Sunyaev-Zeldovich Effect Survey Results from Bolocam

Sunil Golwala KICP Friday Seminar April 4, 2008

Overview

- Review of the SZ effect
- Applications of the SZ effect
- Bolocam instrument description
- Sky noise removal and analysis techniques
- Constraints on SZ anisotropy
- Upcoming work

The Sunyaev-Zeldovich Effect in Galaxy Clusters

- Thermal SZE is the Compton up-scattering of CMB photons by hot electrons in the intracluster plasma
- $\Delta T_{CMB}/T_{CMB}$ depends only on cluster y (line-of-sight integral of n_eT_e). Both ΔT_{CMB} and T_{CMB} are redshifted as photons propagate from clusters, so ratio is independent of distance.
- Thermal SZE causes nonthermal change in spectrum

The Sunyaev-Zeldovich Effect in Galaxy Clusters

- Beautiful images of SZ from Chicago group using OVRO/BIMA interferometers at 30 GHz
- Spectrum confirmed by measurements from RJ tail through null
- To date, only seen in pointed observations of massive clusters

Applications of the SZ Effect

- Cluster astrophysics
 - measures pressure
 - scaling relations
- Cosmology
 - Hubble constant (geometric effect, with X-ray)
 - Baryon fraction (now measured better by CMB)
 - Evolution of cluster abundance as a probe of dark energy

Studying Clusters with the SZ Effect

Clusters are complicated objects! SZ measures pressure, in contrast to other observables

6

SZ Survey Results from Bolocam

Sunil Golwala

Studying Clusters with the SZ Effect

Clusters are complicated objects!

SZ measures pressure, in contrast to other observables

gas density

(gas pressure)

Studying Clusters with the SZ Effect: Scaling Relations

• SuZIE (S. Church, Stanford)

Benson et al, Ap/ 617:829 (2004)

published 11 clusters at 150/220/275(350) GHz, observed SZ flux-T_X scaling relation, but not an imaging experiment

SZ Survey Results from Bolocam

Sunil Golwala

Probing Dark Energy via the Growth of Structure

http://www.icc.dur.ac.uk/Outreach/Movies.html Virgo Consortium

Probing Dark Energy via the Growth of Structure

http://www.icc.dur.ac.uk/Outreach/Movies.html Virgo Consortium

Using Cluster Abundance for Cosmology

- Very sensitive to normalization of power spectrum, and thus to growth function, because clusters are statistically rare excursions
- Clusters form recently (z < 2) and so abundance influenced by recent dark-energy domination
- Has historically been a robust predictor of low matter density

Number of clusters per redshift bin above $3.5 \times 10^{14} M_{Sun}$ in 4000 deg²

"Unbiased" Cluster Detection via the SZE

- "Unbiased" = mass-limited
- Effect is intrinsically redshift-independent: $\Delta T/T$ depends only on cluster properties, ΔT and T experience same redshift
- Standard argument: Integrated signal provides largely zindependent mass limit (Barbosa et al, Holder et al, etc.)

$$S_{tot} = \frac{2k_B^2 \nu^2 g(x) \sigma_T T_{CMB}}{m_e c^4 d_A(z)^2} \left\langle T_e \right\rangle_n \underbrace{\underbrace{M_{200}}_{f_{ICM}}}_{\mu_e m_p} du_{em_p}$$

weak z-dependence of ang. diam. distance

- Integrate n_eT_e over cluster face
- d_{A^2} factor tends to reduce flux as z increases (1/r² law)
- But for a given mass, a cluster at high redshift has smaller R and hence higher T
- These two effects approximately cancel

"Unbiased" Cluster Detection via the SZE

- Holder, Mohr, et al (2000) modeled the mass limit of an interferometric SZE survey using simulations of cluster growth
- Simulations bear out expectation of weak z-dependence of mass limit
- v. different selection function from optical/x-ray surveys
- For any survey, careful Holder et al, Ap. J., 5 modeling will be required to determine this precisely, understand uncertainties

For the Near Term: High-*l* SZ Anisotropy

SZ Survey Results from Bolocam

12

The High- ℓ Excess

- The high- ℓ excess seen by ACBAR, CBI, and BIMA is not entirely consistent with a SZ anisotropy explanation
 - SZ anisotropy expected to scale as $\sigma_8 (\Omega_b h)^2$; constraint on high- ℓ excess yields constraint on σ_8
 - CMB primary anisotropy + LSS also yields constraint on σ_8
 - ACBAR + WMAP3 primary PS + LSS $\rightarrow \sigma_8 = 0.81-0.85$ +/- 0.03
 - ACBAR + CBI excess interpreted as SZ $\rightarrow \sigma_8$ = 0.95 +/- 0.04
 - Dawson et al (2006) BIMA point: 220 +/- 130 μ K_{CMB}² at 30 GHz \rightarrow 55 +/- 33 μ K_{CMB}² at 150 GHz vs. < 10 μ K_{CMB}² for $\sigma_8 = 0.80$
 - ACBAR + WMAP3 can 5^{100} be reasonably interpreted 5^{100} as $\sigma_8 \sim 0.80$ SZ + 10 unidentified point sources
 - Need better data!

Reichardt *et al* 2008 nodified

13

SZ Anisotropy: RJ Interferometers

- Experiments:
 - Sunyaev-Zeldovich Array: Carlstrom et al at CARMA site, 8 x 3.5 m dishes at 26-36 GHz and 85-115 GHz + CARMA
 - Arcminute Microkelvin Imager: MRAO, MRAO site, 10 x 3.7 m + 8 x 13 m, 12-18 GHz

SZ Anisotropy: MM-Wave Arrays

- mm-wave experiments (in order of existence and site quality)
 - Bolocam: 120 pixels at 150 GHz on 10.4 m CSO, Mauna Kea

Bolocam/CSO

- APEX: 300 pixels at 150 GHz on 12 m ALMA prototype, ALMA site
- ACT: 1000 pixels each at 150, 220, 275 GHz on 6-m off-axis az-scanning dish, Cerro Toco
- SPT: 1000 pixels distributed across 90, 150, 220 GHz bands on 10-m off-axis dish, South Pole

SZ Survey Results from Bolocam

Bolocam Overview

- Observation bands:
 - 125-165 GHz: thermal SZ
 - 225-300 GHz: dusty sources
 - (217 GHz: kinetic SZ)
- I44-pixel spiderweb bolometer array operated at ~ 250 mK
- Array architecture:
 - Bolometers are bgnd-limited; increase sensitivity with pixel count (8' FOV)
 - Sky noise removal enabled by beam overlap through atmosphere
- At Caltech Submm Obs., 10-m on Mauna Kea

3-stage He³/He⁴ refrigerator

JFET enclosure

Instrument Team

- Caltech
 - (Mihail Amarie), (Samantha Edgington), Sunil Golwala, Andrew Lange, Philippe Rossinot, Jack Sayers
- JPL
 - Jamie Bock, (Alexey Goldin), Hien Nguyen, Fab team at MDL
- University of Colorado, Boulder
 - James Aguirre, Jason Glenn, (Ben Knowles), Glenn Laurent, Phil Maloney, James Schlaerth, (Patrick Stover)
- University of Wales, Cardiff
 - Peter Ade, Douglas Haig, Phil Mauskopf, Rob Tucker

PhD thesis Dec 2007, has done bulk of analysis work

Bolometer Array

- I44 bolometers on single wafer: J. Bock, JPL/MDL
- I25 Å Au absorber on I µm SiN membrane, etched into "spider-web" to minimize C_{Au}, G
- NTD Ge thermistor senses T
- Array production nontrivial

Optical Design

- Smooth-walled conical feedhorns define beams
- Horns coupled to integrating cavities via 2λ length of single-mode waveguide (defines lower edge of BP)
- Integrating cavities house bolos, yield > 90% efficiency and < 1% optical crosstalk
- Monolithic construction
 - single feedhorn plate
 - single backshort plate
- Backshort and hornplate can be exchanged easily
 ⇒ "easy" to change bands

Optical Design

150 GHz Blind Sunyaev-Zeldovich Effect Survey

- 2 fields, each 0.5 deg²
 - Wanted low dust emission, good X-ray and optical coverage in case clusters were found
 - SDSI (aka SXDS): Subaru deep survey field
 - 400 ksec XMM-EPIC integration time
 - OIR coverage by surveys on Subaru, CFHT Legacy, UKIRT, Spitzer SWIRE Legacy survey
 - 12 µJy VLA coverage
 - SCUBA SHADES and BLAST field
 - 1.2 MJy/ster 100 µm dust emission, among the lowest in the sky
 - Lynx: not so well complemented
 - 150 ksec XMM-EPIC
 - imaging of small portions containing low-mass clusters
 - 1.3 MJy/ster 100 µm emission, also pretty good
- ~ 40 nights of telescope time in fall 2003

150 GHz Blind Sunyaev-Zeldovich Effect Survey

- Observing Strategy
 - Spend half the night on each field, 6-8 hrs each per night
 - Raster over each field along the RA and dec directions
 - Drift scan would be less prone to scan-synchronous pickup, but sky noise pushes one to active scanning to move signal to higher temporal frequency
 - Active az-only scans produce inefficient coverage pattern due to sky rotation
 - Good belief that array would allow subtraction of elevation dependent signal

Sunil Golwala

150 GHz Blind Sunyaev-Zeldovich Effect Survey

- Observing Strategy
 - Data broken up into 8-minute-long "observations"
 - Each observation covers the entire field in one scan mode with 8-9% rms coverage variations (4-5% noise variations)
 - Alternate RA and dec scans
 - 3 sets of offsets perpendicular to scan direction to smooth out coverage
 - Final maps have 1.5% coverage variations

SZ Survey Results from Bolocam

Sunil Golwala

Observing Conditions: Loading and Opacity

- To first order, the atmosphere!
- Median conditions: I.75 mm of water between the instrument and the CMB!
- Atmospheric optical depth:
 - I 50 GHz: τ ~ 0.05
 - 275 GHz: τ ~ 0.13
- Photon Poisson and Bose noise from the emitted power

Observing Conditions: Sky Noise

- water vapor w/scale height of ~ 2 km
 - near condensation point, so clumpy
 - strong dipole moment \Rightarrow rotation couples well to mm-waves
- liquid water: same modes, but much less efficient, constrained by inter-molecule forces
- ice: rotation is prevented
- Water vapor present as turbulent screen entrained in wind

wind-driven Kolmogorov-Taylor screen

-ay and Halverson

Observing Conditions: Sky Noise

- Sky noise = fluctuations in emission from water vapor in atmosphere due to wind-driven turbulent screen
- Overlap of beams through atmosphere ensures it is mostly common signal
- A simple average removal takes out >90% of sky noise

Autocorrelation Function of Sky Noise

- See expected power-law autocorrelation function of sky noise as a function of pixel separation
 (structure function)
 ^{0.97}
 ¹
 ¹
 ¹
 ^{0.95}
 ^{0.95}
 ^{0.95}
 ^{0.95}
 ¹
 ¹
- Correlation length varies; large corr. length → good sky subtraction
- Excess correlation visible at small separations, worst when sky noise is poor. Consistent with spread of Airy function.

Sky Noise

- Average removal leaves significant noise above fundamental photon
 + instrument noise
- First, attempt to model as wind-driven screen: get sensible wind speeds, but no improvement

Sky Noise

- Think a bit harder:
 - typical wind speed:
 10 m/s @1km = 35'/sec
 - telescope scan speed
 = 4'/sec « wind speed
 so neglect telescope
 motion
 - noise is below 0.5 Hz; T = 2 sec, w = 35'/sec $get \theta = wT > I \text{ deg}$ $\gg 8' \text{ FOV}$
 - \Rightarrow on scale of array, see only polynomiallike portion of mode
 - fit for average, plane, or quadratic across FOV

Map-Space PSDs

- Subtraction methods similar in timestream, differ in map space
 - (Naive mapmaker; see below for more sophisticated version)
 - Residual correlations manifest as low- ℓ noise
 - More aggressive methods reduce residual correlations among bolometers

(transfer functions not deconvolved)

Map-Space PSDs

data type	PSD spectrum	PS amplitude uncertainty	consistant
actual/36 spaced detectors	data	550 µК _{СМВ} ²	\sim with \sqrt{N}
actual/115 detectors	data	270 µК _{СМВ} 2 🔸	inconsistent
sim/115 detectors	data	170 µК _{СМВ} ²	with √N
sim/115 detectors	instrument, white	100 <i>µ</i> К _{СМВ} ²	

(transfer functions not deconvolved)

Residual Spatial Correlations

- There is residual correlation between nearby bolometers post sky-subtraction
 - lower in better weather
 - excess correlation at sub-(f/#) λ separations
 - one bolo separation = 0.7 (f/#) λ
 - Need to go out to $r \sim 2$ (f/#) λ before residual correlations look flat with r
 - Effective number of pixels drops by a large factor:
 - degradation in μK_{CMB}^2
 - ~ degradation in number of pixels

SZ Survey Results from Bolocam

Sunil Golwala

Sky Noise Removal Window Function

- Sky noise removal via correlation analysis reduces sensitivity to signal on scales \geq 8' FOV. λ_{θ} = 8' $\Rightarrow \ell$ = 2700
- More aggressive sky noise removal also removes more signal
- Measure transfer function of sky noise removal by inserting simulated CMB (flat in $\ell(\ell+I)C_\ell$) into timestreams and measuring attenuation at output map as a function of ℓ
- Transfer function is independent $W_{\vec{\nu}}B_{\vec{\nu}}$ of signal amplitude at signal single observation transfer function 0.8 levels of interest sky subtraction $\Delta \log(\ell)$ average 0.98average planar *auadratic* planar 0.58azimuthal average 5.0 5.0 5.0 • $\mathsf{BW}_{\mathsf{eff}} = \Delta \log(\ell)$ 0.37quadratic $BW_{eff} = \int_{\vec{\nu}} d\vec{\nu} S_{\vec{\nu}} W_{\vec{\nu}} B_{\vec{\nu}}$ $S_{\vec{\nu}} \propto \frac{1}{\ell(\ell+1)}$ 0.2 0.0 $\ell = 2\pi v$ 1000 10000 angular multipole (l)

Single-Observation Transfer Functions

Asymmetry from scan pattern evident

Mapmaking

• Standard Max Likelihood mapmaking is difficult for us

- would need to include bolo-bolo correlations in timestream noise covar.
- *c* requires inversion of $N_{pix}^2 = 16000^2$ matrix
- Simulation-based techniques have been used to deal with this
- We use hybrid method
 - Scan pattern \Rightarrow naive maps are pretty close to optimal for a single obs.
 - Stationarity of noise in each map ⇒ map covar. is diagonal in maps space, well describe by simple map PSD
 - Coadd observations in Fourier space with map PSD inverse var. weighting
 - Jackknifes and sims used to determine transfer function and uncertainties

Pseudo-Optimal Mapmaking

- Optimizing sky noise removal
 - Optimal sky noise removal algorithm depends on the day's weather
 - Pick algorithm (ave, planar, quadratic) based on single-obs figure of merit (essentially, single-obs variance on power spectrum bandpower)

$$FOM = \sum_{\vec{\nu}} \frac{S_{\vec{\nu}}^2 W_{\vec{\nu}}^2 B_{\vec{\nu}}^2}{\mathcal{P}_{\vec{\nu}}^2} \qquad S_{\vec{\nu}} \propto \frac{1}{\ell(\ell+1)} \qquad W_{\vec{\nu}} B_{\vec{\nu}} = \text{transfer function}$$

(doesn't involve the real map, just the single-obs PSD)

• Relative weights:

method Fraction of obs		Fractional contribution to FOM		
avg	50%	70%		
planar 40%		29%		
quadratic	10%	1%		

• Determine overall transfer function by weighted sum of single-obs transfer function

Coadd PSDs and Transfer Functions

Coadd PSDs and Transfer Functions

Total Anisotropy Power Spectrum Constraint

• Do we see excess noise power? Do Max L estimate of A, the amplitude of the flat bandpower anisotropy

$$\log(\mathcal{L}) = \sum_{\vec{\nu}} \left(-\log(\mathcal{P}_{\vec{\nu}} + AS_{\vec{\nu}}B_{\vec{\nu}}W_{\vec{\nu}}) - \frac{x_{\vec{\nu}}}{\mathcal{P}_{\vec{\nu}} + AS_{\vec{\nu}}B_{\vec{\nu}}W_{\vec{\nu}}} \right)$$

coadd PSD from jackknifes
(noise estimate when no signal) possible signal term

- Bayesian likelihood function width is v. approximate: correlations between Fourier modes puts in a covariance we have not included
- Use Feldman-Cousins to obtain correct frequentist confidence interval

44

SZ Anisotropy Power Spectrum Constraint

- No detection of anisotropy power
- Want to constrain amplitude of putative SZ anisotropy power spectrum
- Complications:
 - Need to include contribution of CMB, ~ 45 $\mu K_{CMB}{}^2$
 - Done properly by adding expected value to $P_{\rm v}$
 - CMB power spectrum from Spergel et al (2007) and Kuo et al (2007)

45

- Fluctuations automatically accounted for by adding random CMB realization to each jackknife noise realization.
- What is the SZ power spectrum? Use two models:
 - Flat bandpower like CMB
 - Komatsu and Seljak (2002) analytic spectrum
 - Other spectra in literature not very different in our *l* range of interest

SZ Anisotropy Power Spectrum Constraint

• Constraints on amplitude of total and SZ anisotropy PS:

spectrum	flux uncertainty	68% CL interval	90% CL interval	95% CL interval	_
flat-total	0	$99-588~\mu\mathrm{K}_{CMB}^2$	$0-755~\mu\mathrm{K}_{CMB}^2$	$0-828~\mu\mathrm{K}^2_{CMB}$	total anisotropy
flat-SZE	0	$90-582~\mu\mathrm{K}_{CMB}^2$	$0-747~\mu\mathrm{K}^2_{CMB}$	$0-830 \ \mu \mathrm{K}^2_{CMB}$	
flat-SZE	3.5% (meas)	$89-634~\mu\mathrm{K}_{CMB}^2$	$0-794~\mu\mathrm{K}_{CMB}^2$	$0-876~\mu\mathrm{K}_{CMB}^2$	
flat-SZE	6.3% (total)	$83-692~\mu\mathrm{K}^2_{CMB}$	$0-956~\mu\mathrm{K}^2_{CMB}$	$0-998~\mu\mathrm{K}^2_{CMB}$	
KS-SZE	0	$77-543~\mu\mathrm{K}^2_{CMB}$	$0-686~\mu\mathrm{K}^2_{CMB}$	$0-766~\mu\mathrm{K}^2_{CMB}$	> SZ anisotropy
KS-SZE	3.5% (meas)	$76-569~\mu\mathrm{K}^2_{CMB}$	$0-741~\mu\mathrm{K}^2_{CMB}$	$0-834~\mu\mathrm{K}_{CMB}^2$	
KS-SZE	6.3% (total)	$73-732~\mu\mathrm{K}^2_{CMB}$	$0-950~\mu\mathrm{K}^2_{CMB}$	$0-993 \ \mu \mathrm{K}^2_{CMB}$	J

- 3 rows: no flux uncertainty, internal flux cal uncertainty, and full flux uncertainty (incl. uncertainty on external Mars model)
- SZ anisotropy scales as $\sigma_8^7(\Omega_b h)^2$
- Expected SZ anisotropy PS, using Dunkley et al (2008) cosmo params: 10 $\mu K_{CMB}{}^2$
- Using K-S spectrum and $\Omega_b h$ from Dunkley et al (2008) and Kuo et al (2007), we set limit of $\sigma_8 < 1.55$ at 90% CL
 - $\sigma_8 = 0.80-0.85$ from primary PS + LSS, $\sigma_8 = 0.95$ from high- ℓ

What Happened?

- Why did the survey end up being so unconstraining?
 Sky noise, sky noise, sky noise
 - In hindsight, old SuZIE data is suggestive that spatial correlations are not simple enough to be fully removable
 - But no real measurements of atmospheric correlation function, not even from SCUBA
 - We have studied sky noise on Mauna Kea more exhaustively than anyone before (Sayers et al 2008, in prep)

Thoughts on SZ Surveys

- On sky noise:
 - The sites for APEX, ACT, and SPT are better: Atacama and South Pole
 - But: even ACBAR saw sky noise at South Pole.
 - Possible sensitivity degradations
 - APEX and SPT: $2(f/\#)\lambda$ horns, so no Airy function coupling. Other degradations though:
 - imperfect correlation of atmosphere, leaving 1/f noise in timestreams
 - transfer function of sky noise removal will hurt sensitivity
 - ACT: 0.5(f/#)λ bare absorber pixels; depending on how good or bad the atmosphere, may end up in same boat, with many fewer effective pixels, + above degradations

What Next?

Bolocam

- observing single massive clusters in raster mode has never been feasible because fields are too small: spend all the time turning around
- we have learned how to observe single massive clusters in an efficient Lissajous scan mode, developed for SHARCII 350 µm CSO camera
- would like to compare to OVRO/BIMA and SZA maps, resolve the discrepancies with SuZIE data

What Next?

SZ Survey Results from Bolocam

Sunil Golwala

What Next?

- MKID camera for CSO
 - New technologies enable 4-color camera with 8' FOV (750 µm - 1.3 mm, possibly extend to 2 mm)
 - Spectral sky subtraction: each spatial pixel observes in multiple colors, so atmosphere can be regressed out
 - SuZIE II showed that this works beautifully for 4 spatial pixels
 - But large simultaneous 4-color focal plane not feasible 7 years ago
 - No worries about spatial correlations, though need to be sure source is orthogonal to atmosphere (it is for SZ)
 - Massive SZ cluster observations in Lissajous mode
- LWCam for CCAT
 - New 25-m submm/mm telescope in Chile
 - 5 or 6-color 750 µm 2 mm camera in planning
 - High-resolution multicolor followup of clusters discovered in large area SZ surveys, again using Lissajous mode
 - Reach SZ-confusion limit

Submm/mm MKID Camera

- Antenna coupled MKIDs, in-line bandpass filters to obtain four colors/ • spatial pixel (220, 275, 350, 420 GHz)
- 8' FOV, 600 spatial pixel, on CSO 2010
- 16-pixel/2-color DemoCam fielded

SZ Survey Results from Bolocam