GRAVITATIONAL SENSITIVITY WITH MAG. TEST MASS
- VERIFICATION OF FORCE SENSITIVITY OF CANTILEVER!!

• **RESULTS:**

- ORDER OF MAGNITUDE IMPROVEMENT OVER PREVIOUS RESULTS AT $\lambda \sim 20 \mu m$
- MOST STRINGENT CONSTRAINTS ON YUKAWA POTENTIALS: 6 20μm
- CONSTRAINS PREDICTIONS OF MODULI & GAUGE BOSONS
- DOES NOT RULE OUT M-THEORY / LARGE EXTRA DIMENSIONS

CASIMIR EFFECT: SKIMMING

- RESULTS STRENGTHEN CONSTRAINTS FOR $\lambda \sim 30-86$ nm
- MICROMECHANICAL TORSION OSCILLATOR
- MEASURES CASIMIR PRESSURE BETWEEN GOLD-COATED PLATES OR PLATE AND SPHERE
- **RESONANT FREQUENCY OF OSCILLATOR RELATED TO CASIMIR FORCE**
 - SHIFT OF RESONANCE GIVES $\partial F(z) \beta Y$: $\omega_r^2 = \omega_0^2 \left[1 \frac{b^2}{I\omega_0^2} \frac{\partial F(z)}{\partial z} \right]$
 - CASIMIR PRESSURE IS THEN:

$$P(z) = -\frac{1}{2\pi R} \frac{\partial F(z)}{\partial z}.$$

• EXPERIMENTAL DATA:

