WIMP Direct Searches

- Fundamental goal: See a very small WIMP signal in presence of many other particles interacting in detectors (photons, electrons, alpha particles, neutrons)
- Many different techniques:
 - Reduce backgrounds
 - HDMS/GENIUS, IGEX: Ge γ spectrometers
 - Reduce backgrounds + annual modulation
 - DAMA: Nal scintillator
 - Statistical nuclear recoil discrimination
 - DAMA, UKDMC: pulse-shape analysis in Nal, LXe
 - Event-by-event nuclear recoil discrimination
 - phonons + ionization/scintillation: EDELWEISS, CRESST, CDMS
 - LNobles: direct electronic excitation + ionization: XENON, ZEPLIN, WArP, etc.
 - SIMPLE, PICASSO: superheated droplets: bgnd-insensitive threshold detectors
 - DRIFT: (CS₂) high-pressure negative-ion TPC
 - Diurnal modulation
 - DRIFT

Annual Modulation

- WIMP wind ~ isotropic in halo frame, v_{rms} ~ 270 km/s
- Sun travels through this cloud at 232 km/s
- Earth adds or subtracts 15 km/s (= 30 km/s X cos 60⁰) to solar velocity
- Expect ± I-few % modulation in rate, energy deposition, depending on target and threshold
- DAMA: possible signal? Now running LIBRA

Diurnal Modulation

- Because of motion of solar system through galaxy, WIMPs are very directional in terrestrial frame (from Cygnus)
- Direction of WIMP wind varies diurnally due to Earth's rotation
- Recoiling nucleus will to a large extent preserve this directionality
- Large modulation (~ DC signal) possible in theory
- Backgrounds will be unmodulated
- Demonstrator experiment running (DRIFT), large masses still a challenge

Nuclear Recoil Discrimination

Sunil **Gol**wala

Phonons + Ionization/Scintillation

- Nuclear recoils arise from
 - WIMPs
 - Neutrons
- Electron recoils arise from
 - photons
 - electrons
 - alphas

(dominant background)

- Ionization yield
 - ionization/recoil energy strongly dependent on type of recoil (Lindhard)
- Recoil energy

- Phonon (acoustic vibration, heat) measurements give full recoil energy
- Intrinsic event-by-event discrimination

DRIFT Time Projection Chamber

- DRIFT collaboration:
 - $e^- + CS_2 \rightarrow CS_2^-$: drifting of heavy ion suppresses charge diffusion
 - 1 m³ 40 Torr CS₂ gas (0.17 kg)
 - underground in Boulby (UK)

DRIFT Time Projection Chamber

Nuclear Recoils

40 keV nuclear recoils 13 keV e⁻ 15 keV α s 500 electron-ion pairs 500 electron-ion pairs 500 electron-ion pairs EGS4/Presta - 13 keV e in 40 Torr Ar SRIM97 - 40 keV Ar in 40 Torr Ar SRIM97 - 15 keV He in 40 Torr Ar 20 20 10 10 y (mm) y (mm) 1 0 -10 -10 -20 -20 0 10 20 40 50 10 20 40 50 30 0 30 x (mm) x (mm)

... Maybe even the direction of the recoil can be reconstructed

20 mm

DRIFT Time Projection Chamber

Nuclear Recoils

... Maybe even the direction of the recoil can be reconstructed

Liquid Xenon

- Recoils produce scintillation and ionization signal via production of excited states in Xe
- Can measure ionization directly by drifting it out and multiplying in

Gas Xe

S1

WIMP

gas or by awaiting recombination to get secondary scintillation

• For NRs, ionization is depleted by prompt recombination due to high ionization density

10

AmBe n-source

INELASTIC

Liquid Xenon

5 e-/keVr at 20 keVr

- 3 e-/keVr at 100 keVr
- I0 kg experiment being deployed at LNGS
- ZEPLIN II and III
 - II: 2-phase, like XENON, ~10 kg deployed at Boulby
 - III: 2-phase with better light collection, ~10 kg, tested above ground, soon to enter Boulby

Liquid Argon

- You might think this is a bad idea...
 - ³⁹Ar: 565 keV beta, 0.8 Bq/kg natural: Need 10⁷ rejection for 100 kg experiment to reach even 1/kg/day WIMP sensitivity; best sensitivities now are 0.1/kg/day
- But:
 - 2 independent rejection methods: S2/S1 (like LXe) and S1 rise time
 - No quenching of NRs relative to ERs, confirmed by D. McKinsey (CLEAN)

Galbiati, CryoDet 06

Liquid Argon Neutron-Induced Recoils WIMP Search 40 kg*day 50-100 keV 50-100 keV >10⁶ events Combination of two discrimination methCombination of two discrimination meth Log(S2/S1) Log(S2/S1 2.5 2.5 1.5 1.5 1 1 0.5 0.5 0 -0.5 -0.5 $^{-1}_{0.2}$ $^{-1}_{0.2}$ 0.5 0 6 0.7 0.8 0.9 0.5 0.6 0.7 0.9 0.3 0.4 0.3 0.4 0.8 1 1 Pulse Shape Discrimination Parameter Pulse Shape Discrimination Parameter Pulse Shape Discrimination **Pulse Shape Discrimination** 20 10⁴ 10⁵ Counts 105 10³ **10**³ 10³ 10² 10^{2} 10 10 1 1 0.5 0.6 0.7 0.8 0.9 0.2 0.3 0.5 0.6 0.7 0.8 0.9 0.2 0.3 0.4 0.4 1 1 Pulse Shape Discrimination Parameter Pulse Shape Discrimination Parameter

Galbiati, CryoDet 06

WARP 100-liter (140-kg) detector

- WArP 2.3 L (3.2 kg) prototype:
- The WARP(in O.Q. litter), detectorpwill besinstalled and commissioned atbiati)
 - *LNOS in 2006 eVr in 34.3 kg-d, no events above 40 keVr
- 4 pi active neutron veto (8 trans biguid Argon,
- 140 kg experiment to be deployed at LNGS in coming
- ya Évent localization
- Could finition it in the second of the second definition is the second determine ultimate backgrouped is a jeotions you to current best limit)
- Complete Heutron shield

NR Discrimination in Bubble Chambers

- Superheated liquid
- Energy density effect: ER energy deposition density too small to nucleate bubbles
- Excellent rejection of ER backgrounds (lower limit of 10⁹ demonstrated))
- Threshold detector, controlled by temperature & pressure

- Spin-independent (I and Br) and spin-dependent (F) targets work
- Scalable
- Many inexpensive modules to do energy scan
- COUPP: Collar (Chicago), Sonnenschein, Crisler, et al (FNAL) SIMPLE, PICASSO

NR Discrimination in Bubble Chambers

Collar group, Chicago

NR Discrimination in Bubble Chambers

 COUPP I kg prototype experiment being deployed in shallow site at FNAL (MINOS near detector hall)
Collar group, Chicago

