Instrumentation for CCAT

Sunil Golwala/Caltech May 13, 2011 on behalf of the CCAT Consortium and with many thanks to the CCAT science and instrument working groups

Tools for CCAT Science: First Light

- There is general consensus on what is needed for CCAT to do the most exciting science quickly:
 - Multicolor, broadband wide-field imaging with N \sim 10,000-50,000 and R \sim 3-10
 - Enough colors to measure SEDs of galaxies and do T/(1+z) selection of high-z sources
 - FoV large enough (= enough detectors) to yield high-statistics studies in multiple z bins
 - FoV wide enough to study clustering of ~confusion-limit sources on interesting scales
 - Criterion relaxes if one only wants to study clustering of high-S/N sources
 - Not the ultimate photometric survey at first light
 - + Except perhaps at long λ where filling FoV is not challenging
 - Multi-object (N ~ 10) moderate resolution (R~1000) spectrometers
 - Focus is on sensitivity to CO and [CII] in very broad redshift ranges at R appropriate to velocity dispersions in high-z galaxies
 - Use SED and T/(1+z) selection to define target list for such followup

Tools for CCAT Science: Long-Term

- One person's view of what is needed for CCAT to do definitive science (given D = 25 m) during its lifetime:
 - Imaging large fractions of visible sky with FoV-filling cameras
 - Finding unique and rare objects
 - First serious study of transients in submm/mm
 - Not discussed here except to note that focal planes with 5x10⁶ detectors are expected during CCAT lifetime
 - High spectral resolution heterodyne imaging spectroscopy in the galaxy and nearby galaxies
 - Wide-field mapping in many lines, with spectral resolution sufficient to separate dominant species, obtain infall information.
 - Imaging spectroscopy with N = 1000-10000, R ~ 100-1000, NxR ~ 5x10⁶
 - N = 50,000 @ R = 100 for finer spectral bins for continuum SED studies in wide fields
 - N = 10,000 @ R = 1000 for definitive extragalactic imaging spectroscopy in smaller but cosmologically representative fields

Weather - Wavelength Allocation, Mappable Area

- best 30-50% devoted to "short submm" ($\lambda \leq 620 \ \mu m$)
- substantial fraction for "trans-mm" ($\lambda \ge 740 \ \mu m$)

 focal plane technologies can obviate choosing between "long submm" and mm

							variance	
Band		Time	Ref.	CCAT (5612 m)		1st light		
λ	u	to CL^a	PWV^{b}	Time Available ^{c}		\mathcal{CL} fields ^d	ØFoV	area to CL
(μm)	(GHz)	(hr)	(mm)	$(hr yr^{-1})$	(%)	(yr^{-1})	(')	$(\deg^2 yr^{-1})$
200	1500	1248	0.26	281	3	_		
350	857	0.86	0.47	1936	22	2244	7	26
620	484	1.14	0.64	716	8	629	13	23
740	405	0.43	0.75	639	7	1488		
865	347	0.28	0.86	1223	14	4413	20	319
1400	214	0.30	1.00	1517	17	5093	20	436
Total time for $PWV < 1.1$ mm:				6312	72		(as	sumes

^a Time to reach the confusion limit (CL) – see Table 2.

^b The reference precipitable water vapor (PWV) is the adopted maximum value for observations in a given wavelength band. Several bands have equivalent thresholds (e.g. $350/450\,\mu$ m) and for simplicity only one band is listed.

^c Time available at Ref. PWV or better, not already used at lower λ . ^d Number of confusion-limited fields per year.

c.f.: CSO typically does 350 µm observations in 20-25% of time with PWV ≤ 1 mm; CCAT much better!

 \sim 50 kpix/band)

first-light access to

cosmological volumes:

access to largest

structures,

beat down cosmic

CCAT Instrumentation

5

Why to Focus on Multi-Object Spectroscopy

- CCAT is being designed for maximum FoV possible
 - Don't want to preclude future developments
 - Minimal Δ \$ for FoV up to 1°
- But cosmological volumes and high stats accessible w/first-light cameras
 - I0s of deg²/yr at 350 µm w/7' FoV: 38,000 srces/deg², I0⁶ srces/yr
 - 100s of deg²/yr at 1.4 mm w/20' FoV: 2,400 srces/deg², 10⁶ srces/yr
 - >> 10⁴ galaxies needed to measure lum. f'n over 1 < z < 5 in 10x10 bins in $(\Delta z, \Delta \log(L))$ (c.f., Glenn talk): basic imaging studies easily done
- Bottleneck quickly becomes spectroscopic followup needed to
 - Obtain precise z
 - Measure physical conditions in gas, reveals cooling and excitation mechanisms, ionizing photon flux, etc.
- Conclusion: Use the detector revolution in the spectral dimension
 - need MOS immediately: N = O(10) @ R = 1000 in multiple bands
 - MOS development will provide quickest evolution of capabilities: not just more area, but qualitatively more interesting science: NxR = 5x10⁶ → N = 10,000 @ R = 1000, N = 50,000 @ R = 100

Imager Strategy

- Drivers
 - Color information is more useful than higher statistics in particular bands
 - At shorter λ , filling FoV is technically challenging. 1° @ 350 μ m = 4 Mpix!
- Could do the usual thing and put one instrument on at a time...
- ...or, possibly novel strategies:
 - Split FoV by color?
 - Central, higher-image-quality region used for short-submm imaging, $\lambda = 350 \ \mu\text{m} 620 \ \mu\text{m} (200 \ \mu\text{m}?)$
 - Outer regions used for trans-mm imaging, λ = 740 µm 2000 µm (3000 µm?)
 - Enables simultaneous imaging in all colors at once: no need for weather splits in survey mode
 - = Planck at 10-20x the resolution on sub-arcminute to degree scales
 - Alignment/overlap?
 - FoV is large enough to have separate cameras for individual bands
 - But sky noise could motivate spatial overlap
 - short-submm: use mesh dichroics
 - trans-mm: wide-bandwidth feeds and microstrip bandpass definition

Short-Submm Imager

- All transmissive design
 - Compact, minimizes aberrations (vs. off-axis powered reflective relay)

HF

- Transmissive losses acceptable at shorter λ
- Substantial pixel count
 - Nyquist sampled, 40 kpix @ 350 m, 20 kpix @ 620 µm
 - Three 3' subfields (128×128): minimizes aberrations and window size
 - Could use dichroic in dewar to overlap arrays on sky
 - Need broadband anti-reflection coating
- Detectors
 - SCUBA-2 TESs: proof of principle (10⁴)
 - Absorber-coupled TiN MKIDs in dev't to minimize readout complexity, cost

umped-element direct-absorption TiN MKID 350 μ m pixel w/ spiral inductor/absorber and interdigitated capacitor

9

16×16 array of such pixels coupled to one microwave feedline Sunil Golwala

Trans-mm Imager

multi-scale pixel

- Antenna coupling v. attractive
 - hν < 2Δ of niobium (440 µm): superconductors enable microwave engineering at trans-mm λ
 - Pixel size can be rescaled to match diffraction spot size
 - 4:1 spectral reach: monolithic FP covers 740 μm to 3000 μm

Trans-mm Imager

- Horn-coupled designs
 - Broadband horns for submm/mm under design (McMahon (UM), NIST)
 - Micromachining and platelet arrays enable monolithic mass manufacture
 - Use waveguide probes to feed detectors, similar filters to select colors

- Use mesh dichroics to split colors to different horn sizes
- Optical configuration
 - Aim for ~20'-equivalent FoV with transmissive lens focal reducer and ~30 cm diameter lenses (silicon). Perhaps in multiple subcameras à la short-submm.
 - Need to develop broadband anti-reflection coatings.
- Detectors
 - Both TESs and MKIDs present good options. Pixel counts at mm bands comparable to SCUBA-2 if conservative on sampling at longer wavelengths (i.e., low spillover), short-submm-like if want Nyquist sampling at $\lambda = 740 \mu m$.
 - See Sayers talk on MUSIC (Saturday 9:45): CSO-based prototype for antenna-coupled MKID-based trans-mm imager.

Waveguide-Grating Spectrometers

- Disperses light from single input feed in 2D waveguide structure, grating at edge
- Demonstrated at R~300 w/Z-Spec on CSO in 1-1.4 mm window
- v. nice detection of CO ladder, water in Cloverleaf, CO in lensed H-ATLAS srces

Density

μĔ

 Access to [CII] at z = 5-7 on CCAT

Bock, Bradford, Glenn, Zmuidzinas

Waveguide-Grating Spectrometers

- Z-Spec can be scaled to shorter wavelengths
 - prototype for 180 300 µm band of BLISS: R > 700 achieved, 60-70% efficiency warm
- More compact I-I.4 mm version using Si
- Dichroics to match atmos. windows
- Stackable N = O(10)

Bradford, Hodis

CCAT Instrumentation

Free-Space Grating Spectroscopy

- ZEUS-2: long slit + grating spectrometer R ~ 1000, ~1000 detectors
- Route different objects over slit to do MOS

Free-Space Grating Spectroscopy

- ZEUS-2: long slit + grating spectrometer R ~ 1000, ~1000 detectors
- Route different objects over slit to do MOS

Free-Space Grating Spectroscopy

- ZEUS-2: long slit + grating spectrometer R ~ 1000, ~1000 detectors
- Route different objects over slit to do MOS

Multi-Object Optical Coupling

- Periscope-based patrol mirrors
 - quasi-optical coupling, all reflective, send to array of feeds for Z-Spec or **ZEUS** slit
 - e.g.: N ~ 20 over 20' FoV •

- Flexible waveguide •
 - Hollow, interior-metallized • polycarbonate tubes
 - Being pursued by CU ٠ (Glenn, Maloney)

Goldsmith and Seiffert 2009

High-Resolution Imaging Spectroscopy

- Heterodyne arrays in use and under development for galactic mapping
 - HERA/IRAM 18 pixels, I-1.4 mm window, I GHz/pixel
 - SuperCam for SMT, 64 pixels, 865 µm window, 250 MHz/pixel
- Kilopixel array for CCAT
 - 16 x 32 array, 2 GHz/pixel, 350 μm and 450 μm windows
 - Mapping our and nearby galaxies in multiple lines at R~10⁶

Long-Term: Supporting Developments

- Broadband antireflection coatings to enable multicolor focal planes
- Image slicer: would enable "imaging ZEUS"
- Higher T_c superconductors
 - Split between quasi-optical/free-space waveguide and antenna/dielectric microstrip techniques set by 2 Δ for niobium at λ = 440 µm
 - * Development of high-Q higher-T_c superconductors (e.g., NbTiN) would enable extension to 450 μm and 350 μm bands.
- RF-muxed microwave SQUIDs
 - Would enable MKID-like multiplex factors for TESs
- Alternate MKID geometries
 - silicon-on-insulator capacitors to reduce dielectric fluctuation noise (and possibly direct pickup)
 - lower-frequency MKIDs (100s of MHz to 1 GHz) + SiGe amplifiers
 - "resonator bolometers": use MKID to measure temperature of leg-isolated island à la TES bolometers
- Readout development
 - This will be the driver for pixel count and instrument cost.

Long-Term: Innovative Imaging Spectrometers

- µSpec "spectrometer on a chip", R ~ 1000
 - Z-Spec-like idea, but do initial delay in microstrip rather than in waveguide; no physical grating required. Gives multiple orders at each exit feed.
 - What orders using filter banks on exit feeds.
- With low-loss microstrip from feed (e.g., crystalline Si), could build a horn or antenna array to feed off-FP spectrometers and accommodate µSpec

Long-Term: Innovative Imaging Spectrometers

Conclusions

- Seems technically feasible to develop instrumentation that delivers the critical science at first light.
 - Imaging needs well within reach with 10⁴-10⁵ pixel counts.
 - Single-pixel Z-Spec spectrometer needs to be extended to short-submm and multiplied by N \sim 10.
 - Need MOS feed system
- Imagers will eventually grow to 10⁶ pixels and map large fractions of visible sky across submm/mm bands
- Innovative concepts and new developments will provide CCAT with evergrowing capabilities for spectroscopy
 - Important supporting device and readout developments
 - Heterodyne imaging spectroscopy at R $\sim 10^6$ and N ~ 1000 for our and nearby galaxies.
 - Direct detection imaging spectroscopy at RxN ~ 5x10⁶ for mapping large extragalactic fields